
AlphaPruning: Using Heavy-Tailed Self
Regularization Theory for Improved Layer-wise

Pruning of Large Language Models

Haiquan Lu1∗, Yefan Zhou2∗, Shiwei Liu3, Zhangyang Wang4, Michael W. Mahoney5,6,7, Yaoqing Yang2

1Nankai University, 2Dartmouth College, 3University of Oxford
4University of Texas at Austin, 5International Computer Science Institute

6Lawrence Berkeley National Laboratory, 7University of California at Berkeley

Abstract

Recent work on pruning large language models (LLMs) has shown that one can
eliminate a large number of parameters without compromising performance, mak-
ing pruning a promising strategy to reduce LLM model size. Existing LLM pruning
strategies typically assign uniform pruning ratios across layers, limiting overall
pruning ability; and recent work on layerwise pruning of LLMs is often based
on heuristics that can easily lead to suboptimal performance. In this paper, we
leverage Heavy-Tailed Self-Regularization (HT-SR) Theory, in particular the shape
of empirical spectral densities (ESDs) of weight matrices, to design improved
layerwise pruning ratios for LLMs. Our analysis reveals a wide variability in
how well-trained, and thus relatedly how prunable, different layers of an LLM are.
Based on this, we propose AlphaPruning, which uses shape metrics to allocate
layerwise sparsity ratios in a more theoretically-principled manner. AlphaPruning
can be used in conjunction with multiple existing LLM pruning methods. Our
empirical results show that AlphaPruning prunes LLaMA-7B to 80% sparsity
while maintaining reasonable perplexity, marking a first in the literature on LLMs.
We have open-sourced our code.2

1 Introduction

Recent work on pruning large language models (LLMs) [Jaiswal et al., 2023, Frantar and Alistarh,
2023a, Sun et al., 2023] has shown the ability to reduce the number of parameters significantly,
without compromising performance, resulting in notable savings in memory footprint, computing
time, and energy consumption. Unlike pre-LLM pruning methods [Sanh et al., 2020, Kurtic et al.,
2022], existing LLM pruning approaches typically allocate the “sparsity budget” (i.e., the number of
pruned parameters or pruning ratios) uniformly across layers, making it difficult to increase sparsity
to very high levels. Relatively little effort has been put into developing theoretically-principled ways
to compute layerwise pruning ratios. For example, the Outlier Weighed Layerwise sparsity (OWL)
method [Yin et al., 2023] uses a nonuniform layerwise sparsity based on the distribution of outlier
activations. However, OWL relies on heuristics related to the presence of outliers [Kovaleva et al.,
2021, Puccetti et al., 2022, Dettmers et al., 2022]. This can lead to suboptimal performance in the
absence of outliers, and this can make it difficult to achieve very aggressive levels of sparsity. For
example, Yin et al. [2023] shows that pruning LLMs to 80% sparsity often significantly degrades the
prediction performance of LLMs.

In developing a principled approach to allocate sparsity budgets across layers, we draw inspiration
from Heavy-Tailed Self-Regularization (HT-SR) Theory [Martin et al., 2021, Martin and Mahoney,

∗First two authors contributed equally.
2https://github.com/haiquanlu/AlphaPruning

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/haiquanlu/AlphaPruning

Weight matrices ESDs Metric values Pruning ratios

Linear
mapping

LLM
. .

.

Figure 1: The pipeline diagram of AlphaPruning. Our post-training layer-wise pruning method
involves the following steps: (i) Performing ESD analysis on all weight matrices of a base LLM
and (ii) employing PL fitting to derive the layer-wise metric values (that measures the HT exponent).
Then, (iii) using the layer-wise metric values, we assign layer-wise pruning ratios to each layer
through a linear assignment function.

2021a,b, 2019, 2017, 2020, Yang et al., 2023, Zhou et al., 2023, Qing et al., 2024]. HT-SR theory
analyzes the weight matrices of models to derive quantities (related to the shape of the weight matrix
eigenspectrum), which help characterize model capacity and quality. Applications of HT-SR to model
selection [Martin and Mahoney, 2019, 2020, 2021a, Martin et al., 2021, Yang et al., 2023] and layer-
wise adaptive training [Zhou et al., 2023] demonstrate the effectiveness of the theory in estimating
model and layer quality. Furthermore, in the context of pruning memory/computation-efficient LLMs,
using this kind of low-cost weight analysis is advantageous because it requires no data or gradient
backpropagation.

Our study consists of two main parts. In the first part, we evaluate the effectiveness of various weight
matrix-based metrics for allocating layer-wise sparsity. Our primary finding indicates that shape
metrics generally outperform scale metrics in determining layer importance for pruning. Shape
metrics capture the shape properties of the empirical spectral densities (ESDs) of layer weight
matrices, whereas scale metrics, like matrix norms, reflect the size or scale of ESDs. This offers a
novel perspective since shape metrics are less frequently used in the literature than scale metrics,
which have been used to create regularizers [Yoshida and Miyato, 2017] and inform pruning [Han
et al., 2015].

In the second part of the paper, we introduce a theoretically principled layer-wise sparsity allocation
method, AlphaPruning, based on metrics that quantify a unique heavy-tailed (HTed) shape of ESDs.
According to HT-SR theory, well-trained models display strong correlations among the weight matrix
elements, leading to HT structures in layer weight matrices’ ESDs [Martin and Mahoney, 2019, 2020,
2021a]. Moreover, layers with more pronounced HT properties are typically better trained than others.
We quantify the HT properties by fitting a power law (PL) distribution [Alstott et al., 2014, Clauset
et al., 2009] to ESD and using the PL exponent as the HT metric PL Alpha Hill.3 The principle of
AlphaPruning is to allocate less sparsity to more well-trained (more HTed) layers, as indicated by
lower PL Alpha Hill values, thereby preserving their quality during pruning. Figure 1 illustrates
the pipeline of AlphaPruning.

We conducted a comprehensive empirical evaluation to assess the generalizability of AlphaPruning
in LLM pruning. This evaluation involved comparisons with various baseline methods, integration
with existing techniques, and testing across different architectures. We also conducted sanity checks
to ensure that AlphaPruning indeed reduces the variation of PL Alpha Hill values across layers.
Our key contributions are summarized below.

• This paper is the first to study principled layer-wise sparsity allocation from the HT-SR perspective.
We systematically evaluate multiple weight matrix-based metrics to compute sparsity based on
their effectiveness in estimating layer quality, discovering an interesting finding: shape metrics
outperform scale metrics in allocating sparsity, despite the latter being more commonly used.

3Following Zhou et al. [2023], we use a biased estimator, called PL Alpha Hill, to replace the commonly
used MLE estimator of the PL exponent [Alstott et al., 2014, Clauset et al., 2009, Martin and Mahoney, 2021b]
for allocating layer-wise sparsity ratios. This estimator proves to have a smaller variance and thus is easier to
integrate with training models that require repeated estimation of the HT exponent.

2

• We introduce a novel sparsity allocation method, AlphaPruning, inspired by HT-SR theory, which
demonstrates superior performance in LLM pruning. This method assigns sparsities based on
the heavy-tailed shape of ESDs in layer weight matrices, a previously unexplored concept. Our
empirical evaluations span a range of LLM architectures, including the LLaMA V1-3 families [Tou-
vron et al., 2023a,b], OPT families [Zhang et al., 2023], Vicuna-7B [Zheng et al., 2024], and
Mistral-7B [Jiang et al., 2023]. The results show that AlphaPruning outperforms OWL [Yin et al.,
2023], the current SOTA non-uniform sparsity allocation method for LLMs, reducing perplexity
by 304.31 and achieving an average accuracy gain of 4.6% over 7 zero-shot tasks at 80% sparsity,
while providing a 3.06× end-to-end speedup on CPUs for LLaMA-7B on the DeepSparse [Neural-
Magic, 2021] inference engine. AlphaPruning also outperforms six layer-wise allocation methods,
including global thresholding [Frankle and Carbin, 2018], ER [Mocanu et al., 2018], ER-Plus [Liu
et al., 2022a], LAMP [Lee et al., 2020], rank selection [Kuzmin et al., 2019, El Halabi et al., 2022],
and layer-wise error thresholding [Ye et al., 2020, Zhuang et al., 2018].

• AlphaPruning provides layer-wise budget allocation (e.g., sparsity), demonstrating remarkable
generalizability and can be integrated with multiple LLM compression techniques to enhance
performance. This includes unstructured pruning (Wanda [Sun et al., 2023], SparseGPT [Frantar
and Alistarh, 2023b]), with or without fine-tuning [Hu et al., 2021], semi-structured (Domi-
noSearch [Sun et al., 2021]), structured pruning (LLMPruner [Ma et al., 2023], OSSCAR [Meng
et al., 2024]), mixed-precision quantization [Tang et al., 2022]. Additionally, we have extended this
method to large Computer Vision (CV) architectures, such as Vision Transformers (ViT) [Dosovit-
skiy et al., 2020], and ConvNext [Liu et al., 2022b]. In this case, OWL significantly underperforms
AlphaPruning due to the lack of outlier features. This indicates HT metrics are more general than
outlier metrics.

• AlphaPruning is theoretically driven, and its improvements can be interpreted by HT-SR metrics.
We demonstrate that model performance correlates with model-wise and layer-wise changes in
PL Alpha Hill before and after pruning. Furthermore, compared to baseline pruning methods,
AlphaPruning not only improves model performance but also achieves a lower mean of layer-wise
PL Alpha Hill. HT-SR theory suggests that AlphaPruning preserves the quality of model layers
“on average”, minimizing the damage caused by pruning.

We provide an overview of related work in Appendix C.

2 Background and Setup

2.1 Notation

Consider a NN with L layers, Wi is one of the weight matrices extracted from the i-th layer with
shape m × n (m ≥ n). We note that the “layer” used in this work refers to the transformer block
(layer), and each block contains multiple weight matrices, such as the attention layer weight matrix,
and projection layer weight matrix. The correlation matrix Xi = W⊤

i Wi is an n × n symmetric
matrix, and the ESD of Xi is formulated as

µXi
:=

1

n

n∑
j=1

δλj(Xi) (1)

where λ1 (Xi) ≤ . . . ≤ λn (Xi) are the eigenvalues of Xi and δ is the Dirac delta function. The
ESD is a probability measure, which can be viewed as a distribution of the eigenvalues of Xi.

2.2 HT-SR theory and metrics

Here, we provide a brief overview of HT-SR theory. HR-SR theory originated as a semi-empirical
theory, with early seminal work [Martin and Mahoney, 2019, Martin et al., 2021] examining the
empirical spectral density (ESD) of weight matrices, specifically the eigenspectrum of the correlation
matrix Xi = W⊤

i Wi. This research found that the structures of the ESDs strongly correlate with
training quality. These findings are rooted in statistical physics and Random Matrix Theory [Couillet
and Liao, 2022], as detailed in Table 1 of Martin and Mahoney [2019]. It is well-known [Wang et al.,
2024, Couillet and Liao, 2022] that spikes in ESD represent “signals,” while the bulk represents noise,
which follows the Marchenko-Pastur law. In the theoretical setting of Wang et al. [2024], the signal or
the spike aligns with ground-truth features from the teacher model, and that corresponds to increased
correlations in weight elements. Furthermore, Kothapalli et al. [2024] show that heavy tails in ESD

3

originate from the interaction between spikes and bulk, which can be quantified precisely using recent
advances in the free-probability theory [Landau et al., 2023], and the interaction characterizes the
“bulk-decay” phase in the five-plus-one phase model in Martin and Mahoney [2019], a critical phase
between classical “bulk+spike” model and heavy-tail models.

To quantify the structure of ESDs, HT-SR theory provides several metrics, collectively known as HT-
SR metrics. These metrics are typically categorized into two groups: scale metrics and shape metrics.

Scale metrics. Scale metrics refer to those obtained from measuring various norms of weight matrices.
As demonstrated empirically in Yang et al. [2023], these metrics are often strongly correlated with the
generalization gap (which is the gap between training and test performance), instead of the quality of
the models. In this paper, we mainly study two scale metrics, Frobenius Norm and Spectral Norm.
The Frobenius Norm metric is calculated by the squared Frobenius norm of the weight matrix
∥W∥2F ; and the Spectral Norm metric can be calculated by the square of the spectral radius of the
weight matrix ∥W∥22.

