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ABSTRACT

Synthetic data generation holds considerable promise, offering avenues to enhance
privacy, fairness, and data accessibility. Despite the availability of various methods
for generating synthetic tabular data, challenges persist, particularly in specialized
applications such as survival analysis. One significant obstacle in survival data
generation is censoring, which manifests as not knowing the precise timing of
observed (target) events for certain instances. Existing methods face difficulties
in accurately reproducing the real distribution of event times for both observed
(uncensored) events and censored events, i.e., the generated event-time distributions
do not accurately match the underlying distributions of the real data. So motivated,
we propose a simple paradigm to produce synthetic survival data by generating
covariates conditioned on event times (and censoring indicators), thus allowing
one to reuse existing conditional generative models for tabular data without signifi-
cant computational overhead, and without making assumptions about the (usually
unknown) generation mechanism underlying censoring. We evaluate this method
via extensive experiments on real-world datasets. Our methodology outperforms
multiple competitive baselines at generating survival data, while improving the
performance of downstream survival models trained on it and tested on real data.
Importantly, our approach delivers these improvements without compromising data
privacy, offering an effective solution for synthetic survival data generation.

1 INTRODUCTION

Synthetic data generation is the process of creating artificial data that mimics the statistical properties
and patterns of real-world data. This technique has gained significant importance in various machine
learning settings including data privacy and data augmentation (Jordon et al., 2022). The primary
motivation behind synthetic data generation is to address challenges associated with limited availabil-
ity, privacy concerns, or imbalance in distributions often prevalent in real-world data (Zhang et al.,
2017; Wang et al., 2021). For instance, researchers, practitioners and organizations could train and
evaluate machine learning models by leveraging synthetic data without compromising sensitive or
proprietary information. Further, synthetic data can augment existing datasets, enabling more robust
and generalized model performance. Alternatively, it can protect data privacy by providing a means
to share and exchange data without revealing sensitive information, facilitating collaboration and
research across different domains (de Benedetti et al., 2020).

Survival analysis, also known as time-to-event analysis, is a family of statistical methods used to
analyze and model the time until the occurrence of a specific event (or outcome) of interest. These
methods are widely employed in various fields, including biomedical research, operations research,
engineering, economics, and social sciences (Kaso et al., 2022; Lillelund et al., 2023; Danacica &
Babucea, 2010; Gross et al., 2014). For instance, assessing the effectiveness of medical treatments
(Singh & Mukhopadhyay, 2011), predicting equipment failure rates (de Cos Juez et al., 2010), or
analyzing customer churn in the business domain (Danacica & Babucea, 2010). The primary goal of
survival analysis is to estimate the probability (distribution) of an event occurring over time, given a
set of covariates or risk factors. One of the key challenges in survival analysis involves dealing with
censored data, which occurs when the event of interest is not observed for some individuals within the
study period. This can happen due to various reasons, such as loss to follow-up, measurement failure,
study termination, or the occurrence of competing risks (Salerno & Li, 2023). Handling censored
data requires tailored statistical methods to avoid biased survival estimates. Another challenge is that
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Figure 1: Block diagram of the proposed methodology. First, a conditional tabular data generator is trained to
learn to sample covariates from p(x|t, e). After training, both event times t̃, and type ẽ, are sampled from their
joint distribution via p(t|e) and p(e) using their empirical distributions and passed into the trained generator
along with u ∼ p(u), where p(u) is a simple distribution. The generator then repeatedly generates the synthetic
covariates thus completing the synthetic dataset D = {(x̃, t̃, ẽ)}Nn=1.

oftentimes, sample sizes in survival data are relatively small, or the proportion of observed events
relative to those with censoring is small, thus causing overfitting issues which negatively impact
generalization ability.

In most domains, such as clinical trials or engineering studies, collecting large amounts of survival data
can be challenging, time-consuming, and costly. Synthetic data generation allows researchers to create
large datasets with desired characteristics, enabling more robust model prototyping, development and
evaluation. Synthetic survival data, which is predominantly tabular (or structured), can be generated
using generative models that are specifically developed for tabular data, e.g., autoencoders (Xu et al.,
2019), adversarial generators (Yoon et al., 2020), diffusion generators (Kotelnikov et al., 2023), and
even large language models (LLMs) (Borisov et al., 2022). However, apart from the well-known
challenges associated with generating tabular data such as appropriately handling categorical and
continuous data, mixed data types, as well as their joint distributions (Xu et al., 2019), survival
data generation, especially in the medical domain, faces some unique challenges. These are due
to mainly unavoidable differences in the distributions for observed and censored events, and their
(unknown) underlying generation mechanism given the covariates. In practice, this challenge causes
mismatches between these distributions when comparing real-world and synthetic data generated from
it (Norcliffe et al., 2023). Consequently, such mismatches are likely to cause survival models trained
on such synthetic data to underperform relative to the real-world data in terms of discrimination and
calibration. So motivated, our work offers the following contributions:

• We propose a simple methodology for generating survival data by conditioning the generation of
covariates on the event times and censoring indicators after sampling these from the empirical
real-world data distributions as shown in Figure 1, thus i) readily resulting in matching observed and
censoring distributions; and ii) allowing the user to choose from existing methods for conditional
generation of tabular data without computational overhead.

• We show that our generator-agnostic methodology can be easily extended to use LLM-based
tabular data generators for the generation of high-quality synthetic survival data, an application that
to the best of our knowledge has not been explored so far.

• Extensive experiments on five real-world survival analysis datasets demonstrate the capabilities of
the proposed methodology in terms of the quality of the generated observed, censored and covariate
distributions, as well as the discrimination and calibration performance of survival analysis models
trained on synthetic data and evaluated on real-world data. Moreover, we also show that our method
offers better performance without compromising data privacy.

2 RELATED WORK

Generative models have emerged as powerful tools for synthesizing realistic data across various
domains, including images, text, and tabular data. These models aim to learn the underlying proba-
bility distributions of the training data and generate new samples that exhibit similar characteristics.
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Three prominent classes of generative models have gained significant traction: generative adversarial
networks (GANs), variational autoencoders (VAEs), and diffusion-based models. GANs employ an
adversarial training paradigm, where a generator network learns to produce synthetic data samples,
while a discriminator network aims to distinguish between real and generated samples (Goodfellow
et al., 2020). This adversarial process drives the generator to produce increasingly realistic samples.
VAEs leverage variational inference techniques to learn a latent representation of the data, enabling
the generation of new samples by sampling from the learned latent space (Kingma & Welling, 2013).
Diffusion-based models, such as the denoising diffusion probabilistic model (DDPM) (Ho et al.,
2020), gradually add noise to the data and then learn to reverse this process, generating new samples
by denoising random points. These generative models have demonstrated remarkable success in
various applications, including image synthesis (Kang et al., 2023), text generation (Su et al., 2022),
and video generation (Jiang et al., 2023). In survival analysis, generative models have been applied to
estimate event time distributions and hazard functions (Chapfuwa et al., 2018; Zhou et al., 2022).

Tabular data stands out as a prevalent data format in machine learning (ML), with more than 65%
of datasets found in the Google Dataset Search platform1 comprising tabular files, typically in
comma-separated or spreadsheet formats (Benjelloun et al., 2020). While conventional generative
methods are not optimally tailored for tabular data due to the mixture of continuous and categorical
variables (Xu et al., 2019), modified versions have been developed for this domain. These include,
the conditional tabular generative adversarial network (CTGAN) (Xu et al., 2019), which leverages
the GAN framework to generate synthetic data preserving multivariate distributions and relationships,
the tabular variational autoencoder (TVAE) (Xu et al., 2019), and the anonymization through
data synthesis using generative adversarial network (ADS-GAN) (Yoon et al., 2020). The tabular
denoising diffusion probabilistic model (TabDDPM) is a recent approach that leverages denoising
diffusion probabilistic models to generate high-fidelity synthetic tabular data (Kotelnikov et al.,
2023). Large language models (LLMs) have also shown potential for tabular data generation, using
fine-tuning on token-represented tabular data (Borisov et al., 2022).

