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Abstract

In this paper, we introduce a generalization of the standard Stackelberg Games
(SGs) framework: Calibrated Stackelberg Games (CSGs). In CSGs, a principal
repeatedly interacts with an agent who (contrary to standard SGs) does not have di-
rect access to the principal’s action but instead best-responds to calibrated forecasts
about it. CSG is a powerful modeling tool that goes beyond assuming that agents
use ad hoc and highly specified algorithms for interacting in strategic settings
and thus more robustly addresses real-life applications that SGs were originally
intended to capture. Along with CSGs, we also introduce a stronger notion of
calibration, termed adaptive calibration, that provides fine-grained any-time cali-
bration guarantees against adversarial sequences. We give a general approach for
obtaining adaptive calibration algorithms and specialize them for finite CSGs. In
our main technical result, we show that in CSGs, the principal can achieve utility
that converges to the optimum Stackelberg value of the game both in finite and
continuous settings, and that no higher utility is achievable. Two prominent and
immediate applications of our results are the settings of learning in Stackelberg
Security Games and strategic classification, both against calibrated agents.

1 Introduction

Stackelberg games (SGs) are a canonical model for strategic principal-agent interactions, considering
a principal (or “leader”) that commits to a strategy h and an agent (or “follower”) who observes
this strategy and best respond by taking action BR(h). These games are inspired by real-world
applications such as economic policy design (where a tax policymaker establishes rules for triggering
audits before taxes are filed), defense (where a principal allocates security resources to high-risk
targets before vulnerabilities are exploited) and many more, see e.g., [7, 22, 49, 35, 21, 15, 17].
By anticipating the agent’s best-response, a principal who knows the agent’s payoff function can
calculate the optimal Stackelberg strategy guaranteeing her utility V ⋆. In recent years, repeated SGs
have gained popularity in addressing settings where the agent’s payoff function is unknown to the
principal. In this setting, the principal, who can only observe the agents’ actions, aims to deploy a
sequence of strategies h1, . . . ,hT over T rounds whose average payoff is at least as good as V ⋆, i.e.,
the value of her optimal strategy had she known the agent’s payoffs in advance.

Despite the original intent, repeated SGs are often studied under strict assumptions on the agent’s
knowledge and algorithmic behavior. Examples include requiring the agent to best respond per round
using yt = BR(ht) [7, 21], necessitating the agent to precisely know the principal’s strategy at all
times (e.g., the attacker must anticipate the exact probabilistic allocation of the defender’s security
resources), or employing one of many online optimization algorithms whose every detail (down to
the learning step size) can significantly impact the principal’s utility [51].
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In this paper, instead of working with such restrictive and often unrealistic assumptions on the agent’s
knowledge and behavior, we build on foundational decision theoretic concepts, such as forecasts and
calibration [19, 29, 30]. In practice, while agents may not observe the principal’s true strategies ht,
they can form calibrated forecasts — a notion of consistency in beliefs about ht — to which they then
best respond. Indeed, such a decision-theoretic perspective on game dynamics led to seminal results
on converging to correlated and Nash equilibria in simultaneous multi-player games [29, 38]. Our
work brings the perspective of calibrated forecasts to principal-agent games. We introduce Calibrated
Stackelberg Games (CSG)—a class that is more general than standard SGs— and ask:

Q1. What characterizes principal’s optimal utility in CSGs?

Q2. Are there natural forecasting algorithms for the agent that satisfy calibration?

Our Contributions. We answer both questions completely. For Q1, we show that the principal’s
optimal utility converges exactly to V ⋆. For Q2, we give a general approach for obtaining a fine-
grained any-time notion of calibration of independent interest and further specializing it to games.

Before we delve into the details of our contributions, we highlight two key aspects of our results.
First, calibration is a common property of forecasting procedures shared by many algorithms, not
any one particular algorithm defining the agent’s behavior. Despite not constraining the agent to
any particular algorithm, our answer to Q1 shows that the principal can meaningfully converge to
V ⋆, which is the value she could have achieved in a single-shot game had she known the agent’s
utility. Second, our definition and results immediately apply to two important Stackelberg settings;
Stackelberg Security Games [49, 7, 33] and strategic classification [21]. As such, we obtain the first
results for learning against calibrated agents in these settings too.

