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Abstract

A long-standing problem in online reinforcement learning (RL) is of ensuring
sample efficiency, which stems from an inability to explore environments efficiently.
Most attempts at efficient exploration tackle this problem in a setting where learning
begins from scratch, without prior information available to bootstrap learning.
However, such approaches fail to leverage expert demonstrations and simulators
that can reset to arbitrary states. These affordances are valuable resources that offer
enormous potential to guide exploration and speed up learning. In this paper, we
explore how a small number of expert demonstrations and a simulator allowing
arbitrary resets can accelerate learning during online RL. We find that training with
a suitable choice of an auxiliary start state distribution that may differ from the true
start state distribution of the underlying Markov Decision Process can significantly
improve sample efficiency. We find that using a notion of safety to inform the
choice of this auxiliary distribution significantly accelerates learning. By using
episode length information as a way to operationalize this notion, we demonstrate
state-of-the-art sample efficiency on a sparse-reward hard-exploration environment.

1 Introduction

Online reinforcement learning algorithms facilitate learning general behaviors without inductive
biases and domain expertise through trial and error. By learning from environmental interaction such
methods hold the potential to exceed the performance of supervised learning alternatives, reaching
superhuman levels of performance on tasks such as Atari [15] and Go [23]. Despite such successes,
these algorithms find it challenging to explore environments efficiently, resulting in long training
times [18, 3, 24].

There has been a considerable amount of work on making online RL more efficient by promoting
exploratory behaviors that are novelty-seeking [18] and state space-covering [4, 7, 22]. Although
such approaches have the potential to learn robust policies, the lack of task-directed exploratory cues
[14] and a tendency to forget how to revisit promising exploration frontiers [3] make them inefficient
at learning to solve hard-exploration tasks. Moreover, these methods have been designed to improve
exploration efficiency in the absence of any other prior information. Consequently, when expert
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data or a simulator with arbitrary reset conditions are available, these approaches fail to adequately
leverage these additional resources to accelerate exploration.

On the other extreme, methods like imitation learning [6] and offline RL [10, 12] can learn task-
specific behavior from purely offline data. These methods perform well within the distribution of the
training data but fail to be robust in an out-of-distribution (OOD) setting, making them unsuitable for
use in the real world.

Hybrid RL approaches mix offline data with online interactions to bridge this gap and learn robust
policies efficiently. Bootstrapping online training with offline data isn’t straightforward and naively
finetuning a policy learned offline leads to sub-optimal performance [25]. In particular, offline
experience can be quickly forgotten during online training if not handled appropriately [25, 24].
Successful hybrid methods ensure the persistence of information acquired offline during online
training by freezing a part of the replay buffer or learning fixed reference policies using the offline
data.

In this paper, we revisit this hybrid RL setup and investigate how limited quantities of expert quality
offline data can be used to effectively bootstrap online RL. We show that we can considerably
accelerate online learning in a setting where the environment can be reset to arbitrary states by using
expert offline data to construct auxiliary start state distributions.

The main contributions of this work are -

• We show that when an arbitrarily resetable simulator is available we can use a small
amount of state information collected from an offline expert to create an auxiliary start state
distribution that significantly improves the sample-efficiency of online RL.

• We find that using a notion of safety, approximated via episode length information is crucial
for forming auxiliary start state distributions that accelerate training. Moreover, we show
that this yields policies more robust to shifts in the start state distribution.

• We present empirical results on a hard-exploration sparse-reward maze environment and
show state-of-the-art sample efficiency and robustness.

2 Related Work

We explore related literature in this space through three broad category of methods: i) purely online
RL, ii) purely offline learning and iii) hybrid RL methods.

Exploration in purely online RL: Exploration is an age-old problem in reinforcement learning
that has received significant attention in the online RL context. Several methods inject additive
noise to the actions [21] or network parameters [2] to perform exploration. Such exploration is
incidental to the primary objective of reward maximization and not very efficient at exploring the
state space [24]. Many approaches incentivize exploratory behaviour through exploration bonuses
such as surprise-maximizing intrinsic motivation [18], surprise-minimizing intrinsic motivation [1],
and action [4], state [22] and trajectory [8] entropy maximizing rewards. Entropy maximization
approaches fail to distinguish exploration in unseen regions from exploration in regions of the state
space where the policy is already proficient. This makes them inefficient. While intrinsic motivation
based methods are guided by a notion of surprise, they too struggle in hard-exploration sparse-reward
environments [3]. Moreover, these methods are unable to leverage affordances like offline data and
resetable simulators when available.

