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ABSTRACT

Scaling federated learning (FL) to billion-parameter models introduces critical
trade-offs between communication efficiency, network load distribution, model ac-
curacy, and privacy guarantees. Existing solutions often tackle these challenges in
isolation, sacrificing accuracy or relying on costly cryptographic tools. We propose
ERIS, a serverless FL framework that balances privacy and accuracy while eliminat-
ing the server bottleneck and significantly reducing communication overhead. ERIS
combines a model partitioning strategy, distributing aggregation across multiple
client-side aggregators, with a distributed shifted gradient compression mechanism.
We theoretically prove that ERIS (i) converges at the same rate as FedAvg under
standard assumptions, and (ii) bounds mutual information leakage inversely with
the number of aggregators, enabling strong privacy guarantees with no accuracy
degradation. Extensive experiments on image and text datasets—ranging from
small networks to modern large language models—confirm our theory: compared
to six baselines, ERIS consistently outperforms all privacy-enhancing methods and
matches the accuracy of non-private FedAvg, while reducing model distribution
time by up to 1000x and communication cost by over 94%, lowering membership
inference attack success rate from ~83% to ~65%—close to the unattainable
~64% limit—and reducing data reconstruction to random-level quality. ERIS estab-
lishes a new Pareto frontier for scalable, privacy-preserving FL for next-generation
foundation models without relying on heavy cryptography or noise injection.

1 INTRODUCTION

The widespread digitalization has led to an unprecedented volume of data being continuously recorded.
However, most of these data are sensitive, introducing privacy risks and regulatory constraints that
limit its usability (EU, 2024). Federated Learning (FL) has emerged as a distributed and privacy-
preserving paradigm that enables multiple devices (clients) to collaboratively train machine learning
(ML) models without sharing their private local data (McMahan et al., 2017). By decentralizing
training, FL can incorporate a much broader range of potential data sources—moving beyond publicly
available web data or isolated institutional datasets—to include sensitive distributed data from
corporations, hospitals, vehicles, and personal devices that would otherwise remain inaccessible.

Despite its potential to democratize access to richer and more diverse training data, FL faces critical
challenges that hinder its large-scale development. First, large-scale data availability necessitates high-
capacity models capable of accurately capturing diverse data distributions, such as foundation models
and large language models (LLMs) (Khan et al., 2025). However, as model sizes grow, FL training
becomes increasingly impractical due to prohibitive communication costs. In traditional FL, the
server synchronously transmits updated models to all clients in each round. With modern large models
easily exceeding billions of parameters (Devlin et al., 2019; OpenAl, 2023), this process overloads the
server’s network connection, creating a major bottleneck that limits scalability. Reducing the number
of transmitted parameters can mitigate communication costs but typically degrades performance
(Jiang et al., 2023; Haddadpour et al., 2021). Similar limitations hold for parameter-efficient fine-
tuning (PEFT) for large pre-trained models, which remain consistently outperformed by full model
fine-tuning (Raje et al., 2025; Sun et al., 2024). Second, although FL prevents direct data sharing,
exchanged gradients still encode sensitive information about the underlying training data, posing
privacy risks. Adversaries may exploit these gradients to reconstruct input data or infer whether
specific samples were used for training (Yue et al., 2023; Hu et al., 2021; Bai et al., 2024). Existing
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privacy-preserving solutions attempt to mitigate these risks, but often introduce trade-offs, sacrificing
either model accuracy or training efficiency (Geyer et al., 2018; Shen et al., 2024; Zhou et al., 2023).

To address these challenges and unlock the full potential of FL, we introduce ERIS, a novel, scalable,
serverless FL framework that significantly reduces communication costs and enhances privacy.
Unlike existing decentralized learning approaches that fragment collaboration, ERIS fully preserves
the model utility of standard FL. To the best of our knowledge, ERIS is the first FL framework to
simultaneously achieve decentralized aggregation, strong communication efficiency, and provable
information-theoretic privacy guarantees without sacrificing model utility. ERIS is also the first to
extend privacy-enhancing federated training to modern LL.Ms, demonstrating feasibility at scale
where prior methods fail to preserve utility and efficiency. Our key contributions are:

* We introduce a novel gradient partitioning scheme that decentralizes the aggregation process
across multiple aggregators (clients) without introducing approximation errors—ensuring that
the final model remains mathematically equivalent to FedAvg, while removing bottlenecks
and balancing network load to maximize efficiency.

* We combine decentralized aggregation with a distributed shifted compression mechanism that
reduces transmitted parameters to less than 3.3% of the model size and cuts distribution time
by up to three orders of magnitude in the worst case—pushing communication efficiency to
its limits while preserving model convergence and utility. We provide convergence guarantees
and empirical results across three image and two text datasets, from small networks to LLMs.

* We prove theoretically and empirically that ERIS’s gradient partitioning mitigates privacy
leakage without noise injection or cryptographic overhead. Since no single entity observes a
full client update—only a small, randomized subset—the privacy risk is reduced and scales
with the number of aggregators. Experiments on four model architectures and six SOTA
baselines under two common threat models confirm ERIS’s superior privacy—utility trade-off.

2 BACKGROUND

Traditional Federated Learning. Traditional FL systems (McMahan et al., 2017) consist of K € N
clients, denoted by K = {1,2,..., K}, coordinated by a central server to collaboratively train an

ML model over a distributed dataset D. Each client k € K holds a private dataset Dy, = {dy. . }>%,
with Sj, samples. During each training round, clients independently update their model parameters
x%* € R™ by minimizing a nonconvex local loss f(Dy;x*%). Local updates are expressed in terms
of stochastic gradients g} . After local training, each client transmits its gradients to the server,
which aggregates them using a permutation-invariant operation, and updates the global model as
x'T1 = xt — \,g?, where )\, is the learning rate. The updated global model x*! is broadcast back
to the clients, serving as initialization for the next training round. In general, FL aims to minimize:

K Sk
1 1
g 3D, where [Py = g3 (o) )

For clarity, in the rest of the paper, we denote the loss function of the current model as f(x*) for the
entire dataset D, fk(xt) for the local dataset Dy, and f;, s (xt) for a single sample dy, 5, respectively.

Communication efficiency. Communication between the server and clients is widely recognized
as the primary limitation in optimizing the efficiency of traditional FL systems. The two key
communication challenges that hinder scalability are a network utilization imbalance and high
communication costs per round. First, as the number of clients grows, FL introduces a severe
imbalance in network utilization, leading to server-side congestion, which makes large-scale FL
impractical. Decentralized architectures can alleviate this issue by distributing communication across
multiple nodes, balancing network utilization and reducing overload on any single node (Kalra et al.,
2023; Chen et al., 2023). However, existing architectures often restrict collaboration to local neighbor
exchanges, which reduces the collaborative power of traditional FL and results in client-specific
models. Second, as model sizes increase—reaching billions of parameters—the volume of transmitted
data per round escalates, amplifying communication costs and making it impractical to train large
models efficiently. Compression techniques, such as quantization (Michelusi et al., 2022; Zhao et al.,
2022a) and sparsification (Richtarik et al., 2022; Li et al., 2022d), mitigate communication overhead
by reducing the amount of transmitted data. However, naive compressions often degrade model utility
or require additional reconstruction steps, increasing the total number of rounds (Li et al., 2020).
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Privacy protection. Although FL prevents direct data sharing, the training process still exposes
transmitted information—such as gradients—that can reveal sensitive information (Zhang et al.,
2023a;b; He et al., 2024). The server represents the primary vulnerability in FL, as it collects full
client gradients, directly derived from private data during optimization. To ensure user-level privacy,
two main approaches have been proposed. The first relies on cryptographic techniques, such as secure
aggregation (Chen et al., 2019; Reagen et al., 2021), and trusted execution environments (Zhao et al.,
2022b; Yazdinejad et al., 2024), to mask client gradients from the server. However, these methods
introduce significant computational overhead or require specialized hardware. The second approach
perturbs gradients using privacy-preserving mechanisms such as local differential privacy (LDP) (Xie
et al., 2021; Ziegler et al., 2022) or model pruning (Zhang et al., 2023c; Bibikar et al., 2022), which
reduce privacy leakage but often degrade model utility. In this work, we focus on perturbation-based
methods, which provide software-level privacy without requiring cryptographic infrastructure.

3 ERIS

In this work, we propose ERIS, a novel serverless FL framework designed to address key limitations of
traditional systems. This section formalizes the problem setting (Section 3.1), describes the pipeline
(Section 3.2), provides theoretical foundations for the convergence of the learning process (Section
3.3), and establishes an information-theoretic upper bound on the privacy leakage (Section 3.4).

3.1 PROBLEM DEFINITION

We consider a traditional distributed environment with K clients, each holding a private dataset
Dy, = {d, s}f§1 with S; samples. Our objective is to collaboratively train a global model while
addressing the following challenges: (i) optimizing network bandwidth usage by equally distributing
the computational and communication load across the network without introducing approximation
errors during aggregation; (ii) reducing the number of transmitted parameters while ensuring model
convergence and maintaining utility; and (iii) minimizing the information available to an honest-but-
curious adversary, thereby reducing privacy leakage without degrading the learning process.

Assumption 3.1 (Smoothness). Each local function f; ; is L-smooth: there exists L > 0 such that

L
fij(@1) < fij(z2) +(Vfij(w2), 1 — 22) + §||331 —z3||?, Vai,m2 € R 2

Assumption 3.2 (Unbiased local estimator). The gradient estimator g}, is unbiased E;[g}] =V fi(x*),
where [E; is the expectation conditioned on all history before round ¢, and there exist Cy, Cs such that

K
1 ~
Et[ggugz = Vi(x)I[P] < C1A"+ G (3)
EA] < (1= 0)A" + G| [V £ (x| + Cali[||x"*! — x| (3b)

Remark 3.3. The parameters C; and C5 capture the variance of the gradient estimators, e.g., C; =
C5 = 0 if the client computes local full gradient gf. =Vf; (Xt), and C # 0 and Cs = 0 if the client
uses variance-reduced gradient estimators such as SVRG/SAGA.

3.2 THE ERIS PIPELINE

The ERIS pipeline is detailed in Algorithm 1 and shown in Figure 1, which outlines the client-side
computation and distributed learning process at round . At each round, each client computes one or
more local updates using a (stochastic) gradient estimator g, such as SGD, SAGA (Defazio et al.,
2014), or stochastic variance-reduced gradient (SVRG) (Johnson & Zhang, 2013), on its dataset Dj,.
Before transmission, clients perform two key operations: shifted compression and model partitioning.

Shifted Compression. We begin by introducing the standard definition of an unbiased compressor,
widely adopted in FL algorithms (Li et al., 2020; Li & Richtarik, 2021; Gorbunov et al., 2021).

Definition 3.4 (Compression operator). A randomized map C : R — R" is an w-compression
operator if for all x € R", it satisfies w > 0 and:

E(C(x) =x,  E[C(x)—x[]*] < wllx|]? @
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Client Computation at Round ¢

Distributed Training at Round ¢
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Figure 1: Tllustration of ERIS at training round ¢ for two aggregators (A = 2). Left: each client
performs shifted compression and model partitioning, generating shards vz’(a) sent to aggregators Cy
and Cj_;. Right: each aggregator collects and aggregates the corresponding shards across clients to
produce partial updated models xfj)l, which are then sent back to the clients.

Remark 3.5. Definition 3.4 encompasses a wide range of common compressors like random quantiza-
tion and sparsification (Devlin et al., 2019; Alistarh et al., 2017; Li et al., 2020; Li & Richtarik, 2021;
Li et al., 2022d). For instance, random sparsification in FL can be represented as C,ﬁ (x)=x0 me:,

where mg: is a scaled binary mask with entries equal to 1 /px. with probability py and 0 otherwise,

ensuring E[mc]f;] =1lgand w 17—5’”’. The mask can vary between clients and time, enabling

dynamic adjustment of the compression throughout the learning process.

To improve convergence behavior (i.e., reduce communication rounds), we extend the shifted com-
pression of Li et al. (2022d) to a distributed setting. Each client maintains a local reference vector
st , and compresses the shifted gradients g} — s (Line 4 in Algorithm 1). This vector is iteratively

updated to track the compressed gradient as s = sf + 7/Cf (&} — st.), where 7" is the step-size.

Model Partltlonlng. After shifted compression, each client partitions the compressed gradient
vector Vk into A disjoint shards using a structured masking scheme to avoid information loss. Let
{m(a)} ', € {0,1}4 denote a set of categorical masks at round ¢, where each mask m( ) satisfies:
A
Completeness: Z méa) =1q4,
a=1
where 1, is the all-ones vector, and ® denotes element-wise multiplication. These masks partition
the gradient v}, into A non-overlapping shards as defined in Line 5. Each shard v (a) is transmitted

Disjointness: m{,y ©m{,, =0 VYa#d,

to its corresponding aggregator a, ensuring that parameter updates are distributed across the network.
The masks {mfa)} can be either (i) predefined via a deterministic or random partition shared across

clients (e.g., interleaved indices) or (ii) dynamically sampled by each client at each round.

Distributed Model Aggregation. Each aggregator a receives {VZ,(a) & | from all participating
clients and computes a permutation-invariant aggregation over its assigned subset of parameters.
To account for the client-level shifted compression, the aggregator adds the global reference vector

( ) to the aggregated shard. The resulting aggregated shards v( ) are then used to update the
corresponding segments of the global model X (Llnes 9-10 in Algorithm 1). These updated
segments are broadcast back to all clients to synchromze the next training round. Concurrently, the

aggregator updates the global reference vector as SIEJ’)I = s(a) + %% Zle v}fC (a) for the next round.

3.3 THEORETICAL ANALYSIS OF CONVERGENCE AND UTILITY

As established in Appendix B.1, the distributed aggregation process across A aggregators in ERIS
introduces no loss of information or deviation in algorithm convergence. Building on this result, we
present the following theorem, which characterizes the utility and communication efficiency of ERIS.
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Algorithm 1: ERIS

Input: Initial global model x°, number of aggregators A, learning rate A, number of clients K, number of
communication rounds 7, initial reference vector sg =0

Output: Final global model x”

fort =0,1,...,7T —1do

// Client-side operations

for each client k € {1, ..., K} in parallel do

Compute local stochastic gradient g, ;

Compression: vi, = Cf, (gk — sk)

Privacy: Partition compressed gradient into A shards: {vk (a>}a 1={vioe m(a>}a 1

Send each shard v}, (a) 1O aggregator afora=1,...,A;

Update reference vector st+1 =st +~vi;

// Aggregator-side operations

for each aggregator a € {1,..., A} in parallel do

Aggregates compressed information and compensates shift v/, = sf,) + & S5, Vi 4 :

Updates shard of the global model x( " = x{,) + AV(,) ;
Updates reference s = sf,) + 77 >t Vo (a)

f+1

Broadcast updated shard X(,) to all clients ;

Each client k reassembles the global model xt' =S4 m{, © X

Theorem 3.6 (Utility and communication for ERIS). Consider ERIS under Assumptions 3.1 and 3.2,
where the compression operators C. satisfy Definition 3.4. Let the learning rate be defined as:

. VBK 1

=A< , , (5

' mm{\/1+2aC4+4,B(1+w)(1+w)L (1+2aCs +48(1 + w) +2aC3/A?)L ®

where o = miﬁﬁ, for any B > 0, and let the shift stepsize be vy = 2(1112‘;‘33. Then, ERIS
satisfies the following utility bound:

29 38C,
\Y 2 — 6
E:Hf I <5+ Ty ©

where ®q = f(x°) — f* + aLA? + % Zle ||V fx(x%) — s2||%. Equation 6 implies that the
asymptotic utility of ERIS is governed by by the gradient estimator variance Cs, which vanishes for
lower-variance estimators such as SVRG/SAGA. Similarly, a larger local batch size reduces gradient
variance, leading to improved convergence, with Cy = 0 when full local gradients are used.