Shape metrics. Drawing analytic methods from Random Matrix Theory, HT-SR work analyzes
poorly trained and well-trained models and concludes that the performance of these models usually
correlates with shapes emerging in their ESDs, such as “bulk+spike” shape or “heavy-tailed” shape.
The metrics used to characterize these ESD shapes are called shape metrics, and we mainly studied
four of them: PL Alpha Hill, Alpha Hat, Stable Rank, and Entropy. PL Alpha Hill is the
main metric used in our method, and we define it in Section 3.2. The definitions of other shape
metrics (including Alpha Hat, Stable Rank, Entropy) can be found in Appendix D.

3 Alpha-Pruning

In this section, we first outline the motivation behind AlphaPruning, followed by an introduction to
the layer-wise importance metric, PL Alpha Hill, and the sparsity allocation function, as shown in
Figure 1. Our empirical analysis reveals that shape metrics generally outperform scale metrics in
guiding sparsity allocation with the same function. Notably, PL Alpha Hill, the shape metric used
in AlphaPruning, achieves the best results in preliminary evaluations.

3.1 Rationale

HT-SR theory, introduced in Section 2.2, examines the ESD of weight matrices and finds a strong cor-
relation between heavy-tailed structures in the ESD and training quality. It suggests that heavy-tailed
structures emerge from feature learning, where useful correlations are extracted during optimization.
Layers with more heavy-tailed ESDs tend to capture more signals, indicating better training quality.
Inspired by these findings, we propose to assign sparsity based on the heavy-tailed properties of
each layer’s ESD. Layers with more heavy-tailed ESDs, which contain more learned signals, are
assigned lower sparsity, while layers with light-tailed ESDs are assigned higher sparsity. In practice,
the heavy-tailed structure is measured by fitting a PL distribution to the ESD, and extracting the PL
exponent α as the indicator. This is why our method is named AlphaPruning.

3.2 Estimating layer quality by HT metric

AlphaPruning relies on estimating the layer quality based on the HT characteristic of the layer
ESDs, which is quantified by HT metric PL Alpha Hill. Given an ESD µXi of a weight matrix’s
correlation matrix, we fit a PL density function p(λ) on it, taking values within an interval (λmin,
λmax), formally defined as:

p(λ) ∝ λ−α, λmin < λ < λmax. (2)

The estimated exponent α is then used as a metric to characterize the HT extent of the ESD, with a
lower value means more HTed. We estimate the PL coefficient using the Hill estimator [Hill, 1975,
Xiao et al., 2023b, Zhou et al., 2023], and we refer to it as the PL Alpha Hill metric. The Hill
estimator is defined as:

PL Alpha Hill = 1 +
k

(
∑k

i=1 ln
λn−i+1

λn−k
)
, (3)

where {λi}ni=1 is sorted in ascending order, and k is a tunable parameter that adjusts the lower
eigenvalue threshold λmin for (truncated) PL estimation. We adopt the Fix-finger method [Yang

4

et al., 2023] to select the k, which sets k such that λmin aligns with the peak of the ESD. Note that
PL Alpha Hill and other scale/shape metrics are calculated for each weight matrix individually.

3.3 Allocating sparsity based on the layer quality

AlphaPruning allocates sparsity for each layer (transformer block) by using a mapping function
ϕ : RL → RL to map a sequence of layer quality measures q = (q1, q2, .., qL) into corresponding
sparsities ϕ(q).

ϕ(q)i = η

[
qi − qmin

qmax − qmin
(s2 − s1) + s1

]
. (4)

Here, ϕ(q)i represents the i-th element of the resulting vector ϕ(q), qi represents the i-th element of
the input vector q, and qmin, qmax represent the minimum and maximum values of q. The normalization
factor η adjusts the sparsity levels to achieve the target global sparsity S. Each layer’s sparsity is
normalized within the interval [ηs1, ηs2]. η is calculated using the equation

∑L
i=1 ϕ(q)idi =

S ·
∑L

i=1 di, in which di is the number of parameters of Wi. Both sides of the equation represent
the total number of remaining parameters. The (s1, s2) are tunable hyperparameters that adjust the
non-uniformity of the sparsity distribution. We note that sparsity allocation is executed on a per-block
basis, averaging the HT-SR metric across all matrices within a block to determine qi. This design
is supported by an ablation study, presented in Appendix F, which shows that it yields superior
performance over a per-matrix allocation. Hyperparameter settings for all experiments are provided
in Appendix G.

3.4 Shape vs. scale metrics for sparsity allocation

In this study, we evaluated various HT-SR metrics, as defined in Section 2.2, to assess their effective-
ness in estimating layer quality q for computing layer-wise sparsity. Our preliminary experiments
involved pruning the LLaMA-7B model to 70% sparsity and assessing its performance through
WikiText perplexity and accuracy across seven zero-shot tasks, with results presented in Table 1.
We applied each HT-SR metric in conjunction with three intra-layer pruning techniques (which
only determine which matrix elements to prune), such as Magnitude, Wanda, and SparseGPT, to
thoroughly evaluate their efficacy. Further experiments on Vision Transformers (ViT) are described
in Appendix I.1. Across all tests, shape metrics consistently outperformed scale metrics in assigning
layer-wise sparsities. This finding suggests that shape metrics are more robust and yield more reliable
predictions of layer quality, which extends previous research [Yang et al., 2023, Zhou et al., 2023,
Martin et al., 2021] on estimating model quality. Notably, the shape metric PL Alpha Hill that
focuses on estimating the HT shape, proved to be the most effective. Consequently, we have adopted
PL Alpha Hill as the primary metric in our proposed method, AlphaPruning.

Metric used for Perplexity on WikiText (↓) Average accuracy on 7 zero-shot tasks (↑)
layerwise pruning ratios Magnitude Wanda SparseGPT Magnitude Wanda SparseGPT

Uniform 48419.13 85.77 26.30 32.30 36.73 41.52

Frobenius Norm 30136.37 59.82 24.95 33.23 37.62 43.67
Spectral Norm 48073.99 246.84 29.01 32.81 33.15 41.14

Entropy 3716.07 41.15 22.02 33.58 39.39 43.53
Stable Rank 851.65 41.24 24.91 34.91 39.74 42.97
Alpha Hat 1256.02 27.60 20.02 33.48 43.57 43.83

PL Alpha Hill 231.01 23.86 18.54 35.67 44.42 45.48

Table 1: Evaluating shape metrics versus scale metrics on allocating layerwise sparsities on
LLMs. Shape metrics are obtained from the shapes of the ESDs. Scale metrics are norm-based
metrics measuring the scale of weights matrices (which can also be obtained from the ESD). The
results are conducted on LLaMA-7B at 70% sparsity. We show WikiText validation perplexity and
average accuracy on seven different zero-shot tasks as evaluation metrics. We observe that shape
metrics outperform scale metrics and PL Alpha Hill performs the best.

5

4 Empirical results

In this section, we evaluate the performance, generalizability, and interpretability of AlphaPruning.
Section 4.1 outlines our experimental setup. In Section 4.2, we evaluate AlphaPruning’s perfor-
mance by comparing it to the SOTA method OWL and five other baseline methods, and we analyze
the efficiency of LLMs pruned by AlphaPruning using practical metrics such as FLOPs and la-
tency. Section 4.3 evaluates the generalizability of AlphaPruning by integrating it with various
LLM compression techniques including post-pruning fine-tuning, semi-structured pruning, structured
pruning, and mixed-precision quantization. Additionally, we extend its application to CV tasks.
Section 4.4 provides an analysis of the layer-wise sparsities and the PL Alpha Hill distribution to
further elucidate the effectiveness and implications of AlphaPruning.

4.1 Experimental setup

Models and Evaluation. We evaluate AlphaPruning on the three most widely adopted LLM
model families: LLaMA 7B/13B/30B/65B [Touvron et al., 2023a], LLaMA-2 7B/13B/70B [Touvron
et al., 2023b], OPT 125M/350M/2.7B/6.7B, and other advanced LLMs: LLaMA-3-8B, Vicuna-7B,
Mistral-7B. Our evaluation protocol aligns with established methodologies for LLM pruning [Xiao
et al., 2023a], including assessments of language modeling proficiency and zero-shot capabilities.
Specifically, we evaluate the perplexity on the held-out WikiText [Merity et al., 2016] validation set,
and use seven tasks, including BoolQ [Clark et al., 2019], RTE [Wang et al., 2018], HellaSwag [Zellers
et al., 2019], WinoGrande [Sakaguchi et al., 2021], ARC Easy and Challenge [Clark et al., 2018] and
OpenbookQA [Mihaylov et al., 2018] for downstream zero-shot evaluation [Gao et al., 2023].

Baselines. We apply the layer-wise sparsities determined by AlphaPruning to three LLM pruning
methods, including Magnitude [Han et al., 2015], SparseGPT [Frantar and Alistarh, 2023b] and
Wanda [Sun et al., 2023]. Magnitude-based pruning is a simple and strong baseline in which
weights are discarded based on their magnitudes. Wanda and SparseGPT are two strong LLM
pruning baselines due to their capability to sustain reasonable performance even at relatively high
sparsity levels (around 50%). All these methods originally used uniform layerwise sparsity. We
incorporate AlphaPruning directly into these baselines, and we demonstrate that this results in
improved performance. Besides, we also compare AlphaPruning with OWL [Yin et al., 2023], a
recently proposed non-uniform LLM pruning method and six layer-wise pruning methods, including
global thresholding [Frankle and Carbin, 2018], ER [Mocanu et al., 2018], ER-Plus [Liu et al., 2022a],
LAMP [Lee et al., 2020], rank selection [Kuzmin et al., 2019, El Halabi et al., 2022], and layer-wise
error thresholding [Ye et al., 2020, Zhuang et al., 2018].

4.2 Main results

Language Modeling. In Table 2, we report the perplexity of the pruned LLaMA and LLaMA-2
models at 70% sparsity. We provide results for more sparsity levels in Figure 2 and Appendix H.
AlphaPruning, as a general layerwise sparsity method, consistently demonstrates performance
improvements when used in conjunction with various pruning methods. For example, in the case
of LLaMA-7B with a sparsity of 70%, AlphaPruning produces sparse networks with a perplexity
of 231.01, significantly outperforming the Magnitude-based pruning baseline of 48419.13. Notably,
when applied to Wanda and SparseGPT, two robust LLM pruning methods, AlphaPruning still
achieves substantial perplexity reductions, evidenced by a decrease of 61.91 for Wanda and 7.76 for
SparseGPT, in the case of LLaMA-7B with a sparsity of 70%.

Zero-shot tasks. We conducted empirical evaluations to determine the zero-shot ability of pruned
LLMs on diverse zero-shot downstream tasks with prompting. The results are shown in Table 3,
where we show the mean zero-shot accuracy on 7 zero-shot tasks of pruned LLaMA and LLaMA-2
models at sparsity of 70%. AlphaPruning consistently improves accuracy across all settings. For
example, AlphaPruning achieves an average accuracy gain of 8.79, 6.05, and 2.61 over 7 tasks and
7 models compared to Magnitude, Wanda, and SparseGPT alone, respectively. These results highlight
the promise of AlphaPruning for more challenging zero-shot downstream tasks.

More baseline comparison. For allocating layerwise sparsity ratios, we compare AlphaPruning
with other allocation methods. The experiments involve pruning the LLaMA-7B model and LLaMA-
13B to various sparsities. We use Wanda as the basic pruning method, with results presented in
Figure 2 and Figure 3. Results indicate that AlphaPruning significantly outperforms all baseline

6

LLaMA LLaMA-2Method Layerwise sparsity 7B 13B 30B 65B 7B 13B 70B

Dense model - 5.68 5.09 4.77 3.56 5.12 4.57 3.12

Uniform 48419.13 84527.45 977.76 46.91 49911.45 214.04 1481.95
OWL 19527.58 11464.69 242.57 15.16 59176.42 57.55 17.18Magnitude
Ours 231.01 2029.20 62.39 16.01 8900.32 31.89 15.27

Uniform 85.77 54.03 17.35 15.17 74.26 45.36 10.56
OWL 24.57 17.17 10.75 8.61 30.38 20.70 8.52Wanda
Ours 23.86 14.21 9.68 7.86 28.87 14.16 7.83

Uniform 26.30 18.85 12.95 10.14 27.65 19.77 9.28
OWL 19.49 14.55 10.28 8.28 20.40 15.27 7.65SparseGPT
Ours 18.54 12.81 9.77 7.83 19.34 12.20 7.57

Table 2: WikiText validation perplexity for pruned LLaMA and LLaMA-2 models at 70% sparsity.
Our method (AlphaPruning) is compared to uniform layerwise sparsity and OWL, each paired
with magnitude-based pruning, Wanda, and SparseGPT. Lower perplexity indicates improved model
performance.