In synthetic survival data generation, early statistical models (Bender et al., 2005; Austin, 2012)
transformed uniform samples into survival times but did not generate covariates. More recent
techniques have incorporated deep learning into the generative process. Ranganath et al. (2016)
proposed using deep exponential families to generate survival data, but this approach has limited
flexibility on the learned distributions. Miscouridou et al. (2018) and Zhou et al. (2022) relaxed this
assumption but still focused on generating survival times and censoring statuses conditioned on the
covariates, rather than generating the covariates themselves. Recently, SurvivalGAN (Norcliffe et al.,
2023) was developed, generating synthetic data in three steps: i) a conditional GAN (ADS-GAN)
generates covariates (x) and samples the event indicator (e) from the empirical distribution; ii) a
survival function model (DeepHit (Lee et al., 2018)) predicts survival functions for the generated
covariates; and iii) these outputs are used by a regression model (XGboost (Chen & Guestrin, 2016))
to predict the event time (t), generating the complete triplet (x, t, e). While effective, this method is
complex with multiple models, each having their own limitations. Alternatively, our work explores a
much simpler method that adopts existing tabular data generators for survival data without the need
for dedicated networks for the prediction of the survival function or event/censoring distributions.

3 METHODS

Problem definition Instances (or subjects) from survival data can be represented in general as
the triplet z = (x, t, e). Here, x ∈ X denotes m-dimensional tabular covariates that describe an
instance’s state at an initial (or index) time, encompassing both continuous and categorical covariates.
Then, ti ∈ T represents the time of a specific event relative to the initial time, thus t ≥ 0 and
T ≡ R+. Lastly, ei ∈ E stands for the event indicator, commonly E = {0, 1}, where e = 1 indicates
the event of interest occurs at time t, whereas e = 0 signifies the event of interest has not occurred up
to time t. In this work we only consider right censoring as it is the predominant form in real-world
datasets, however, the proposed method can be readily extended to left or interval censoring.

Background Survival analysis is a statistical framework used to analyze and model the time until the
occurrence of the event of interest, also known as the survival time or time-to-event. Survival analysis

1https://datasetsearch.research.google.com/.
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involves modeling the conditional probability density function p(t|x), to estimate the likelihood of
the event of interest occurring at time t given the covariates x. From this, the survival function is
derived, representing the probability that the event has not taken place by time t, i.e.,

S(t | x) =
∫ ∞

t

p (t′ | x) dt′, (1)

where S(t | x) is an estimate of the proportion of instances (subjects) with covariates x who have
survived up to time t. When the initial time is zero and given that events cannot occur at t ≤ 0,
thus S(0|x) = 1. Additionally, since p(t|x) is a valid probability distribution (non-negative), then
S(t|x) is a monotonically decreasing function. Time-to-event approximation involves estimating the
expected lifetime for any given covariate value, denoted as µ(x). Specifically, this is obtained as
µ(x) =

∫∞
0
t′p(t′|x) dt′, which, through integration by parts, simplifies to the area under the survival

curve: µ(x) =
∫∞
0
S(t|x) dt. Survival models typically fall into one of two categories: i) parametric

such as the accelerated failure time (Weibull, 1951), and log-logistic (Prentice, 1976) models; or ii)
non-parametric such as the Kaplan-Meier estimator (Kaplan & Meier, 1958) and Cox proportional
hazards model (Cox, 1972). Moreover, deep-learning versions of these have been proposed, e.g.,
DeepSurv (Katzman et al., 2018), DeepHit (Lee et al., 2018), DATE (Chapfuwa et al., 2018), etc.

3.1 CONDITIONING ON EVENT TIME AND TYPE

Synthetic survival data generation involves the generation of samples from the complete joint
distribution p(x, t, e). In practice, one can either sample from it directly (and unconditionally)
using generative models for tabular data, or via conditioning using for instance p(t|x, e)p(x)p(e) or
p(x|t, e)p(t|e)p(e). The former is the approach used in Norcliffe et al. (2023), which samples x̃ and
ẽ, from the marginals p(x) and p(e), are obtained using a conditional GAN (ADS-GAN) generator
and the empirical distribution for the event indicators, respectively, and subsequently, samples t̃ from
the conditional p(t|x, e) are generated (deterministically) using a regression model. One important
drawback of this approach is that the quality of the samples for event times t̃ from p(t|x, e) is both
dependent on the quality of the approximation t̃ ∼ pϕ(t|x, e) (with parameters ϕ) and that of p(x)
via x̃ ∼ pψ(x|u) parameterized by ψ, and u being sampled from a simple distribution, e.g., uniform
or Gaussian. As a result, approximation error in covariates x compounds with that for t resulting in
event and censoring distributions that do not necessarily match the real data. Consequently, Norcliffe
et al. (2023) also proposed metrics to quantify the quality of these distributions (see Section 4).

In an effort to alleviate these key issue, we reverse the conditioning and instead sample both event
times and type from their joint distribution via p(t|e) and p(e), using their empirical distributions.
Note that this is possible by assuming without loss of generality that the observed and censoring times
are conditionally independent given the covariates, which also aligns with the common assumption of
censoring at random in survival analysis, which posits that the censoring mechanism is independent
of the unobserved survival times, conditional on the covariates. Then, we sample the covariates from
p(x|t, e) using a conditional generator as follows

ẽ ∼ p(e), t̃ ∼ p(t|ẽ), u ∼ p(u), x̃ ∼ pθ(x|t̃, ẽ,u), (2)

where pθ(x|t̃, ẽ,u) is a conditional generator parameterized by θ, while p(u) is a simple distribution.
Repeatedly sampling from the mechanism in equation 2 allows one to obtain a synthetic dataset
D = {(xn, tn, en)}Nn=1 whose empirical conditionals for event and censoring times readily match
the ground-truth distributions, p(t|e = 1) and p(t|e = 0), respectively, and synthetic covariates that
acknowledge their association with the event of interest while accounting for censoring. Importantly,
using equation 2: i) eliminates the need for a separate model to generate event times (XGboost in
Norcliffe et al. (2023)); ii) eliminates the need for a separate model to generate survival distributions
(DeepHit in Norcliffe et al. (2023)), and iii) guarantees the quality of the observed and censored
event distributions. Moreover, and from a practical perspective, equation 2 offers flexibility since
pθ(x|t̃, ẽ,u) can be modeled, in principle, with any conditional generator. In the experiments
(see Section 4), we will consider TVAE, CTGAN, ADS-GAN, TabDDPM and LLMs. Note that
in equation 2 we are not required to sample from the empirical distributions for p(t) and p(e),
for instance one may alternatively fit univariate (kernel) density estimators and then draw t̃ and ẽ
accordingly, especially, if the dataset is small and the number of unique values of t in D is small.
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3.2 ADAPTING CONDITIONAL TABULAR GENERATORS TO SURVIVAL DATA

Existing tabular generators (see Section 2) use distinct strategies to implement conditioning. Below
we briefly describe how they are adapted to the considered survival data generation problem.

CTGAN This model being a conditional adversarial generator, synthesizes data using G(u, c),
where G(·) is the generator specified as a neural network, u is a vector sampled from a simple
distribution, e.g., a standard Gaussian distribution, e.g., u ∼ N (0, I), and c is a one-hot vector
representing a discrete conditioning covariate. See Xu et al. (2019) for additional details. In order to
use G(u, c) as a sampling mechanism for pθ(x|t̃, ẽ,u) in equation 2 we simply set c = Et(t̃)⊕ ẽ,
where Et(·) is an m-dimensional sinusoidal time embedding (Wang & Chen, 2020) and ⊕ is the
concatenation operator. In all our experiments we set m = 4.

TVAE The autoencoding formulation in Xu et al. (2019) does not specify explicitly how to perform
conditional generation for the tabular VAE. However, the simplest strategy involves setting the
encoder and decoder pair as u ∼ N (µ(x), σ2(x)) and x̃ ∼ pθ(x|c,u), respectively, where here
u is the latent representation for covariates x, µ(x) and σ2(x) are two neural networks for the
mean and variance functions of the latent representation u, pθ(x|c,u) is a probabilistic decoder
specified using neural networks (see Xu et al. (2019) for details), c is a one-hot vector as above for
CTGAN, and the input to the decoder conveniently implemented by concatenating z and c. Similar to
CTGAN, we make c = Et(t̃)⊕ ẽ in our implementation to sample from pθ(x|t̃, ẽ,u) in equation 2
via pθ(x|c = Et(t̃)⊕ ẽ,u).