Theorem 3.6 establishes a convergence guarantee for ERIS, providing a utility bound that holds for
common gradient estimators such as SGD, SAGA, and SVRG, which satisfy Assumption A.2. In
contrast to prior communication-efficient privacy-preserving FL. methods (Ding et al., 2021; Li et al.,
2022d; Lowy et al., 2023), the bound in equation 6 depends primarily on the gradient-estimator
variance C'5 and is independent of the specific privacy-preserving mechanism applied; notably, it
contains no term that grows with 7'. The proof and additional details are provided in Appendix C.

3.4 THEORETICAL ANALYSIS OF PRIVACY GUARANTEES

We analyze ERIS under the standard honest-but-curious threat model (Huang et al., 2021; Gupta et al.,
2022; Arevalo et al., 2024), where an adversary observes and stores transmitted model updates (e.g.,
via eavesdropping, or compromised aggregator/server) and attempts to infer sensitive information
about clients’ private data Dy,. ERIS inherently reduces information leakage through two mechanisms:
(i) compression via an operator C;, with mask myc: , and (ii) partitioning via disjoint masks {mfa) A,
ensuring that a fixed adversary observes at most n/A (random) parameters per round. To quantify
privacy, we bound the mutual information between Dy, and the adversary’s view vtk’(a) over 1" rounds.
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Theorem 3.7 (Privacy guarantee of ERIS). Let v} (@) = = (gl —sh)® me: © m( denote the a-th
compressed shard of client k at round t, where mc: is a compression mask satlsfymg Definition 3.4
with probability p, and mfa) selects one of A disjoint shards. Assume that max; ¢ 3¢, I[(Dy; X}, ; |
H:) < oo, where Hy denotes the full history up to round t of the revealed masked updates and

weights. Then, under the honest-but-curious model, the mutual information over T’ rounds satisfies:

p
Ik = I(D}€7 {thj}z)} ) <n T Z Cmax; (7)

where n is the model size and C\y .y bounds the per-coordinate mutual information at any round.
Remark 3.8. If each weight satisfies Xk | D, He ~ N(u(Dy),02,4) and xk U He ~

N (i, 0%) independently of (i,t) and H;, then by the entropy of Gaussians:
2

o
Cunax = sup I(Dysxpit | He) = sup [HOT | M) = HOS | Dy Ho)) = in—5—

it Hy i,t, Hy Ocond

Theorem 3.7 shows that the leakage bound scales as nT %, and hence decreases with stronger
compression (lower retention probability p) and a larger number of shards A, which together reduce
the number of observable parameters per round. Full proofs and the extension to colluding adversaries
are deferred to Appendix D, where we also empirically verify that model weights follow the Gaussian
assumption of Remark 3.8. These theoretical findings are also corroborated by our experiments.

4 RESULTS

In this section, we present the experimental setup and numerical results evaluating the privacy-utility
tradeoff of ERIS. We compare its performance to SOTA methods, showing its effectiveness in
balancing communication efficiency, accuracy, and privacy across diverse real-world FL scenarios.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate ERIS on five publicly available datasets spanning image classification and text
generation. For image classification, we use MNIST (LeCun et al., 2005) and CIFAR-10 (Krizhevsky
et al., 2009); for text classification, IMDB Reviews (Maas et al., 2011); and for text generation,
CNN/DailyMail (See et al., 2017). To evaluate data reconstruction attacks, we additionally use LFW
(Huang et al., 2008). Datasets are randomly partitioned among K clients (X =10 for CNN/DailyMail,
K =25 for IMDB, and K =50 for the others); while non-IID scenarios are generated using a Dirichlet
distribution with « € {0.2,0.5}. We adopt GPT-Neo (Black et al., 2021) (1.3B) and DistilBERT
(Sanh et al., 2019) (67M) as pre-trained models for CNN/DailyMail and IMDB, respectively, and
train ResNet-9 (He et al., 2016) (1.65M) and LeNet-5 (Lecun et al., 1998) (62K) from scratch for
CIFAR-10, MNIST, and LFW. All experiments use 5-fold cross-validation, and reported results are
averaged across folds. Training hyperparameters are detailed in Appendix E.1.

Baselines. We compare ERIS against several state-of-the-art methods for communication efficiency
and client-side privacy in FL: Ako (Watcharapichat et al., 2016) and Shatter (Biswas et al., 2025),
decentralized approaches with partial gradient exchange; SoteriaFL (Li et al., 2022d), which combines
centralized shifted compression with differential privacy; PriPrune (Chu et al., 2024), a pruning
strategy that withholds the most informative gradient components from communication; and LDP
(Sun et al., 2021b). We also include FedAvg (McMahan et al., 2017) as the standard baseline with
no defenses or compression, and report results for an idealized upper bound (Min. Leakage), where
clients transmit no gradients and the attack is applied only to the last-round global model.

Privacy Attacks. Under the standard honest-but-curious model, we assume the attacker is a
compromised aggregator or server with access to client-transmitted gradients. We evaluate five
representative attacks across two widely studied categories: Membership Inference Attacks (MIA)
and Data Reconstruction Attacks (DRA). For MIA, we adopt the privacy auditing framework of
Steinke et al. (2023), repeating the evaluation at each round for every client; for text generation, we
adapt the SPV-MIA of Fu et al. (2024) to our auditing setting. Reported results correspond to the
maximum, over all T rounds, of the average MIA accuracy across K clients. For DRA, we consider
the strongest white-box threat model, which assumes access to the gradient of a single training sample,
and implement DLG (Zhu et al., 2019), iDLG (Zhao et al., 2020), and ROG (Yue et al., 2023), with
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the latter specifically designed for reconstruction from obfuscated gradients. Reconstruction quality
is measured with LPIPS, SSIM, and SNR. Implementation details are provided in Appendix E.2.

4.2 NUMERICAL EXPERIMENTS

Effect of Model Partitioning and Shifted Com- Model Partitioning Shifted Compression
pression. We first analyze how the two key mech- 0775 13 i O g
anisms of ERIS affect privacy leakage. Figure 2 . -=== Min. Leakage
(left) reports the impact of model partitioning on ;

MIA accuracy, as a function of the number of ag- 3

gregators A, evaluated on MNIST. Consistent with = o7 ] ’*\\
Theorem 3.7, increasing A significantly reduces = g+~ |

privacy leakage by limiting the number of observ- 0625 S~

T T T T T T T T T
10 20 30 40 50 250 500 750 1000
Number of Aggregators (4) Compression Constant (w)

able parameters per round without affecting model
accuracy. Notably, the experimental trend closely
mirrors the linear dependency predicted by the the- Figure 2: Effect of model partitioning (left) and
oretical bound on mutual information. Figure 2 shifted compression (right) on privacy.

(right) shows the impact of the compression constant w with A =50 fixed: stronger compression
(higher w, i.e., lower retention probability p) steadily drives MIA accuracy toward the idealized
minimum-leakage baseline. These results empirically validate Theorem 3.7, underscoring the role
of shifted compression in reducing MIA risk, while Appendix F.3 quantifies its effect on model
utility. For DRA, we find that compression alone is insufficient, especially against the ROG attack
(Table 4), whereas partitioning is highly effective: even with A=2 (i.e., half of the gradient exposed),
reconstructions are highly distorted and no longer preserve meaningful features of the original.

Balancing Utility and Privacy. To evaluate the utility—privacy trade-off, we benchmark ERIS
against SOTA baselines across settings that influence memorization and overfitting. First, we vary
model capacity, a key factor in memorization, spanning from large-scale architectures with 1.3B
parameters on CNN/DailyMail to lightweight models with 62K parameters on MNIST. Second, we
control overfitting by varying the number of training samples per client—from 4 to 128. Figure 3
shows that ERIS (blue) consistently maintains high utility, on par with non-private FedAvg (orange),
while significantly reducing privacy leakage—approaching the idealized upper-bound of the Min.
Leakage scenario. In contrast, privacy-preserving methods like FedAvg-LDP, PriPrune, and SoteriaFL.
reduce leakage only at the cost of severely degraded performance. This confirms prior findings (Li
et al., 2022c) that DP can significantly impair utility, particularly for large models, resulting in low
privacy leakage largely due to the model’s inability to effectively learn the task. Notably, while
Shatter’s partial gradient exchange offers privacy protection comparable to or weaker than ERIS, its
fragmented collaboration substantially slows convergence, particularly when models are trained from
scratch. Table 1 summarizes mean and MIA accuracy, averaged over varying client training samples.
These results confirm that ERIS achieves the best overall utility—privacy trade-off among all baselines.
Appendix F.6 reports the same experiments under non-IID setting, confirming equivalent conclusions.
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Figure 3: Comparison of test accuracy and MIA accuracy across varying model capacities (one per
dataset) and client-side overfitting levels, controlled via the number of training samples per client.
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CNN/DailyMail - GPT-Neo IMDB - DistilBERT CIFAR-10 — ResNet9 MNIST - LeNet5
Method R-1 (1) MIA Ace. (1) Ace. (1) MIA Acc. (1) Ace. (1) MIA Acc. (1) Ace. (1) MIA Acc. (1)
FedAvg 33224099 97.94+0.63 | 79.60 £ 0.83 68.21 £+ 1.36 | 34.86 = 0.31 68.46 +=0.96 | 88.91 £0.35 65.11 £0.78
FedAvg (e, 6)-LDP | 26.00 £ 0.28 51.98 £3.13 | 53.97 £ 0.04 50.55+ 1.18 | 19.00 £ 0.47 63.35+0.85 | 61.03 +1.03 57.24 +0.59
SoteriaFL (e, 8) 2540 £0.70 5214 £297 | 5424 +0.15 51254+ 1.19 | 17.18 £ 0.24  58.83 £ 0.56 | 57.27 +0.88  57.13 + 0.56
PriPrune (p1) 24.67 £4.64 7135+283 | 74154+ 1.00 6636+ 1.13 | 26.30 £0.39 65.67 £0.84 | 77.41 +1.52 62.21 4+ 1.01
PriPrune (p2) 24.67 £4.64 7135+283 | 6630214 63.61 = 1.11 | 11.24 £0.71  56.55 £ 0.78 | 27.36 = 1.04  52.69 + 0.83
PriPrune (p3) 2467 £4.64 7135+£283 | 60324198 6054 +1.03 | 10.01 £0.01 54.86£0.77 | 17.83 £0.60 52.01 & 0.80
Shatter 31954+ 071 7049 +4.03 | 76.94 £ 140 57.41 £2.01 1240 £1.85  63.02 £ 2.01 1586 £4.82 5623 + 1.50
ERIS 32.83+£0.78 69.55 4394 | 79.07£0.80 56.31 £0.81 | 34.68 +0.48 60.48 091 | 89.00+0.23 5597 +0.77
Min. Leakage ‘ 33234099 60.53 +4.83 ‘ 79.68 +£0.36  55.58 + 0.76 ‘ 3492 4+029 58.8540.93 ‘ 88.90 + 0.40  55.22 4 0.64

Table 1: Mean test performance (ROUGE-1 for CNN/DailyMail, accuracy for others) and MIA
accuracy, averaged over varying local sample sizes. For DP-based methods, e=10; for PriPrune,
pruning rates are p € {0.1,0.2,0.3} on IMDB/CNN-DailyMail and p € {0.01,0.05,0.1} on others.

Pareto Analysis under Varying Privacy Constraints. To

4| F— 3
further investigate the utility—privacy trade-off, we evalu-  ** 4 -
ate each method under varying strengths of its respective 0304 © <&
. . . : 23
privacy-preserving mechanism: for DP-based methods (e.g., ©

SoteriaFL, FedAvg-LDP), we vary the privacy budget € and
clipping thresholds; for PriPrune, the pruning rate; and for
ERIS and Shatter, we add LDP on top of their native masking.
Full configurations are provided in Appendix F.8. Figure 4 0154
plots accuracy against MIA accuracy on CIFAR-10 under

16 training samples per client. The Pareto front represents 010+
the set of trade-off solutions for which no method achieves 030 035 0.10 0.15
better utility without incurring higher privacy leakage, or 1- MIA Accuracy

vice versa. ERIS consistently contributes a majority of the Figure 4: Utility—privacy trade-off on
points on the Pareto front, confirming its ability to balance CIFAR-10 under varying strengths of

—— Pareto Front < <&
FedAvg
ERIS i Sl

PriPrune

Soteriabt, | F‘@

Shatter

LR R

privacy and utility more effectively than the baselines. the privacy-preserving mechanisms.
Communication Efficiency. Table 2 compares

communication efficiency across methods, mea- . CNN/DailyMail CIFAR-10
sured by per-client upload size and minimum dis- Exchanged Dist. Time Exchanged  Dist. Time
tr%bution tlme per round (assuming ZOMB/S band- FedAvg (-LDP) 5.2GB (100%) 5200s 6.6MB (100%) 33s
width), using the same experimental setting that  gpayer 52GB(100%)  780s  6.6MB (100%)  1.32s

produced the results in Table 1. Results show  PriPrune 0.01) 4.68GB (90%) 4680s  6.53MB (9%)  32.65s
that ERIS achieves dramatic improvements over :::E:i Eg‘]’f) 2‘;22 ggZ; ;‘éigz 65'297]\];4;((995;) 32‘9'355:
all baselines. On CNN/DailyMail, where a 1.3B- g ciart.  026GB (5%  260s  033MB (5%)  1.65
parameter pre-trained model is used, ERIS reduces  eris SIMB (1%) 4685 0.04MB (0.6%) 0.0039s
the upload size from 5.2GB in FedAvg to only
52MB (1%), and cuts distribution time from 5200s
to less than 4.7s. On CIFAR-10, comparable gains
are observed: communication drops to 0.6% of the full gradient, while distribution time decreases
from 33s to 0.004s. These gains stem from two complementary mechanisms: (i) shifted compression,
which reduces transmitted parameters by orders of magnitude without harming convergence; and (ii)
decentralized aggregation, which balances network load and removes the server bottleneck. However,
unlike prior decentralized learning methods, ERIS preserves full collaborative power of traditional
FL: the final aggregated model is equivalent to FedAvg, with no loss of client contributions. Together,
these properties enable ERIS to scale seamlessly to billion-parameter models. A full scalability
analysis, detailing the effect of increasing clients and model size, is provided in Appendix F.2.