Go-explore [3] is a conceptual framework that disentangles the question of where to explore from
how to get there. It is reminiscent of classical planners that first choose an exploration frontier,
navigate to it quickly without exploring (or by resetting the simulator to that frontier state) and then
initiate exploration after arriving at the frontier. Go-explore maintains an archive of visited states
and chooses an exploration frontier from this archive either uniformly at random or using a domain
specific heuristic. Our work follows a similar theme but extends this framework by investigating what
is a good way of picking an exploration frontier. We present generic properties that are desirable to
have in this selection procedure and present a mechanism to select exploration frontiers that will be
broadly applicable across a range of tasks.

BARL [14] is an information theoretic exploration method that uses a classical planner and a learnt
posterior model to sample transitions that are maximally informative for the policy to learn a given task.
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This enables it to solve tasks very efficiently. The setting used by its authors bares close resembles
to ours since they assume access to a simulator that supports arbitrary resets. Moreover, their use
of a Gaussian process (GP) to model the posterior is amenable to utilizing expert demonstrations
during training. While very effective on small scale problems with dense reward functions, BARL
unfortunately does not scale to higher dimensions and sparse-reward settings. This is confirmed by
us in our experiments.

Learning policies efficiently offline: Another way to efficiently learn policies is by training on a
purely offline dataset of experiences. This sidesteps the issue of online exploration and efficiently
recovers a policy based on the offline dataset. Methods such as behaviour cloning and GAIL [6] fall
under the broad class of imitation learning algorithms that model policy learning as a supervised
learning problem and learn a mapping from states to actions. A key issue with imitation learning
methods is that they are highly brittle and require access to large amounts of high quality expert data
to succeed [20].

Offline reinforcement learning [13] is another offline learning paradigm capable of efficiently learning
policies from demonstration data of mixed quality while requiring good state coverage in the offline
dataset [11, 20]. Consequently, a key challenge with this approach is that the lack of online interactions
leaves offline RL susceptible to distribution shift. Wrongly estimating values for actions beyond the
support of the dataset can hamper training [13]. Conservative Q-learning (CQL) [12] is a recent offline
RL method that attempts to tackle this problem by maintaining pessimism within the Q-value function
towards actions that are absent from the offline dataset. Implicit Q-learning (IQL) [10] completely
avoids predicting value estimates for unseen actions by learning a distributional state-value function
and computing an upper expectile over it to obtain the value estimate of the best action in that state.
Real world deployment of these algorithms invariably lead to encounters with OOD states and actions
making online finetuning a necessity for the real world deployment of such algorithms.

Hybrid Reinforcement Learning: Hybrid reinforcement learning leverages a combination of offline
data with online interaction to learn policies. The main challenge in hybrid reinforcement learning is
to devise methods that effectively bootstrap online learning from offline data. Several approaches
[19, 5] do this by using imitation to learn a policy from offline demonstrations before finetuning
it with RL. However, most modern state-of-the-art online RL algorithms are value based [4, 21].
Naively finetuning an offline acquired policy with value based RL can cause significant performance
degradation as a value function of similar quality to the pretrained policy is not available at the start
of online finetuning [25]. Though Monte Carlo return estimate based algorithms exist, their online
finetuning is known to be less efficient [16]. Offline RL presents a transferable paradigm to train
a policy and value function with identical objectives in both offline and online setups. However,
not all offline RL methods are well suited for online finetuning due to their inherent pessimism
towards distribution shift [16]. Even better suited offline RL methods like IQL [10] result in weaker
policies after finetuning especially when limited offline data is available [25]. An alternative line
of work [24, 17, 26] avoids finetuning a pretrained policy all together by pre-filling replay buffers
at the start of training with transitions from the offline dataset. These transitions persist through
training and policy learning happens from scratch. JSRL [25] presents an alternative approach to the
finetuning-free idea of hybrid RL. It learns a guide policy from offline data and uses it to roll out a
part of the online episode before handing over control to a freshly initialized policy for completing
the roll-out. The handover point is altered over the course of training and all the captured experience
is used to train the freshly initialized policy.