ADS-GAN This alternative adversarial model specification encourages de-identifiability by letting
the generator be x̃ = G(u,x, c), i.e., covariates x are also used as inputs to the generation function
G(·), to encourage the model to generate samples x̃ that are distinct from x to preserve privacy. See
Yoon et al. (2020) for additional details. Consistent with CTGAN and TVAE above, we simply set
c = Et(t̃)⊕ ẽ.

TabDDPM This model designed specifically for tabular data employs a combination of Gaussian
and multinomial diffusion processes to handle numerical and categorical features, respectively.
Notably, each covariate uses a separate forward diffusion processes. The reverse diffusion function
in Kotelnikov et al. (2023) is set as xis = gi(xi,xi0, s), where gi(·) is modeled using neural
networks with identity and softmax activations for continuous and discrete covariates, respectively,
xis = hx(xi) + hs(Et(s)) + Ec(c) is the representation of the i-th covariate in x at diffusion step
s, hx(xi) is a fully connected layer with linear activation, hs(·) is composed of two fully connected
layers with sigmoid linear activations, Ec(·) is a standard (trainable) categorical embedding, and
s = 0, . . . , S, is such that xiS ∼ N (0, I) or xiS ∼ Cat(1/Ki), for Ki categories (distinct values),
for continuous or discrete covariates, respectively. Note that effectively, gi(·) models the residuals
of xis at diffusion step s rather than xis itself (Nichol & Dhariwal, 2021). For additional details of
the formulation and and components of the model architecture see Kotelnikov et al. (2023). For our
implementation, we set c = Et(t̃) + Es(ẽ) and set m = 128 as the embedding dimension.

4 EXPERIMENTS

Baselines and setup We compare our methodology against the following baselines: generative
adversarial networks for anonymization (ADS-GAN) (Yoon et al., 2020); conditional generative ad-
versarial networks for tabular data (CTGAN) (Xu et al., 2019); variational autoencoder for tabular data
(TVAE) (Xu et al., 2019); tabular denoising diffusion probabilistic models (TabDDPM) (Kotelnikov
et al., 2023); and SurvivalGAN (Norcliffe et al., 2023). Note that only the latter is specific to survival
data, whereas all the others generate tabular data unconditionally, i.e., from the joint p(x, t, e). For
CTGAN, TVAE, ADS-GAN, and TabDDPM models, we report metrics both directly using the models
for survival data generation as well as our methodology, i.e., using them as conditional generators
given event times and censoring indicators sampled from the empirical distribution of the real data
as described in Section 3.2. To evaluate downstream performance, survival models are trained on
synthetic data and tested on real data using the Train on Synthetic Test on Real (TSTR) paradigm (Es-
teban et al., 2017). Specifically, the original dataset is divided into three folds, and the synthetic data
generator is trained on two folds while the third is reserved for testing. Synthetic data equivalent (in
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size) to the training data is then generated, and downstream models are trained on this synthetic dataset
and evaluated on the held-out real test set. This process is repeated for all three fold combinations. We
consider various survival models: linear (CoxPH) (Cox, 1972), gradient boosting (SurvivalXGBoost)
(Barnwal et al., 2022), and neural networks (DeepHit) (Lee et al., 2018), and report metrics for the
best-performing model. For each dataset, benchmark, and experimental setting, we report mean and
standard deviation of performance metrics using 5 random seeds. To streamline the benchmarking,
we utilized the Synthcity library (Qian et al., 2024), which provides implementations of a variety of
synthetic tabular data generation models and benchmarking utilities. Detailed experimental settings
and hyperparameters are in Appendix B.3. The source code for reproducing experiments is available
at https://github.com/anonymous-785/synthetic_survival_data.

Datasets We benchmark our methodology on a variety of real-world medical datasets. Specifically:
i) Study to understand prognoses preferences outcomes and risks of treatment (SUPPORT) (Knaus
et al., 1995); ii) Molecular taxonomy of breast cancer international consortium (METABRIC) (Curtis
et al., 2012); iii) ACTG 320 clinical trial dataset (AIDS) (Hammer et al., 1997); iv) Rotterdam &
German breast cancer study group (GBSG) (Schumacher et al., 1994); and v) Assay of serum free
light chain (FLCHAIN) (Dispenzieri et al., 2012). See Appendix B.2 for additional details.

Metrics To evaluate the quality of the generated synthetic survival data, various metrics are
employed, which can be categorized into three groups: covariates quality, event-time distribution
quality, and downstream performance. For assessing the quality of the generated covariates x̃, the
Jensen-Shannon (JS) distance and Wasserstein distance (WS) are used to measure the divergence
between the generated and original covariate distributions. We also measure the differences between
the covariates in an univariate fashion using hypothesis testing, namely, Wilcoxon rank-sum and Chi
squared tests for continuous and discrete covariates respectively, and then summarize the obtained
p-values for all covariates as the proportion (PVP) below the standard significance threshold α = 0.05
after correction for multiple testing via Benjamini-Hochberg (Benjamini & Hochberg, 1995). For the
quality of the event time distributions we quantify the alignment between ground-truth and generated
temporal marginals, namely, p(t, e) is evaluated using the Kaplan-Meier (KM) divergence, optimism,
and short-sightedness metrics as previously described in (Norcliffe et al., 2023). The KM divergence
compares the mean absolute difference between the synthetic and real survival function estimates,
while optimism and short-sightedness are a proxy for their bias and variance, respectively. These
three metrics capture the accuracy of the generated censoring and event distributions. Finally, to
assess downstream performance, survival models are trained on the synthetic data and evaluated on
real dataset. Specifically, we consider the concordance index (C-index) (Harrell et al., 1982) and the
Brier score (Brier, 1950). The former measures the discriminative ability of the survival model, while
the latter quantifies the calibration of the probabilistic predictions.

4.1 SYNTHETIC SURVIVAL DATA GENERATION BENCHMARK

Covariate quality metrics: Results in Table 1 compare the similarity between the distribution of
synthetic samples and the original data. First, we assess the overall (covariance) structure of the
synthetic covariates relative to the original data via the JS and WS distances. Then, we perform
hypothesis testing to compare the (univariate) marginal distributions of each covariate relative to
the original data. Specifically, we use Wilcoxon rank-sum and Chi squared tests for continuous and
discrete covariates, respectively, as described above. Importantly, since we sample t̃ and Ẽ directly
from the empirical (training) distributions it is clear that the synthetic and original distributions
for event times accounting for censoring match, thus we do not report KM divergence, optimism
and short-sightedness in Table 1, however, they are reported in Appendix C for completeness. Our
models outperformed or matched baselines in all 5 datasets for JS distance, and surpassed them
in all 5 for WS distance. For PVP, we outperformed baselines in 3 of 5 datasets. This aligns with
expectations, as modeling mixed-data types remains challenging in tabular data generation (Xu
et al., 2019). The PVP metric reveals our method’s performance is bounded by current conditional
generator capabilities. Notably, in Figure 2, we directly compare the distribution of p-values for the
best-performing conditional model with that of the best unconditional model for a given dataset using
quantile-quantile (Q-Q) plots. We observe that our methodology leads to better p-value distributions,
i.e., our synthetic datasets are more consistent with the null (uniform) p-value distribution. In the
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Table 1: Quality (JS Distance, WS Distance, and PVP) and downstream (C-Index and Brier Score) metrics.
Models conditioning on t and e are highlighted † (our method), UM refers to the best-performing unconditional
model among TVAE, TabDDPM, CTGAN and ADS-GAN, and Original is for the survival model trained on the
real (training) data. Error bars are standard deviations for 5 repetitions.