Table 2: Communication efficiency: per-client
upload and minimum distribution time per round.

5 DISCUSSION

5.1 RELATED WORKS

Decentralized and Communication-Efficient FL. To alleviate the server bottleneck and im-
prove network scalability, numerous decentralized approaches have emerged (Kalra et al., 2023;
Liu et al., 2022; Bornstein et al., 2023). These methods can be grouped into two categories: (i)
peer-to-peer synchronization schemes, where clients directly exchange updates with selected neigh-
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bours (Watcharapichat et al., 2016; Roy et al., 2019; Shi et al., 2023; Zehtabi et al., 2024); and (ii)
gossip-based protocols, which rely on randomized message passing to propagate updates across the
network (Hu et al., 2019; Pappas et al., 2021; Kempe et al., 2003; Bornstein et al., 2023; Zehtabi et al.,
2024). In parallel, compression techniques have been proposed to reduce communication overhead
per round. These include quantization (Karimireddy et al., 2019; Li et al., 2020; Reisizadeh et al.,
2020; Li & Richtarik, 2021; Gorbunov et al., 2021; Mishchenko et al., 2023) and sparsification (Li
& Richtarik, 2021; Richtarik et al., 2022; Li et al., 2022d; Ivkin et al., 2019; Gorbunov et al., 2021;
Khirirat et al., 2018), which limit the size of transmitted updates. Though effective in balancing
network load and reducing bandwidth, these methods can hinder convergence and, similarly, offer
no provable privacy guarantees. A few methods, such as Ako (Watcharapichat et al., 2016) and
C-DFL (Liu et al., 2022), integrate decentralized architectures with partitioning or compression to
improve communication efficiency, but do not consider privacy leakage in their design.

Privacy-Preserving FL. Among perturbation-based privacy-preserving mechanisms, two prominent
approaches have been widely explored to mitigate client-side leakage from gradient sharing: LDP (Bai
et al., 2024; Kairouz et al., 2021; Girgis et al., 2021; Ziegler et al., 2022; Lowy et al., 2023; Miao
et al., 2022; Adnan et al., 2022; Yang et al., 2024) and gradient pruning (Jiang et al., 2023; Chu et al.,
2024; Shen et al., 2024; Zhang et al., 2023c; Sun et al., 2021a; Bibikar et al., 2022; Li et al., 2021).
LDP methods typically apply gradient clipping followed by random noise injection to each client’s
updates, providing formal privacy guarantees. Pruning-based techniques, instead, reduce leakage
by systematically removing the most informative gradient components. While effective in limiting
information exposure, both approaches often incur substantial utility degradation—especially when
applied to large models (Li et al., 2022c). To attenuate this, recent works such as LotteryFL (Li
et al., 2021) and PriPrune (Chu et al., 2024) propose personalized pruning schemes tailored to each
client’s data and model state, aiming to preserve performance while reducing leakage. Other methods
combine LDP with compression to balance communication efficiency and privacy protection (Agarwal
et al., 2018; Zong et al., 2021; Ding et al., 2021; Li et al., 2022d; Jin et al., 2023), though often at the
cost of increased algorithmic complexity or reduced convergence speed.

5.2 LIMITATIONS AND FUTURE WORKS

While ERIS demonstrates strong empirical and theoretical performance, it also introduces trade-
offs. First, decentralizing the aggregation process shifts coordination to clients, which may vary in
computational resources and connection stability—particularly in cross-device settings. However, the
aggregation workload per node is significantly reduced compared to centralized FL, as each aggregator
processes only a fraction of the total parameters (at most n/A), making the requirement substantially
lighter. For cross-silo deployments, this is typically not an issue; in cross-device scenarios, minimal
resource requirements may be needed to ensure reliable participation as an aggregator. Second, ERIS
provides its strongest privacy guarantees when aggregators operate independently. In the presence of
collusion among multiple honest-but-curious aggregators, the privacy benefits gradually diminish.
Nonetheless, as shown in Corollary D.2, the mutual information leakage still scales linearly with
the number of colluding nodes, and remains significantly lower than in traditional FL, where full
gradients are exposed to a single entity. In future work, we plan to analyze the impact of poisoning
attacks and exploit ERIS’s decentralized design to integrate secure aggregation schemes.

6 CONCLUSION

We introduced ERIS, a novel FL framework that achieves high utility, strong privacy protection, and
communication efficiency by decentralizing aggregation, employing shifted compression, and intro-
ducing gradient partitioning. Unlike existing methods, ERIS avoids central bottlenecks, balances net-
work utilization, and formalizes privacy guarantees through an information-theoretic lens—ensuring
no single entity observes full client updates. We provide theoretical convergence bounds and privacy
guarantees, and validate them through extensive experiments across diverse datasets and model
scales. ERIS consistently outperforms state-of-the-art privacy-preserving baselines, achieving a better
utility—privacy trade-off without compromising scalability. Our results demonstrate that effective
privacy preservation in FL does not require sacrificing performance with perturbation-based mech-
anisms—nor relying on heavy cryptographic assumptions. ERIS lays the foundation for practical,
large-scale distributed training of large models that are both efficient and privacy-aware.
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APPENDIX

This appendix is organised as follows. Section A restates the main assumptions used in our theoretical
analysis. Section B proves that ERIS maintains the same convergence behaviour as FedAvg in
the absence of compression. Section C presents the convergence and communication analysis for
the full ERIS framework. Section D provides the privacy guarantees and includes an extension of
Theorem 3.7 to colluding aggregators. Section E details our experimental setup, including models,
hyperparameters, privacy attacks, datasets, licenses, and hardware for full reproducibility. Finally,
Section F.1-F.8 reports additional experimental results that support our claims, including evaluations
of scalability, compression, data reconstruction attacks, and privacy—utility trade-offs under varying
heterogeneity conditions (IID and non-IID) and both biased and unbiased gradient estimators.

A  ASSUMPTIONS

For clarity and completeness of the Appendix, we restate the core assumptions used in the main
theorems—Theorem 3.6 and Theorem 3.7. These include smoothness and unbiased local estimator
conditions commonly adopted in the FL literature.

Assumption A.1 (Smoothness). There exists some L > 0, such that for all local functions f; ;
(indexed by ¢ € [n] and j € [m]), we have

IV fij(@1) = Vij(x)| < Loy — 2|, Vaip,a2 €RY, ®)

or equivalently expressed with the following general bound:

L
fij(@1) < fij(x2) +(Vfij(22), 21 — 22) + §||CU1 — x|, ©)

Assumption A.2 (Unbiased local estimator). The gradient estimator g/ is unbiased E;[g}] =
Vfr(x*) for k € N, where E; takes the expectation conditioned on all history before round ¢.
Moreover, there exist constants C'7, and C5 such that:

K
1 -
Et[E;Hgtk—ka(xt)Hg] < C1AY + O, (11a)
E A < (1= 0)A" 4 Csl |V F(x)]]* 4 CoEe[|[x" ! — x"[|?] (11b)

Remark A.3. The parameters C; and C5 capture the variance of the gradient estimators, e.g.,
C = C5 = 0 if the client computes local full gradient gf =Vf; (xt), and C; # 0 and Cy = 0 if the
client uses variance-reduced gradient estimators such as SVRG/SAGA.

B CONVERGENCE OF ERIS-BASE (NO COMPRESSION)

This section shows that ERIS-Base—Algorithm 1 instantiated with the identity compressor Ci, =1d
and with the reference vectors fixed to zero so that only model partitioning is active—produces exactly
the same global iterate sequence as the standard single—server algorithm (e.g., FedAvg). Consequently,
every convergence guarantee proved for FedAvg carries over verbatim. The proof is algebraic and
does not rely on any additional smoothness or convexity assumptions beyond those already stated in
Section A (or Section 3.1).

Notation. Recall that client £ holds S data points and that .S := Zszl Sk. Let g} denote the
(possibly stochastic) gradient that client k transmits at communication round ¢ and write gt =
% Zszl S, g}, for the sample—weighted mean gradient.

Theorem B.1 (Convergence equivalence of ERIS—Base). Run Algorithm 1 with A > 1 aggregators,
Ci =1d, and s, = 0 for all k,t. Let x" with t > 0 be the resulting iterates and let X" be the iterates
obtained by FedAvg (A = 1) using the same initialization, learning rates )\, and client gradients g},.

Then for every round t > 0
x! =%t (11)

Hence all convergence bounds that hold for FedAvg under Assumptions A.1 and A.2 (with w = 0)
apply unchanged to ER1S—Base.
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Sketch. Partition each client gradient into A disjoint coordinate shards using the categorical masks
{mfa)};“:l introduced in Section 3.2: g} ) = &}, © my,,. Because the masks are disjoint and sum
to the all-ones vector, the original gradient decomposes exactly as g = Zle g;,(a). Aggregator a
forms the weighted average of its shard

K

_ 1 Z -

gl(ta) = g Skgi’,(a)‘ (12)
k=1

Summing over all aggregators and swapping summation order yields
A 1 K A
5t St 5t _ &
D B =52 5D Ehw = SZS g = (13)
a=1 k=1 a=1

ERIS—Base therefore updates the global model via x‘*1 = x* — ), Zle %) = x! — \g!, which
is exactly the FedAvg rule. By induction on ¢ the iterates coincide. O

Remark B.2. The identity above is purely algebraic, hence it remains valid when clients perform
multiple local SGD steps, when the data are non IID, or when the global objective is nonconvex
(e.g., McMahan et al., 2017; Li et al., 2019; 2022b)). The key insight is that splitting the gradient
vector dimension-wise introduces no additional approximation error; the final aggregated gradient is
mathematically identical to that obtained by a single server aggregating all client gradients in one
place. This ensures that the convergence behavior of ERIS-base matches that of traditional federated
learning approaches, while its sole effect is to distribute network load.

C UTILITY AND COMMUNICATION FOR ERIS

In this section, we present the proof of Theorem 3.6 (Utility and communication for ERIS), modifying
the general proof strategy of (Li et al., 2022d) to accommodate our decentralized setting, model
partitioning, and the absence of differential privacy.

C.1 PROOF OF THEOREM 3.6

Proof. Let E; denote the expectation conditioned on the full history up to round ¢. By invoking
Theorem B.1, we simplify the analysis by omitting model partitioning and treating v' as the aggre-
gated update. Thus, the update rule becomes x‘T! = x* — \;v*. We now apply this rule within the
smoothness inequality equation 9:

AL
E/[f(x"*)] <E, [f(xt) =M (VF(x"), v + == Iv*[? (14)
First, to verify the unbiased nature of v?, we consider:
| X
Efv] =E, [s' + I Z"fe]
l Z s, + — ZC —sh ]

@ [1& 1 @ 1 &
=B |y &= ?sz] = 22 V) = Vi) (15)

k=1 k=1 k=1

where (a) due to Assumption A.2, which states that each g}, is an unbiased estimator of V fj, (x*) (i.e.,
Ei[g}] = V fi(x*)).

Substituting Equation equation 15 into equation 14, we obtain:

2
B )] < Be 1) = MDA + 2 P (16)
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We further bound the term E,[||v?||?] in Lemma C.1, whose proof is available in the Appendix C.2.

Lemma C.1. Consider that vt is constructed according to Algorithm 1, it holds that

1
Eq[|[v'])%) < E; “" Zn — Vx| + Zum )= sLIP+IV A2 (17)

To further our analysis, we now derive upper bounds for the first two terms on the right-hand side of
Equation equation 17. The first term can be controlled using Equation equation 11a from Assumption
A2, yielding the bound C} Al 4+ Cy. Next, we establish that the second term decreases over time, as
formalized in the following lemma (proof available in Appendix C.3).

Lemma C.2. Let Assumptton A.1 hold, and let the shift SH'1 be updated according to Algorithm 1.

Then, for v, = ,/ 2(1+w)3, we have:
K
Z VAl = s | < B | (1= ) 2 DI — st
= 21+w)) K & k

1 X ~t t
+ A+ WK ; &k — Vfi(x")I?

+2(1 4 w) L?[|x"! — x*|?] . (18)

For clarity, we introduce the notation: S* := + SR IV f(xt) — s§$||2 For some a > 0, 3 > 0,
we now define a potential function to analyze the convergence behavior:

B

q)t = f(Xt) - f* + OéLAt + ESta (19)

Using Lemmas C.1 and C.2, we demonstrate in Lemma C.3 that this potential function decreases in
expectation at each iteration (proof provided in Appendix C.4).

Lemma C.3. Under Assumptions A.1 and A.2, if the learning rate is chosen as

)\téASmlH ! ) BK
(1+2aCs +4B(1 +w) +2aC3/A?)L7 /T4 2aC, + 48(1 + w)(1 +w)L

(20)
where o = m forany 3 > 0, and the shift step size y; is defined as in Lemma C.2, it follows
that for every round t > 0, the expected potentlal function satisfies the following bound:

380,
21+ w)L’
Remark C.4. Since the last term is generally a small constant during time (see Assumption A.2) and
% |V £(x")||? is positive, Equation equation 21 indicates that the potential decrease over the time.

Ey[®41] < IIVf III* + 1)

With Lemma C.3 established, we now proceed to the proof of Theorem 3.6, which characterizes the
utility and the number of communication rounds required for ERIS to reach a given accuracy level.
We begin by summing Equation equation 21 from rounds t = 0to 7" — 1:

3 5 (A 38C
st 5 (S 525
=0 t=0
A 38C,T
E[®r] — E[®) < — Z §||Vf(xt)||2 + m
t=0
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Since by construction, we typically have E[®;] > 0, by choosing the learning rate ); as in Lemma
C.3, we finally obtain

1 2 « 29, 3502
T Z IVFxI? < T A+ w) N (22)

which proves that per ' — oo

36C,
1 — . B 23
im_ ZIIVf W< T (23)
While to achieve a predefined utility level € > + Z ' |V £ (x)| |2, the total rounds T must satisfy:
T > 2 @0 . (24)

= 36 C.
A (6_ (1+w)2L/\>

If € is strictly less than the residual %, no finite 7" can achieve the utility € in an average sense,

therefore conditions on the adopted estimator need to be changed.

Remark C.5. Eris utility is asyntotically governed by the variance in g, which directly depends on the
used estimator (e.g., Co = 0 with SVRG/SAGA) or on the dimension of the batch size (e.g., Co = 0
with local full gradients). Compared to SoteriaFL (Li et al., 2022d), the upper bound of ERIS utility
does not have a component growing with 7, limiting the convergence.