Our work contributes two concepts of independent interest (Section 2): first, CSGs that directly
generalize the standard model of repeated SGs, and second, a notion of calibration, termed adaptive
calibration. This notion which draws inspiration from adaptive regret bounds in online learning,
provides fine-grained calibration guarantees for adversarial sequences.

Beyond the introduction of these models, we address an important property of CSGs in our answer to
Q1. We show that the principal’s optimal utility in CSGs converges to V ⋆, nothing more or less, in
games with finite (Section 3) or continuous (Section 5) actions spaces. Note that V ⋆ is a benchmark
that gives both players more power: the principal knows the agent’s utility and the agent observes the
principal’s strategy. We find it somewhat surprising then that the optimal achievable principal utility
in CSGs, in which both players work with significantly less knowledge, converges to V ⋆ exactly.

As for our newly introduced notion of adaptive calibration (Section 4), we provide an answer to Q2 by
giving a general approach for creating adaptively calibrated forecasting algorithms. This shows that
adaptive calibration is not just an abstract notion, rather, it is a natural property with deep roots in the
theory of online learning. Indeed, to obtain these results we draw inspirations from recent advances
in the multicalibration literature [34] regarding simulating no-regret and best-response dynamics and
the sleeping experts problem setting which has been a staple of the online learning literature [8, 31].
Furthermore, we specialize our approach for strategic settings by showing how standard calibration
concepts (such as the “binning function”) can be adapted to account for the agent’s best-responses.

1.1 Related work

Repeated Stackelberg games. Learning optimal Stackelberg strategies has been studied in the
offline [17] and the online setting, where only instantaneous best-responses are observable (i.e.,
no access to a best-response oracle). Key applications include Stackelberg Security Games (e.g.,
[12, 7, 47, 50]) and strategic classification (e.g., [21, 15, 3, 4]). Another line of work treats repeated
games as an extensive form game and studies optimal strategies for infinite [52] or finite [16] horizons.
Other works consider learning in the presence of non-myopic agents that best respond by maximizing
discounted utilities [5, 33, 2]. The main distinction to our work is that in our setting, the agents have
only calibrated forecasts regarding the principal’s strategies (rather than full knowledge of them).

Stackelberg games beyond best responses. Recent works have studied variants of repeated Stack-
elberg games with different agent strategic behaviors beyond best responding. One example is
no-regret learning, in which previous works have extensively investigated the relationship between
the principal’s cumulative utility and the single-shot Stackelberg value against agents that use mean-
based learning algorithms [13], gradient descent [24, 25], no-external regret algorithms [13, 20, 51],
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no-internal/swap regret algorithms [20, 45], and no-counterfactual internal regret algorithms [14].
Another research direction assumes agents approximately best respond due to uncertainty in the prin-
cipal’s strategy [11, 6, 46] or their own [43, 39, 40] and study robust Stackelberg equilibria [48, 32].
Most of the works here assume that the principal knows the agent’s utility function with the exception
of [51]. Core differences to our framework are that (1) we work in an online learning setting where
the principal has to learn the agent’s utility function from their responses; (2) we do not assume a
specific agent algorithm but focus on properties of agent beliefs that are shared by many algorithms.

Calibration and application in games. The study of calibration, introduced by Dawid [19], dates
back to seminal work by Foster and Vohra [30] and Hart [36] that showed the existence of asymptotic
online calibration against any adversarial sequence. Applying calibration to game dynamics, Foster
and Vohra [29] introduced the concept of calibrated learning, which refers to a player best responding
to calibrated forecasts of others’ actions. They demonstrated that the game dynamics of all players
performing calibrated learning converge to the set of correlated equilibria. This is complemented by
the results of [38, 27, 28] that show smooth and continuous variants of calibrated learning dynamics
converge to Nash equilibrium. Our work differs from the above by studying game dynamics that
converge to a Stackelberg equilibrium, where only the follower (agent) performs calibrated learning.

Adaptivity and sleeping experts. The notion of adaptive calibration introduced in Section 2 is
related to the study of adaptivity of regret bounds in online learning [44, 18, 37]. Our design of
adaptively calibrated forecasting algorithms builds on the multi-objective learning perspective of
online (multi-)calibration [41, 34] and the powerful tool of sleeping experts [8, 31, 44] which has
proven useful in various applications such as fairness [9].

2 Model & preliminaries

We begin this section with some basic definitions about forecasts, calibration, and games, and then
introduce the class of games that we study; Calibrated Stackelberg Games (CSGs).