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN

JS distance (↓)

SurvivalGAN 0.013±0.00 0.009±0.00 0.008±0.00 0.008±0.00 0.009±0.00
TVAE† 0.007±0.00 0.008±0.00 0.004±0.00 0.005±0.00 0.002±0.00

TabDDPM† 0.007±0.00 0.007±0.00 0.013±0.00 0.005±0.00 0.001±0.00
CTGAN† 0.013±0.00 0.020±0.01 0.005±0.00 0.003±0.00 0.004±0.00

ADS-GAN† 0.006±0.00 0.009±0.00 0.005±0.00 0.004±0.00 0.010±0.01
UM 0.006±0.00 0.007±0.00 0.005±0.00 0.005±0.00 0.002±0.00

WS distance (↓)

SurvivalGAN 0.112±0.01 0.039±0.00 0.043±0.00 0.019±0.00 0.052±0.00
TVAE† 0.061±0.00 0.028±0.00 0.032±0.00 0.013±0.00 0.016±0.00

TabDDPM† 0.159±0.02 0.089±0.00 0.308±0.02 0.056±0.00 0.028±0.00
CTGAN† 0.095±0.00 0.133±0.01 0.034±0.00 0.013±0.00 0.019±0.00

ADS-GAN† 0.082±0.00 0.037±0.00 0.036±0.00 0.011±0.00 0.018±0.00
UM 0.069±0.00 0.031±0.00 0.036±0.00 0.013±0.00 0.016±0.00

PVP (↓)

SurvivalGAN 0.181±0.00 0.555±0.00 0.571±0.00 0.485±0.00 0.555±0.00
TVAE† 0.090±0.00 0.444±0.00 0.457±0.06 0.142±0.00 0.222±0.04

TabDDPM† 0.181±0.06 0.222±0.00 0.528±0.03 0.199±0.07 0.222±0.04
CTGAN† 0.272±0.00 0.555±0.00 0.428±0.00 0.571±0.00 0.511±0.06

ADS-GAN† 0.309±0.04 0.555±0.00 0.600±0.03 0.428±0.00 0.422±0.04
UM 0.096±0.04 0.000±0.00 0.171±0.08 0.200±0.00 0.244±0.00

C-Index (↑)

SurvivalGAN 0.735±0.00 0.625±0.00 0.602±0.00 0.668±0.00 0.870±0.00
TVAE† 0.737±0.00 0.612±0.00 0.583±0.00 0.672±0.00 0.872±0.00

TabDDPM† 0.660±0.07 0.589±0.01 0.536±0.00 0.663±0.00 0.876±0.00
CTGAN† 0.746±0.00 0.628±0.01 0.577±0.00 0.665±0.01 0.874±0.00

ADS-GAN† 0.797±0.01 0.655±0.00 0.623±0.00 0.684±0.00 0.880±0.00
UM 0.779±0.00 0.649±0.00 0.625±0.00 0.679±0.00 0.879±0.00

Original 0.760±0.00 0.636±0.00 0.616±0.00 0.695±0.00 0.870±0.00

Brier Score (↓)

SurvivalGAN 0.068±0.00 0.205±0.00 0.202±0.00 0.212±0.00 0.096±0.00
TVAE† 0.059±0.00 0.199±0.00 0.207±0.00 0.214±0.00 0.095±0.00

TabDDPM† 0.063±0.00 0.212±0.00 0.217±0.00 0.215±0.00 0.096±0.00
CTGAN† 0.061±0.00 0.199±0.00 0.205±0.00 0.215±0.01 0.089±0.00

ADS-GAN† 0.059±0.00 0.197±0.00 0.198±0.00 0.213±0.00 0.084±0.00
UM 0.060±0.00 0.200±0.00 0.199±0.00 0.207±0.00 0.086±0.00

Original 0.062±0.00 0.200±0.00 0.195±0.00 0.205±0.00 0.095±0.00

case where our methodology underperforms shown in Figure 2b, the performance is not substantially
worse than the baseline (unconditional) TabDDPM model. Full results are shown in Appendix C.

(a) AIDS (b) METABRIC (c) FLCHAIN

Figure 2: Q-Q plots comparing the p-value distributions of the best-performing conditional model († highlights
our method) with that of the best unconditional model (UM). The dashed line represents the expected (uniform)
distribution.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Training and sampling procedure for survival data generation using LLMs.

Downstream Performance We conduct a comparative analysis of survival models trained with
synthetic data generated by our methodology against models trained with data from baseline methods.
A favorable outcome is achieved when a model trained with synthetic data performs comparably to or
occasionally even better than a model trained with real data, while also outperforming models trained
with alternative synthetic data sources. For reference, we also report the C-Index and Brier Score
for survival models trained on the original data. C-index and Brier score serve as the most widely
used indicators of performance, as they encapsulate the entire conditional distribution of covariates,
event/censoring times, and event indicators p(t, e|x). Results in Table 1 demonstrate that in both of
these metrics, we outperform the baselines in 4 of 5 datasets. Further, in most cases, we were also
able to achieve better performance than survival models trained on the original data.

4.2 FINE TUNING AN LLM FOR SURVIVAL DATA GENERATION

Generation of realistic tabular data (GReaT) is a recently proposed approach to generating high-
quality synthetic tabular data using LLMs (Borisov et al., 2022). This is achieved by representing
the tabular data as a sequence of text and training the language model to generate new sequences
that correspond to valid and plausible tabular data instances. We adapt GReaT to generate synthetic
survival data by conditioning the generation on time-to-event and event-type. The fine-tuning of a pre-
trained auto-regressive LLM on the encoded tabular data for data generation as proposed in Borisov
et al. (2022) involves the following steps. Textual encoding and feature permutation: The tabular data
with M column names {fm}Mm=1 and thus, M -dimensional rows {xn}Nn=1 are converted into textual
representation. Each row (sample) xn is encoded as a sentence with elements tn = {tnm}Mm=1,
where tnm = [fm, “is”, xnm, “, ”] contains the column name fm and its value xnm. Model training:
The LLM is trained using DistilGPT2 (Li et al., 2021) on the textually encoded dataset {tn}Nn=1, with
elements of tn permuted at random to remove pseudo-positional information as column order in a
tabular dataset is in principle non-informative. Sampling: Feature permutations during training enable
the model to start generation with any combination of features and values. To generate synthetic data
conditionally, we prompt the trained model with conditioning sequences sampled from the empirical
marginal p(t, e), and let it generate the remaining tokens to complete the textual feature vector, which
is then converted back to tabular format. Unconditional generation follows Borisov et al. (2022). The
training and sampling procedure is shown in Figure 3. Table 2 compares the performance of GReaT
with and without conditional generation, against the best generator from Table 1 (results shown for
two datasets). See Appendix C for full results including Q-Q plots. We observe that conditional
generation consistently enhances GReaT’s performance over the unconditional variant and baseline
generators. Further, PVP also improves significantly, outperforming all unconditional models across
all datasets, underscoring the effectiveness of the LLM in modeling univariate marginals. Note
however that GReaT is much more costly compared to other models as shown in Appendix B.1.

4.3 SUB-POPULATION LEVEL EVALUATION OF SYNTHETIC DATA

In this experiment, we evaluate the performance of the proposed methodology at the sub-population
level using the AIDS dataset, using race (White, Black and Hispanic) to define the sub-populations.
Performance evaluation is carried out via race-stratifiedK-fold cross-validation. We consider survival
models in three scenarios: i) trained on the real data; ii) trained on synthetic data with the same
race proportion as the original data (Synthetic); and iii) trained on synthetic data with balanced race
samples while preserving the distribution of observed and censored events for each race (Synthetic
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Table 2: Quality (JS, WS distance and PVP) and downstream (C-Index and Brier Score) metrics. Models
conditioning on t and e are highlighted † (our method). BM refers to the best-performing model from Table 1.

Dataset Method C-Index Brier Score JS distance WS Distance PVP

AIDS

SurvivalGAN 0.735±0.00 0.068±0.01 0.013±0.00 0.12±0.00 0.181±0.00
GReaT† 0.790±0.00 0.063±0.00 0.003±0.00 0.036±0.00 0.000±0.00
GReaT 0.725±0.01 0.063±0.00 0.004±0.00 0.046±0.00 0.090±0.00

BM 0.797±0.01 0.059±0.00 0.006±0.00 0.061±0.00 0.090±0.00

FLCHAIN

SurvivalGAN 0.870±0.00 0.096±0.00 0.009±0.00 0.052±0.00 0.555±0.00
GReaT† 0.880±0.00 0.082±0.00 0.001±0.00 0.015±0.00 0.111±0.00
GReaT 0.878±0.00 0.090±0.00 0.001±0.00 0.020±0.00 0.222±0.00

BM 0.880±0.00 0.084±0.00 0.001±0.00 0.016±0.00 0.222±0.04

Table 3: Downstream (C-Index and Brier Score) performance metrics for survival models trained on Real Data,
Synthetic, and Synthetic (Balanced). Models conditioning on t and e are highlighted † (our method).