[
C.2 PROOF OF LEMMA C.1
Proof. By the definition of v? , we derive the following expression:
1 & 1 & ’
Eo|[VV1P) = Be ||| = D sk + = > Ch(gk —sh)
K K

L k=1 k=1

1 & 1 & 1 & &P
=B || 2D skt D Chldl—si)+ 22 D & — = D &

L k=1 k=1 k=1 k=1

1 & 1 & &P
=E; Ezci(gi—st)—EZ(gi SZ)*'EZQZ

L k=1 k=1 k=1

1 & 1 & ’ &P
=E; EZCZ(gZ—SZ)—EZ(gZ—SZ) + E¢ ?Zé}i

L k=1 k=1 k=1

1 & 1 & 1 &
+2<Et [ch;z(gz ) - L3 -] [Kzgzb
k=1 k=1 k=1
2

@ W o ~t 2 1 o ~t
< E, [ngzllgkskll +E @;gk ! (25)

where equation 25 follows because the cross term vanishes: the compression error has zero mean
(E¢[C}.(-)] = -), making their inner product zero in expectation.

Next, we establish upper bounds for each term in Equation equation 25.
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* For the first term, we expand and decompose it as follows:

K
3 let 1| <[5 3 - w) + (w) s]
k=1

K
~E, l;; (Igk = V£GP + 1V fulx') = sk

k=1

+2(gk — Vu(x) T (Vi(x) - s@)] (26)
w K

[KZ &), — V fr(x )||2]

k=

+ = S IV A — @7)

k=1

where the last equality holds because the expectation of the cross-term vanishes due to the
unbiased estimator assumption, i.e., E;[gL] = V fi(x"), as specified in Assumption A.2.

* Similarly, for the second term, we proceed as follows:
2

K
1
t St _
E 28| | = KQZH = V/fi(x")) + V(x| ]
k=1
1 XK
27 2 (1&g = VAP + [V fi(x))”
k=1
+2(8) = V/ie(x") TV fir(x)) ]
1K
=B |5 Y lgk - VA | + VAP @8)
k=1
The proof concludes by substituting equation 27 and equation 28 into equation 25. O

C.3 PROOF OF LEMMA C.2

Proof. By the definition of the shift update s, = si + 7/C}. (g} — s.), we have:

1
LS 19t - o
k=1

1 & )
LS V) — s — i@ - SW]

k=1

K
=B | 2 S (VARG = VA) + (Vi) — sf — uChE b)) HQ]
k;(l
5 ( TR - Tl
+(1+ B) IV fi(x") = s, — %CL(&] — si)lI? )] (29)
)
2E |1+ %)L?th“ X2+ (14 B) = Z IV fi(x") — st — 7CL (&L — s}iﬂﬂ . (30)

where the Equation equation 29 is obtained from Young’s inequality ||a + b||? < (1 + %) la||? +
(1 + B)||b]|? with any 3; > 0.
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To further bound the second term in equation 30, we expand the squared norm:

1 & _
Ve Z |V fi(x") — st — %CL.(&) — SZ)H

K
ZHka ) = sil® + 7 ICk (gL — sII?
k:l
—27(V fr(x") — s}, Ci. (& — sk))) ] (31)

Since the expectation of the inner product term satisfies:
E[(Vfr(x") = sk, Ci (& — k)] = Ec[lIV fu(x") = sill?),

Equation equation 31 simplifies to:

1 & N
EE]W&@%—%—%%@%*DW

K
Z (1= 27) IV fi(x >s;||2+7§||c,g(g;s;)|2)] (32)
k:l

Then, applying Definition 3.4 to the term (g}, — s,), we derive the following inequality:

B, [k (@ — shI?] = Eo [I(&h - sh) + (Chad — s — (& — si) ]

=mﬂﬁ—%ﬁ%4&R%—%%@%wb—@r%M

AT D]
:&nafﬂﬂ+&hm@p«@f@fﬁmﬂ
< (1+w)By (18— stI?). (33)

Substituting Equation equation 33 into equation 32, we simplify the second term as follows:

1 & .
e Z ||ka(xt) —sp, — nCL(g — SZ)HQ]
k=1

K
1 _
By | = D0 (1= 29IV Ax!) = s 2 4+ 921+ )18 — st )
k=1
K
D, | LS (1 230+ 221+ ) IV Al — s
Kk:l '

(14 w)lg) — Vfu(x)]?) | (34)

By plugging equation 34 into equation 30, we obtain:
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K
B | L IVAGH) = s 1P| < By (4 )2 -
k=1
K
F (LB D1 = 2+ (1 @) Vel — s
k=1
1 K
F OB YA+l - VAP 69
k=1

Finally, setting 3; = 75, and 7 = /%, we approximate the second term in Equation
equation 35 with the following upper bound:

(14‘575)(1—2%—1—%2(1—1—@)):2(1_'_@<1_2 1+ 2w (1—|—2w)>

1+ 2w 21+ wp 201 +w)?
1
<1-—— Ywu>o0.
2(14+w)

Substituting this bound into Equation equation 35, we obtain Equation equation 18, thereby complet-
ing the proof of Lemma C.2. O

C.4 PROOF OF LEMMA C.3

Proof. Given the definition §* := + Zle ||V fr(x") — sk||?, we can derive a recursive bound for
S+ using Lemma C.2:

K
1 1

t+17 1— t st t\]|2 1 21 t)2
E; [S$"] < E, ( 2(1+w)>8 +(1+w)K;Ing ViE)N® +2(1 +w) L2 x X]

(11a) 1 Ch At + Cy
< E 1— t 2(1 L2 t+1 _ 12
B (1 g ) S S A - g
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We now use Equation equation 36 along with equation 16 to bound the potential function @1, as
defined in Equation equation 19:

E/[@01] = B, {f(x”l) P taLAt 4 ﬁsm}

N2L
[f AtHVf(Xt)IIQJrTHth?_f*+aLAt+1
B L N GA+ G 2 b1 b2
+L(<1 2(1+w)>8 + 7o) +2(1 4 w)L?||x |

(11b)

2
< B S — - MG + AL P

+ aL((l — O)A" + Cs||[V£(xH)||* 4+ Cy[x"T — xt||2>

g 1 CiA' + Cy 2 1 2
o7 () o S v v )|

=1Elf() P =MV + (5 +aCut 8(1+0) ) LRIV

.\ aL((l o)At cg||w<xt>||2)

(i) 5]

where the last equality follows the adopted update rule x!™ = x* — \;vt. Now adopting S? into the
the definition of E[||[v?||?] provided in Lemma C.1, we obtain:

B[V < — VAP + 28+ ||Vf<xf>||2]

(11a)
< E, [(1 + ”) (C1AY + Co) + %St + Vf(xt)||2} (38)

Subsituting Equation equation 38 into equation 37, we obtain as follows:

Be[@s41] < f(xTH) - f*

r/1 1 C1\? C
+ _(2+ac4+25<1+w>> (WK)”M(l—w)ﬂlfwl)m] LAl
F 1 WL2\2 1 S
#|(Gracirasna)) L2 o0 - )| T
o (3 +acu s ) 132 - ancs] e st
r/1 1+ w)LA?
+ _(2+aC4+25(1+W)> ( +? : (1 +Bw)L} s &9

To ensure that the right-hand side of Equation equation 39 remains consistent with the potential
function ®; := f(x') — f* + aLA? + %St, we select the parameters a, 3, and )\; to satisfy the
following constraints:

1 (14 w)C1 A2 BCy
(2+a04+25(1+w)>K+a(1_w)+(l-i-bci)[/2<a 40)
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wL?)\? 1
T B(1— 5 <p 41)

(; +ac4+25<1+w)> irw) <

Although these are not the strictest possible bounds for a fair comparison with the utility results of
SoteriaFL, we adopt the same choices for «, 3, and A, ensuring they satisfy conditions equation 40
and equation 41:

38C,

M=)\< VoK 43)

T V14220, +48(1 +w)(1 + w)L

Here, Equation equation 42 follows from the constraint in equation 40, while equation 43 ensures
compatibility with the potential function definition in equation 19. Additionally, we impose a further
bound on \; to guarantee that the negative gradient squared term remains sufficiently large (i.e.,
> 2t |V £(x!)[|?), obtaining:

1

=A<
A= As (1+2aCs +46(1 4+ w) +2aC3/X2)L

(44)

Finally, substituting the conditions equation 42—equation 44 into Equation equation 39, we obtain:

3p

At INIE
<P, — 2t ST
E¢[®r41] < Py 9 IVFEII + 21+ w)L

Cs (45)

The last term is obtained directly by applying the bound from Equation equation 44, completing the
proof.

O

D PRIVACY GUARANTEES FOR ERIS

In this section, we present the detailed proof of Theorem 3.7, which establishes an upper bound on the
information leakage incurred by ERIS under the honest-but-curious threat model. The analysis follows
an information-theoretic approach by bounding the mutual information between a client’s local dataset
Dy, and the adversary’s partial view of the transmitted model updates v} (@ = ( g}, —s}j,) Omer @mfa)
over 7' communication rounds. We then extend the result to colluding adversaries, who may share
observations to amplify their attack.

D.1 PROOF OF THEOREM 3.7

Proof. For lighter notation, we first define a single combined mask m}, := me: © mf a) 10 streamline

notation and directly leverage its properties. Next, rather than working with g — sf, we substitute
the parameter vector x,'. Because x;"' is fully determined by x, and g} — st, i.e., x;"' =
xk + A (g} — s!), it carries the same information in an information-theoretic sense. This allows us to
simplify the derivations without affecting the validity of the privacy analysis. We denote, in the end,
by H; the full public transcript up to round ¢: it contains every masked update and model weight at

each round up to t. More precisely,

Heoi= o {xiomf: (=0, 1} U{x{: £=0,..1}).
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T-1
(Dk,{x“‘l t+1 T- 0) (a) I(Dk; f+1®mt+1 ‘ Ht)
t=0
(v T=1
S ZI(Dk, t+1®m +1 | H mt+1)
o
= S E[I(Di;xt omit | Hy, mit = m)]
t=0

Step (a) follows from the chain rule for mutual information and defintion of H;, while step (b) follows
from the identities:

IU;V | H)=1(U;V,M | H) = I(U; M | H,V)
= [I(U; M | H)+ I(U;V | H,M)]| — I(U; M | H,V)
= I(U;V | H,M) - I(U; M | H,V)
<I(U;V | H,M)

I(Dk; XZ+1®1’1’12+1 | He, mfjl).

where U = Dy, V=xt"'omi"™, M=ml" H =H, Here, weused the independence
of the mask (I(U; M | H) = 0), and the inequality follows from the nonnegativity of mutual
information.

Finally, fix any mask realization m, and let
S(m)={i:m; =1}
denote the set of revealed coordinates. Then
I(Dg;x ©my™ | Hy mitt =m) = I(Dgs {335 iesm) | He)
< Y I(Deixpi | He) < [S(m)] Conax,

1€S(m)

where

Cmax = Hfl%{}i I(Dkaxk Ll | Ht)

Since each of the n/A coordinates is retained with probability p, we have E[|S(m)|] = np/A. Taking
expectations gives

]E[I(Dk, t+l © mfj‘l | IIIH_1 Ht)] < %pcmaxa
and summing overt = 0,...,7T — 1 yields
_ n
(Dka {Xt+1 Z+1}31:01) S T Z p Cmax~
O

Remark D.1. Assuming the individual model weights are distributed conditionally on Dy and H; as
Xt | Dy He ~ N (w(Dy), 02%,4), while x5 [ Hy ~ N (i, 02). This allows us to use properties
of differential entropy for Gaussian distributions. Thus, we have:

2

o 1
F(Dux | #0) = HT! [ M)~ O | D) < Jo (5 ) = 1o (14 SNR),

cond
2 2
where the signal-to-noise ratio (SNR) is defined as SNR = "= Thus, from the above, it follows
cond
that Ciyax < 4 log(1 + SNR).
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D.2 PRIVACY UNDER COLLUDING AGGREGATORS

We now extend our analysis to a coalition of aggregators that share their shards before attempting the
attack. Let C C {1,..., A} denote the set of colluding aggregators with cardinality A, := |C|.

Corollary D.2 (Colluding—aggregator privacy bound). Assume the setting of Theorem 3.7. For every
communication round t € {1,...,T} let the union mask

m! = \/ mza) (V denotes the element-wise logical OR)
acC

select the coordinates revealed to the colluding coalition. Define the coalition’s view of client k at
round t as

t (ot t t
Vi,col = (gk _Sk) © mC,tc © mg,.

Assuming that max;; 2, 1 (Dk; X?‘il | ’Ht) < oo then, under the honest-but-curious threat model,

the mutual information between the client’s private dataset D), and the coalition’s transcript over T’

rounds satisfies
PA.

A

where Cyax Is exactly the per-coordinate mutual information bound given in Theorem 3.7.

I(Dk§{vl§,col}?:1) <nT Chax;

Proof. The extension to colluding parties follows exactly the same steps as in Appendix D, with a
single modification: replace the per-shard mask mf a) by the union mask

t _ t
Meol = \/ Ma);
aeC

where C is the set of colluding shards of size A.. Since the original shards are pairwise disjoint, m

exposes exactly
n

A
coordinates per round, and remains statistically independent of the corresponding values of x

t
|mc01| = AC
t+1
b
Under collusion, the set S of revelead coordinates simply enlarges is mean to A.n/A coordinates,
while the retention probability p remain unchanged. Hence the entire inner sum is multiplied by A..
Substituting this modification into the rest of the derivation yields

_ DA
I(Dk7 {v£7c01}z:01) S TTL 7 Cma)n

as claimed. In particular:
e If A, = 1, this reduces to Theorem 3.7.

o If A. = A, the sharding protection vanishes and the bound becomes I < nT p Cpax,
governed solely by the compression mechanism.

O

Remark D.3. Corollary D.2 shows that the privacy loss grows linearly with the coalition size A..
Consequently, anticipating up to A7?* colluding aggregators, one can retain the original leakage
level of Theorem 3.7 by increasing the shard countto A — A - A"®* or, equivalently, by decreasing

. .1s - . A.
the retention probability to p > p/AT**, thereby preserving the product 23=.