Adaptively Calibrated Forecasts. We use A to denote the space of outcomes and C ⊇ A to denote
the space of forecasts. A (stochastic) forecasting procedure σ is an online procedure that takes any
adversarial sequence of outcomes ht ∈ A for t ∈ [T ], and on round t outputs (possibly at random)
forecast pt ∈ C solely based on outcomes and forecasts hτ ,pτ , for τ ∈ [t− 1]. To define calibrated
forecasts, let us first introduce the notion of binning functions.
Definition 2.1 (Binning [28]). We call a set Π = {wi}i∈[n] a binning function, if each wi : C → [0, 1]
maps forecasts to real values in [0, 1], and for all p ∈ C we have

∑
i∈[n] wi(p) = 1.

With the above binning functions, we define the adaptive calibration error with respect to Π as follows.
At a high level, conditioned on any bin, the calibration error measures the difference between the
expected forecasts that fall in that bin and the corresponding expected outcome.
Definition 2.2 (Π-Adaptive Calibration Error). For any time interval [s, t], let ps:t be the sequence
of forecasts and hs:t be the sequence of outcomes. For a given binning Π = {wi}i∈[n] with size n,
and ∀i ∈ [n], define the Π-adaptive calibration error as

CalErri (hs:t,ps:t) ≜
n[s,t](i)

t− s
·
∥∥p̄[s,t](i)− h̄[s,t](i)

∥∥
∞ , (1)

where during interval [s, t], n[s,t](i) ≜
∑t

τ=s wi(pτ ) is the effective number of times that the forecast
belongs to bin i (i.e., bin i is activated), p̄[s,t](i) ≜

∑t
τ=s

wi(pτ )
n[s,t](i)

· pτ is the expected forecast that

activates bin i, h̄[s,t](i) ≜
∑t

τ=s
wi(pτ )
n[s,t](i)

· hτ is the expected outcomes corresponding to bin i.

We say that a forecasting procedure is adaptively calibrated if it achieves vanishing calibration error
on any adversarial sequence of outcomes and any sub-interval of time steps.
Definition 2.3 ((ε,Π)-Adaptively Calibrated Forecasts). A forecasting procedure σ is ε-adaptively
calibrated to binning Π = {wi}i∈[n] with rate rδ(·) ∈ o(1), if for all adversarial sequences of actions
h1, · · · ,hT , where ht ∈ A, σ outputs forecasts pt ∈ C for t ∈ [T ] such that with probability at least
1− δ, we have that ∀s, t such that 1 ≤ s < t ≤ T , and ∀i ∈ [n]:

CalErri (hs:t,ps:t) ≤ rδ(t− s) + ε.
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We remark that without adaptivity (i.e., for s = 1 and t = T ), Definition 2.2 is weaker than the
standard definition of calibration (e.g., [30], listed for completeness in Appendix A) in two ways: (1)
standard calibration takes each prediction p ∈ C as an independent bin, thus having infinitely many
binning functions: wp(·) = δp(·). Instead, we only require calibration with respect to the predefined
binning Π which only contains a finite number of binning functions; (2) standard calibration cares
about the summation over calibration error across bins, but we only consider the maximum error.

Stackelberg Games. A Stackelberg game is defined as the tuple (AP ,AA, UP , UA), where AP

and AA are the principal and the agent action spaces respectively, and UP : AP ×AA → R+ and
UA : AP × AA → R+ are the principal and the agent utility functions respectively. For ease of
exposition, we work with finite Stackelberg games (i.e., |AP | = m and |AA| = k) and generalize our
results to continuous games in Section 5. When the principal plays action x ∈ AP and the agent plays
action y ∈ AA, then the principal and the agent receive utilities UP (x, y) and UA(x, y) respectively.
We also define the principal’s strategy space as the simplex over actions: HP = ∆(AP ). For a
strategy h ∈ HP , we oftentimes abuse notation slightly and write UP (h, y) := Ex∼h[UP (x, y)].