Method Race Synthetic Synthetic (Balanced)
C-index Brier Score C-index Brier Score

ADS-GAN†

All 0.722±0.01 0.071±0.00 0.745±0.02 0.065±0.01
Race 1 0.722±0.00 0.066±0.00 0.729±0.00 0.062±0.00
Race 2 0.722±0.00 0.070±0.00 0.729±0.00 0.063±0.00
Race 3 0.763±0.01 0.070±0.00 0.758±0.01 0.063±0.00

SurvivalGAN

All 0.663±0.00 0.100±0.02 0.683±0.01 0.076±0.01
Race 1 0.663±0.00 0.092±0.00 0.676±0.00 0.072±0.01
Race 2 0.663±0.00 0.095±0.01 0.676±0.01 0.073±0.02
Race 3 0.668±0.01 0.095±0.01 0.698±0.01 0.073±0.01

Method Race Real Data
C-index Brier Score

Original

All 0.735±0.01 0.075±0.01
Race 1 0.724±0.00 0.069±0.00
Race 2 0.724±0.00 0.072±0.00
Race 3 0.778±0.02 0.072±0.00

(Balanced)). For the survival models trained on the original AIDS dataset, the C-index differs across
races, with the model performing better on Hispanic (0.778) when compared to White (0.724) and
Black (0.724), with a 0.778/0.724 ≈ 1.07 ratio. When training using our synthetic data (ADS-GAN
conditioned on time and event) with the same distribution as the original data, the C-index values
reflect a similar performance ratio of 1.06 between races. For the balanced distribution scenario, all
performance metrics improve at the expense of reducing the performance ratio between Hispanic
and White/Black observed in the original data to 1.04. Further, the proposed model consistently
outperforms SurvivalGAN, which is less able to capture the race performance difference with ratios
1.01 and 1.03 for Synthetic and Synthetic (Balanced), respectively.

4.4 EVALUATING THE EFFECTS OF SAMPLING t AND e FROM A PRIVACY PERSPECTIVE

To explore the acceptability of bootstrapping t and e when generating synthetic data, we employed
the Distance to Closest Record (DCR) metric to evaluate the privacy preservation capabilities of
various synthetic data generation methods (Zhao et al., 2021). The DCR quantifies the Euclidean
distance between each synthetic record and its nearest real counterpart. A higher DCR value
indicates a lower risk of privacy breach. We report the median and minimum DCR for all synthetic
survival data generators used in our study, with the addition of a Synthetic Minority Oversampling
Technique (SMOTE) (Chawla et al., 2002) baseline. SMOTE, originally proposed for minority
class oversampling, is a simple interpolation-based method that generates synthetic points as convex
combinations of real data points and their k-th nearest neighbors. In this study, we generalized and
applied SMOTE to synthetic data generation to bootstrap the entire data point (x̃, t̃, ẽ), for comparison
purposes. The results, presented in Table 4, demonstrate that the median DCR for the methods where
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Table 4: Median value of Distance of closest record (DCR) from the original. Models conditioning on t and e
are highlighted † (our method). UM refers to the best-performing unconditional model among TVAE, TabDDPM,
CTGAN and ADS-GAN. Error bars are standard deviations for 5 repetitions. The best (highest) values are in
bold while the worst (lowest) values are underlined.

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN
SurvivalGAN 1.035±0.00 0.969±0.00 1.589±0.00 0.500±0.00 0.796±0.00

TVAE† 0.883±0.00 0.877±0.00 1.511±0.00 0.476±0.00 0.642±0.00
Median TabDDPM† 1.172±0.03 0.908±0.01 1.612±0.03 0.519±0.00 0.572±0.01
DCR CTGAN† 0.918±0.01 1.043±0.00 1.594±0.00 0.524±0.00 0.695±0.00

ADS-GAN† 1.133±0.17 0.992±0.00 1.691±0.00 0.519±0.00 0.667±0.01
SMOTE 0.388±0.00 0.698±0.00 0.958±0.00 0.290±0.00 0.381±0.00

UM 1.158±0.01 1.087±0.00 1.666±0.00 0.515±0.00 0.641±0.00

Table 5: Minimum value of Distance of closest record (DCR) from the original. Models conditioning on t
and e are highlighted † (our method). UM refers to the best-performing unconditional model among TVAE,
TabDDPM, CTGAN and ADS-GAN. Error bars are standard deviations for 5 repetitions. The best (highest)
values are in bold while the worst (lowest) values are underlined.

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN
SurvivalGAN 0.048±0.00 0.172±0.00 0.326±0.00 0.062±0.00 0.057±0.00

TVAE† 0.077±0.03 0.202±0.02 0.370±0.02 0.033±0.00 0.026±0.00
Minimum TabDDPM† 0.095±0.00 0.193±0.05 0.403±0.01 0.065±0.00 0.037±0.00

DCR CTGAN† 0.139±0.01 0.215±0.01 0.321±0.01 0.045±0.01 0.054±0.01
ADS-GAN† 0.102±0.01 0.185±0.04 0.391±0.01 0.053±0.01 0.066±0.02

SMOTE 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00
UM 0.109±0.02 0.213±0.00 0.429±0.00 0.050±0.00 0.055±0.00

t and e were bootstrapped (denoted by a dagger †) was higher in 3 of 5 data sets, although by a small
margin. A similar observation can be made in Table 5 where minimum DCR was higher for our
methods in 4 of 5 datasets. In general, the median and minimum DCR values were largely similar
between the methods with and without conditioning on t and e, suggesting that sampling them is not
likely to impact privacy. However, SMOTE consistently exhibited the lowest DCR in all datasets,
indicating potential privacy concerns. These findings provide empirical evidence that bootstrapping
t and e is generally acceptable from a privacy perspective. However, we note that even the most
stringent minimum DCR does not provide privacy guarantees, so it needs to be interpreted with care.
Full results are shown in Appendix C.

5 CONCLUSION

This work proposed a simple yet effective methodology for generating high-quality synthetic survival
data by conditioning the generation of covariates on event times and censoring indicators sampled
from the empirical distributions. Through extensive experiments on multiple real-world datasets, we
demonstrated that our approach outperforms several competitive baselines across various evaluation
metrics that assess the quality of the generated covariate distributions, alignment with the ground-
truth event time distributions, and the downstream performance of survival models trained on the
synthetic data. Moreover, we showcased the applicability of LLMs for survival data generation by
fine-tuning them in a conditional manner on the textual representations of tabular data and how the
proposed method preserves the sub-population-level performance characteristics of real-world data
while preserving patient privacy.

Limitations Despite its promising results, our work has limitations. First, the quality of the generated
data is highly dependent on the representativeness and diversity of the original dataset used for
training the generative models. If the training data exhibit biases or lack sufficient variability, these
likely will propagate to the synthetic data. Second, while our approach ensures accurate reproduction
of the event time and censoring distributions, it does not explicitly consider time-varying covariates,
which may be relevant in certain applications. Finally, further research is needed to address bias and
equity in survival data. Though we attempt to understand the behavior of survival models trained
on synthetic data at a sub-population level, we acknowledge that bias and equity are multifaceted
challenges extending beyond the scope of this study. These are exciting avenues for further research.
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6 ETHICS STATEMENT

This study focuses on synthetic survival data generation, which has important ethical implications.
While our method aims to preserve patient privacy by generating synthetic data, we acknowledge
the potential risks of reinforcing biases present in the original datasets. We have made efforts to
evaluate our approach across different sub-populations to assess fairness, but further work is needed
to fully address bias and equity concerns in survival analysis. The synthetic data generated should
not be used for real clinical decision-making without extensive validation. We have no conflicts of
interest to declare. All datasets used are publicly available and de-identified. Our work complies
with relevant data protection regulations. We encourage users of our method to carefully consider the
ethical implications and potential biases when applying it to sensitive healthcare data.

7 REPRODUCIBILITY

To ensure reproducibility, we have provided detailed descriptions of our methodology, datasets, and
experimental setup throughout the paper and appendix. The hyperparameters for all models are
specified in Appendix B.3. We have made our code publicly available at the anonymous GitHub
repository linked in Section 4. This includes implementations of our proposed method and baselines.
The datasets used are all publicly available, with download links provided in Appendix B.2. We
report results as means and standard deviations over multiple random seeds. Our computational
resources and runtimes are described in Appendix B.1. By providing these details, we aim to enable
other researchers to reproduce our experiments and build upon our work.
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Table 6: Training and generation time for synthetic survival data generation (in seconds). Models conditioning
on t and e are highlighted (†).