E EXPERIMENTAL SETUP

This section provides additional details on the experimental configuration used throughout the paper,
including model architectures, training protocols, and hardware resources. We also describe the
software libraries, dataset licenses, and implementation details to ensure full reproducibility.
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E.1 MODELS AND HYPERPARAMETER SETTINGS

We use 5-fold cross-validation across all experiments, varying the random seed for both data
generation and model initialization to ensure reproducibility. Each dataset is paired with
an appropriate architecture: GPT-Neo (Black et al., 2021) (EleutherAI/gpt-neo-1.3B,
1.3B parameters) from HuggingFace for CNN/DailyMail, DistilBERT (Sanh et al., 2019)
(distilbert-base—-uncased, 67M parameters) for IMDB, ResNet-9 (He et al., 2016) (1.65M
parameters) for CIFAR-10, and LeNet-5 (Lecun et al., 1998) (62K parameters) for MNIST. For
both IID and non-IID settings, we use one local update per client per round (i.e., unbiased gradient
estimator), except for GPT-Neo, where memory constraints require two local epochs with a batch
size of 8. In the biased setting (multiple local updates per round), we use a batch size of 16 for IMDB
and 64 for CIFAR-10 and MNIST under IID conditions. In all settings, each client reserves 30%
of its local data for evaluation. To ensure fair comparison of communication costs—which directly
depend on the number of rounds—we cap the total rounds for all baselines at the point where FedAvg
converges, determined by the minimum validation loss (generally the first to converge). This results in
2-4 rounds for CNN/DailyMail, 14-22 for IMDB, 80-140 for CIFAR-10, and 120-250 for MNIST in
the unbiased setting. In the biased setting (two local epochs per round), the ranges are 4-16 for IMDB,
60-140 for CIFAR-10, and 80-200 for MNIST. We use a learning rate of 5e—5 for CNN/DailyMail
and IMDB, and 0.01 for CIFAR-10 and MNIST. For optimization, we adopt Adam (Kingma & Ba,
2017) (with weight _decay = 0.0, 1 = 0.9, 52 = 0.999, and ¢ = 1e—8) on CNN/DailyMail and
IMDB, and SGD (Robbins & Monro, 1951) with momentum 0.9 for CIFAR-10 and MNIST. For
experiments involving differential privacy, we use the Opacus library (Yousefpour et al., 2021).

E.2 IMPLEMENTATION DETAILS OF PRIVACY ATTACKS

We evaluate privacy leakage under the standard honest-but-curious threat model, where an adversary
(e.g., a compromised aggregator or server) can observe all transmitted model updates derived from
each client’s private dataset. We implement two widely studied categories of attacks: Membership
Inference Attacks (MIA) (Shokri et al., 2017; Zari et al., 2021; Li et al., 2022a; Zhang et al., 2023b;
He et al., 2024) and Data Reconstruction Attacks (DRA) (Hitaj et al., 2017; Zhang et al., 2020; Ren
et al., 2022; Zhao et al., 2020; Yin et al., 2021; Dimitrov et al., 2022; Zhang et al., 2023a).

Membership Inference Attacks. We adopt a distributed variant of the privacy auditing framework of
Steinke et al. (2023). For each client, 50% of the local training samples are designated as canary
samples, equally split between those included and excluded from training. After training, canaries are
ranked by model confidence or gradient alignment; the top third are labeled as “in,” the bottom third
as “out,” while the middle third are discarded to mitigate uncertainty bias. Evaluation is repeated on
the same canary sets across all methods and folds of the cross-validation. To capture privacy leakage
throughout training, MIA accuracy is computed at each round and for each client; the reported score
corresponds to the maximum, over all 7" rounds, of the average accuracy across K clients. This
ensures comparability across methods with different convergence speeds.

Data Reconstruction Attacks. For DRA, we adopt the strongest white-box threat model, where
the adversary is assumed to access the gradient of a single training sample. We implement three
representative gradient inversion methods: DLG (Zhu et al., 2019), iDLG (Zhao et al., 2020), and
ROG (Yue et al., 2023), the latter specifically tailored to reconstruct images from obfuscated gradients.
All methods are evaluated on the same subset of 200 randomly sampled data points within each
cross-validation fold to ensure fairness. Reconstruction quality is assessed with LPIPS, SSIM, and
SNR, capturing perceptual similarity, structural fidelity, and signal-to-noise characteristics. Further
algorithmic descriptions on each attack are provided in Appendix F.4.

E.3 LICENSES AND HARDWARE

All experiments were implemented in Python 3.13 using open-source libraries: PyTorch 2.6 (Paszke
et al., 2019) (BSD license), Flower 1.12 (Beutel et al., 2022) (Apache 2.0), Matplotlib 3.10 (Hunter,
2007) (BSD), Opacus 1.5 (Yousefpour et al., 2021) (Apache 2.0) and Pandas 2.2 (Wes McKinney,
2010) (BSD). We used publicly available datasets: MNIST (GNU license), CIFAR-10, IMDB (subject
to IMDb’s Terms of Use), and CNN/DailyMail (Apache license 2.0). The complete codebase and
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instructions for reproducing all experiments are available on GitHub' under the MIT license. Publicly
available implementations were used to reimplement all baselines, except for FedAvg and Min.
Leakage, which we implemented directly using Flower Library (Beutel et al., 2022). We follow the
recommended hyperparameters for baselines, setting the compression ratio of SoteriaFL to 5% and
the graph degree of Shatter to 4.

Experiments were run on a workstation with four NVIDIA RTX A6000 GPUs (48 GB each), dual
AMD EPYC 7513 32-core CPUs, and 512 GB RAM.

F ADDITIONAL EXPERIMENTS AND ANALYSIS

This section presents complementary experiments and empirical validations that reinforce the the-
oretical claims made in the main paper. We analyze the distributional properties of model weights
to support the Gaussian condition in our privacy analysis, evaluate the scalability of ERIS through
distribution time comparisons, and further assess its robustness against data reconstruction attacks.
Additionally, we provide detailed utility—privacy trade-off results under both IID and non-IID settings,
and with unbiased and biased gradient estimators across multiple datasets and training configurations.

F.1 EMPIRICAL VALIDATION OF THE GAUSSIAN ASSUMPTION FOR MODEL WEIGHTS

Remark 3.8 gives a closed-form bound for C},,,x when each conditional weight xfcﬁ.l | Dy, H; and

x’,:ril | H are (approximately) Gaussian. Verifying Gaussianity of the first case is the stricter—and
therefore more informative—requirement. We thus track, for every client, the weights it uploads
each round and examine these conditional distributions empirically. Figure 5 plots these conditional
weight histograms for three representative models—DistilBERT on IMDB, ResNet-9 on CIFAR-10,
and LeNet-5 on MNIST. Each 3-D panel shows weight value (x-axis), training round (depth), and
frequency (z-axis). Across all datasets, the distributions consistently approximate a zero-mean
Gaussian shape (~ N(0, ocona)- Although the standard deviation slightly varies during training, it
remains well below 0.2 throughout. This evidence supports the sub-Gaussian premise in Remark 3.8
and validates the constant C',,. used in Theorem 3.7.

DistilBERT - IMDB ResNet9 - CIFAR10 LeNet5 - MNIST
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Frequency (10%)
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S = o

Figure 5: Conditional weight distributions (xﬁ;l | Dy, H¢) over training rounds for DistilBERT,
ResNet-9, and LeNet-5. Each 3D plot shows the distribution of weight values (horizontal axis) over
time (depth axis), with frequency represented on the vertical axis. In all cases, the weight distributions
remain ~ N (0, 0cong) With a oong < 0.2, validating the sub-Gaussian premise used in used Remark
3.8.

F.2 SCALABILITY AND EFFICIENCY OF ERIS

To evaluate the scalability and communication efficiency of ERIS, we provide both a theoretical
analysis of model distribution time and empirical comparisons with existing FL frameworks.

"https://github.com/
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F.2.1 THEORETICAL ANALYSIS OF MODEL DISTRIBUTION TIME

We begin by quantifying the minimum time required to distribute models in a single training round
under various FL setups. Here, the distribution time refers to the time needed for: (i) clients to transmit
their local models to the aggregation parties (either a central server or a set of aggregators), and (ii)
all clients to receive the updated global model. For clarity, we assume full client participation in each
round; however, the same analysis readily extends to partial participation scenarios by adjusting the
number of active clients accordingly.

Single-server Federated Learning. In traditional centralized FL, we consider a single server and
K clients. Let us and d, denote the server’s upload and download rates, and let uy, di, be the k-th
client’s upload and download rates, respectively. Assume the model has n parameters and each is
represented as a 32-bit float, yielding a total model size of b ~ 32 - n bits. The distribution time in a
single training round is governed by the following observations:

* The server must collect K local models, each of size b bits, resulting in a total inbound traffic
of K - b bits, received at a download rate d.

» Each client k£ uploads its local model at an individual rate u. The server cannot complete
the upload phase until the slowest client—i.e., the one with the lowest ug—has finished its
transmission.

* Once all local models are received, the server performs aggregation and then broadcasts the
aggregated global model back to all K clients. This requires transmitting another K - b bits at
the server’s upload rate u.

* Model distribution concludes when every client has received the global model. This process is
bounded by the client with the lowest download rate dy, as it determines the last completed
transfer.

Putting all these observations together, we derive the minimum distribution time in a single training
round for a centralized FL setup without compression such as FedAvg, denoted by Dpcqavg-

Kb b K-b b
Do > - N 46
FedAvg maX{ ds Inlll{ul,...,UK}}+maX{ Us mm{dl,...,dK}} o

Here, the first term captures the server’s time to receive all local model uploads and the slowest
client’s upload time, while the second term captures the server’s model broadcast time and the slowest
client’s download time.

To reduce distribution time, several FL methods focus on minimizing the volume of transmitted data
per round—i.e., decreasing the effective model size b. For example, PriPrune (Chu et al., 2024)
applies structured pruning to eliminate a fraction p of the model’s parameters before transmission.
This reduces the transmitted size to ' < 32 - (1 — p) - n bits. Similarly, SoteriaFL (Li et al., 2022d)
compresses gradients using a shifting operator controlled by a compression factor w, leading to a
model size bounded by b’ < 32 - w%rl -n.

Serverless Federated Learning. We now extend the analysis to ERIS, our proposed serverless
FL framework with K clients and A < K aggregators. In contrast to centralized schemes, ERIS
decentralizes aggregation across A aggregators (a subset of clients) and compresses model updates
prior to transmission. We denote the size of the compressed model by b’ < 32- %—H -n. To estimate the
minimum model distribution time in a single training round under ERIS, we consider the following:

» Each aggregator must collect K — 1 model shards from the clients (excluding its own),
amounting to a total of (K — 1) - % bits received per aggregator at a download rate dy,. The
aggregation process cannot proceed before the slowest aggregator (i.e., the one with the lowest
download rate) receives all required shards.

 Each client k uploads one shard of its model to each aggregator, sending a total of o/ bits. If
the client is not serving as an aggregator (worst case), it must upload the entire set of A shards
at an upload rate uj. The aggregation step is gated by the client with the lowest upload rate.
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* Once aggregation is complete, each aggregator redistributes its shard of the updated model
to all K clients. This amounts to sending (K — 1) - % bits at an upload rate uy. Model
dissemination is constrained by the aggregator with the slowest upload speed.

* Full model reconstruction occurs only after each client receives one shard from every aggrega-
tor. In the worst-case scenario, a non-aggregator client must download the complete model
(i.e., br bits) at a rate dj. The distribution concludes when the client with the lowest download
rate completes this transfer.

Putting all these observations together, we derive the minimum distribution time in a single training
round for ERIS, denoted by Dggs:

D > ma (K -1 v
max
BRIS = A-min{dy,...,da} minf{uy,...,ux}
(K —1)¥ b
4
+maX{A~min{u1,...,uA}’min{dl,...,dK} “7)

While ERIS leverages decentralized aggregation to reduce communication overhead, it is not the first
framework to exploit distributed training. For instance, Ako (Watcharapichat et al., 2016) distributes
gradient computations by splitting each model into K disjoint partitions and randomly assigning
them to worker nodes. However, this approach differs fundamentally from ERIS: in Ako, not all
clients receive the full model in each round, which may hinder convergence to the standard FedAvg
solution. Furthermore, in each round, a client uploads and receives K partitions—equivalent to the
full model size—resulting in substantial bandwidth usage. We can estimate the minimum distribution
time for Ako, denoted by D 4,, using a similar worst-case analysis:

b b
min{dy,...,dx} min{us,... ,uK}}

Daps > max{ (48)

Shatter (Biswas et al., 2025) is also a privacy preserving distributed learning framework. In shatter,
each round consists of three steps. In the first step, each node updates its local model and divides the
result in [ chunks. Each client (real node) runs [ virtual nodes. The virtual nodes form an overlay
network over which model parameter updates are multicast with a gossiping protocol. Once received
r updates for each of the [ virtual nodes running on a real node, the last step consists of the virtual
nodes forwarding the received updates to the real node to perform the aggregation. Notice that in this
setup, not all clients will receive all model updates, so the communication overhead is reduced at the
cost of slower global model convergence. The model distribution occurs in the second step through a
multicast among the virtual nodes. The model distribution cannot finish before each real node (via its
virtual nodes) has finished uploading its model chunks, and has finished downloading model updates
from r other clients. Then, we need to account for the time to upload all the model updates with the
total upload capacity being the sum of all individual node upload rates. Therefore, we can estimate
the minimum distribution time for shatter, denoted by Dypyyer:

b r-b r-b
D%aerz . b . k) 49
shatt Inax{mln{ul, coyug min{dy, ..., dg} Zfil Ui} (49)

F.2.2 NUMERICAL RESULTS

Effect of Number of Clients and Model Size on Distribution Time. Figure 6 compares the
minimum distribution time per training round for ERIS and other FL frameworks under varying
numbers of aggregators and model sizes. We assume homogeneous network conditions across all
nodes, with upload and download rates fixed at 100 Mbps. For the baselines, we apply a pruning rate
of 0.3 for PriPrune, a compression ratio of 1/(w + 1) = 0.05 for SoteriaFL and ERIS, and the overlay
topology (i.e., graph degree) for shatter forms a 4-regular graph. Note that 1/(w + 1) = 0.05 (with
w = 18) corresponds to the least aggressive compression used in our experiments, chosen for MNIST
to preserve model utility. In other settings, such as IMDB, we adopt much stronger compression (e.g.,
1/(w + 1) = 0.00012), further lowering communication overhead without harming performance.
Thus, the results in Figure 6 represent a conservative estimate of ERIS’s efficiency.
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On the left, Figure 6 illustrates how distribution time scales with the number of participating clients:
while all methods experience linear growth (except Ako and Shatter, which always exchange with a
fixed number of neighbours), ERIS benefits from increased decentralisation—achieving significantly
lower distribution times as the number of aggregators A increases. In the worst-case configuration
with A = 2, ERIS still achieves a 34 x speedup over FedAvg and a 2x improvement over SoteriaFL.
When A = 50, these gains rise dramatically to 1020x and 51 x, respectively, underscoring the
scalability advantages of decentralised aggregation. Maximum efficiency is achieved when the
number of aggregators matches the number of clients (A = K), maximising parallelism and evenly
distributing the communication load. Notably, Ako and Shatter remain constant with respect to the
number of clients, as its communication pattern does not involve distributing the full model to all
participants—at the expense of model consistency and convergence guarantees. On the right, Figure 6
examines the impact of increasing model size with 50 clients. The results highlight the communication
efficiency of decentralised approaches, especially ERIS, which outperforms traditional centralised
frameworks as model size grows. This confirms the practical benefits of combining decentralised
aggregation with compression.

s Effect of Number of Clients s Effect of Model Size
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—— ERIS (A=2) —=— ERIS (A=50) —e— SoteriaFL Shatter

Figure 6: Minimum distribution time for a single training round for FedAvg, PriPrune, SoteriaFL,
Ako, Shatter, and ERIS. The figure shows the minimum distribution time for a single round with
M = 320 Mbit on a logarithmic scale (left), and the minimum distribution time for a single round
with 50 training clients as the model size increases on a logarithmic scale (right).