LLaMA LLaMA-2Method Layerwise sparsity 7B 13B 30B 65B 7B 13B 70B

Dense model - 60.08 62.59 65.47 67.05 59.71 63.05 67.06

Uniform 32.30 34.95 32.39 45.04 33.38 33.56 43.65
OWL 33.57 36.86 33.88 53.42 34.17 36.98 50.49Magnitude
Ours 35.67 38.23 42.56 55.22 37.86 44.53 50.72

Uniform 36.73 38.90 51.07 54.90 34.66 37.16 56.72
OWL 43.41 45.91 52.38 57.34 40.46 45.04 57.19Wanda
Ours 44.42 47.48 54.48 58.93 41.98 47.21 57.63

Uniform 41.52 45.67 52.75 57.81 41.84 45.17 59.68
OWL 44.65 47.61 53.16 58.25 44.96 47.94 59.20SparseGPT
Ours 45.48 48.41 54.07 59.72 44.68 49.26 60.23

Table 3: Comparison of mean zero-shot accuracies (%) for pruned LLaMA and LLaMA-2 models
at 70% sparsity. We evaluate our method (AlphaPruning) against uniform layerwise sparsity and
OWL, each integrated with magnitude-based pruning, Wanda, and SparseGPT. Higher accuracy
values indicate better zero-shot ability.

methods in relatively high-sparsity regimes. For LLaMA-7B and LLaMA-13B pruned to 80% sparsity,
AlphaPruning reduces perplexity by 304.31 and 200.54 compared to OWL, respectively. Achieving
high levels of sparsity is crucial for unstructured sparsity to yield significant speedups on GPUs
by leveraging existing sparse kernels. Sparse kernels such as Flash-LLM [Xia et al., 2023] and
Sputnik [Gale et al., 2020] have shown that unstructured sparsity outperforms dense computation in
terms of performance, but only when sparsity levels reach 60% and 71%, respectively. The importance
of achieving high sparsity is further substantiated in the following section, which demonstrates that
high sparsity levels facilitate significant end-to-end inference speedup. Additional comparisons with
rank selection and layer-wise error thresholding, as well as results using SparseGPT as the pruning
method and low sparsity results, can be found in Appendices H.

65 70 75 80
Sparsity (%)

100

500

900

P
er

pl
ex

ity

65 70 75 80
Sparsity (%)

100

200

300

P
er

pl
ex

ity

Figure 2: The WikiText validation perplexity for LLaMA-7B
(left) and LLaMA-13B (right) pruned with different sparsities
using Wanda.

65 70 75 80
Sparsity (%)

30

40

50

A
cc

ur
ac

y
(%

)

Figure 3: Mean accuracy of
7 zero-shot tasks for LLaMA-
7B pruned with different spar-
sities using Wanda.

7

Efficiency measure. To verify the sparse LLM pruned by our method can indeed achieve speedups
when deployed on the CPU, we provide new results in Table 4. We apply our method to Llama2-
7B-Chat-hf, prune it to different sparsities, and then test its end-to-end decode latency using
DeepSparse [Kurtic et al., 2023] inference engine on an Intel Xeon Gold 6126 CPU with 24 cores.
The results indicate that when the global sparsity reaches 80%, the speedup reaches 3.06×.

In Appendix I.2, we evaluate the pruned LLM by efficiency metrics other than sparsity, such as FLOPs,
Compared with uniform sparsity ratios, our approach is able to achieve better performance-FLOPs
trade-off. In Appendix I.3, we show that AlphaPruning can control the minimum layer sparsity
without losing the performance advantage to meet the hardware requirements of a memory-limited
device. In Appendix I.4, we report the runtime of AlphaPruning to show that the computational
overhead is reasonable. The computational complexity is not large because the most computation-
intensive aspect of our method involves performing SVD decomposition on weight matrices.

Sparsity Dense 10% 20% 30% 40% 50% 60% 70% 80% 90%

Latency (ms) 307.46 306.27 304.87 293.26 264.41 177.55 148.16 133.76 100.35 81.40
Throughput (tokens/sec) 3.25 3.26 3.28 3.41 3.78 5.63 6.74 7.47 9.96 12.28

Speedup 1.00x 1.00x 1.01x 1.05x 1.16x 1.73x 2.07x 2.30x 3.06x 3.78x

Table 4: End-to-end decode latency and speedup of AlphaPruning measured on the DeepSparse
inference engine.

4.3 Corroborating results

To demonstrate the generalizability of AlphaPruning, we first evaluate if the performance of
the model pruned by AlphaPruning can be well recovered by fine-tuning. Then we apply
AlphaPruning to other LLM compression techniques (semi-structured, structured pruning, and
quantization), and CV models.

Method Model 60% 70% 80%

Uniform LLaMA-V3-7B 23.35 126.57 880.57
Ours LLaMA-V3-7B 18.91 101.73 560.22

Uniform Vicuna-7B 12.64 110.05 6667.68
Ours Vicuna-7B 11.14 35.87 1081.76

Uniform Mistral-7B 11.47 60.08 353.62
Ours Mistral-7B 10.49 39.39 201.62

Table 5: WikiText validation perplexity (↓) of
more LLMs pruned by uniform sparsity and
our method combined with Wanda.

Method Sparsity Samples Perplexity (↓) Accuracy (↑)

– Dense – 5.68 60.08

Uniform 50% 20K 6.86 54.85
Ours 50% 20K 6.79 55.58

Uniform 60% 20K 8.32 51.81
Ours 60% 20K 8.23 53.39

Uniform 70% 30K 11.21 49.00
Ours 70% 30K 10.95 49.51

Uniform 80% 100K 20.11 39.32
Ours 80% 100K 18.53 40.02

Table 6: WikiText validation perplexity and zero-
shot tasks accuracy of SparseGPT pruned LLaMA-
7B at various sparsities after LoRA fine-tuning on
C4 dataset samples.

Fine-tuning. We show the performance of LLMs pruned by AlphaPruning can be well recovered
by fine-tuning. We investigate the parameter-efficient strategies for fine-tuning LLMs: LoRA fine-
tuning [Hu et al., 2021]. Fine-tuning is conducted on the C4 training set [Raffel et al., 2020] with
the pre-training auto-regressive loss. The pruned mask is fixed during fine-tuning. The low-rank
(r = 8) adapter is applied to the query and value projection matrices in the attention layers. We
fine-tune LLaMA-7B pruned by SparseGPT at various sparsities. Table 6 summarizes the results
for perplexity and mean zero-shot accuracy after fine-tuning pruned LLaMA-7B models. We can
see the performance of pruned LLMs can be notably improved with very light LoRA fine-tuning.
In Appendix I.8, we further compare AlphaPruning with baselines. The results show that the
advantages of AlphaPruning don’t diminish after fine-tuning.

More LLM architectures. To demonstrate that the effectiveness of AlphaPruning is robust across
various more advanced LLMs, we also apply AlphaPruning to LLaMA-3-7B, Vicuna-7B [Zheng
et al., 2024], and Mistral-7B [Jiang et al., 2023]. The results in Table 5 show that, as a general method,
AlphaPruning can consistently achieve performance improvement across different architectures.
Results for OPT families can be found in Appendix I.5.

8

50 60 70 80
Sparsity (%)

20

40

60

80

A
cc

ur
ac

y
(%

)

Uniform
OWL
Ours

Figure 4: ImageNet-1K accuracy (↑) of
the sparse ConvNext model pruned to
various sparsity levels by AlphaPruning
and other baseline methods, without fine-
tuning.

Integration with other compression techniques. To
demonstrate the generalizability of our non-uniform
layerwise sparsity, we integrated AlphaPruning with
three prominent LLM compression methods: N:M spar-
sity, structured pruning, and quantization. In Ap-
pendix I.6, we examine a mixed N:8 sparsity setup us-
ing DominoSearch [Sun et al., 2021] as well as combine
AlphaPruning with structured pruning methods LLM-
Pruner [Ma et al., 2023] and OSSCAR [Meng et al.,
2024]. In Appendix I.7, we merge our method with mixed-
precision quantization as [Tang et al., 2022]. Across these
configurations, AlphaPruning consistently enhances the
performance of baseline methods.

Vision models. To illustrate AlphaPruning in a
broader context, we study how it performs against
other methods for determining layerwise sparsity on CV
tasks, where non-uniform layerwise sparsity has been
widely used. We consider two modern CV architectures:
ViT [Dosovitskiy et al., 2020] and ConvNext [Liu et al., 2022b]. We adopt Wanda as the pruning
approach and compare AlphaPruning with uniform layerwise sparsity and OWL. We present the
results on ConvNext in Figure 4 and provide more results on DeiT and ViT models in Appendix I.9.
These results affirm that AlphaPruning effectively allocates layerwise sparsities in CV tasks as well,
where OWL significantly underperforms AlphaPruning due to the lack of outlier features. This
indicates HT metrics are more general than outlier metrics.

4.4 Analyzing LLM pruning via HT-SR perspective

We study how the PL Alpha Hill metric as a measure of model quality (based on HT-SR theory)
changes before and after pruning. In particular, we show that the proposed method, AlphaPruning,
effectively controls the damage of pruning to model quality, resulting in a more favorable distribution
(lower mean) of PL Alpha Hill among the model layers compared to the baseline pruning method.

Analyzing PL Alpha Hill affected by pruning. We investigate how PL Alpha Hill values
change before and after pruning. According to HT-SR Theory [Yang et al., 2023, Martin et al., 2021],
models or layers of higher quality typically exhibit lower PL Alpha Hill values. As observed in
Figure 5a, dense LLaMA models (depicted in gray) consistently show a lower mean PL Alpha Hill,
with larger models demonstrating an even lower mean. Furthermore, we can see both pruning methods
lead to increments of the metric value, as pruning is often seen as damaging the quality of the model,
the changes are well correlated with the perplexity. More interestingly, AlphaPruning not only
outperforms the Uniform pruning in perplexity, but it also leads to a smaller mean of PL Alpha Hill.
Figure 5b delves deeper into this phenomenon by visualizing the metric value in a layer-wise manner.
It is noticeable that AlphaPruning leads to lower PL Alpha Hill than the uniform pruning among
the first several blocks. This is due to the mechanism (Figure 8) by which our method prunes the
model based on the layer-wise PL Alpha Hill, and prunes less on these more heavy-tailed layers.

Based on these results, we can conclude that: (1) pruning a model to a larger sparsity generally hurts
the model’s task performance (e.g., perplexity), and this coincides with decreased model quality, as
measured by PL Alpha Hill; and (2) a better pruning method such as AlphaPruning can obtain
a sparse model with a smaller mean of layer-wise PL Alpha Hill, and this is achieved by pruning
less aggressively in the dense layers with lower PL Alpha Hill layers.

Here we provide more analytical results in Appendix E. We show analyses on other LLMs provided
in Appendix E.1. We compare our HT-SR metrics with other layer quality metrics in Appendix E.2.
Additionally, in Appendix E.3, we investigate the distribution of layerwise sparsities allocated by
the heavy-tailed metric PL Alpha Hill. In Appendix E.4, we also examine the apparent connection
between our method, AlphaPruning, and Low-Rank Approximation (LRA) [Zhang et al., 2015, Wen
et al., 2017, Xu et al., 2019, Barsbey et al., 2021] from two perspectives. First, we study the relation-
ship between the ESD used in our method and the low-rank properties often used in LRA, where we
use PL Alpha Hill to measure HT and Stable Rank to measure low-rank properties. Second, we
study the differing layer-wise assignment strategies adopted by the two methods. Finally, we discuss

9

Dense Uniform AlphaPruning

LLaMA-7B LLaMA-13B LLaMA-30B
3.0

3.2

3.4

3.6

PL
_A

lp
ha

_H
ill

0

10

20

Pe
rp

le
xi

ty

(a) Model-wise heavy-tail analysis (b) Layer-wise heavy-tail analysis

Figure 5: Analyzing the heavy-tail metric PL Alpha Hill (lower the better by HT-SR theory) and
performance metric WikiText validation perplexity (lower the better) before and after pruning by
baseline uniform pruning and AlphaPruning. (a) The metric value is reported by averaging over all
layers within each model. The dashed lines represent the perplexity and the histograms represent the
PL Alpha Hill value. (b) The metric is reported by averaging all the matrices within each LLM layer.

how our findings relate to those of Barsbey et al. [2021], a paper closely related to ours, showing
that the results from both studies complement each other, offering different yet compatible insights.