Repeated Stackelberg games capture the repeated interaction between a principal and an agent over
T rounds. What distinguishes Stackelberg games from other types of games is the inter-temporal
relationship between the principal’s action/strategy and the agent’s response; specifically, the principal
first commits to a strategy ht ∈ HP and the agent subsequently best-responds to it with yt ∈ AA.
Let pt ∈ FP = HP be the agent’s belief regarding the principal’s strategy at round t. In standard
Stackelberg games: pt = ht, i.e., the agent has full knowledge of the principal’s strategy. In this
paper, we consider games where the agent does not in general know ht when playing, but they only
best-respond according to their belief pt. The agent’s best-response to belief pt according to her
underlying utility function UA is action yt ∈ AA such that

yt ∈ BR(pt) where BR(pt) = argmax
y∈AA

E
x∼pt

[UA(x, y)]. (2)

We often overload notation and write UA(p, y) := Ex∼p[UA(x, y)]. Note that from Equation (2),
the best-responses to pt form a set. If this set is not a singleton, we use either a deterministic or a
randomized tie-breaking rule. For the deterministic tie-breaking rule, the agent breaks ties according
to a predefined preference rule ≻ over the set of actions AA. For the randomized tie-breaking rule,
the agent chooses yt by sampling from the set BR(pt) uniformly at random, i.e., yt ∼ Unif(BR(pt)).

The Stackelberg value of the game is the principal’s optimal utility when the agent best responds:
V ⋆ = max

h⋆∈HP

max
y⋆∈BR(h⋆)

UP (h
⋆, y⋆).

In the above definition h⋆ is referred to as the principal’s optimal strategy.

For an agent’s action y ∈ AA, we define the corresponding best-response polytope Py as the set of
all of the agent’s beliefs that induce y as the agent’s best-response, i.e., Py = {p ∈ FP : y ∈ BR(p)}.
We make the following standard assumption, which intuitively means that there are sufficiently many
strategies that induce y⋆ as the agent’s best-response.
Assumption 2.4 (Regularity). The principal’s optimal strategy h⋆ ∈ ∆(AP ) and the agent’s optimal
action y⋆ ∈ BR(h⋆) satisfy a regularity condition: Py⋆ contains an ℓ2 ball of radius η > 0.

Interaction Protocol for Calibrated Stackelberg Games (CSGs)

(1) The principal plays strategy ht ∈ HP .
(2) The agent without observing ht forms a calibrated prediction pt (Def. 2.5) about ht.
(3) The agent best responds to pt by playing yt ∈ BR(pt) (+ tie-breaking).
(4) The principal observes yt and experiences utility UP (ht, yt).
(5) The agent observes ht, or an action sampled from ht. 1

Figure 1: Principal-Agent Interaction Protocol in a Round of a CSG

Calibrated Stackelberg Games. In CSGs (see Figure 1 for the principal-agent interaction protocol1),
the agent forms (ε,Π)-adaptively calibrated forecasts as their beliefs pt regarding ht.

1If the agent observes action xt ∼ ht instead of the mixed strategy ht, then they can still calibrate to the
sequence of ht with an additional (vanishing) error term that comes from concentration inequalities.
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We first define binning functions that are especially appropriate for forecasts in games. In CSGs, we
define Π based on whether i is a best-response to the input calibrated forecast, i.e., ∀p ∈ FP :

wi(p) = 1{i ∈ BR(p), i ≻ j,∀j ̸= i} (for the deterministic tie-breaking)

wi(p) =
1{i ∈ BR(p)}
|BR(p)|

(for the randomized tie-breaking)

Note that both binning functions meet the conditions of Definition 2.1. Applying Definition 2.3 for
calibrated agent forecasts in CSGs we have the following:

Definition 2.5 (ε-Adaptively Calibrated Agent for CSGs). The agent is called ε-adaptively calibrated
with rate rδ(·) ∈ o(1), if for any sequence of principal strategies h1, · · · ,hT ∈ HP the agent takes
a sequence of actions y1, . . . , yT that satisfy the following requirements: 1) there is a sequence of
forecasts pt ∈ FP for t ∈ [T ], such that yt ∈ BR(pt), and 2) forecasts p1, . . . ,pT are ε-calibrated
for binning Π with rate rδ(·) with respect to the principal’s strategies h1, · · · ,hT .

We next review the fundamental constructs from Equation (1) and their intuitive meaning in this setting.
n[s,t](i) ≜

∑
τ∈[s,t] wi(pτ ) is now the expected number of times that the forecast has induced action

i from the agent as their best response during interval [s, t], p̄[s,t](i) ≜
∑

τ∈[s,t] wi(pτ ) ·pτ/n[s,t](i)

is the expected forecast that induces action i from the agent as their best response during interval
[s, t], and h̄[s,t](i) ≜

∑
τ∈[s,t] wi(pτ ) · hτ/n[s,t](i) is the expected principal strategy that induces

action i from the agent as their best response during interval [s, t]. The requirement for an agent to be
calibrated is quite mild, as the forecasts are binned only according to the best-response they induce.