Communication efficiency. In addition to the main paper, Table 3 reports the full analysis of
communication efficiency, extending Table 2 with results on MNIST and IMDB. The table compares
per-client upload size and minimum distribution time per round (20MB/s bandwidth), under the
same experimental settings as in Table 1. Across all datasets, ERIS consistently achieves the lowest
communication overhead, reducing upload size to below 1% of FedAvg on CNN/DailyMail and
CIFAR-10, and to just 0.012% on IMDB. Distribution time improvements are equally striking: for
large models like CNN/DailyMail, ERIS cuts round time from over 5000s to under 5s, while for
smaller models (e.g., MNIST) it completes a round in less than a millisecond. These results confirm
that the combination of shifted compression and decentralized aggregation enables ERIS to deliver
communication savings of several orders of magnitude while maintaining full convergence.
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Method CNN/DailyMail IMDB CIFAR-10 MNIST
Exchanged Dist. Time Exchanged Dist. Time Exchanged Dist. Time Exchanged Dist. Time

FedAvg (-LDP) 5.2GB (100%)  5200s 268MB (100%) 670s 6.6MB (100%) 33s 248KB (100%) 1.24s
Shatter 5.2GB (100%) 780s 268MB (100%) 53.6s 6.6MB (100%) 1.32s 248KB (100%) 0.05s
PriPrune (0.01) 4.68GB (90%)  4680s 241.2MB (90%) 603s 6.53MB (99%)  32.65s  245.52KB (99%) 1.23s
PriPrune (0.05) 4.16GB (80%)  4160s 214.4MB (80%) 536s 6.27MB (95%)  31.35s 235.6KB (95%) 1.18s
PriPrune (0.1)  3.64GB (70%)  3640s 187.6MB (70%) 469s 5.9MB (90%) 29.5s 223.2KB (90%) 1.12s
SoteriaFL 0.26GB (5%) 260s 13.4MB (5%) 33.5s 0.33MB (5%) 1.65s 12.4KB (5%) 0.06s
ERIS 52MB (1%) 4.68s 32.16KB (0.012%)  0.003s  0.04MB (0.6%) 0.0039s  8.18KB (3.3%)  0.0008s

Table 3: Communication efficiency across datasets, showing per-client upload size and minimum
distribution time per round.

F.3 EFFECT OF SHIFTED COMPRESSION ON MODEL UTILITY

This section prov1des. agldltlonal results com- Effect of Shifted Compression («)
plementing the analysis in Paragraph 4.2. Fig- 0.400
ure 7 illustrates the impact of increasing the
compression constant w on test accuracy for

0.375

CIFAR-10, under varying numbers of local train- ~ ©-3%07

ing samples per client. We observe that up to 395 T o comprasion - w25
w = 340—which corresponds to a compression £ w13 w=170
rate of approximately 0.29%—test accuracy re- (% 03009 i Byinped B

mains statistically unchanged. This indicates 0.275 +w=0 4 w=1050
that the communication cost can be substantially
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F.4 DATA RECONSTRUCTION ATTACKS

To further assess the privacy guarantees of ERIS, we evaluate its resilience to Data Reconstruction
Attacks (DRAs), which represent one of the most severe privacy threats in FL. To favour the attacker
and stress-test our approach, we consider the uncommon but worst-case scenario where each client
performs gradient descent with a mini-batch of size 1 and transmits the resulting gradient—which
can be intercepted by an eavesdropper or a compromised aggregator/server. Therefore, we assume
the adversary has white-box access to the client gradient.

Given this gradient, reconstruction methods such as DLG (Zhu et al., 2019), iDLG (Zhao et al., 2020),
and ROG (Yue et al., 2023) aim to recover the original training sample by optimising inputs to match
the leaked gradient. Unlike earlier gradient-matching attacks, ROG projects the unknown image into
a low-dimensional latent space (e.g., via bicubic downsampling or an autoencoder) and optimises
that compact representation so that the decoded image’s gradients align with the leaked gradient,
before applying a learnt enhancement module to obtain perceptually faithful reconstructions. In our
experiments, a dedicated enhancement decoder was trained for each dataset using a hold-out set.

Figure 8 reports the reconstruction quality, measured via the LPIPS score (Zhang et al., 2018), as
a function of the percentage of model parameters available to the attacker. The x-axis is plotted on
a non-linear scale to improve readability in the low-percentage regime. The results are averaged
over 200 reconstructed samples and tested across three datasets: MNIST, CIFAR-10, and LFW.
The findings show that in the full-gradient setting (e.g., FedAvg), all DRAs can almost perfectly
reconstruct the original image. However, as the proportion of accessible gradients decreases, the
reconstruction quality of DLG and iDLG degrades significantly, with LPIPS scores approaching the
baseline of random images when only 90% of the parameters are visible. Remarkably, even in the least
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favourable configuration of ERIS—with only two aggregators—the system already provides sufficient
obfuscation to render reconstruction attacks ineffective, as highlighted by the shaded regions in the
figure. A different pattern emerges for ROG, which tends to maintain higher reconstruction quality.
Closer inspection of MNIST and LFW examples, however, reveals that this apparent advantage stems
primarily from the trained enhancement decoder. This module effectively biases reconstructions
toward the training distribution, thereby inflating similarity scores. In fact, even when random
gradients are passed through the decoder (purple dashed line), the outputs achieve LPIPS values lower
than random images, underscoring that the improvement reflects postprocessing artefacts. However,
once 25% or fewer gradients are accessible, the reconstructed outputs are severely distorted and no
longer capture any semantically meaningful features of the original data.
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Figure 8: Reconstruction quality under DLG, iDLG, and ROG attacks as a function of the percentage
of model parameters available to the attacker. The LPIPS score (higher is better) is averaged over
200 samples. The x-axis is plotted on a non-linear scale for improved clarity of the low-percentage
regime. Shaded regions highlight the obfuscation achieved by ERIS, which renders reconstruction
attacks ineffective even in its weakest configuration (two aggregators and no compression).

To further characterize the privacy guarantees, we evaluate the performance of the more advanced
ROG attack—which better reveals residual privacy leakage even in obfuscated settings—across
all implemented baselines, as well as several standalone compression methods (Table 4). The
results confirm that compression alone is insufficient: both QSGD and uniform quantisation degrade
reconstruction quality only at aggressive rates (e.g., s = 4), while Top-k sparsification becomes
effective only at extreme sparsity levels (0.98-0.99), where utility is severely compromised. Similarly,
differentially private training via DP-SGD shows a clear trade-off between privacy and utility: with
mild clipping (clip = 10) and low noise (¢ = 10~%), reconstructions remain close to FedAvg,
whereas stronger noise or tighter clipping substantially degrades image quality but at the expense
of model performance. PriPrune exhibits a comparable pattern, with higher pruning probabilities
providing stronger obfuscation but leading to distorted reconstructions and reduced SSIM. Finally,
ERIS achieves robust protection even in its least favourable setting (A = 2 aggregators), and the
privacy guarantees strengthen as either the number of aggregators increases or the compression rate
w increases. Notably, at A = 4 or w > 4, the reconstruction quality approaches that of random
gradients, indicating that ERIS effectively obfuscates client updates while preserving utility.

F.5 BALANCING UTILITY AND PRIVACY - IID SETTING

This section provides detailed numerical results supporting the analysis in Paragraph 4.2. Specifically,
we report test accuracy and Membership Inference Attack (MIA) accuracy for all evaluated methods
across multiple datasets and varying local training sizes in IID setting. Tables 5—11 report results for
CNN/DailyMail, IMDB, CIFAR-10, and MNIST. IMDB, CIFAR-10, and MNIST are evaluated across
4-128 client training samples, while CNN/DailyMail is limited to 16—128 samples, as overfitting
saturates already at 16. Part of these values serve as the coordinates for Figure 3, which visualizes the
utility—privacy trade-off achieved by ERIS and baselines. Importantly, the tables extend beyond the
conditions illustrated in the figure by covering a wider set of hyperparameter configurations—namely,
additional pruning rates (p) and privacy budgets (¢) for LDP-based methods.

Notably, these results (both in Figure 3 and Tables 5—11) show two clear trends. First, a smaller
amount of local data leads all methods to lower task accuracy and higher MIA accuracy, reflecting
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Method LPIPS (1) SNR (dB) () SSIM (1)

FedAvg 0.193 + 0.059 21.860 £ 2.049  0.871 4 0.054
QSGD (s=16) 0.209 £ 0.060  21.503 £ 2.082  0.859 =% 0.054
QSGD (s=8) 0.250 + 0.065 20.556 4+ 1.982  0.829 + 0.056
QSGD (s=4) 0.343 £ 0.074 18.402 4+ 1.794  0.739 % 0.075
Uniform Quantization (s=16) 0.243 + 0.066 20.621 £ 1.948 0.833 % 0.059
Uniform Quantization (s=8) 0.302 £ 0.071 18.816 £1.924  0.772 4+ 0.070
Uniform Quantization (s=4) 0.403 +0.079  16.065 = 1.936  0.634 + 0.091

Top-k Sparsification (sparsity=0.90) ~ 0.228 & 0.063  20.535 4 2.057  0.841 4 0.058
Top-k Sparsification (sparsity=0.98) ~ 0.392 4 0.083 15.350 +2.370  0.644 4 0.094
Top-k Sparsification (sparsity=0.99) ~ 0.456 = 0.094  12.380 4=2.490  0.472 £ 0.105

DP-SGD (clip=10, o=1e-4) 0.200 £ 0.062  21.673 £2.079  0.867 & 0.051
DP-SGD (clip=10, o=l1e-3) 0.340 £ 0.071 18.481 4+ 1.378  0.741 4= 0.081
DP-SGD (clip=10, o=1e-2) 0.498 + 0.091 11.159 4 0913 0.252 4 0.109
DP-SGD (clip=1, o=1e-4) 0432 £0.094  11.781 +3.420  0.446 £ 0.127
DP-SGD (clip=1, o=1e-3) 0.436 £ 0.095 11.766 4+ 3.429  0.445 4-0.128
DP-SGD (clip=1, o=1e-2) 0.472+0.090  11.082 +3.035  0.354 + 0.098
PriPrune (p = 1x 10~ %) 0.305 + 0.075 19.072 +1.894  0.768 4+ 0.078
PriPrune (p = 107 3) 0.506 £ 0.087 9.614 £ 2.250 0.148 + 0.053
PriPrune (p = 0.1) 0.569 + 0.067 8.477 + 2.637 0.094 + 0.043
ERIS (w =1, A =2) 0.453 + 0.081 11.678 £2.259  0.407 £ 0.071
ERIS (w = 4, A = 2) 0.524 £ 0.078 8.906 + 2.494 0.134 + 0.047
ERIS (w =9,A =2) 0.547 £ 0.073 8.556 + 2.609 0.095 + 0.045
ERIS (w =0, A =2) 0.458 + 0.081 11.658 4+-2.268  0.404 4 0.070
ERIS (w = 0, A = 4) 0.514 + 0.078 9.216 +2.418 0.170 & 0.046
ERIS (w =0, A = 8) 0.546 £ 0.075 8.620 % 2.591 0.105 £ 0.043
Random Gradients 0.572 +£ 0.065 8.482 + 2.639 0.094 + 0.045

Table 4: Reconstruction quality under ROG attacks across privacy-preserving mechanisms and
compression techniques on CIFAR-10. Lower metric values indicate stronger defenses.

the stronger overfitting in this regime. Second, especially under low-data conditions, ERIS (with
and without compression w = 0) consistently delivers markedly better privacy preservation while
retaining competitive accuracy. For instance, on CNN/DailyMail with 16 samples, for the same
ROUGE-1 score as FedAvg, ERIS reduces MIA accuracy from 100% to 77.7%; on IMDB with
4 samples, it lowers MIA accuracy from 82.9% to 65.2%, closely approaching the unattainable
upper-bound of 64.4%. These findings highlight ERIS’s robustness across data modalities and model
capacities.