The proposed work also lies in this finetuning-free hybrid setting and shares similarities with JSRL.
Both the proposed work and JSRL conceptually belong to the Go-explore [3] family of algorithms.
The two key differences between JSRL and the proposed work are: i) both works encapsulate the idea
of a reset distribution or equivalently a frontier state to explore from. While ours is reached through
environmental resets, JSRL uses a guide policy to reach it. ii) JSRL induces a specific kind of reset
distribution through its variation of the handover point over the course of training. This differs from
our reset distribution and we will show in our method and experiments that this is an important choice
that influences the sample-efficiency and performance of the learnt policy.
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3 Preliminaries

We define a finite-horizon discrete-time MDPM to be a (S,A, r, p0, H, T , γ) tuple where S is the
state space, A is the action space, r : S × A × S → R is the reward function, p0 is a probability
distribution defined over S corresponding to the start state distribution ofM, H ∈ N is the finite time
horizon, γ is the discount factor and T : S × A → P (S) describes a transition function capturing
the distribution of next states when an action a ∈ A is taken at a state s ∈ S.

In RL, the goal is to obtain a policy π(a|s) that maximizes the expected sum of future discounted
rewards from p0. Concretely, the objective is to maximize -

Jp0
(π) = Es0∼p0,st+1∼T (st,at),at∼π(st)[Σ

H
t=0γ

tr(st, at, st+1)] (1)

It is important to note here that, while Jp0
(π) is maximized with respect to p0, it is not necessary

to train with this start state distribution. As discussed in [9], p0 can down-weight the influence of
unlikely but important states during policy improvement by visiting them infrequently. The presence
of such unlikely but important states along the optimal trajectory, which we refer to as task critical
states (C), can result in slow learning progress. It would instead be beneficial to have a start state
distribution (µ) that is distributed more uniformly across some subset Ssub of the state space (i.e.,
Ssub ⊆ S) emphasizing visitation of task critical states while asymptotically obtaining comparable
performance to the optimal policy as measured by Jp0

(π).

In addition, it can be noted that robustness is another desirable property for a learnt policy to have.
More precisely, we would like a policy learnt to maximize Jp0 to also do well on a broader start
state distribution which we call µOOD, i.e., maximize JµOOD

(OOD refers to Out-Of-Distribution).
Thus evaluating robustness signifies evaluating the learnt policy on a separate start state distribution
defined by µOOD. The state distribution induced by a policy starting from µOOD may be different
from the induced distribution of states when starting from p0. As a result proficiency starting from p0
does not imply proficiency starting from µOOD. For policies designed for real world deployment, it
is important for them to generalize beyond the training distribution making evaluation from µOOD a
useful benchmark to consider while training.

In this paper, we investigate how sample-efficiency of online RL can be enhanced by suitably choosing
µ and how this impacts robustness. Unlike traditional RL where policy rollouts are constrained
to begin from p0, we assume access to a simulator that allows resets to any arbitrary start state
distribution µ. This is a common affordance available in a wide range of RL simulators that is not
fully utilized by existing algorithms. As we will show in Section 4, the reset states belong to a subset
Ssub of the state space that spans the offline expert demonstration distribution (µoff ) only.

It is important to note that since µoff is generated via an expert starting from the distribution p0, the
state distribution of µoff will be similar to the induced state distribution of a well performing policy
starting from p0. As a result, resetting the simulator to a µ derived from µoff will not compromise the
robustness benchmark. At the start of training, novel states emerging from changing reset distributions
from p0 to µOOD will remain novel when changing reset distributions from µ to µOOD. Over the
course of training, resetting to µ may simply alter the likelihood of visiting some novel states. The
impact of this altered likelihood will be observable through the robustness evaluations.

4 Auxiliary Start States for Accelerated Learning

Directly computing the visitation distribution over task critical states (C) is challenging in continuous
state spaces owing to the associated computational infeasibility of calculating this quantity. Moreover,
this is a policy dependant quantity and as a result will need to be continuously recomputed over the
course of training. As a result, a suitable µ should be an easily computable dynamic distribution that
accounts for the changing visitation distribution of the policy over time.

We observe that episode termination is a powerful and ubiquitous signal available in a variety of RL
tasks. It is especially prevalent in robotic tasks such as autonomous driving and robot locomotion
where eventual real world deployment is the end goal and safety of the agent and its surroundings are
of paramount importance.