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN

TTPI (↓)

SurvivalGAN 0.178±0.00 0.260±0.00 1.234±0.01 0.283±0.00 1.024±0.01
TVAE† 0.079±0.00 0.129±0.00 0.717±0.00 0.137±0.00 0.520±0.00

TabDDPM† 0.055±0.00 0.049±0.00 0.208±0.00 0.066±0.00 0.182±0.00
CTGAN† 0.165±0.00 0.240±0.00 1.209±0.01 0.246±0.00 0.894±0.01

ADS-GAN† 0.143±0.00 0.239±0.00 1.148±0.01 0.256±0.00 0.825±0.01
TVAE 0.136±0.00 0.186±0.00 1.023±0.01 0.187±0.00 0.735±0.00

TabDDPM 0.046±0.00 0.050±0.00 0.215±0.00 0.070±0.00 0.183±0.00
CTGAN 0.193±0.00 0.282±0.00 1.312±0.01 0.287±0.00 1.028±0.01

ADS-GAN 0.214±0.00 0.291±0.00 1.404±0.01 0.306±0.00 1.061±0.01

GT (↓)

SurvivalGAN 0.396±0.01 0.421±0.02 0.896±0.08 0.407±0.05 0.715±0.05
TVAE† 0.089±0.00 0.105±0.00 0.376±0.05 0.119±0.02 0.251±0.01

TabDDPM† 11.875±0.16 9.477±0.35 48.985±0.37 17.451±0.22 37.216±0.38
CTGAN† 0.075±0.01 0.088±0.01 0.152±0.00 0.066±0.01 0.102±0.01

ADS-GAN† 0.075±0.01 0.084±0.01 0.148±0.00 0.065±0.00 0.102±0.01
TVAE 0.128±0.02 0.135±0.00 0.468±0.09 0.124±0.00 0.281±0.11

TabDDPM 11.785±0.36 9.466±0.33 50.017±0.81 18.085±0.56 34.937±0.85
CTGAN 0.079±0.00 0.087±0.00 0.192±0.03 0.073±0.00 0.124±0.11

ADS-GAN 0.089±0.00 0.098±0.01 0.212±0.04 0.085±0.01 0.111±0.00

Table 7: Training and generation time for synthetic survival data generation using LLMs (in seconds). Models
conditioning on t and e are highlighted (†).

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN
TTPI GReaT† 5.154±0.11 9.600±0.19 49.800±0.00 6.660±0.21 23.400±0.10

GT GReaT 14.237±0.15 121.451±0.20 270.798±0.99 23.516±0.05 77.154±0.18
GReaT† 623.156±2.00 912.126±1.76 5520±5.57 812.366±0.25 1140.520±2.59

A BROADER IMPACT

The ability to generate realistic synthetic survival datasets can have far-reaching impacts across
various domains, especially in privacy-sensitive applications like healthcare and clinical research.
Synthetic data can enable model development, benchmarking, and collaboration while preserving
patient confidentiality and complying with data protection regulations. Furthermore, our methodology
can potentially address the common challenge of limited data availability in survival analysis by
augmenting existing datasets or creating entirely new synthetic datasets tailored to specific require-
ments. While synthetic survival data is specific to the domain to which it is applied, limiting the
potential for misuse, it is important to acknowledge the possibility of reinforcing biases present in the
training data, as is the case with any generative model. Though we aim to understand the behavior
of survival models trained on synthetic data across sub-populations, we recognize that addressing
bias and ensuring equity are complex challenges that extend beyond the scope of this study. Thus, it
is crucial to exercise caution and implement appropriate safeguards to mitigate potential biases and
promote fairness in the development and deployment of such models.

B EXPERIMENTAL DETAILS

B.1 COMPUTATIONAL COST

All experiments, except for the LLM fine-tuning (see Section 4), were conducted on Google Colab
Pro using a T4 GPU. For the LLM fine-tuning experiments, an NVIDIA A100 GPU was utilized
on Colab. In Table 6 we report the training time per iteration (TTPI) along with the time taken for
synthetic data generation (GT) for all models used in Section 4.1, while the training and generation
time for Section 4.2) are reported in Table 7.
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Table 8: Summary statistics of the datasets used in the study.

Dataset No. instances No. censored instances No. features
AIDS 1151 96 11

METABRIC 1904 801 9
FLCHAIN 7874 5705 9

GBSG 2232 965 7
SUPPORT 8873 2837 14

B.2 DATASETS

We benchmark our methodology on a variety of medical datasets summarized in Table 8. Specifically:
i) Study to understand prognoses preferences outcomes and risks of treatment (SUPPORT) (Knaus
et al., 1995); ii) Molecular taxonomy of breast cancer international consortium (METABRIC)
(Curtis et al., 2012); iii) ACTG 320 clinical trial dataset (AIDS) (Hammer et al., 1997); iv)
Rotterdam & German breast cancer study group (GBSG) (Schumacher et al., 1994); and v) As-
say of serum free light chain (FLCHAIN) (Dispenzieri et al., 2012). Pre-processed versions
of METABRIC, SUPPORT, and GBSG can be found at: https://github.com/havakv/
pycox. AIDS and FLCHAIN datasets can be downloaded from https://github.com/sebp/
scikit-survival/tree/master/sksurv/datasets/data. For the FLCHAIN dataset,
missing values in continuous covariates were imputed to the mean, while in discrete covariates they
were imputed to the mode. All of these datasets are publicly available hence the experiments can be
readily reproduced. In parts of our code (see Section 3.2 and 4), we utilize and modify the Synthcity
library (https://github.com/vanderschaarlab/synthcity) which is protected under
the Apache-2.0 license. All rights to Synthcity are reserved by the original authors (Qian et al., 2024).
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B.3 HYPERPARAMETERS

For reproducibility purposes, all hyperparameters are specified below. Table 9 lists the hyperparame-
ters for the downstream survival models used in the benchmarks. Further, Tables 10 and 11 provide
the hyperparameters for all generative models employed in the study.

Table 9: Hyperparameters for the survival models used in Section 4.

Method Parameter Parameter Value

CoxPH
Estimation Method Breslow
Penalizer 0.0
L1 Ratio 0.0

SurvivalXGBoost

Objective Survival: AFT
Evaluation Metric AFT Negative Log Likelihood
AFT Loss Distribution Normal
AFT Loss Distribution Scale 1.0
No. Estimators 100
Column Subsample Ratio (by node) 0.5
Maximum Depth 5
Subsample Ratio 0.5
Learning Rate 5× 10−2

Minimum Child Weight 50
Tree Method Histogram
Booster Dart

Deephit

No. Durations: 1000
Batch Size 100
Epochs 2000
Learning Rate 1× 10−2

Hidden Width 300
α 0.28
σ 0.38
Dropout Rate 0.2
Patience 20

Table 10: Hyperparameters used for the LLM in Section 4.2.

Method Parameter Parameter Value

GReaT (DistilGPT2)

Batch Size 32
No. Iterations 1000
Learning Rate 5× 10−5

Optimizer AdamW
Sampling Temperature 0.7
Sampling Batch Size 100
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Table 11: Hyperparameters of the generative models used in synthetic benchmarks in Section 4.1.