5 Conclusion

We have used methods from HT-SR Theory to develop improved methods for pruning LLMs. The
basic idea is to analyze the ESDs of trained weight matrices and to use shape metrics from these
ESDs to measure how much to prune a given layer, with less well-trained layers, as measured by
these shape metrics from HT-SR Theory, being pruned more aggressively. Our extensive empirical
evaluation demonstrates that AlphaPruning offers a straightforward yet effective way of determining
the layer-wise sparsity ratios. Our analysis reveals that different layers of an LLM are not equally
trained (typically, the ESDs of early layers are more HT and thus are more well-trained, compared to
later layers), and that shape-based ESD metrics work better for layer quality prediction in pruning
pipelines than scale-based ESD metrics. AlphaPruning achieves higher sparsity, without severely
hurting performance, and also smaller values of PL Alpha Hill after pruning. AlphaPruning is
also compatible with multiple existing LLM pruning methods and is expected to be integrated with
future ones, as long as the methods allow specifying layerwise ratios.

Acknowledgements.

We want to thank Alex Zhao, Elicie Ye, Zhuang Liu, Xiangyu Yue, and Tianyu Pang for their helpful
discussions. Michael W. Mahoney would like to acknowledge the UC Berkeley CLTC, ARO, IARPA
(contract W911NF20C0035), NSF, and ONR for providing partial support of this work. Yaoqing Yang
would like to acknowledge support from DOE under Award Number DE-SC0025584, DARPA under
Agreement number HR00112490441, and Dartmouth College. Our conclusions do not necessarily
reflect the position or the policy of our sponsors, and no official endorsement should be inferred.

10

References
Jeff Alstott, Ed Bullmore, and Dietmar Plenz. powerlaw: a python package for analysis of heavy-tailed

distributions. PloS one, 9(1):e85777, 2014.

Melih Barsbey, Milad Sefidgaran, Murat A Erdogdu, Gael Richard, and Umut Simsekli. Heavy tails
in sgd and compressibility of overparametrized neural networks. Advances in neural information
processing systems, 34:29364–29378, 2021.

Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Frederick Liu,
Yin-Wen Chang, and Sanjiv Kumar. Leveraging redundancy in attention with reuse transformers.
Technical Report Preprint: arXiv:2110.06821, 2021.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of Machine Learning and Systems, 2:129–146, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. Technical Report
Preprint: arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
Technical Report Preprint: arXiv:1803.05457, 2018.

Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in empirical
data. SIAM review, 51(4):661–703, 2009.

Romain Couillet and Zhenyu Liao. Random Matrix Methods for Machine Learning. Cambridge
University Press, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. Technical Report Preprint: arXiv:2208.07339, 2022.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 293–302, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. Technical Report Preprint:
arXiv:2010.11929, 2020.

Marwa El Halabi, Suraj Srinivas, and Simon Lacoste-Julien. Data-efficient structured pruning via
submodular optimization. Advances in Neural Information Processing Systems, 35:36613–36626,
2022.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning (ICML), pages
2943–2952, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. Technical Report Preprint: arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. Massive language models can be accurately pruned in one-shot.
Technical Report Preprint: arXiv:2301.00774, 2023a.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pages 10323–10337, 2023b.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. Technical
Report Preprint: arXiv:1902.09574, 2019.

11

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–14. IEEE, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pages 1135–1143,
2015.

Bruce M Hill. A simple general approach to inference about the tail of a distribution. The annals of
statistics, pages 1163–1174, 1975.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. Technical Report Preprint:
arXiv:2106.09685, 2021.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, and Zhangyang Wang. The emergence of essential sparsity
in large pre-trained models: The weights that matter. Technical Report Preprint: arXiv:2306.03805,
2023.

Steven A Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600,
1989.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. (Preprint: arXiv:2310.06825), 2023.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. Technical Report
Preprint: arXiv:2306.07629, 2023.

Vignesh Kothapalli, Tianyu Pang, Shenyang Deng, Zongmin Liu, and Yaoqing Yang. Crafting
heavy-tails in weight matrix spectrum without gradient noise. arXiv preprint arXiv:2406.04657,
2024.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier
dimensions that disrupt transformers. Technical Report Preprint: arXiv:2105.06990, 2021.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for
large language models. Technical Report Preprint: arXiv:2203.07259, 2022.

Eldar Kurtic, Denis Kuznedelev, Elias Frantar, Michael Goin, and Dan Alistarh. Sparse fine-tuning
for inference acceleration of large language models, 2023. URL https://arxiv.org/abs/
2310.06927.

Andrey Kuzmin, Markus Nagel, Saurabh Pitre, Sandeep Pendyam, Tijmen Blankevoort, and Max
Welling. Taxonomy and evaluation of structured compression of convolutional neural networks.
arXiv preprint arXiv:1912.09802, 2019.

Itamar D Landau, Gabriel C Mel, and Surya Ganguli. Singular vectors of sums of rectangular random
matrices and optimal estimation of high-rank signals: The extensive spike model. Physical Review
E, 108(5):054129, 2023.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pages 598–605, 1990.

12

https://arxiv.org/abs/2310.06927
https://arxiv.org/abs/2310.06927

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-adaptive sparsity for
the magnitude-based pruning. Technical Report Preprint arXiv:2010.07611, 2020.

Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and Yonghong Tian.
Channel pruning via automatic structure search. Technical Report Preprint: arXiv:2001.08565,
2020.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang,
and Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most
naive baseline for sparse training. Technical Report Preprint: arXiv:2202.02643, 2022a.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11976–11986, 2022b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Technical Report Preprint: arXiv:2305.11627, 2023.

Charles H Martin and Michael W Mahoney. Rethinking generalization requires revisiting old ideas:
statistical mechanics approaches and complex learning behavior. Technical Report Preprint:
arXiv:1710.09553, 2017.

Charles H Martin and Michael W Mahoney. Traditional and heavy tailed self regularization in neural
network models. In International Conference on Machine Learning, 2019.

Charles H Martin and Michael W Mahoney. Heavy-tailed universality predicts trends in test accuracies
for very large pre-trained deep neural networks. In SIAM International Conference on Data Mining,
2020.

Charles H Martin and Michael W Mahoney. Post-mortem on a deep learning contest: a Simp-
son’s paradox and the complementary roles of scale metrics versus shape metrics. (Preprint:
arXiv:2106.00734), 2021a.

Charles H Martin and Michael W Mahoney. Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning. Journal of Machine Learning
Research, 22(165):1–73, 2021b.

Charles H Martin, Tongsu Serena Peng, and Michael W Mahoney. Predicting trends in the quality of
state-of-the-art neural networks without access to training or testing data. Nature Communications,
12(1):1–13, 2021.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Xiang Meng, Shibal Ibrahim, Kayhan Behdin, Hussein Hazimeh, Natalia Ponomareva, and Rahul
Mazumder. Osscar: One-shot structured pruning in vision and language models with combinatorial
optimization. arXiv preprint arXiv:2403.12983, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. Technical Report Preprint: arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor con-
duct electricity? a new dataset for open book question answering. Technical Report Preprint:
arXiv:1809.02789, 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):2383, 2018.

Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. Advances in Neural Information Processing Systems, 1, 1988.

NeuralMagic. Neuralmagic deepsparse inference engine. 2021. URL https://github.com/
neuralmagic/deepsparse.

13

https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse

Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and Felice Dell’Orletta. Outliers dimensions that
disrupt transformers are driven by frequency. Technical Report Preprint: arXiv:2205.11380, 2022.

Peijun Qing, Chongyang Gao, Yefan Zhou, Xingjian Diao, Yaoqing Yang, and Vosoughi Soroush.
Alphaexpert: Assigning lora experts based on layer training quality. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity by
fine-tuning. Technical Report Preprint: arXiv:2005.07683, 2020.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 8815–8821, 2020.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. Technical Report Preprint: arXiv:2306.11695, 2023.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven, Andrew O Nelson, Henk Corporaal, et al.
Dominosearch: Find layer-wise fine-grained n: M sparse schemes from dense neural networks.
Advances in Neural Information Processing Systems, 34:20721–20732, 2021.

Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Wen Ji, Yaowei Wang, and Wenwu Zhu. Mixed-
precision neural network quantization via learned layer-wise importance. In European Conference
on Computer Vision, pages 259–275. Springer, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. Technical Report Preprint: arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. Technical Report Preprint: arXiv:2307.09288, 2023b.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. Technical
Report Preprint: arXiv:1804.07461, 2018.

Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components. Technical
Report Preprint: arXiv:2011.03803, 2020.

Zhichao Wang, Andrew Engel, Anand D Sarwate, Ioana Dumitriu, and Tony Chiang. Spectral evolu-
tion and invariance in linear-width neural networks. Advances in Neural Information Processing
Systems, 36, 2024.

Wei Wen, Cong Xu, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Coordinating filters for
faster deep neural networks. In Proceedings of the IEEE international conference on computer
vision, pages 658–666, 2017.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative
model inference with unstructured sparsity. arXiv preprint arXiv:2309.10285, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pages 38087–38099, 2023a.

Xuanzhe Xiao, Zeng Li, Chuanlong Xie, and Fengwei Zhou. Heavy-tailed regularization of weight
matrices in deep neural networks. Technical Report Preprint: arXiv:2304.02911, 2023b.

14

Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Wenrui Dai, Yingyong Qi, Yiran Chen,
Weiyao Lin, and Hongkai Xiong. Trained rank pruning for efficient deep neural networks. In 2019
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pages 14–17. IEEE, 2019.

Yaoqing Yang, Ryan Theisen, Liam Hodgkinson, Joseph E Gonzalez, Kannan Ramchandran,
Charles H Martin, and Michael W Mahoney. Test accuracy vs. generalization gap: Model
selection in nlp without accessing training or testing data. In Proceedings of the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 3011–3021, 2023.

Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu. Good subnetworks
provably exist: Pruning via greedy forward selection. In International Conference on Machine
Learning, pages 10820–10830. PMLR, 2020.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. Technical Report Preprint: arXiv:2310.05175, 2023.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv preprint arXiv:1705.10941, 2017.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? Technical Report Preprint: arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models, 2022. (Preprint: arXiv:2205.01068), 2023.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional
networks for classification and detection. IEEE transactions on pattern analysis and machine
intelligence, 38(10):1943–1955, 2015.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Yefan Zhou, Tianyu Pang, Keqin Liu, Charles H. Martin, Michael W. Mahoney, and Yaoqing Yang.
Temperature balancing, layer-wise weight analysis, and neural network training. In Advances in
Neural Information Processing Systems, 2023.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. Technical Report Preprint: arXiv:1710.01878, 2017.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. Advances in
neural information processing systems, 31, 2018.

15

Appendix

A Impact Statements

This paper leverages HT-SR Theory to design improved layerwise pruning ratios for LLMs. Although
the proposed method could be applied to compress models with adverse applications, we do not
see any immediate negative societal impacts stemming from the algorithm itself. Indeed, we see
a lot of societal value in proposing our method to the community. Through the implementation of
effective layerwise sparsity, we can achieve substantial reductions in the parameters of LLMs while
retaining their functionality. Consequently, this advancement facilitates the deployment of LLMs
in resource-constrained devices, accelerates the predictions for resource-limited LLM services, and
contributes to the sustainability of LLM technologies.

B Limitation

This paper’s empirical evaluation focuses on post-training pruning methods without fine-tuning, in
alignment with recent research in LLM pruning, such as OWL, Wanda, and SparseGPT. This is
due to the substantial computational resources required to restore heavily pruned LLMs to their
original performance. Nonetheless, our experiments with limited fine-tuning have demonstrated that
the proposed pruning method can achieve only a mild performance drop while yielding significant
efficiency improvements.

C Related work

Pruning. Removing weights or connections in a trained neural network (NN) to generate an
efficient, compressed model has a long history [LeCun et al., 1990, Mozer and Smolensky, 1988,
Janowsky, 1989, Mocanu et al., 2018]. Modern NNs are frequently over-parameterized [Wang and Tu,
2020, Bhojanapalli et al., 2021], and thus removing redundancies improves computation and memory
efficiency. A common approach is weight-magnitude-based pruning [Han et al., 2015], which zeros
out connections with weights smaller than a specified threshold. However, when it comes to pruning
LLMs [Brown et al., 2020, Touvron et al., 2023a], progress has been limited. Conventional pruning
typically requires a round of retraining to restore performance [Blalock et al., 2020], which can be
challenging for LLMs. To address the difficulty in retraining, researchers have developed specially
tailored pruning algorithms for LLMs. For example, Ma et al. [2023] explored sparse structured
LLMs, using Taylor pruning to remove entire weight rows, followed by LoRA fine-tuning. More
recent research has shifted towards unstructured pruning without the need for fine-tuning, showing
substantial advancements. In particular, SparseGPT [Frantar and Alistarh, 2023b] uses the Hessian
inverse for pruning and subsequent weight updates to reduce the reconstruction error of dense and
sparse weights, while Wanda [Sun et al., 2023] uses a criterion that incorporates weight magnitudes
and input activations, in order to preserve outlier features [Kovaleva et al., 2021, Puccetti et al., 2022,
Dettmers et al., 2022]. Our work allocates parameters in a more theoretically-principled manner,
enabling pruning LLMs to higher sparsity levels.