Intuitively, for a state s, if the proportion of actions that cause the agent to land in a terminal state is
high, then a larger exploratory budget is required to learn a feasible action for this state by the policy.
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Moreover, the chance of navigating through this state likely hinges on the repeated selection of a
small set of safe and feasible actions in the neighbouring regions of the state space. Therefore, there
is a high likelihood that such states belong to C and sampling them more frequently can accelerate
learning. More formally, we define the notion of state safety for any state s ∈ S as -

Ωπ(s) =

∫
a0:k−1

P (a0:k−1|s, π)
∫
sk

P (sk|s, a0:k−1, T , π)Z(sk) dsk da0:k−1 (2)

Here, Z(s) ∈ {0, 1} ∀s ∈ S and denotes whether or not state s causes episode termination. Z(s) = 0
if episode termination is caused by being in state s and 1 otherwise. a0:k−1 is the sequence of k
actions induced by the policy π from state s under the transition model given by T . sk is the state
that is reached when policy π takes action sequence a0:k−1 starting from state s in an environment
with transition model T .

Exactly computing Ωπ(s) is still computationally expensive. Instead we leverage the time to ter-
mination or episode length from a given start state, which is a freely available metric at training
time, as a Monte Carlo approximation of the true state safety for a given policy at that state. By
maintaining a parameterized distribution over a set of desirable start states (candidate task critical
states or C̃) we can exploit local smoothness in the majority of the state space to quickly propagate
these approximations across the start state distribution (see Algorithm 2 for details)

Since we are taking a hybrid approach to RL, we have access to a limited amount of expert demon-
stration data. Since this data comprises successful demonstrations of the task, the demonstration
trajectories will likely contain task critical states if they exist. As a result, we can simply set C̃ to
be the states from the demonstration data and identify C from amongst these states over the course
of training. Putting everything together we get our proposed method AuxSS that we describe in
Algorithm 1.

Algorithm 1 Online RL with Auxiliary Start States

1: Inputs: Task Horizon H , Offline Demonstration States Sdemo, AlgorithmA, Training Timesteps
Tmax, Environment E , replay buffer B

2: Sampling distributionW ←

len(Sdemo)︷ ︸︸ ︷
[1, 1 ... 1] ▷ Initialization incentivizes visiting states atleast once

3: Sampling distribution norm N ← SUM(W)
4: t← 0
5: while t ≤ Tmax do
6: i← SAMPLESTARTSTATE(WN )
7: s0 ← Sdemo[i]
8: Lep ← TRAINFORONEEPISODE(A,B, E , s0)) ▷ Return value is episode length
9: t← t+ Lep

10: W,N ← UPDATESAMPLER(W,N , Lep, i,H,Sdemo) ▷ See Algorithm 2

Algorithm 2 Updating Auxiliary Start State Distribution via Episode Length (AuxSS)

1: Inputs: Sampling distributionW , Sampling distribution norm N , Episode Length Lep, Update
index i, Task Horizon H , Offline Demonstration States Sdemo, Weight Threshold δ, Smoothing
Variance σ2

2: Outputs: Sampling distributionW , Sampling distribution norm N
3: W[i]← MAX(

H−Lep

H , δ) ▷ δ ensures probability of sampling ≥ 0

4: λ← 1√
2πσ

EXP( (Sdemo−Sdemo[i])
2

2σ2 ) ▷ λ is used for smoothing updates toW
5: W ← (1− λ)W + λW[i]
6: N ← SUM(W)
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Figure 1: Task Completion Rate of Various methods on the Lava Bridge Environment. Each method
is evaluated on an In Distribution (ID) and Out-of-Distribution (OOD) benchmark of starting states
where the ID start state distribution is the start state distribution of the MDP while the OOD benchmark
comprises a different distribution of start states.

5 Experiments

Overview: In this section we first highlight the affinity of using auxiliary start state distributions
with the hybrid RL setup by demonstrating state-of-the-art sample-efficiency on a sparse-reward
hard-exploration task. We show that AuxSS is better suited at assimilating information from limited
amounts of expert offline data by demonstrating better sample-efficiency than competing approaches
that have access to 15× more offline expert data available to them. We simultaneously show AuxSS
also facilitates learning more robust policies. Finally, we empirically demonstrate that approximating
a more uniform visitation distribution over C through Ω facilitates accelerated learning. We showcase
how AuxSS is a good way to approximate Ω while other distributions not motivated in the same way
are not.