Local Training Size 16 samples 32 samples 64 samples 128 samples
Method R-1(1) MIAAce.(!) R-1(1) MIAAce. () R-1(1) MIAAce. () R-1(1) MIA Ace. (})
FedAvg 30.37£1.25 100.00£0.00 32.21+1.46 98.75+1.25 34.27+0.65 96.46+0.36 36.04+0.57 96.57+0.90

FedAvg (10, §)-LDP  25.66+0.86 54.17+520 26.26+0.07 50.00+3.31 26.30+0.10 49.33+2.53 25.78+0.10 54.41+1.47
FedAvg (100, §)-LDP 26.33+0.07 54.17+520 26.36+0.10 50.42+2.89 24.90+0.13 48.75+2.25 26.32+0.10 54.31+1.19
SoteriaFL (¢ = 100) 25.89+0.12 54.13+1.15 26.09+£0.07 54.27+520 26.01+0.11 50.35+2.89 24.02+0.15 49.15+2.15
SoteriaFL (e = 10)  25.78 091 54.02+1.48 2590+0.36 54.17+£520 25.90+0.75 50.83+2.60 24.75+0.79 49.54+2.60
PriPrune (p = 0.1)  32.21+0.44 9583+2.89 26.01+0.70 82.92+1.91 30.97+0.55 90.00+1.08 33.90+1.45 88.73+0.90
PriPrune (p = 0.2)  29.96+0.94 88.33+2.89 26.61+0.72 76.67+3.61 29.00£0.41 79.38+3.80 31.49+1.89 79.02+0.61
PriPrune (p = 0.3)  18.41+15.11 74.17+3.82 21.80+0.67 70.00£3.31 29.00£1.10 70.83+3.44 29.49+1.67 70.39+0.74

Shatter 30.05£1.22 78.50+7.50 30.38+0.59 69.12+£2.60 33.04£0.65 66.18+5.12 34.35+0.38 68.16+0.90
ERIS (w ~ 100) 30.04+095 77.73£6.29 31.60+0.95 68.27+3.61 34.14+0.76 64.38+5.12 35.62+0.48 67.84+0.74
ERIS (w = 0) 3037+1.25 7850+£7.50 32.41+1.46 69.12+2.60 34.04+0.76 66.18£5.12 36.04+0.57 68.16+0.90
Min. Leakage 30.37+1.25 67.83+10.10 32.41+1.46 60.58+1.91 34.27+0.65 54.08+4.77 36.04+0.57 59.61+2.54

Table 5: Comparison of ERIS with and without compression (w) against SOTA baselines in terms of
ROUGE-1 and MIA accuracy on CNN/DailyMail with 16, 32, 64, and 128 local training samples.
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Local Training Size 4 samples 8 samples 16 samples
Method Accuracy (1) MIA Acc. () Accuracy (1) MIA Acc. () Accuracy (1) MIA Ace. ()
FedAvg 71.73+493  8293+639 79.56+0.61 78.40+395 80.52+030 66.91+1.81

FedAvg (e = 100, §)-LDP  53.79+£0.08  55.56 +4.91 53.82+0.06 53.33+1.00 53.92+0.11 50.06 +2.81
FedAvg (e = 10, 6)-LDP 53.80+0.03 5280%5.82 53.81+0.02 5040+3.12 53.83+0.06 49.89+1.74

SoteriaFL (e = 100, ) 5346+0.15 5556+6.00 54.73+0.15 5440+196 53.74+0.16  50.30 +2.69
SoteriaFL (e = 10, §) 5336+0.29 5520£5.63 54.01+0.24 5136+348 53.67+£0.29 50.11+1.58
PriPrune (p = 0.1) 5440+546  80.53£4.59  71.70+£2.09 7472+3.63 77.64%x144 6531218
PriPrune (p = 0.2) 5278 +£239  74.67+499  5855+£530 71.36+£223  6533+8.65 62.84+241
PriPrune (p = 0.3) 5352+279 7040+£320 5592+349 6576+3.63 6032+571 59.82+2.85
Shatter 68.52+4.66 67.52+280 74.84+1.88  6256+3.77 7791+£0.55 54.75+1.97
ERIS (w =~ 8000) 7128474  6522+£295 79.28+0.71 60.51+2.50 80.11+£046 54.12+1.78
ERIS (w = 0) 70.15+424  67.67£289  79.39+0.57 6245+379 8049£033  54.72+1.90
Min. Leakage 7239199 6444227 7933+£0.75 58.67+2.10 80.68+0.09  53.21+2.53

Table 6: Comparison of ERIS with and without compression (w) against SOTA baselines in terms of
test and MIA accuracy on IMDB with 4, 8, and 16 local training samples.

Local Training Size 32 samples 64 samples 128 samples
Method Accuracy (1) MIA Acc. () Accuracy (1) MIA Acc. () Accuracy (1) MIA Ace. ()
FedAvg 81.62+0.11 63.58+1.47 81.70+0.05 60.54+2.11 8245+0.18  56.89+0.81

FedAvg (e = 100, 6)-LDP  54.11+0.15 51.56 +1.71 5450+0.19  50.67+1.60 55.09+032 51.26+0.49
FedAvg (e = 10, §)-LDP 5397+0.10 50.02+1.52 54.12+0.12 49.84+086 5430+0.19 50.37+0.92

SoteriaFL (e = 100, ) 5487+0.72 51.94+£194 5581+0.62 5098+187 56.08+1.19 51.17+0.52
SoteriaFL (e = 10, §) 5435+039 50.10£1.83 54.79+0.35 50.12+093 5528+0.57 50.64 +0.92
PriPrune (p = 0.1) 7993+023 61.87£1.25 80.34+0.10 59.61%2.11 80.87 £0.11 56.11+0.93
PriPrune (p = 0.2) 7148720 59.54+1.71 72,12+ 191 5821211 7752+0.55  55.02£1.09
PriPrune (p = 0.3) 61.20+7.02 5643155 62.01£5091 56.63+1.76  6895+1.92 5420+1.18
Shatter 7934+0.64 53.79+1.56 80.19+048  53.68 +0.95 80.84+£0.19  52.02+1.01
ERIS (w =~ 8000) 80.99+0.22 5344+126 81.16+0.19 52.77+£1.62 81.59+0.21 51.80 +1.07
ERIS (w = 0) 81.63£0.12 53.98+148 81.70+0.06 53.54+0.93 82.38+0.13  52.08 +1.07
Min. Leakage 81.58 £0.11 5257+1.27 81.67+£0.04 53.05+132 8244+0.09 51.53+1.12

Table 7: Comparison of ERIS with and without compression (w) against SOTA baselines in terms of
test and MIA accuracy on IMDB with 32, 64, and 128 local training samples.

Local Training Size 4 samples 8 samples 16 samples
Method Accuracy (1) MIA Acc. () Accuracy (1) MIA Acc. () Accuracy (1) MIA Ace. ({)
FedAvg 27.12+£1.20 84.80 £4.59 32.98 £0.61 75.84 £2.85 3443 £ 1.04 70.15 £ 1.41

FedAvg (e = 10, 6)-LDP  10.33 £0.53 81.20 +3.90 14.93 £2.01 72.40 +2.60 18.92 + 1.31 62.55+1.19
FedAvg (e = 1, §)-LDP 1034 +0.22  66.50 £3.78 10.00+£0.00  63.60 £2.42 10.00 £0.00  56.05 +0.49

SoteriaFL (e = 10, 9) 10.00+0.00 69.87+1.86 10.06+0.12  64.16 £1.25 10.85+1.06  58.25%2.10
SoteriaFL (e = 1, ) 9.99 +0.00 65.67 +1.11 10.00+£0.00 62.10£1.56  10.00+0.00  53.86 +0.67
PriPrune (p = 0.01) 1374 +£2.05 7480£287 2842+039 7536£3.60 29.57+0.70 69.82%1.59
PriPrune (p = 0.05) 10.09£0.36  67.33+£2.63 1277 +£2.52  61.68 £3.04 11.55+1.80  54.44+1.50
PriPrune (p = 0.1) 10.00+£0.00  64.27 £2.62 10.03 +£0.04  58.80£2.83 10.00 £0.00  52.62 +1.37
Shatter 1147+ 175  77.95+5.63 1157196  7049+£2.74 1242+1.65 6422+1.85
ERIS (w =~ 170) 2631+1.16  71.63+4.28  3328+1.06 6848+230 34.62+142 59.58+226
ERIS (w = 0) 27.13+1.19  7790£555 3290+040 70.75+2.70  34.32+0.91 64.21 £ 1.95
Min. Leakage 2711117 7027 +4.69  33.11£0.62 6544+243  34.62+091 56.87 £ 1.34

Table 8: Comparison of ERIS with and without compression (w) against SOTA baselines in terms of
test and MIA accuracy on CIFAR-10 with 4, 8, and 16 local training samples.
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Local Training Size 32 samples 64 samples 128 samples
Method Accuracy (1) MIA Acc. () Accuracy (1) MIA Acc. () Accuracy (1) MIA Ace. ({)
FedAvg 3724+041 6457072 3850+044 59.29+0.79  38.88+0.32 56.11+0.75

FedAvg (e = 10,6)-LDP  2231+1.12  57.14+139 2336+0.85 5399+0.83 24.13+032 52.81+0.49
FedAvg (¢ = 1, §)-LDP 10.00+0.00 57.57+0.26 13.96+1.14 5442+040 1929+0.37 53.12+0.16

SoteriaFL (e = 10, 9) 19.68 £0.78  55.68£1.09 26.04+0.52 5294+0.74 2646+0.25 52.07+0.55
SoteriaFL (e = 1, 6) 10.00+£0.00  54.57£0.50 10.00+0.00 53.28 £0.61 1220+ 1.25  52.58 £0.53
PriPrune (p = 0.01) 29.39+£0.50 63.73£0.96  28.70 £ 0.51 57.09+£0.67 2799032 5322+0.70
PriPrune (p = 0.05) 11.80+2.44  52.80+1.80 11.05+1.60  52.01£0.35 1021 +£0.28  51.01£0.20
PriPrune (p = 0.1) 10.00+£0.00 51.94+£1.86 10.00+0.01  51.06 +0.64 10.00 £0.00  50.48 £0.81
Shatter 1232 +£2.03  58.58 £0.95 1296 +2.16  54.65+0.54 13.64+1.55 52.03+0.49
ERIS (w =~ 170) 37.40+136 57.49+£085 38.16+1.01 53.98 £0.41 38.30+0.88  51.70+0.53
ERIS (w = 0) 37.12+0.55 58.63£098  3859+0.50 54.60£049 3895+0.32  52.04%0.41
Min. Leakage 37.25+038  55.81+0.81 38.57+0.37  53.06+£047 3888+0.36 51.67+0.48

Table 9: Comparison of ERIS with and without compression (w) against SOTA baselines in terms of
test and MIA accuracy on CIFAR-10 with 32, 64, and 128 local training samples.

Local Training Size 4 samples 8 samples 16 samples
Method Accuracy (1) MIA Acc. () Accuracy (1) MIA Acc. () Accuracy (1) MIA Ace. ({)
FedAvg 80.69 + 1.71 82.13+1.65 86.42+0.88  72.00+3.01 89.23+0.74  65.78 £2.24

FedAvg (e = 10, 6)-LDP  39.65+3.14  69.07+1.67 50.84+4.75 5944+2.00 6440+153 57.67+1.61
FedAvg (e = 1, §)-LDP 9.73 £ 0.46 69.50 + 1.72 10.70+1.27  58.50+0.71 19.80+1.38  57.55+1.66

SoteriaFL (e = 10, 9) 8.83 +£2.65 71.47 +1.81 32.15£2.00 57.68+1.83  67.01 +1.31 56.87 £ 1.69
SoteriaFL (e = 1, ) 10.31+0.38  67.50£2.33 10.84£0.79  57.90 +2.37 1272+133  5727+1.44
PriPrune (p = 0.01) 47.89+£833  7720+333 70.60£3.67 6832+428  84.81£0.31 63.56 +£2.09
PriPrune (p = 0.05) 17.01 £4.22  58.00 +3.45 1897+3.12  50.16£2.60 2647+259 54.51+1.62
PriPrune (p = 0.1) 11.99+187  56.67+3.18 13.33 £2.21 49.44 £2.54 1946+ 135 5342+1.54
Shatter 11.96 £233  70.42+221 1232+£292  56.51 £2.86 1455 +4.24  55.61 £1.33
ERIS (w ~ 30) 7872+1.19 6848 +3.11 84.84£0.58 5514273  90.26+0.11 56.11 £ 1.58
ERIS (w = 0) 80.47+£1.75 7039+2.19 8628+1.00 56.35+2.89 89.27+0.73  55.60+1.27
Min. Leakage 80.68 £1.95  66.67+2.67 8630+x1.06 5432+1.67 89.26+0.74 5538156

Table 10: Comparison of ERIS with and without compression (w) against SOTA baselines in terms of
test and MIA accuracy on MNIST with 4, 8, and 16 local training samples.

Local Training Size 32 samples 64 samples 128 samples
Method Accuracy (1) MIA Acc. () Accuracy (1) MIA Acc. () Accuracy (1) MIA Ace. ({)
FedAvg 91.48+£037 5994 +1.11 9255+0.06 56.68+1.92 93.11+0.16 54.14+0.65

FedAvg (e = 10, 6)-LDP  70.35 £ 1.31 53.05+1.09 7043+1.27 53.00£1.00 70.48+039 51.20+091
FedAvg (e = 1, §)-LDP 57.75+0.87 5471+£0.85  70.96+0.71 52.72+0.74 7056 £0.34  51.40 +0.66

SoteriaFL (e = 10, 9) 7795+238 53.28+0.60 78.15+2.66 52.16+084 79.50+145 51.29+0.77
SoteriaFL (e = 1, ) 8.49 +1.87 54.14+053 4037+144 52.83+024 68.75+038 51.89+0.53
PriPrune (p = 0.01) 87.77+£0.15 56.99+1.14 87.01+0.17 5454+1.03 86.38+0.19 52.65+*0.69
PriPrune (p = 0.05) 33.01£0.73  5141+134 3481198 51.39+x1.00 3387063  50.69+0.93
PriPrune (p = 0.1) 21.08+1.39  50.74+1.58 20.68+0.90 51.14+x098 2046+037  50.65+0.87
Shatter 1651 +6.16  52.02 £ 1.09 1850+6.06 51.46+£0.79 2129+722 51.61%0.76
ERIS (w =~ 30) 9256 +0.30 52.71+£0.86 93.58+0.23 51.74+0.66 94.02+0.19 51.65+0.64
ERIS (w = 0) 91.52+032 52.08+1.04 9254+0.04 5145+085 93.12+£0.16 51.53+0.79
Min. Leakage 91.47+039 5206+1.04 9256+0.05 51.41+084 93.14+0.17 51.50%0.85

Table 11: Comparison of ERIS with and without compression (w) against SOTA baselines in terms of
test and MIA accuracy on MNIST with 32, 64, and 128 local training samples.
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F.6 BALANCING UTILITY AND PRIVACY - NON-IID SETTING

We further evaluate the utility—privacy trade-off under non-IID client data, using a Dirichlet partition
with a=0.5 for IMDB and a=0.2 for CIFAR-10 and MNIST. Figure 9 illustrates the utility—privacy
trade-off across methods and datasets, where the ideal region corresponds to the top-right corner
(high accuracy and low privacy leakage). Non-IID distributions generally make convergence more
challenging, lowering overall accuracy and increasing variability across clients. Nevertheless, ERIS
remains stable and consistently reduces privacy leakage. For example, on IMDB with 4 local samples,
ERIS matches FedAvg in accuracy while reducing MIA accuracy from 91.7% to 80.7%, approaching
the ideal upper-bound of not sharing local gradients. On CIFAR-10 and MNIST, ERIS even matches
or slightly surpass non-private FedAvg in terms of accuracy, while still offering strong privacy
protection. By contrast, privacy-enhancing baselines such as Shatter and FedAvg-LDP struggle to
maintain utility, often remaining close to random-guess performance, particularly when models are
trained from scratch. Table 12 reports detailed mean accuracy and MIA accuracy values, averaged
over varying local sample sizes. Together, these results confirm that the advantages of ERIS extend
robustly to heterogeneous data distributions.
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Figure 9: Comparison of test accuracy and MIA accuracy across varying model sizes and client-side
overfitting levels, controlled via the number of client training samples under non-IID setting.