Model Parameter Parameter Value

ADS-GAN

No. Iterations 10000
Generator no. Hidden Layers 2
Generator Hidden Units 500
Generator Non-linearity ReLU
Generator Dropout Rate 0.1
Discriminator No. Hidden Layers 2
Discriminator Hidden Units 500
Discriminator Non-linearity Leaky ReLU
Discriminator Dropout Rate 0.1
Learning Rate 1× 10−3

Weight Decay 1× 10−3

Batch Size 200
Gradient Penalty (λ) 10
Identifiability Penalty 0.1
Encoder Max Clusters 5
Early Stopping Patience 5

CTGAN

No. Iterations 2000
Generator No. Hidden Layers 2
Generator Hidden Units 500
Generator Non-linearity ReLU
Learning Rate 1× 10−3

Weight Decay 1× 10−3

Discriminator No. Hidden Layers 2
Discriminator Hidden Units 500
Discriminator Non-linearity Leaky ReLU
Gradient Penalty (λ) 10
Batch Size 200
Early Stopping Patience 5

SurvivalGAN

Uncensoring Model Survival Function Regression
Time-to-event strategy Survival Function
Censoring Strategy Random
Dataloader Sampling Strategy Imbalance Time Censoring

TVAE

No. Iterations 1000
Batch Size 200
Learning Rate 1× 10−3

Weight Decay 1× 10−5

Encoder No. Hidden Layers 3
Encoder Hidden Units 500
Encoder Non-linearity Leaky ReLU
Encoder Dropout Rate 0.1
Decoder No. Hidden Layers 3
Decoder Hidden Units 500
Decoder Non-linearity Leaky ReLU
Decoder Dropout Rate 0
Early Stopping Patience 5
Data Encoder Max Clusters 10
Embedding Width 500

TabDDPM

No. Iterations 1000
Batch Size 1024
Learning Rate 2× 10−3

Weight Decay 1× 10−4

No. of Time-Steps 1000
Scheduler Cosine
Gaussian Loss Type MSE
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C ADDITIONAL PERFORMANCE METRICS

Below we provide the comprehensive scores of all models evaluated in the paper. Table 12 presents
the covariate quality and downstream performance metrics for all models assessed in Section 4.1. In
Table 13, we report the event-time distribution quality metrics, including optimism, short-sightedness,
and KM Divergence, for both conditional and unconditional models. Table 14 summarizes the results
for the LLM experiment and Figure 4 shows Q-Q plots for the same, as discussed in Section 4.2.
Table 15 and 16 summarizes the full results for the privacy experiment discussed in Section 4.4.

Table 12: Quality (JS Distance, WS Distance, and PVP) and downstream (C-Index and Brier Score) metrics.
Models conditioning on t and e are highlighted (†), and Original is for the survival model trained on the real
(training) data. Error bars are standard deviations for 5 repetitions.

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN

JS distance (↓)

SurvivalGAN 0.013±0.00 0.009±0.00 0.008±0.00 0.008±0.00 0.009±0.00
TVAE† 0.007±0.00 0.008±0.00 0.004±0.00 0.005±0.00 0.002±0.00

TabDDPM† 0.007±0.00 0.007±0.00 0.013±0.00 0.005±0.00 0.001±0.00
CTGAN† 0.013±0.00 0.020±0.01 0.005±0.00 0.003±0.00 0.004±0.00

ADS-GAN† 0.006±0.00 0.009±0.00 0.005±0.00 0.004±0.00 0.010±0.01
TVAE 0.011±0.00 0.009±0.00 0.007±0.00 0.007±0.00 0.003±0.00
DDPM 0.006±0.00 0.007±0.00 0.006±0.00 0.005±0.00 0.002±0.00

CTGAN 0.007±0.00 0.012±0.00 0.005±0.00 0.008±0.00 0.005±0.00
ADS-GAN 0.006±0.00 0.007±0.00 0.007±0.00 0.005±0.00 0.005±0.00

WS distance (↓)

SurvivalGAN 0.112±0.01 0.039±0.00 0.043±0.00 0.019±0.00 0.052±0.00
TVAE† 0.061±0.00 0.028±0.00 0.032±0.00 0.013±0.00 0.016±0.00

TabDDPM† 0.159±0.02 0.089±0.00 0.308±0.02 0.056±0.00 0.028±0.00
CTGAN† 0.095±0.00 0.133±0.01 0.034±0.00 0.013±0.00 0.019±0.00

ADS-GAN† 0.082±0.00 0.037±0.00 0.036±0.00 0.011±0.00 0.018±0.00
TVAE 0.075±0.00 0.031±0.00 0.037±0.00 0.013±0.00 0.017±0.00
DDPM 0.079±0.00 0.031±0.00 0.049±0.00 0.015±0.00 0.016±0.00

CTGAN 0.069±0.00 0.041±0.00 0.036±0.00 0.017±0.00 0.021±0.00
ADS-GAN 0.065±0.00 0.035±0.00 0.038±0.00 0.013±0.00 0.017±0.00

PVP (↓)

SurvivalGAN 0.181±0.00 0.555±0.00 0.571±0.00 0.485±0.00 0.555±0.00
TVAE† 0.090±0.00 0.444±0.00 0.457±0.06 0.142±0.00 0.222±0.04

TabDDPM† 0.181±0.06 0.222±0.00 0.528±0.03 0.199±0.07 0.222±0.04
CTGAN† 0.272±0.00 0.555±0.00 0.428±0.00 0.571±0.00 0.511±0.06

ADS-GAN† 0.309±0.04 0.555±0.00 0.600±0.03 0.428±0.00 0.422±0.04
TVAE 0.127±0.04 0.333±0.00 0.400±0.03 0.200±0.06 0.377±0.06
DDPM 0.096±0.04 0.000±0.00 0.171±0.08 0.285±0.00 0.244±0.07

CTGAN 0.181±0.00 0.555±0.00 0.428±0.03 0.285±0.00 0.444±0.00
ADS-GAN 0.272±0.00 0.422±0.04 0.571±0.00 0.571±0.00 0.444±0.00

C-Index (↑)

SurvivalGAN 0.735±0.00 0.625±0.00 0.602±0.00 0.668±0.00 0.870±0.00
TVAE† 0.737±0.00 0.612±0.00 0.583±0.00 0.672±0.00 0.872±0.00

TabDDPM† 0.660±0.07 0.589±0.01 0.536±0.00 0.663±0.00 0.876±0.00
CTGAN† 0.746±0.00 0.628±0.01 0.577±0.00 0.665±0.01 0.874±0.00

ADS-GAN† 0.797±0.01 0.655±0.00 0.623±0.00 0.684±0.00 0.880±0.00
Original 0.760±0.00 0.636±0.00 0.616±0.00 0.695±0.00 0.870±0.00
TVAE 0.735±0.00 0.646±0.00 0.604±0.00 0.671±0.00 0.878±0.00

TabDDPM 0.759±0.00 0.649±0.00 0.625±0.00 0.679±0.00 0.879±0.00
CTGAN 0.779±0.00 0.647±0.00 0.606±0.00 0.679±0.00 0.878±0.00

ADS-GAN 0.776±0.00 0.636±0.00 0.601±0.00 0.663±0.00 0.878±0.00

Brier Score (↓)

SurvivalGAN 0.068±0.00 0.205±0.00 0.202±0.00 0.212±0.00 0.096±0.00
TVAE† 0.059±0.00 0.199±0.00 0.207±0.00 0.214±0.00 0.095±0.00

TabDDPM† 0.063±0.00 0.212±0.00 0.217±0.00 0.215±0.00 0.096±0.00
CTGAN† 0.061±0.00 0.199±0.00 0.205±0.00 0.215±0.01 0.089±0.00

ADS-GAN† 0.059±0.00 0.197±0.00 0.198±0.00 0.213±0.00 0.084±0.00
Original 0.062±0.00 0.200±0.00 0.195±0.00 0.205±0.00 0.095±0.00
TVAE 0.061±0.00 0.204±0.00 0.206±0.00 0.210±0.00 0.093±0.00
DDPM 0.060±0.00 0.200±0.00 0.199±0.00 0.207±0.00 0.087±0.00

CTGAN 0.064±0.00 0.202±0.00 0.203±0.00 0.210±0.00 0.086±0.00
ADSGAN 0.061±0.00 0.207±0.00 0.201±0.00 0.208±0.00 0.088±0.00
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Table 13: Event-time distribution quality metrics. Models conditioning on t and e are highlighted (†). Error
bars are standard deviations for 5 repetitions.