Layerwise sparsity budgets. Although layerwise sparsity has been widely studied in pre-LLM
pruning [Mocanu et al., 2018, Evci et al., 2020, Liu et al., 2022a, Gale et al., 2019, Lee et al., 2020],
relatively little attention has been devoted to determining the pruning ratios for each layer in LLMs.
(Interestingly, this layer-wise approach has been applied to model quantization [Kim et al., 2023,
Shen et al., 2020, Dong et al., 2019].) Frantar and Alistarh [2023b] and Sun et al. [2023] apply a
uniform pruning ratio across all layers, and Yin et al. [2023] computes the sparsity budgets using the
outlier ratio observed within each layer’s token feature distribution. Existing work on sparsity budgets
has generally used heuristics, such as different forms of size or scale metrics (such as norm-based
metrics), to determine sparsity budgets per layer. For instance, ABCPruner [Lin et al., 2020] reduces
the number of combinations of layer sparsities to search over, but it still requires training to determine
the empirical validity of its suggested layer sparsities. Lee et al. [2020] modifies Magnitude-based
pruning by rescaling the importance scores in a layer by a factor dependent on the magnitude of
surviving connections in that layer. However, these methods are suboptimal in allocating layerwise
sparsities for pruning LLMs. Recently, Outlier Weighed Layerwise sparsity (OWL) [Yin et al., 2023]
designs a nonuniform layerwise sparsity based on the distribution of outlier activations in LLMs.

16

However, OWL heuristically relies on the emergence of outliers, and this can lead to suboptimal
performance when outliers are absent from models. Our work uses HT-SR shape metrics such as
PL Alpha Hill to predict layer importance, and it allocates parameters in a more theoretically
principled manner, allowing pruning LLMs to higher sparsity levels than has ever been achieved
before.

D Definitions of HT-SR metrics

Here, we define the shape metrics, beyond PL Alpha Hill, that we use in our analysis.

• (Alpha Hat) The Alpha Hat metric [Martin et al., 2021] has been shown to be effective at
predicting generalization. It is the variant of PL exponent α (PL Alpha) weighted by the
log maximum eigenvalue log λmax(log spectral norm):

Alpha Hat = α log λmax. (5)

• (Stable Rank) The Stable Rank metric is a norm-adjusted measure of the scale of the
ESD, and previous work [Yang et al., 2023] has shown its strong correlation with PL Alpha.
For a weight matrix W, it can be calculated as:

Stable Rank = ∥W∥2F / ∥W∥22 . (6)

• (Entropy) For a weight matrix W, the Entropy metric is defined as

Entropy =
−1

log R(W)

∑
i

pi log pi. (7)

where pi = v2i /
∑

i v
2
i , vi is the i-th singular value of W, and R(W) refers to the rank of

W.

E Further analysis of results

E.1 Post-pruning layer-wise heavy-tail analysis

We investigate layer-wise PL Alpha Hill values after pruning by Uniform pruning and
AlphaPruning on more advanced LLMs (LLaMA-V3-8B, Vicuna-7B, Mistral-7B). According
to HT-SR Theory, models or layers of higher quality typically exhibit lower PL Alpha Hill values.
As observed in Figure 6, AlphaPruning leads to a smaller layer-wise PL Alpha Hill. This is due to
the mechanism (1) by which our method prunes the model based on the layer-wise PL Alpha Hill,
and prunes less on these more heavy-tailed layers.

Uniform AlphaPruning

2 4 6 8
PL_Alpha_Hill

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

(a) LLaMA-V3-8B

2 4 6
PL_Alpha_Hill

0.0

0.2

0.4

0.6

D
en

si
ty

(b) Vicuna-7B

2.5 5.0 7.5
PL_Alpha_Hill

0.0

0.2

0.4

D
en

si
ty

(c) Mistral-7B

Figure 6: Analyzing the layer-wise heavy-tail metric PL Alpha Hill (lower the better by HT-SR
theory) after pruning by baseline uniform pruning and AlphaPruning.

E.2 Comparison with other LLM layer quality metrics

In addition to AlphaPruning proposed in our work, Gromov et al. [2024], Men et al. [2024] are other
studies that investigated methods that measure whether a layer is well-trained or not, demonstrating

17

0 10 20 30
Layer (block) Index

0.6

0.7

0.8

0.9
Sp

ar
si

ty

LLaMA-V1-7B

0 10 20 30 40
Layer (block) Index

0.6

0.7

0.8

0.9

Sp
ar

si
ty

LLaMA-V1-13B

0 10 20 30 40 50 60
Layer (block) Index

0.6

0.7

0.8

0.9

Sp
ar

si
ty

LLaMA-V1-30B

Figure 7: Comparing layer-wise sparsity distributions allocated by AlphaPruning (blue, ours)
and OWL (orange). While both methods show similar overall trends, AlphaPruning generates a
more granular distribution with distinct differences between consecutive layers.

LLMs layers are not equally well-trained. Gromov et al. [2024] developed a method that assesses the
similarity between the representations at different layers, defined as the angular distance between
feature vectors. They found that deeper layers are more similar to their neighboring layers than
shallow layers, suggesting that LLMs may not fully use the parameters in these deeper layers,
indicating these layers are not well-trained. Similarly, Men et al. [2024] introduced a metric called
Block Influence, which measures the impact of each transformer block on hidden states to gauge layer
significance. Their findings showed varying degrees of ineffectiveness/redundancy across layers,
suggesting that these layers are not well-trained.

Besides, in Figure 7, we compare the sparsity allocation of AlphaPruning with OWL. We show
that the general trends of sparsity distribution generated by the two methods are similar, with lower
sparsities allocated to earlier layers and higher sparsities allocated to deeper layers. However, our
method produces a more granular distribution with clearer distinctions between consecutive deep
layers, resulting in improved pruning performance.

0 10 20 30
Layer Index

2.5

3.5

4.5

PL
_A

lp
ha

_H
ill

PL_Alpha_Hill

0.4

0.8

Sp
ar

si
ty

AlphaPruning
Uniform

Figure 8: Comparing layerwise sparsities of AlphaPruning and uniform sparsities, at 80% global
sparsity on LLaMA-7B. The curves represent the layerwise sparsities, which are determined by
PL Alpha Hill values shown by the histograms.

E.3 Analyzing the layerwise sparsity distribution.

We elaborate on the layerwise sparsities assigned by AlphaPruning and heavy-tailed metric
PL Alpha Hill. The metric and sparsities results of LLaMA-7B are presented in Figure 8. We can
observe that, the blue bar histograms demonstrate that different layers of one model show diverse
PL Alpha Hill values, this indicates that these layers are not equally well-trained. This conclusion
is based on prior research on heavy-tails in weight matrices [Martin et al., 2021, Martin and Ma-
honey, 2019], this metric measures the heavy-tailed structure within the correlation matrix. This
measurement indicates the amount of correlation among the weight matrix elements, with strong
correlations leading to a more heavy-tailed empirical spectral density. Such a structure is often seen
as a result [Wang et al., 2024] of extracting various useful correlations (or features) from data during
optimization.

18

Consequently, smaller PL Alpha Hill layers (more heavy-tailed) contain a greater number of learned
correlations. The larger PL Alpha Hill layers (less heavy-tailed) tend to retain fewer learned
correlations, remaining closer to the random initialization state. Figure 8 shows that AlphaPruning
suggests that large PL Alpha Hill layers with fewer learned correlations should be allocated with
larger sparsity, or being pruned more, while those small PL Alpha Hill layers should be allocated
with lower sparsity.

E.4 Connections with Low-rank Approximation.

A commonly used compression technique that also involves analyzing the eigenspectrum of the
weights is Low-Rank Approximation (LRA) [Zhang et al., 2015, Wen et al., 2017, Xu et al., 2019,
Barsbey et al., 2021]. We examine the apparent connection between our method, AlphaPruning,
and LRA from two perspectives. First, we study the relationship between the ESD used in our
method and the low-rank properties often used in LRA, where we use PL Alpha Hill to measure
HT and Stable Rank to measure low-rank properties. Second, we study the differing layer-wise
assignment strategies adopted by the two methods. Finally, we discuss how our findings relate to
those of Barsbey et al. [2021], a paper closely related to ours, showing that the results from both
studies complement each other, offering different yet compatible insights.

1 2 3 4
Tail indice ()

0

100

200

300

St
ab

le
 ra

nk

matrix_size=1000
matrix_size=2000
matrix_size=3000
matrix_size=5000

(a) Stable Rank of ESD sam-
pled from Pareto distribution

0 10 20 30
Layer index

3.0

3.5

4.0

PL
_A

lp
ha

_H
ill

PL_Alpha_Hill

100

200

300

St
ab

le
 ra

nk

Stable rank

(b) Layerwise metric values of
LLaMA-7B

5 10 15 20
Reduction ratio

10

15

20

Pe
rp

le
xi

ty

Compress more on HTed layers
Compress less on HTed layers
Uniform

(c) Comparing layer-wise assign-
ment strategies for LRA

Figure 9: Analyzing ESD properties and assignment strategies for LRA. (a) Stable Rank and
PL Alpha Hill show a similar pattern (the more heavy-tailed, the more low-ranked) across different
ESDs sampled from Pareto distribution. (b) The layer-wise PL Alpha Hill and Stable Rank of
the LLaMA-7B model exhibit a similar trend. (c) Comparing two assignment strategies for LRA, and
“Compress more on HTed layers” is better. This finding is opposite to pruning-based methods, which
find that “Compress less on HTed layers” is better.

For the first point, we find a strong positive correlation between the HTed properties and the low-rank
properties used in LRA: as the ESD becomes more HTed, it also becomes more low-ranked. To
demonstrate this, we sampled eigenvalues from an IID Pareto distribution with varying tail indices to
form ESDs and then measured Stable Rank on these ESDs. A lower PL Alpha Hill indicates a
more HTed distribution, while a lower Stable Rank indicates a more low-ranked structure. Figure 9a
shows that Stable Rank and PL Alpha Hill are positively correlated across different matrix sizes,
suggesting a relationship between HTed and low-ranked properties. In Figure 9b, we further verify
this by measuring PL Alpha Hill and Stable Rank across different layers of the pre-trained
LLaMA-7B model. The results reveal that both metrics follow a similar trend: shallow layers show
lower values, while deeper layers exhibit higher values, indicating consistent behavior across layers.
Therefore, we can see that the key metrics used in AlphaPruning and LRA are highly correlated.

For the second point, we clarify that the strategies for assigning higher or lower compression to
HTed or low-ranked layers differ between AlphaPruning and LRA. AlphaPruning assigns lower
compression ratios (less sparsity) to HTed layers. In contrast, LRA assigns higher compression
to low-ranked layers [Zhang et al., 2015, Wen et al., 2017, Xu et al., 2019], which, as established
earlier, tend to be HTed. Therefore, the two methods seemingly use different procedures in assigning
layerwise compression ratios. In Figure 9c, we empirically verify that, for LRA, assigning higher
compression to HTed layers is indeed more beneficial than its opposite for LLMs, as shown by
the results of applying both to LLaMA-7B models. This finding is opposite to the assignment
method used in AlphaPruning. We hypothesize that these differences arise from the distinct
mechanisms and principles of each method. In more detail, AlphaPruning, which is pruning-based,

19

removes elements from the weight matrices, affecting the entire eigenspectrum. LRA, however,
removes only the smallest eigenvalues, leaving the larger eigenvalues intact. The guiding principle of
AlphaPruning is also different from LRA. It aims to make the model more deterministic and less
random by preserving weights corresponding to well-trained layers. It does this by preserving HTed
layers that contain more signals and removing light-tailed layers that, according to HT-SR theory,
resemble randomly initialized weight matrices. In some sense, it is similar to how decision trees
choose branches to reduce entropy. LRA, on the other hand, focuses on applying more compression
on low-rank matrices where the largest eigenvalues dominate. This allows for minimal impact on
reconstruction loss when removing small eigenvalues.