IMDB - DistilBERT CIFAR-10 - ResNet9 MNIST - LeNet5
Method Ace. (1) MIA Acc. () Ace. (1) MIA Ace. (1) Ace. (1) MIA Acc. ({)
FedAvg 68.02 £7.03 7234+333 | 29.834+085 63524128 | 8480 £ 1.76  60.17 £ 1.29
FedAvg (e, §)-LDP | 53.79 030  52.00 +3.97 | 15.13 £ 1.37 5883 £ 1.73 | 55.69 +2.83 57.39 +2.31
SoteriaFL (e, ) 5375+ 0.81 5270 +3.86 | 1446 +£0.55 59.07 & 1.64 | 51.75 £2.77 57.64 £+ 1.80
PriPrune (p1) 57.01 £7.37 7048 +£342 | 2130 +£236 59.73 +1.52 | 74.80 £3.78  58.50 £ 1.56
PriPrune (p2) 53.64 £340 67524352 | 11.51 4141 5771 3.03 | 24.94 £5.34 53.95 £ 1.89
PriPrune (p3) 54.03 +3.68 63.04 +4.23 1098 £ 091 5553 +224 | 1554 + 147 52.64 +2.45
Shatter 62.16 +4.19  68.26 + 4.85 11.63 £ 131 6219 +2.18 | 17.73 £5.56  59.67 & 2.67
ERIS 6749 +7.51 6695+ 4.72 | 30.16 =135 6272 +£2.04 | 85.10 £ 0.84 58.17 £+ 2.24
Min. Leakage ‘ 68.88 + 6.75  68.85 + 3.00 ‘ 29.80 +£ 0.86  61.92 + 3.09 ‘ 8495+ 173  56.08 &+ 1.67

Table 12: Mean test accuracy and MIA accuracy, averaged over varying local sample sizes. For
DP-based methods, e=10; for PriPrune, pruning rates are p € {0.1,0.2,0.3} on IMDB and p €
{0.01,0.05,0.1} on CIFAR-10/MNIST.

F.7 BALANCING UTILITY AND PRIVACY - BIASED GRADIENT ESTIMATOR

In this section, we extend our analysis of the utility—privacy trade-off to the biased setting (already
adopted for CNN/DailyMail dataset), where each client performs multiple local updates per commu-
nication round, thereby introducing bias into the gradient estimator. The training hyperparameters are
detailed in Section E.1.

Figure 10 summarizes the performance of ERIS and several SOTS privacy-preserving baselines in
terms of test accuracy and MIA accuracy across different model sizes and local training regimes. As
in the main paper (Figure 3), we evaluate datasets with distinct memorization characteristics—ranging
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from lightweight models such as LeNet-5 on MNIST to large-scale architectures like GPT-Neo 1.3B
on CNN/DailyMail—and vary client-side overfitting by controlling the number of training samples
per client. The observed trends mirror those under unbiased conditions: ERIS consistently achieves
the best overall trade-off, retaining accuracy comparable to non-private FedAvg while substantially
reducing privacy leakage toward the idealized Min. Leakage baseline. For instance, on IMDB with 4
local samples per client and identical training conditions (e.g., same communication rounds), ERIS
achieves an accuracy of 67.8 &= 4.9, comparable to FedAvg’s 66.9 = 5.5, while significantly reducing
MIA accuracy from 92.3% to 68.2%—approaching the unattainable upper bound of 66.9% obtained
by not sharing local gradients. The only methods that surpass ERIS in privacy protection are DP-based
approaches, which, however, degrade test accuracy to nearly random-guess levels, namely SoteriaFL
(53.1 4 0.8) and FedAvg-LDP (53.4 £ 0.5). Indeed, DP-based methods reduce leakage only at the
cost of severe utility degradation, particularly for larger models, while decentralized methods with
partial gradient exchange, such as Shatter, often fail to converge within the predefined number of
communication rounds—especially when models are trained from scratch.

Table 13 reports mean test and MIA accuracy under the biased setting, complementing trends in
Figure 10. Consistent with the figure, ERIS delivers the strongest utility—privacy balance across data-
sets, maintaining accuracy close to FedAvg while reducing leakage toward the Min. Leakage baseline.
DP-based methods achieve lower leakage but at a steep accuracy cost, PriPrune trades off utility
and privacy depending on the pruning rate, and Shatter struggles to converge reliably. These results
further confirm that ERIS offers the most favorable trade-off, even in biased local training regimes.
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Figure 10: Comparison of test accuracy and MIA accuracy across varying model capacities (one per
dataset) and client-side overfitting levels, controlled via the number of training samples per client
using a biased gradient estimator.

IMDB - DistilBERT CIFAR-10 - ResNet9 MNIST - LeNet5
Method Ace. (1) MIA Ace. (}) Acce. (1) MIA Ace. () Acc. (1) MIA Acc. (})
FedAvg 78.11 + 142 80.13 + 2.11 39.23 £0.76  94.03 £ 0.69 89.95 + 0.77 68.65 + 1.63
FedAvg (e1,8)-LDP | 5439 +0.57 51.75+£2.69 | 10.78 036 59.17 & 1.21 | 29.02+1.20  58.81 £ 0.95
FedAvg (e2, 8)-LDP | 55.00 & 1.10  52.69 £2.74 | 20.62+0.57 67.34 +1.46 | 68.77 £2.09  60.33 £ 1.42
SoteriaFL (€1, §) 5490 + 0.74  52.66 + 2.73 10.03 4 0.01  56.30 4= 0.84 14.23 £+ 1.39 56.25 + 0.95
SoteriaFL (€2, §) 5540 £ 1.88 5344 +262 | 11.70 £0.75  60.69 & 0.89 65.11 4+ 1.88 57.16 & 1.16
PriPrune (p1) 76.52 £ 1.08 73.00 £2.30 | 37.124+0.75 81.59 £ 2.17 91.11 £ 0.23 57.83 + 1.63
PriPrune (p2) 71.62 £ 1.30  66.66 +2.24 | 2532 +£1.13  64.16 = 1.81 61.29 & 1.16 55.14 + 1.39
PriPrune (p3) 65.82 +1.90 61.22+2.10 | 1391 £0.83  56.35 £ 1.67 53.99 4 1.46 51.72 + 142
Shatter 77.33 +0.87 58.26 4+ 2.03 1391+ 1.77 7990 & 1.74 | 32.03 £ 11.54 5647 + 1.68
ERIS 7759 £ 138 5744 £224 | 39.06 £1.01 7481 £199 | 90.16 £0.68 5545+ 1.68

Min. Leakage 78.11 + 142 57.02 £ 2.10 ‘ 3923 £0.87 7622 + 191 ‘ 90.06 £ 0.71 55.20 + 1.50

Table 13: Mean test accuracy and MIA accuracy, averaged over varying local sample sizes using a
biased gradient estimator. For DP-based methods, e € {10,100} on IMDB and e € {1, 10} on others;
for PriPrune, pruning rates are p € {0.1,0.2,0.3} on IMDB and p € {0.01,0.05,0.1} on others.
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F.8 PARETO ANALYSIS UNDER VARYING PRIVACY CONSTRAINTS

This section complements the analysis in Paragraph 4.2 of the main text with additional details and
numerical results. We study how the utility—privacy trade-off evolves under different strengths of
privacy-preserving mechanisms and varying numbers of local training samples. Shatter is excluded,
as it already fails to converge reliably with 16 samples per client (Figure 4). For DP-based approaches
(FedAvg+LDP and SoteriaFL), we vary the privacy budget e together with the clipping norm C' to
simulate different protection levels. Following the same configuration, we also evaluate ERIS+LDP,
where LDP is applied on top of its native masking mechanism. For pruning-based methods (PriPrune),
we vary the pruning rate p to control information flow through gradient sparsification. The exact
configurations of these hyperparameters are summarized in Table 14.

Figure 11 shows the resulting utility—privacy trade-off across different numbers of local training
samples. As expected, the Pareto frontier shifts toward higher accuracy and lower privacy leakage
as clients are assigned more local data. Across all regimes, ERIS dominates the Pareto frontier,
contributing the large majority of favorable points, while alternative baselines are mostly dominated.

Table 14 reports the underlying quantitative results, including additional configurations not visualized
in the figure. These include finer granularity in both p and € values, enabling a more exhaustive
comparison. The results confirm the trends observed in the main text: ERIS consistently occupies
favorable positions in the utility—privacy space, contributing most points along the Pareto frontier.
Moreover, when augmented with LDP, ERIS demonstrates further privacy gains with only minor
utility losses—outperforming other baselines that suffer substantial degradation as privacy constraints
tighten. Overall, this detailed breakdown reinforces that ERIS achieves strong privacy guarantees and
high utility, even under stringent privacy budgets and aggressive compression strategies.
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Figure 11: Utility—privacy trade-off on CIFAR-10 under varying strengths of the privacy-preserving
mechanisms. Each subplot shows test accuracy vs. MIA accuracy for methods with different client
training samples. The Pareto front represents a set of optimal trade-off points.
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4 samples 8 samples 16 samples
Method Accuracy (1) MIA Acc. (}) Accuracy (1) MIA Acec. (}) Accuracy (1) MIA Acc. (])
FedAvg + LDP
No LDP 27.12% + 1.20%  84.80% + 4.59% | 32.98% £ 0.61% 75.84% + 2.85% | 34.43% + 1.04% 70.15% + 1.41%

LDP (e=0.001,C=10) | 23.01% =+ 2.00% 84.67% =+ 4.24% | 26.13% +2.30% 75.44% £ 1.90% | 30.88% =+ 1.30% 69.53% =+ 1.31%
LDP (e=0.01,C=5) 2220% 4+ 0.71%  83.33% £ 4.17% | 2591% 4 2.23% 74.08% £ 2.58% | 28.48% £ 0.72%  66.95% £ 1.29%

LDP (e=0.1,C=2) 18.20% 4 1.58%  83.07% £ 2.78% | 23.60% =+ 0.76%  72.16% £ 4.06% | 24.97% £ 0.48%  64.18% + 2.05%
LDP (€=0.3,C=1) 12.04% 4+ 1.98%  81.33% 4+ 4.94% | 17.95% £ 2.08% 69.12% £+ 4.01% | 19.14% + 1.12% 61.13% + 0.99%
LDP (€=0.6,C=1) 10.52% 4 0.55%  79.73% 4+ 3.59% | 12.50% =+ 1.42%  72.88% =+ 3.10% | 19.22% + 1.12%  63.93% + 1.05%
LDP (e=1.0,C=1) 10.29% 4 0.40%  74.80% + 3.08% | 10.81% =+ 0.88%  71.28% + 2.37% | 13.32% =+ 1.24%  65.13% + 1.01%
ERIS + LDP

No LDP 27.14% £+ 0.95%  72.67% £ 4.99% | 3221% £+ 1.32%  66.62% £ 2.30% | 35.05% £ 1.75%  58.89% + 2.45%

LDP (€=0.001,C=10) | 24.10% 4 1.98%  69.35% £ 2.95% | 26.87% =+ 2.37% 63.30% £ 2.10% | 30.95% =+ 1.32% 55.45% £ 1.77%
LDP (€=0.01,C=5) 2229% 4 0.86%  68.67% £ 3.37% | 27.08% =+ 3.33%  59.32% £ 3.47% | 28.55% £ 0.71%  54.59% + 0.77%

LDP (e=0.1,C=2) 17.24% 4+ 2.15%  67.04% £ 3.40% | 24.09% 4 0.33% 61.60% =+ 3.09% | 24.96% £ 0.63% 54.64% + 0.73%
LDP (e=0.3,C=1) 12.03% 4+ 1.77%  65.87% 4 0.84% | 18.72% £ 2.03%  61.24% £+ 2.92% | 18.76% + 1.23% 54.49% + 1.10%
LDP (e=0.6,C=1) 10.38% 4 0.16%  66.61% + 1.12% | 12.87% £ 1.73%  62.21% £ 2.06% | 18.43% £ 0.93% 54.18% + 1.45%
LDP (e=1.0,C=1) 9.97% £ 0.04%  65.44% + 1.27% | 1091% £ 1.80% 62.94% + 2.88% | 12.15% £ 1.69%  53.99% + 1.11%
SoteriaFL

No LDP 28.11% 4+ 0.61%  87.33% + 3.24% | 33.76% + 1.38%  77.84% +2.92% | 35.96% + 1.28% 72.65% + 1.72%

LDP (e=0.001,C=10) | 27.08% + 2.60% 82.93% + 3.39% | 28.56% 4 2.05% 71.60% 4 2.98% | 33.48% £+ 2.37% 64.40% + 1.82%
LDP (€=0.01,C=5) 23.79% + 3.62%  80.27% =+ 3.12% | 27.76% + 1.67%  68.96% =+ 3.39% | 30.84% + 1.93% 62.84% + 1.70%

LDP (e=0.1,C=2) 10.16% 4 0.26%  78.53% + 1.42% | 20.86% =+ 1.56%  69.12% + 1.81% | 25.59% + 1.71%  61.02% + 1.78%
LDP (€=0.3,C=1) 10.09% =+ 0.18%  72.13% £ 2.75% | 10.52% =+ 0.76%  65.92% + 1.72% | 16.10% £ 0.78%  58.40% + 1.91%
LDP (€=0.6,C=1) 10.00% =4 0.00%  68.80% £ 1.15% | 10.04% =+ 0.08%  64.48% + 1.44% | 10.26% =+ 0.52%  58.62% =+ 2.20%
LDP (e=1.0,C=1) 10.00% £ 0.00%  66.80% £ 1.65% | 10.00% =+ 0.00%  64.16% £ 1.20% | 10.00% £ 0.00% 56.76% + 1.37%
PriPrune

No Pruning 27.12% 4+ 1.20%  84.80% + 4.59% | 32.98% £ 0.61%  75.84% + 2.85% | 34.43% + 1.04% 70.15% + 1.41%

Pruning (p=0.0005) 24.45% 4 1.00%  85.33% + 3.40% | 30.06% =+ 2.30%  76.16% + 2.80% | 32.67% £ 0.79%  70.36% + 1.02%
Pruning (p=0.001) 21.57% +3.51% 84.27% + 4.12% | 28.42% 4+ 0.39%  75.36% + 3.60% | 29.57% =+ 0.70%  69.82% + 1.59%
Pruning (p=0.005) 18.60% =+ 2.15%  77.73% £ 3.88% | 19.83% =+ 1.89%  67.44% + 4.04% | 20.98% + 1.77%  59.85% + 1.99%

Pruning (p=0.01) 13.74% 4 2.05%  74.80% £ 2.87% | 15.20% £ 2.67% 63.60% £ 3.71% | 15.08% =+ 2.49%  55.75% £ 1.61%
Pruning (p=0.03) 11.05% 4+ 1.22%  70.40% =+ 3.00% | 14.00% =+ 3.18%  62.64% £ 3.00% | 12.79% £ 2.17%  55.16% + 1.63%
Pruning (p=0.05) 10.09% 4 0.36%  67.33% £ 2.63% | 12.77% £ 2.52% 61.68% £ 3.04% | 11.55% £ 1.80% 54.44% + 1.50%

Table 14: Mean test accuracy and privacy leakage (with standard deviation) for various privacy-
preserving mechanisms across different local sample sizes. DP-based methods use epsilon € and
clipping norm C'; PriPrune uses rate p.
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