3 Principal’s learning algorithms

In this section (see Appendix C for full proofs and convergence rates), we study the relationship
between the principal’s Stackelberg value V ⋆ and the best utility the principal can obtain from learning
to play a sequence of strategies {ht}t∈[T ] against calibrated agents, i.e., 1

T

∑
t∈[T ] UP (ht, yt). The

relationship between V ⋆ and 1
T

∑
t∈[T ] UP (ht, yt) is not a priori clear. In the case of calibrated

forecasts, the agents do not know the exact ht when they choose their response. Instead, they base
their decisions on the history of the principal’s strategies so far. A principal then may be able to
create historical patterns that lead the agents to worse actions, thus obtaining better utility himself.
Indeed, several works have shown how historical patterns can afford the principal much better utility
than V ⋆ when the agents are no-regret [13, 20]. Surprisingly, we show that this is not the case when
the agents are calibrated;

∑
t∈[T ] UP (ht, yt) is upper bounded by TV ⋆ and a term that is sublinear

in T and depends on the calibration parameters.2

Theorem 3.1. Assume that the agent is (ε,Π)-as calibrated with rate rδ(·) and negligible ε. Then,
for any sequence {ht}t∈[T ] for the principal’s strategies in a CSG, with probability at least 1− 2δ,
the principal’s utility is upper bounded as: limT→∞

1
T

∑
t∈[T ] UP (ht, yt) ≤ V ⋆.

Proof sketch. We sketch the proof for the deterministic tie-breaking, as the randomized one needs just
an application of Azuma-Hoeffding. We first rewrite

∑
t∈[T ] UP (ht, yt) partitioned in the principal’s

utility for each round-specific forecast that induces action i as the best-response from the agent,
for all actions i ∈ AA:

∑
t∈[T ] UP (ht, yt) =

∑
i∈AA

∑
t∈[T ] wi(pt) · UP (ht, i). This equivalence

holds because each pt maps to a single best response i ∈ AA (deterministic tie-breaking). Be-
cause of the linearity of the principal’s reward in the principal’s strategy:

∑
i∈AA

∑
t∈[T ] wi(pt) ·

UP (ht, i) =
∑

i∈AA
nT (i) · UP (h̄T , i), where nT (i) = n[0,T ](i). Adding and subtracting

UP (p̄T , i) from the above, we now need to bound the quantity:
∑

i∈AA
nT (i)(UP (p̄T (i), i) +

⟨UP (·, i), h̄T (i) − p̄T (i)⟩). The first term is upper bounded by V ⋆T ; note that i ∈ BR(p̄T ) (and
V ⋆ = maxh maxy∈BR(h) UP (h, y)) since pt(i) ∈ Pi and hence that should also be true for the
average of pt(i) over t rounds. The second summand is bounded by the calibration error of Defini-
tion 2.3.

2A similar upper-bound on the principal’s utility was proved for no-swap-regret agents [20]. While we prove
the theorem directly for calibration, an alternative proof in App. B shows that calibration implies no-swap regret.
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ε

B2(x, ε)

x
ε

S

B2(x, ε)

x
ε

S

B2(S, ε) = ⋃
x∈S

B2(x, ε)
B2(S, − ε) = {x ∈ S : B2(x, ε) ⊆ S}

Figure 2: Pictorial representation for notation B2(S, ε) (left) and B2(S,−ε) (right).

On the other hand, it may seem that because the agent’s behavior is less specified when she uses
calibrated forecasts (as opposed to full knowledge), the principal may only be able to extract much
less utility compared to V ⋆. Again, we show that this is not the case and that there exist algorithms
for the principal such that the sequence of strategies {ht}t∈[T ] is asymptotically approaching V ⋆.

Theorem 3.2. There exists an algorithm for the principal in CSGs that achieves average utility:
limT→∞

1
T

∑
t∈[T ] UP (ht, yt) ≥ V ⋆.