Lastly, Barsbey et al. [2021] concluded that models with lower HT measures are generally more
compressible than other models, focusing on cross-model comparisons. In contrast, our work
examines compressibility within a single model and suggests that, within a model, layers with lower
HT values are less compressible than other layers. Our insight supports layer-wise pruning strategies,
such as AlphaPruning, which applies less compression to more HTed layers.

0.3 0.6 0.9
Pruning ratio

0.85

0.90

0.95

1.00

R
el

at
iv

e
te

st
 a

cc

Alpha=2.00
Alpha=1.98
Alpha=1.96
Alpha=1.94

(a) Uniform Pruning

0.3 0.6 0.9
Pruning ratio

0.85

0.90

0.95

1.00

R
el

at
iv

e
te

st
 a

cc

Alpha=2.00
Alpha=1.98
Alpha=1.96
Alpha=1.94

(b) AlphaPruning

Figure 10: Comparison of pruning models with varying model-wise HT measures (Alpha).
Models with higher HT measures are more prunable using both Uniform pruning and AlphaPruning.
Relative accuracy is calculated as the post-pruning accuracy divided by the pre-pruning accuracy.
The experiments used FCNs trained on CIFAR-10.

Compress less on HTed layer Compress more on HTed layer Uniform

0.3 0.6 0.9
Pruning ratio

50.0

52.5

55.0

57.5

Te
st

 a
cc

ur
ac

y

(a) Alpha=2.00

0.3 0.6 0.9
Pruning ratio

50.0

52.5

55.0

57.5

Te
st

 a
cc

ur
ac

y

(b) Alpha=1.98

0.3 0.6 0.9
Pruning ratio

50.0

52.5

55.0

57.5

Te
st

 a
cc

ur
ac

y

(c) Alpha=1.96

0.3 0.6 0.9
Pruning ratio

50.0

52.5

55.0

57.5

Te
st

 a
cc

ur
ac

y

(d) Alpha=1.94

Figure 11: Comparison of our proposed layer-wise assignment strategy with other strategies on
models with varying model-wise HT measures. “Compress less on HTed layer” (AlphaPruning)
consistently outperforms Uniform pruning across different models, while “Compress more on HTed
layer” leads to worse performance compared to Uniform pruning. The experiments used FCNs
trained on CIFAR-10.

We adopt the experimental setup of Barsbey et al. [2021], training fully connected networks (FCNs)
with six hidden layers on the CIFAR-10 dataset. The HT measure used in their study referred to
as Alpha, quantifies the HTed structure of the weight parameters. The model-wise HT measure is
influenced by the “temperature”, defined as the ratio of learning rate to batch size. Higher temperatures
yield models with lower HT measures. Our first experiment reproduces the finding of Barsbey et al.
[2021], comparing the compressibility of models with varying model-wise HT measures. The results
verified that models with lower HT metrics are more compressible. It also tries to verify if the
conclusions hold when using our proposed layer-wise strategies. The results shown in Figure 10
support our hypotheses. The second experiment compares the effectiveness of these layer-wise
strategies and also checks if the findings are consistent across models with different model-wise HT

20

measures. The results shown in Figure 11 confirmed that HTed layers are less compressible and that
pruning HTed layers less (which AlphaPruning does) is more effective.

F Ablation study of sparsity allocation

In Section 3.3, we introduced the range hyperparameters s1 and s2 to control the non-uniformity of
layer-wise sparsities. To simplify, we define τ such that s1 = 1 − τ, s2 = 1 + τ . AlphaPruning
allocates sparsity on a “per-block” basis, where all matrices within a block receive the same sparsity,
determined by averaging the PL Alpha Hill values across matrices within that block. Alternatively,
sparsity can be allocated on a “per-matrix” basis, allowing different sparsities for individual matrices
based on their PL Alpha Hill values. The ablation study on comparing per-matrix and per-block
choices is presented in F.1. The ablation study on comparing different mapping functions is shown in
F.2.

per-block per-matrix

0 0.5
hyperparameter

5.6950

5.6975

5.7000

pe
rp

le
xi

ty

Sparsity 10%

0 0.5
hyperparameter

5.805

5.810

5.815

pe
rp

le
xi

ty

Sparsity 20%

0 0.2
hyperparameter

6.000

6.005
pe

rp
le

xi
ty

Sparsity 30%

0 0.2
hyperparameter

6.38

6.40

pe
rp

le
xi

ty

Sparsity 40%

0 0.2
hyperparameter

7.175

7.200

7.225

7.250

pe
rp

le
xi

ty

Sparsity 50%

0 0.2
hyperparameter

9.5

10.0

10.5

pe
rp

le
xi

ty

Sparsity 60%

0 0.2 0.4
hyperparameter

40

60

80

pe
rp

le
xi

ty

Sparsity 70%

0 0.2
hyperparameter

2000

4000

6000

pe
rp

le
xi

ty

Sparsity 80%

Figure 12: Ablation study on sparsity allocation function hyperparameter τ . We use Wanda to
prune LLaMA model using AlphaPruning with both per-matrix and per-block allocation methods.

F.1 Per-matrix vs. per-block

In Figure 12, we compared per-matrix and per-block sparsity allocation across different values of
the hyperparameter τ , using Wanda. The results show a regime transition in pruning effectiveness
between the two methods. For sparsity levels below 50%, the per-matrix approach (gray lines)
achieves lower perplexity, indicating better performance. However, for sparsity values of 50% and
above, the per-block method (blue line) performs better. We further focused on high sparsity 70%,
as higher sparsity is more important to provide efficiency improvements. Specifically, we evaluated
both per-matrix and per-block methods in combination with various intra-layer pruning techniques.
Table 7 shows that the per-block method consistently outperforms the per-matrix method when used
in conjunction with three intra-layer pruning techniques.

Additionally, we analyzed the differences between MLP and Attention matrices by visualizing average
PL Alpha Hill values for seven types of weight matrices in LLaMA-7B, as shown in Figure 13.
The results indicate that query and key matrices have lower PL Alpha Hill values, suggesting they
are less prunable. Based on this insight, we developed a new allocation strategy called “Mixed”,
which combines per-block and per-matrix approaches. As defined, Mixed first assigns a block-wise
pruning ratio using the per-block method, then refines it within each block using per-matrix allocation.
Table 7 demonstrates that this Mixed approach provides further marginal improvements over both
per-matrix and per-block methods.

21

Method Uniform Per-matrix Per-block Mixed

Magnitude 48419.13 7384.13 231.01 177.86
Wanda 85.77 58.71 23.86 22.46
SparseGPT 26.30 25.10 18.54 18.32

Table 7: Comparing perplexity of sparse LLaMA-
7B (sparsity=70%) pruned by four types of sparsity
allocation method.

Figure 13: Averaged PL Alpha Hill metric
values for seven types of weight matrices in
LLaMA-7B.

F.2 Different mapping functions

We provide ablation studies on the choices of sparsity assignment function. We implemented the
logarithmic method and compared it with the linear mapping function used in our current approach,
as shown in Figure 14. The results show that both methods perform similarly when combined with
Wanda, but linear mapping slightly outperforms the proposed logarithmic method when combined
with SparseGPT.

65 70 75 80
Sparsity (%)

100

300

500

700

Pe
rp

le
xi

ty

Logarithmic
Linear

(a) Wanda

65 70 75 80
Sparsity (%)

50

100

150

Pe
rp

le
xi

ty

Logarithmic
Linear

(b) SparseGPT

Figure 14: Comparing different mapping functions. Linear (ours) refers to the linear mapping
function that is used in our current method. Logarithmic refers to computing the logarithmic of
metrics before linear mapping. The model is LLaMA-V1-7B. (a-b) refers to combining different
intra-layer pruning methods.

G Hypterparamter setting

Here, we provide the values of τ used in the experiments, as shown in Table 8.

22

Method
Model Magnitude Wanda SparseGPT

LLaMA-7B 0.3 0.2 0.2
LLaMA-13B 0.5 0.3 0.3
LLaMA-30B 0.4 0.3 0.3
LLaMA-65B 0.4 0.3 0.3

LLaMA2-7B 0.5 0.3 0.2
LLaMA2-13B 0.4 0.3 0.3
LLaMA2-70B 0.4 0.3 0.3

Sparsity
Model 40% 50% 60% 70% 80%

ViT-B 0.3 0.3 0.3 – –
ViT-L 0.3 0.3 0.3 – –

DeiT-S 0.4 0.4 0.4 – –
DeiT-L 0.3 0.3 0.3 – –

ConvNext 0.1 0.1 0.2 0.2 0.2

Table 8: Left: Hyperparameters setting for results in Section 4.2. We report the optimal λ after a
small hyperparameter sweep within the range of τ ∈ [0.2, 0.3, 0.4, 0.5]. Right: Hyperparameters
setting for results in Section 4.3 for Vision Transformers at 40%, 50%, 60% sparsity. We report the
optimal λ after a small hyperparameter sweep within the range of τ ∈ [0.1, 0.2, 0.3, 0.4, 0.5].

H More baseline comparison

For assigning layerwise sparsity ratios, we compare AlphaPruning with other methods. In this
section, we provide definitions and details of these methods:

• Uniform. [Zhu and Gupta, 2017] Every layer pruned with the same target sparsity.
• Global [Frankle and Carbin, 2018]. A global threshold uniformly applied to all layers to satisfy

the overall sparsity requirement. The specific layerwise sparsity is automatically adjusted based on
this threshold.

• ER [Mocanu et al., 2018]. The sparsity of the convolutional layer is scaled proportionally to
1− hl−1+hl

hl−1×hl where hl refers to the number of neurons/channels in layer l.
• ER-Plus [Liu et al., 2022a]. ER-Plus modifies ER by forcing the last layer as dense if it is not,

while keeping the overall parameter count the same.
• LAMP [Lee et al., 2020]. This method modifies Magnitude-based pruning by rescaling the

importance scores in a layer by a factor dependent on the magnitude of surviving connections in
that layer.

• OWL [Yin et al., 2023]. A non-uniform layerwise sparsity based on the distribution of outlier
activations in LLMs, probing the possibility of pruning LLMs to high sparsity levels.

We adopt Wanda and SparseGPT as the pruning approach. The results are presented in Table 9
and Table 10, which indicate that AlphaPruning significantly outperforms all baseline methods
in relatively high-sparsity regimes. Besides, we have conducted additional experiments using the
“layerwise error thresholding” method, where each layer is pruned sequentially as specified in [Zhuang
et al., 2018, Ye et al., 2020]. We have also implemented the rank selection method as specified in
Section 5.2 of [El Halabi et al., 2022]. We present the updated experimental results in Table 11. We
observe that our method outperforms all the other baselines.

Method/Perplexity (↓) 10% 20% 30% 40% 50% 60% 70% 80%

Global 14.11 3134 10293 10762 14848 17765 5147 39918.56
LAMP 5.69 5.78 5.98 6.3912 7.57 12.86 185.52 15647.87

LAMP (per-block) 5.70 5.82 6.00 6.40 7.25 10.95 98.77 7318.08
ER 5.70 5.81 6.03 6.57 7.80 12.41 119.66 6263.79

ER-Plus 5.70 5.82 6.05 6.62 8.00 14.04 229.17 6013.91
Uniform 5.70 5.82 6.00 6.39 7.26 10.63 84.52 5889.13

OWL 5.70 5.80 6.01 6.39 7.22 9.35 24.56 1002.87
Ours 5.69 5.81 6.00 6.37 7.18 9.47 23.86 698.56

Table 9: WikiText validation perplexity (↓) of LLaMA-7B pruned by different allocation methods at
various global sparsities using Wanda. AlphaPruning outperforms other layerwise sparsity at high
sparsity range.

23

Method/Perplexity (↓) 10% 20% 30% 40% 50% 60% 70% 80%

LAMP 5.69 5.78 5.96 6.34 7.37 11.27 31.96 274.73
LAMP (per-block) 5.70 5.80 5.96 6.33 7.22 10.45 27.05 224.32

ER 5.70 5.81 6.02 6.49 7.54 11.29 30.20 258.63
Uniform 5.69 5.89 5.96 6.32 7.22 10.56 26.30 188.11

OWL 5.71 5.81 5.97 6.35 7.22 9.51 19.49 84.94
Ours 5.69 5.81 5.99 6.36 7.30 9.73 18.44 81.98

Table 10: Perplexity (↓) of pruning LLaMA-7B into various global sparsities using SparseGPT. We
compare our method with three other baseline sparsity allocation methods.