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN

Optimism

SurvivalGAN 0.021±0.00 0.011±0.00 0.016±0.00 0.006±0.00 0.134±0.00
TVAE† 0.000±0.00 0.000±0.00 0.000±0.00 0.003±0.00 0.001±0.00
DDPM† 0.000±0.00 0.000±0.00 0.000±0.00 0.003±0.00 0.001±0.00

CTGAN† 0.000±0.00 0.000±0.00 0.000±0.00 0.003±0.00 0.001±0.00
ADSGAN† 0.000±0.00 0.000±0.00 0.000±0.00 0.003±0.00 0.001±0.00

(→ 0) TVAE 0.023±0.00 -0.003±0.00 -0.014±0.00 0.004±0.00 0.022±0.00
DDPM 0.021±0.00 0.001±0.00 0.001±0.00 0.026±0.00 0.005±0.00

CTGAN -0.005±0.00 0.017±0.00 -0.038±0.00 0.060±0.00 -0.037±0.00
ADSGAN 0.001±0.00 -0.033±0.00 -0.007±0.00 0.010±0.00 0.005±0.00

SurvivalGAN 0.007±0.00 0.124±0.00 0.020±0.00 0.019±0.00 0.005±0.00
TVAE† 0.001±0.00 0.000±0.00 0.000±0.00 0.010±0.01 0.002±0.00
DDPM† 0.001±0.00 0.000±0.00 0.000±0.00 0.010±0.01 0.002±0.00

Short CTGAN† 0.001±0.00 0.000±0.00 0.000±0.00 0.010±0.01 0.002±0.00
Sightedness ADS-GAN† 0.001±0.00 0.000±0.00 0.000±0.00 0.010±0.01 0.002±0.00

(→ 0) TVAE 0.058±0.00 0.148±0.00 0.002±0.00 0.017±0.00 0.018±0.00
DDPM 0.002±0.00 0.000±0.00 0.002±0.00 0.015±0.00 0.003±0.00

CTGAN 0.071±0.00 0.056±0.00 0.010±0.00 0.019±0.00 0.017±0.00
ADSGAN 0.040±0.00 0.188±0.00 0.000±0.00 0.014±0.00 0.006±0.00

SurvivalGAN 0.021±0.00 0.082±0.00 0.064±0.00 0.049±0.00 0.134±0.00
TVAE† 0.002±0.00 0.008±0.00 0.002±0.00 0.005±0.00 0.002±0.00
DDPM† 0.002±0.00 0.008±0.00 0.002±0.00 0.005±0.00 0.002±0.00

KM CTGAN† 0.002±0.00 0.008±0.00 0.002±0.00 0.005±0.00 0.002±0.00
Divergence ADS-GAN† 0.002±0.00 0.008±0.00 0.002±0.00 0.005±0.00 0.002±0.00

(↓) TVAE 0.031±0.00 0.042±0.00 0.025±0.00 0.027±0.00 0.031±0.00
DDPM 0.021±0.00 0.019±0.00 0.011±0.00 0.026±0.00 0.007±0.00

CTGAN 0.015±0.00 0.028±0.00 0.038±0.00 0.061±0.00 0.037±0.00
ADSGAN 0.016±0.00 0.039±0.00 0.020±0.00 0.030±0.00 0.012±0.00

Table 14: Quality (JS distance, WS distance and PVP) and downstream (C-Index and Brier Score) metrics.
Models conditioning on t and e are highlighted (†). BM refers to the best-performing model from Table 12.

Dataset Method C-Index Brier Score JS distance WS Distance PVP

AIDS

SurvivalGAN 0.735±0.00 0.068±0.01 0.013±0.00 0.12±0.00 0.181±0.00
GReaT† 0.790±0.00 0.063±0.00 0.003±0.00 0.036±0.00 0.000±0.00
GReaT 0.725±0.01 0.063±0.00 0.004±0.00 0.046±0.00 0.090±0.00

BM 0.797±0.01 0.059±0.00 0.006±0.00 0.061±0.00 0.090±0.00

METABRIC

SurvivalGAN 0.625±0.00 0.205±0.00 0.009±0.00 0.039±0.00 0.555±0.00
GReaT† 0.640±0.00 0.195±0.00 0.005±0.00 0.000±0.00 0.000±0.00
GReaT 0.623±0.00 0.201±0.00 0.006±0.00 0.000±0.00 0.111±0.00

BM 0.655±0.00 0.197±0.00 0.007±0.00 0.028±0.00 0.000±0.00

SUPPORT

SurvivalGAN 0.602±0.00 0.202±0.00 0.008±0.00 0.043±0.00 0.571±0.00
GReaT† 0.630±0.00 0.198 ±0.00 0.002±0.00 0.000±0.00 0.071±0.00
GReaT 0.627±0.00 0.200±0.00 0.003±0.00 0.020±0.00 0.071±0.00

BM 0.625±0.00 0.198 ±0.00 0.004±0.00 0.032±0.00 0.171±0.08

GBSG

SurvivalGAN 0.668±0.00 0.212±0.00 0.008±0.00 0.019±0.00 0.485±0.00
GReaT† 0.686±0.00 0.207±0.00 0.006±0.00 0.012±0.00 0.142±0.00
GReaT 0.672±0.00 0.207±0.00 0.007±0.00 0.011±0.00 0.142±0.00

BM 0.684±0.00 0.207±0.00 0.003±0.00 0.011±0.00 0.142±0.00

FLCHAIN

SurvivalGAN 0.870±0.00 0.096±0.00 0.009±0.00 0.052±0.00 0.555±0.00
GReaT† 0.880±0.00 0.082±0.00 0.001±0.00 0.015±0.00 0.111±0.00
GReaT 0.878±0.00 0.090±0.00 0.001±0.00 0.020±0.00 0.222±0.00

BM 0.880±0.00 0.084±0.00 0.001±0.00 0.016±0.00 0.222±0.04
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Table 15: Median value of Distance of closest record from the original. Models conditioning on t and
e are highlighted † (our method). Error bars are standard deviations for 5 repetitions. The highest
(best) values are in bold and the least (worst) values are underlined.

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN
SurvivalGAN 1.035±0.00 0.969±0.00 1.589±0.00 0.500±0.00 0.796±0.00

TVAE† 0.883±0.00 0.877±0.00 1.511±0.00 0.476±0.00 0.642±0.00
TabDDPM† 1.172±0.03 0.908±0.01 1.612±0.03 0.519±0.00 0.572±0.01
CTGAN† 0.918±0.01 1.043±0.00 1.594±0.00 0.524±0.00 0.695±0.00

Median ADS-GAN† 1.133±0.17 0.992±0.00 1.691±0.00 0.519±0.00 0.667±0.01
DCR SMOTE 0.388±0.00 0.698±0.00 0.958±0.00 0.290±0.00 0.381±0.00

TVAE 1.044±0.02 0.813±0.00 1.405±0.00 0.432±0.00 0.553±0.00
TabDDPM 1.020±0.01 1.087±0.00 1.611±0.00 0.477±0.00 0.567±0.00
CTGAN 1.112±0.01 1.001±0.00 1.586±0.00 0.515±0.00 0.641±0.00

ADS-GAN 1.158±0.01 0.945±0.00 1.666±0.00 0.475±0.00 0.533±0.00

Table 16: Minimum value of Distance of closest record from the original. Models conditioning on t
and e are highlighted † (our method). Error bars are standard deviations for 5 repetitions. The highest
(best) values are in bold and the least (worst) values are underlined.

Metric Method AIDS METABRIC SUPPORT GBSG FLCHAIN
SurvivalGAN 0.048±0.00 0.172±0.00 0.326±0.00 0.062±0.00 0.057±0.00

TVAE† 0.077±0.03 0.202±0.02 0.370±0.02 0.033±0.00 0.026±0.00
TabDDPM† 0.095±0.00 0.193±0.05 0.403±0.01 0.065±0.00 0.037±0.00
CTGAN† 0.139±0.01 0.215±0.01 0.321±0.01 0.045±0.01 0.054±0.01

Minimum ADS-GAN† 0.102±0.01 0.185±0.04 0.391±0.01 0.053±0.01 0.066±0.02
DCR SMOTE 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00

TVAE 0.083±0.01 0.154±0.03 0.171±0.01 0.031±0.00 0.028±0.00
TabDDPM 0.090±0.03 0.213±0.00 0.337±0.01 0.054±0.00 0.033±0.00
CTGAN 0.109±0.02 0.194±0.02 0.316±0.02 0.046±0.01 0.024±0.00

ADS-GAN 0.062±0.03 0.205±0.03 0.429±0.00 0.050±0.00 0.055±0.00
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(a) AIDS (b) FLCHAIN

(c) METABRIC (d) SUPPORT

(e) GBSG

Figure 4: Q-Q plots comparing the p-value distributions of all conditional models (†) from Section 4.1
and 4.2. The dashed line represents the expected (uniform) distribution.
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