Setup: We conduct our experiments on the maze setup shown in Figure 3. It consists of two large
regions connected by a narrow traversable passage with obstacles on either side (shown in blue). The
obstacles are pits of of lava and the episode terminates if an agent encroaches this area. We refer
to this environment as Lava Bridge. It has a continuous 4D state space comprising 2 dimensions
of position and 2 dimensions of velocity. The action space is a continuous 2D force vector. All
evaluations are performed in a sparse-reward setup where the agent only gets a non-zero reward on
reaching the goal state or entering a terminal state.

5.1 Do Auxiliary Start State Distributions accelerate learning of robust policies?

In this section we study the efficacy of AuxSS at improving the sample efficiency of online learning
by making use of affordances such as arbitrary resetting of the environment and access to a limited
quantity of expert demonstration data. We compare AuxSS with a variety of offline, online and hybrid
methods. In addition to tracking sample-efficiency we also track the robustness of the learnt policy.
The choice of the MDP start state distribution (p0) and robustness benchmark start state distribution
(µOOD), are shown in Figure 3.

Figure 1 presents the findings of this study on the Lava Bridge environment. A standardized training
setup has been used across methods (except BARL [14]) where the number of offline demonstration
transitions is set to 10 million, number of online learning steps is 300000, replay buffer size is 10000,
max episode length is 500 and experiments are evaluated across 25 seeds. All hybrid methods and
offline methods have access to 500 transitions of expert demonstration data.

We use the example of SAC [4], a purely online RL method, to highlight the exploration challenges
that the Lava Bridge environment poses to standard online RL. SAC uses an undirected entropy
based bonuses to promote exploration but struggles to efficiently explore in our environment. Its
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Figure 2: A study of how sample-efficiency and robustness vary for hybrid RL methods when
provided with different amounts of demonstration data.

failure to reach the goal within the stipulated training budget and learn a robust policy highlights the
exploration challenges posed by the Lava Bridge environment. In addition we evaluate BARL [14], an
information theoretic method for sample-efficient online exploration. We evaluated BARL both with
and without access to the demonstration data and found it unable to solve our task. BARL is reliant
on a classical planner which is designed to work with dense rewards. Therfore the sparse-reward
nature of our task prevents the BARL planner from finding solutions in a feasible amount of time,
resulting in the method’s failure.

We compare our proposed approach with two hybrid RL approaches - HySAC (an adaptation of
HyQ [24] where a DQN is replaced with SAC) and JSRL [25]. It can be seen that across training
reward and success rates, using a good auxiliary start state distribution yields state-of-the-art sample
efficiency and performance as both HySAC and JSRL struggle to make full use of the limited offline
demonstration data. Moreover, the proposed approach is complementary to HySAC’s persistent
storage of offline demonstration in the replay buffer throughout training and as a result the two
approaches can be coupled (HySAC+AuxSS) to obtain better robustness in fewer training steps.

It can be noted that the approach taken by JSRL of handing over episode rollout from a guide
policy to the learning policy is conceptually similar to having an auxiliary start state distribution
that monotonically recedes towards p0 over the course of training. Unlike our proposed auxiliary
distribution, JSRL cannot reemphasize visiting previously learnt regions of the state space that may
have been forgotten over the course of training. Even accounting for some sample-efficiency gains
that JSRL may obtain by directly resetting to the handover point (rather than using the guide policy
to get there) withing an episode, its inability to reemphasize visitation of previously learnt regions
prevent it from learning very robust policies as can be seen in Figure 1.

We also compare against purely offline methods such as imitation learning and offline RL. We find
that imitation learning methods like behaviour cloning (BC) and GAIL [6] fail to succeed on both
p0 and µOOD. This stems from their inability to learn meaningful policies from just 500 transitions.
Infact, we provide these methods with 7.5K transitions to learn from in Figure 1 and they still fail to
learn a reasonable policy as measured by both start state distributions. Offline RL fairs a lot better.
IQL [10] is a popular offline RL method that we compare against. We find that IQL performs well
on p0 but suffers a large drop in performance when evaluated on µOOD. This arises from the fact
that offline RL methods are incentivized to learn a good policy only within the distribution of their
training data which in this case is µoff . For a policy that performs well starting from p0, the induced
state distribution of this policy will be close to µoff and as a result a policy learnt using IQL does
well on p0. On the other hand, the induced state distribution of the policy learnt via IQL when starting
from µOOD would present a distribution shift with respect to µoff resulting the in the poor robust
performance of IQL.
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Figure 3: (Left) Sample-efficiency and robustness trends when simulator resets are selected using
different start state distributions. (Right) An illustration of the Lava Bridge environment. The red
regions are the lava pits, the green blobs denote p0 and the blue spots correspond to the distribution
µOOD. The red target marks the goal location.