Method Global sparsity Perplexity (↓) Zero-shot Accuracy (↑)

Uniform 70% 26.30 41.52
Layerwise error thresholding 70% 32.54 41.24

Rank selection 70% 21.34 42.90
Ours 70% 18.54 45.48

Table 11: Comparing our method to other layerwise sparsity baseline methods in pruning LLaMA-7B
into 70% sparsity. The perplexity is evaluated on the WikiText validation set. The zero-shot accuracy
is averaged over 7 downstream tasks. Each method is combined with SparseGPT.

I Complementary Experimental Results

I.1 Shape metrics versus scale metrics on Vision Transformers

We further evaluate different metrics for computing layerwise sparsity on Vision Transformers.
Shape metrics, including Alpha Hat, Entropy, PL Alpha Hill, and Stable Rank, are obtained
from the shapes of the ESDs. Scale metrics, including Frobenius Norm and Spectral Norm, are
norm-based metrics measuring the scale of weights matrices (which can also be obtained from the
ESD). The results shown in Table 12 align with the results in LLMs that shape metrics outperform
scale metrics on allocating layerwise sparsity and PL Alpha Hill performs the best.

Metric used for ViT-L 16/224 accuracy (↑) DeiT-S 16/224 accuracy (↑)
layerwise pruning ratios 40% 50% 60% 40% 50% 60%

Uniform 76.05 68.73 39.45 75.62 68.98 50.49

Frobenius Norm 76.15 68.93 37.46 76.62 72.21 58.93
Spectral Norm 75.99 67.72 32.98 75.97 70.13 53.76

Entropy 76.37 71.17 49.09 76.77 71.63 58.23
Stable Rank 75.91 68.93 41.26 75.63 68.64 46.86
Alpha Hat 77.11 72.01 52.56 76.94 72.10 59.78

PL Alpha Hill 76.86 72.12 55.62 77.07 72.38 60.92

Table 12: Evaluating shape metrics versus scale metrics on allocating layerwise sparsities on
Vision Transformers. Shape metrics are obtained from the shapes of the ESDs. Scale metrics are
norm-based metrics measuring the scale of weights matrices (which can also be obtained from the
ESD). We choose two models, ViT-L and DeiT-S, and the results are shown on ImageNet-1K accuracy
without fine-tuning. We observe that shape metrics outperform scale metrics and PL Alpha Hill
performs the best.

I.2 More results on other efficiency metrics

To further demonstrate the benefits of our approach, we provide results in other practical efficiency
metrics such as FLOPs. Compared with uniform sparsity ratios, our approach is able to achieve a
better performance-FLOPs trade-off. We have provided new results of FLOPs in Figure 15.

Table 13 summarizes the results from Figure 15. We show that, compared to uniform pruning,
our method can achieve significant FLOPs reduction when pruned LLMs are compared at similar
perplexity.

24

400 500 600 700
FLOPs

0
25
50
75

100
125
150

Pe
rp

le
xi

ty

LLaMA-7B
Uniform Pruning
AlphaPruning (ours)

(a) Broader perplexity range

650 700 750 800 850
FLOPs (G)

8

9

10

11

12

Pe
rp

le
xi

ty

LLaMA-7B
Uniform Pruning
OWL
AlphaPruning (ours)

(b) Lower perplexity range

Figure 15: Additional results of FLOPs measurement on the LLaMA-7B pruned by Uniform and our
method with SparseGPT.

Uniform Perplexity (↓) 9.80 18.58 21.06 25.70 35.57 61.76 95.82
FLOPs (↓) 716.80 583.49 566.82 533.49 500.16 450.17 416.84

Ours Perplexity (↓) 9.78 15.67 18.63 23.39 35.74 49.94 87.81
FLOPs (↓) 700.14 566.82 533.49 500.16 450.17 416.84 366.85

Table 13: Additional results of FLOPs measurement on the LLaMA-7B pruned by Uniform and our
method with SparseGPT.

I.3 Controlling the minimum layer sparsity for memory-limited hardware

To enhance the adaptability of our method to hardware, we demonstrate that our method allows
for controlling the minimum sparsity, by adjusting the values of s1 and s2. Additionally, Table 14
demonstrates that increasing the minimum sparsity by changing s1 and s2 doesn’t diminish the
advantages of our method, compared to the uniform pruning baseline.

Recall that the sparsity of the layer of the model can be determined by Eqn. 4. Increasing s1 leads to
a higher minimum sparsity ηs1, while maintaining the same global sparsity S. Table 14 displays the
results of adjusting s1 and s2 to increase the minimum sparsity while maintaining the global sparsity
at 70%. At a minimum sparsity of 57%, our method achieves the lowest perplexity. Even when the
minimum sparsity is raised to 67%, nearing the uniform pruning baseline, our method still attains a
perplexity of 49.6, which is 36.17 points lower than that of uniform pruning (85.77).

Method Global sparsity S Minimum sparsity ηs1 Perplexity

Uniform 70% 70% 85.77
Ours 70% 50% 33.46
Ours 70% 55% 26.19
Ours 70% 57% 23.79
Ours 70% 60% 27.18
Ours 70% 65% 40.22
Ours 70% 67% 49.60

Table 14: Increasing the minimum sparsity of our method, while maintaining a global sparsity of
70%, still yields performance improvements compared to a uniform sparsity ratio. We present the
WikiText validation perplexity for LLaMA-7B pruned by both the Uniform method and our method,
in conjunction with Wanda.

I.4 Computational complexity of AlphaPruning

The computational complexity of AlphaPruning is not large because the most computation-intensive
aspect of our method involves performing SVD decomposition on weight matrices, which can be
further optimized through parallel processing. Table 15 presents the runtime of our AlphaPruning
and an optimized version that uses parallel processing. The increase in runtime is reasonable, at
32.44% with Wanda and 8.2% with SparseGPT. These experiments were conducted on pruning
LLaMA-7B to 70% sparsity. The testing platform used A40 GPUs and an AMD EPYC 7713 64-Core
CPU.

25

Method Ours Original method (second) Percentage of runtime increase (%)

Wanda – 176 0%
Wanda w. Ours (1 GPU) 462 178 259.55%
Wanda w. Ours (8 GPUs) 57 178 32.44%

SparseGPT – 699 0%
SparseGPT w. Ours (1 GPU) 462 695 66.47%
SparseGPT w. Ours (8 GPUs) 57 695 8.2%

Table 15: Runtimes of our method combined with Wanda and SparseGPT on LLaMA-7B.

I.5 OPT family

In addition to LLaMA and LLaMA-2, we conduct experiments with OPT [Zhang et al., 2023].
Table 16 shows the results of comparing our method to uniform sparsity when both are combined
with magnitude pruning. Table 17 shows the same comparison when both combined with Wanda [Sun
et al., 2023] /SparseGPT [Frantar and Alistarh, 2023b]. In most of the cases, our method outperforms
the baseline method and achieves lower perplexity.

Method Sparsity OPT-125M OPT-350M OPT-2.7B OPT-6.7B

magnitude 40% 54.60 40.19 30.31 31.89
magnitude w. Ours 40% 52.29 38.20 22.31 19.53

magnitude 50% 193.35 97.79 265.20 968.72
magnitude w. Ours 50% 173.01 95.61 159.44 224.91

Table 16: The perplexity of OPT models pruned by uniform sparsity and our method combined with
magnitude pruning. The perplexity is evaluated on WikiText validation set.

Method Sparsity OPT-125M OPT-350M OPT-2.7B OPT-6.7B

Wanda 70% 334.58 758.81 265.20 158.38
Wanda w. Ours 70% 269.80 654.17 159.44 40.81

SparseGPT 70% 226.30 146.45 26.95 20.38
SparseGPT w. Ours 70% 207.83 136.90 27.40 20.31

Table 17: The perplexity of OPT models pruned by uniform sparsity and our method combined with
Wanda and SparseGPT. The perplexity is evaluated on WikiText validation set.

I.6 More results on semi-structured and structured pruning

To assess the potential of our non-uniform layerwise sparsity for hardware-friendly applications, we
investigate AlphaPruning across two distinct hardware-friendly pruning regimes: N:M sparsity and
structured pruning. Following DominoSearch [Sun et al., 2021], we study the mixed N:8 sparsity
configuration. Instead of using a uniform N value across all layers, we allow individual layers to
possess distinct N values while maintaining the same parameter count. We adopt AlphaPruning to
determine the optimal value of N for individual layers. The results shown in Table 18 demonstrate
that AlphaPruning consistently outperforms the baselines.

Method Model Layerwise Sparsity 4:8 3:8 2:8

Wanda LLaMA-7B Uniform 8.57 42.56 2962.00
Ours LLaMA-7B Mixed 8.55 22.77 585.81

Table 18: WikiText validation perplexity of pruned LLaMA-7B in Mixed N:8 sparsity configuration.
The results are shown with Wanda and our non-uniform layerwise sparsity. Ours can lead to
performance improvement at various sparsity levels.

Furthermore, instead of pruning weights, we follow the recent methodology introduced in LLM
Pruner [Ma et al., 2023], wherein entire neurons and attention heads are removed. This action
facilitates the direct acceleration of pruned LLMs on GPUs or TPUs. We replace the uniform layerwise
sparsity used by the LLM pruner with a non-uniform layerwise sparsity using AlphaPruning. The

26

results, shown in Table 19, demonstrate that AlphaPruning can improve model performance at
various sparsity levels.

Dataset Pruning Method Layerwise Sparsity 20% 40% 60% 80%

WikiText LLM Pruner Uniform 16.95 30.38 90.02 1228.17
WikiText LLM Pruner Ours 16.78 29.11 71.21 952.77
PTB LLM Pruner Uniform 29.51 66.90 192.06 1691.87
PTB LLM Pruner Ours 29.11 56.99 144.97 1002.40

Table 19: Applying AlphaPruning to structured pruning method LLM-Pruner. The results are
shown in WikiText validation perplexity of pruned LLaMA-7B at various sparsity levels.

Another structured pruning method in LLM is OSSCAR [Meng et al., 2024], which formulates the
structured pruning problem as a quadratic program with combinatorial constraints. We integrated
AlphaPruning with OSSCAR, and we provide the results in Figure 16. OSSCAR prunes only
the linear sublayer of multi-head attention and the second sublayer of the feed-forward network,
applying uniform pruning across each transformer block. By incorporating AlphaPruning’s layer-
wise sparsity allocation, we achieved non-uniform block-wise pruning ratios while keeping the global
pruning ratio the same. The results show that integrating AlphaPruning with OSSCAR can reduce
perplexity at different sparsities.

0.5 0.6 0.7
Pruning ratio

0

500

1000

Pe
rp

le
xi

ty

OSSACR+AlphaPruning
OSSCAR

Figure 16: Using AlphaPruning to determine layerwise sparsity for OSSCAR. The x-axis
pruning ratio represents the fraction of pruned parameters relative to the total parameters in the linear
sublayer of multi-head attention and the second sublayer of the feed-forward network, any other
type of sublayers are not included. The model used is OPT-6.7B, and perplexity (↓) is evaluated on
WikiText.

I.7 Mixed-Precision Quantization

We provide additional results to show that our method can enhance mixed-precision quantization
by allocating precision to layers. We still use the PL Alpha Hill metric to estimate the heavy-tail
extent of each layer, and more heavy-tailed layers are then allocated with higher precision.

Table 20 shows that, compared to three baselines (random assignment, assigned by the norm of
weights, and OWL), our AlphaPruning method can always achieve the lowest perplexity under
three types of mixed-precision quantization. Our experimental setup follows Tang et al. [2022].

Method Mixed 3/4 Bit Mixed 2/3/4 Bit Mixed 2/4 Bit

Random 12.04 11455.54 14817.12
L1 norm 14.61 13959.42 33679.21

OWL 9.54 311.95 8429.39
Ours 9.01 261.39 7630.14

Table 20: Perplexity (↓) of different methods on allocating precision to different layers for mixed-
precision quantization with LLaMA-7B on WikiText.

27

I.8 More fine-tuning results

Here, we provide results for LoRA fine-tuning pruned LLaMA-7B with a sparsity of 70% using
SparseGPT. We compare AlphaPruning with Uniform and OWL. The experiment settings align
with Section 4.3. Table 21 summarizes the results for perplexity and mean zero-shot accuracies after
fine-tuning pruned LLaMA-7B models, which show that the performance improvement achieved by
our method doesn’t diminish after fine-tuning.