5.2 Influence of offline demonstration set size on performance and sample-efficiency

In Figure 2 we plot the training reward and evaluate robustness when different quantities of expert
demonstration data (0.5K and 7.5K expert samples) are available prior to the online learning phase.
We find that by accessing 15× fewer expert samples AuxSS and HySAC+AuxSS can match and exceed
the robustness and sample efficiency of policies learnt via other hybrid RL methods. When provided
access to a resetable simulator, this demonstrates that a good auxiliary start state distribution can more
effectively assimilate data to guide exploration and accelerate learning than other approaches to hybrid
RL. Unlike other methods, having a good start state distribution prevents the need to collect large
quantities of expert data through ability to bootstrap online learning off of very limited demonstration
trajectories (the 500 expert transitions come from 3 demonstration trajectories. Reported AuxSS
trends sample from a random subset of 150 transitions. This is approximately one trajectory worth of
expert data).

5.3 State safety inspired start state sampling for sample efficiency

In Section 4, we connect the notion of state safety Ω with task critical states (C) and discuss how this
can influence sample-efficiency. In this section, we empirically validate our claims. We modify AuxSS
by constructing a static distribution (Ω-SS) that sample start states with respect to a random policy.
Concretely, we sample start states inversely proportional to Ωπrand

(s) where πrand(.|s) ∼ U |A|.
In practice, we use Monte Carlo sampling of actions for a fixed time horizon (= 4 time steps) to
approximate this quantity for each state. Since the policy at the start of online training is initialized
randomly, this mimics the state safety distribution with respect to the policy at the start of training.
Therefore if our claims hold we expect to see matching sample-efficiency trends to AuxSS in the early
stages of training.

Figure 3 presents the findings of this study. We see that as expected, Ω-SS demonstrates matching
sample-efficiency and robustness trends as AuxSS early in training. In fact, since Ω-SS is the correct
state safety distribution with respect to the initialized policy from the start of training it learns even
faster than AuxSS, since AuxSS must gradually approximate this state safety distribution over the
course of multiple training episodes.

We note here the divergence in robustness trends seen later in training. This is caused by the static
nature of Ω-SS which fails to adapt to the morphing C induced by the policy as it trains. This causes
the resulting loss of robustness. The dynamic nature of AuxSS helps prevent this degradation as its
able to adapt its start state distribution based on changes in the policy.

5.4 Do start state distributions not deriving from state safety fail to be sample efficient?

To study this inverse logical question, we construct two start state distributions, U-SS and GoalDist-
SS, that do not try to incentivize visitation of task critical states. U-SS is a static distribution that
uniformly samples states from the provided demonstrations. GoalDist-SS is a dynamic distribution
that exponentially weights states based on their distance from the task goal. States closer to the goal
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are assigned a higher probability to be sampled. The time varying component of this distribution
arises from temperature scaling of the distribution with the temperature gradually rising over the
course of training. This promotes sampling near goal states early on in training and sampling more
uniformly from the demonstration data later on in training.

Figure 3 contains the findings of this study. It can be seen that both U-SS and GoalDist-SS are far
slower to train than state safety inspired distribution demonstrating that not all start state distributions
will accelerate learning. As a consequence of the poor choice of their state visitation, these methods
fail to learn good policies in the stipulated training budget and thus also have much lower robust
performance than AuxSS and Ω-SS (before its static nature causes robustness to degrade).

6 Discussion and Limitations

In this work, we explore the use of commonly available affordances in RL tasks to guide online
exploration. We highlight the importance of auxiliary start state distributions, constructed by utilizing
small quantities of expert demonstration comprising only state information, in facilitating sample-
efficient learning of robust policies. We find that in environments that allow arbitrary state resetting,
this is a very crucial design choice and we observe that deriving start state distributions from notions
of state safety can dramatically accelerate policy learning online. Naturally, the need for a simulator
that supports arbitrary state resets can also be viewed as a limitation. An interesting future direction
would be to explore approaches like offline RL to relax this requirement by providing a means to
efficiently navigating the distribution of offline data starting from the start state distribution of the
MDP.
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