Method Sparsity Fine-tuning Perplexity (↓) Zero-shot accuracy (↑)

Dense model – 5.68 60.08

Uniform 70% 26.30 41.52
Uniform 70% LoRA 11.21 49.00

OWL 70% 19.49 44.65
OWL 70% LoRA 11.13 49.33

Ours 70% 18.54 45.48
Ours 70% LoRA 10.95 49.51

Table 21: WikiText validation perplexity and mean zero-shot tasks accuracy of SparseGPT pruned
LLaMA-7B at 70% sparsity after LoRA fine-tuning on 30,000 C4 dataset samples.

I.9 More results on vision models

Here, we present more CV task results. We choose three widely used non-uniform layer-wise sparsity
methods in the CV context including Global [Frankle and Carbin, 2018], ERK [Mocanu et al., 2018],
LAMP [Lee et al., 2020]. Here, we use four ImageNet-1K pre-trained models (ViT-L, ViT-B, DeiT-B,
DeiT-S), and we prune them to different sparsities.

ViT-B 16/224 ViT-L 16/224 DeiT-S 16/224 DeiT-B 16/224
Method 40% 50% 60% 40% 50% 60% 40% 50% 60% 40% 50% 60%

Uniform 70.87 59.46 29.97 76.05 68.73 39.45 75.62 68.98 50.49 80.08 76.37 61.72
Global [Frankle and Carbin, 2018] 66.81 45.75 8.09 75.42 65.12 29.14 74.17 65.77 38.87 79.94 75.09 57.01
ERK [Mocanu et al., 2018] 70.89 60.49 33.15 76.26 69.51 40.57 75.65 69.80 52.95 80.05 76.22 63.49
LAMP Lee et al. [2020] 69.45 57.51 26.99 75.71 67.29 30.80 75.51 69.46 50.79 80.19 76.35 63.32
Ours 71.58 64.29 44.21 76.86 72.12 55.62 77.07 72.38 60.92 80.21 77.11 64.56

Table 22: ImageNet-1K Accuracy (↑) with various layerwise sparsity using Magnitude-based pruning,
without finetuning. The results are shown at 40%, 50%, and 60% sparsity on ViT-B, ViT-L, DeiT-S,
and DeiT-B models. Higher accuracy is better.

I.10 Zero-shot tasks performance

For zero-shot results in Section 4.2, the 7 evaluated zero-shot tasks are: BoolQ [Clark et al., 2019],
RTE [Wang et al., 2018], HellaSwag [Zellers et al., 2019], WinoGrande [Sakaguchi et al., 2021],
ARC Easy and Challenge [Clark et al., 2018] and OpenbookQA [Mihaylov et al., 2018]. We show
the task-wise performance in Table 23 and Table 24.

J Experiments Compute Resources

We conducted all our experiments using NVIDIA L40 (40GB) GPUs. Specifically, we used a single
NVIDIA L40 GPU for pruning the 7B and 13B models, 4 GPUs for the 30B models, and 8 GPUs for
the 65B models. For the LoRA fine-tuning, we operated under a constrained computational budget,
employing 2x 40GB GPUs for the 7B models. Detailed information on the computational complexity
of AlphaPruning is provided in Appendix I.4.

28

Model Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

Dense 75.02 66.79 56.94 70.00 75.29 41.89 34.60 60.08
Magnitude 38.29 52.71 26.65 51.38 26.68 19.80 11.60 32.30

OWL w. Magnitude 37.86 52.71 27.32 52.57 28.96 22.01 13.60 33.57
Llama-V1 Ours w. Magnitude 40.31 53.69 30.87 51.22 36.24 21.76 16.20 35.67

7B Wanda 56.45 55.96 28.94 51.38 33.32 18.26 13.80 36.73
OWL w. Wanda 62.63 58.84 34.89 58.64 46.97 24.32 17.60 43.41
Ours w. Wanda 66.12 59.93 36.26 62.35 43.90 25.17 17.20 44.42

SparseGPT 64.65 53.69 33.73 56.59 42.93 22.10 17.60 41.52
OWL w. SparseGPT 66.15 52.71 37.08 62.35 48.40 26.02 19.80 44.65
Ours w. SparseGPT 68.26 55.96 37.81 64.01 46.17 27.39 18.80 45.48

Dense 77.86 70.75 59.91 72.61 77.40 46.42 33.20 62.59
Magnitude 52.97 50.54 26.58 50.75 28.45 20.56 14.80 34.95

OWL w. Magnitude 55.75 49.10 27.80 50.28 31.23 23.89 20.00 36.86
Llama-V1 Ours w. Magnitude 61.28 46.93 30.24 50.43 31.23 26.28 21.20 38.23

13B Wanda 61.90 52.71 30.50 53.12 40.91 17.58 15.60 38.90
OWL w. Wanda 62.81 52.71 38.57 63.46 57.07 26.37 20.40 45.91
Ours w. Wanda 64.83 52.71 41.04 64.96 59.39 28.24 21.20 47.48

SparseGPT 66.76 52.70 37.08 63.06 53.07 26.02 21.00 45.67
OWL w. Sparsegpt 66.82 53.07 40.36 66.22 57.37 28.67 20.80 47.61
Ours w. Sparsegpt 67.58 54.51 42.43 67.80 55.47 29.10 22.00 48.41

Dense 82.69 67.15 63.35 75.77 80.43 52.90 36.00 65.47
Magnitude 39.30 46.21 25.77 52.49 25.29 21.50 16.20 32.39

OWL w. Magnitude 39.93 58.48 25.94 52.88 27.31 18.60 14.00 33.88
Llama-V1 Ours w. Magnitude 62.02 47.29 32.61 57.14 47.18 27.47 24.20 42.56

30B Wanda 66.09 56.68 43.96 67.09 65.28 31.83 26.60 51.07
OWL w. Wanda 65.02 49.46 47.69 69.77 68.98 36.62 29.20 52.38
Ours w. Wanda 63.82 58.12 49.40 71.27 69.40 38.31 31.00 54.48

SparseGPT 68.13 61.01 44.50 68.75 65.70 33.53 27.60 52.75
OWL w. SparseGPT 67.95 55.60 46.96 72.22 67.13 35.49 26.80 53.16
Ours w. SparseGPT 68.96 57.04 47.49 72.30 67.97 34.73 30.00 54.07

Dense 84.60 69.68 65.40 77.51 80.95 52.82 38.40 67.05
Magnitude 51.85 54.51 38.55 56.67 57.35 29.95 26.40 45.04

OWL w. Magnitude 70.30 52.71 50.01 67.88 65.40 35.75 31.80 53.42
Llama-V1 Ours w. Magnitude 70.65 62.45 51.35 66.61 66.50 37.54 31.40 55.22

65B Wanda 76.45 56.68 47.50 69.61 70.55 35.92 27.60 54.90
OWL w. Wanda 78.50 58.48 50.90 74.11 70.70 38.05 30.60 57.34
Ours w. Wanda 81.85 61.01 52.55 75.06 71.60 40.02 30.40 58.93

SparseGPT 81.00 58.84 50.70 74.66 70.90 40.19 28.40 57.81
OWL w. SparseGPT 81.30 67.15 51.25 74.98 68.35 37.71 27.00 58.25
Ours w. SparseGPT 83.80 71.48 52.40 74.59 69.30 38.05 38.05 59.72

Table 23: Accuracies (%) of LLaMA for 7 zero-shot tasks with unstructured 70% sparsity. We
compare AlphaPruning with uniform pruning ratios and OWL using Magnitude-based pruning,
Wanda and SparseGPT.

29

Model Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

Dense 62.81 59.71 77.73 69.14 76.30 43.43 31.40 59.71
Magnitude 37.95 53.07 25.96 49.25 27.74 22.70 17.00 33.38

OWL w. Magnitude 38.75 52.35 27.38 48.38 32.28 22.27 17.80 34.17
Llama-V2 Ours w. Magnitude 57.43 51.99 28.03 51.14 31.99 23.81 20.60 37.86

7B Wanda 50.64 52.71 27.80 50.04 30.64 18.60 12.20 34.66
OWL w. Wanda 62.11 52.71 31.83 55.96 43.52 20.31 16.80 40.46
Ours w. Wanda 62.23 52.71 34.56 60.85 43.27 22.27 18.00 41.98

SparseGPT 65.38 53.43 33.55 57.62 44.52 22.91 16.40 41.84
OWL w. SparseGPT 66.94 52.71 36.57 63.06 49.33 24.49 21.60 44.96
Ours w. SparseGPT 65.93 54.15 36.83 62.19 49.62 24.23 19.80 44.68

Dense 80.61 65.34 60.04 72.22 79.46 48.46 35.20 63.05
Magnitude 38.72 52.70 27.56 49.33 31.27 20.73 14.60 33.56

OWL w. Magnitude 38.69 52.71 34.59 54.30 38.97 23.81 15.80 36.98
Llama-V2 Ours w. Magnitude 70.55 52.71 37.13 62.98 42.51 27.22 18.60 44.53

13B Wanda 62.39 52.71 28.98 51.14 35.10 18.00 11.80 37.16
OWL w. Wanda 63.46 52.71 36.31 60.46 55.64 24.91 21.80 45.04
Ours w. Wanda 62.57 54.87 40.28 67.32 54.46 29.35 21.60 47.21

SparseGPT 66.64 52.71 36.26 59.91 54.00 25.85 20.80 45.17
OWL w. SparseGPT 68.04 54.15 39.31 65.75 57.70 27.82 22.80 47.94
Ours w. SparseGPT 68.13 57.04 41.26 68.03 57.15 29.18 24.00 49.26

Dense 83.50 67.87 66.00 77.98 82.60 54.27 37.20 67.06
Magnitude 39.15 54.51 42.55 57.22 56.35 31.57 24.20 43.65

OWL w. Magnitude 64.45 53.51 45.45 68.06 61.00 33.98 27.00 50.49
Llama-V2 Ours w. Magnitude 63.10 53.07 45.65 67.09 62.55 33.96 29.60 50.72

70B Wanda 74.30 60.65 49.10 74.43 71.85 38.74 28.00 56.72
Ours w. Wanda 73.65 63.18 51.40 74.74 72.70 38.13 29.60 57.63

SparseGPT 80.75 63.90 52.30 75.77 73.60 41.64 29.80 59.68
OWL w. SparseGPT 79.25 64.26 51.95 74.98 73.00 40.53 30.40 59.20
Ours w. SparseGPT 80.40 70.04 51.90 75.06 74.10 40.87 29.20 60.23

Table 24: Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with unstructured 70% sparsity. We
compare AlphaPruning with uniform pruning ratios and OWL using Magnitude-based pruning,
Wanda, and SparseGPT.

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims in the abstract and listed contributions in Section 1 reflect the
main contributions made in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation of the paper in Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

31

Justification: Although the paper have no direct theoretical results, our work is theoretically-
principled, which heavily relies on the HT-SR theory.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the code for reproducing the main experimental results and
detailed the experimental settings in the Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

32

Answer: [Yes]
Justification: Our anonymized version of code is available here
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is presented in section 4.1 and the hyperparameters
setting can be seen in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have conducted tests for the statistical significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

33

https://github.com/neuripsalphaprunesubmission/neurips_anony_alphaprune
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the computer resources for experiments can be seen in
Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to conform the NeurIPS Code of Ethics in every respect of the
paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impacts, which can be seen in Appendix A

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

34

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code package in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

35

paperswithcode.com/datasets

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have communicated the details of the code as part of our submissions and
anonymized our assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

	Introduction
	Background and Setup
	Notation
	HT-SR theory and metrics

	Alpha-Pruning
	Rationale
	Estimating layer quality by HT metric
	Allocating sparsity based on the layer quality
	Shape vs. scale metrics for sparsity allocation

	Empirical results
	Experimental setup
	Main results
	Corroborating results
	Analyzing LLM pruning via HT-SR perspective

	Conclusion
	Impact Statements
	Limitation
	Related work
	Definitions of HT-SR metrics
	Further analysis of results
	Post-pruning layer-wise heavy-tail analysis
	Comparison with other LLM layer quality metrics
	Analyzing the layerwise sparsity distribution.
	Connections with Low-rank Approximation.

	Ablation study of sparsity allocation
	Per-matrix vs. per-block
	Different mapping functions

	Hypterparamter setting
	More baseline comparison
	Complementary Experimental Results
	Shape metrics versus scale metrics on Vision Transformers
	More results on other efficiency metrics
	Controlling the minimum layer sparsity for memory-limited hardware
	Computational complexity of AlphaPruning
	OPT family
	More results on semi-structured and structured pruning
	Mixed-Precision Quantization
	More fine-tuning results
	More results on vision models
	Zero-shot tasks performance

	Experiments Compute Resources