Algorithm 1 is an explore-then-commit algorithm; it first estimates an appropriate strategy for the
principal h̃ (EXPLORE), and then repeatedly plays it until the end (COMMIT). In the remainder of the
section, we sketch the proof for Theorem 3.2 and point to exact lemma statements in the Appendix.
Let T1, T2 denote the set of rounds that belong in the EXPLORE and COMMIT phase respectively.

To elaborate on the objectives of the EXPLORE phase, let us first consider a setting with zero
calibration error, where the agent’s forecasting algorithm is perfectly and adaptively calibrated,
leading to yt = BR(ht) at every round. The task for the EXPLORE phase simplifies to identifying a
near-optimal strategy h̃ through best response oracles that satisfies UP (h̃,BR(h̃)) ≥ V ⋆ − ε1 for a
predetermined ε1. We formalize this property in (P1). Given that the agent is perfectly calibrated, in
the COMMIT phase, the agent always plays ỹ = BR(h̃), leading to an upper bound of ε1|T2| on the
Stackelberg regret. Hence, Algorithm 1’s regret is bounded by V ⋆|T1|+ ε1|T2|.

(P1) UP (h̃, ỹ) ≥ V ⋆ − ε1 for ỹ ∈ BR(h̃), i.e., (h̃, ỹ) is an approximate Stackelberg equilibrium.

Moving away from the idealized setting, we must account for possible discrepancies between yt
and BR(ht) due to calibration error. This introduces: (i) An increased sample complexity |T1| in
the EXPLORE phase, given the necessity to learn a near-optimal strategy from noisy responses; (ii)
Potential deviations from the action ỹ = BR(h̃) in the COMMIT phase due to miscalibrations in
belief. To address the first challenge, we employ Algorithm 2, which constructs an approximate
best response oracle by repeatedly interacting with a calibrated agent. For the second challenge, we
require our learned policy h̃ to be robust against inaccurate forecasts. This is reflected in condition
(P2), which necessitates the ball of radius ε2 around h̃ to be fully contained in the polytope Pỹ . The
critical insight from (P2) is: for any forecast pt that results in a best response yt = BR(pt) ̸= ỹ, there
must be a minimum distance of ε2 separating pt from h̃. We will now proceed to formalize (P2), but
before delving into that, it is important to introduce some additional notations.

Let B2(x, ε) denote the ball of radius ε around x, i.e., B2(x, ε) ≜ {x′ : ∥x − x′∥2 ≤ ε}. For a
convex set S ∈ Rn, we use B2(S, ε) to denote the union of all balls of radius ε around the set, i.e.,
B2(S, ε) ≜

⋃
x∈S B2(x, ε). For a convex set S ∈ Rn, we use B2(S,−ε) to denote the set of all

points in S that are “safely” inside S (i.e., all the points in a ball of radius ε around them still belong
in S): B2(S,−ε) ≜ {x ∈ S : B2(x, ε) ⊆ S}. We call this last set, the ε-conservative of S. See
Figure 2 for a pictorial illustration of the notations.
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Algorithm 1: Explore-Then-Commit
Input: Target precision ε, time horizon T .
EXPLORE: Find ε-optimal strategy h̃ ∈ HP using Algorithm 2.
COMMIT: Repeatedly play h̃ for the rest of the rounds.

Given the above notations and for tuned ε2, the pair (h̃, ỹ) returned by Algorithm 23 satisfies property
(P1) and the additional property (P2):

(P2) h̃ ∈ B2(Pỹ,−ε2), i.e., h̃ lies robustly within the best-response polytope for ỹ.

Given (P2), the regret of the COMMIT phase can be decomposed to when yt = ỹ, and when yt ̸= ỹ:∑
t∈T2

(V ⋆ − UP (h̃, yt)) =
∑

t∈T2:yt=ỹ

(V ⋆ − UP (h̃, yt)) +
∑

t∈T2:yt ̸=ỹ

(V ⋆ − UP (h̃, yt)) (3)

When yt = ỹ, (P1) guarantees that V ⋆ − UP (h̃, ỹ) ≤ ε1, so the first term is at most ε1 · |T2|.
When yt ̸= ỹ, let A = AA \ {ỹ}. For i ∈ A, the definition of binning function wi guarantees that
the probability of playing action i on forecast pt is exactly wi(pt). Based on this observation, the
second term of Equation (3) can be further bounded as∑

t∈T2

∑
i∈A

wi(pt)(V
⋆ − UP (h̃, i)) ≤

∑
i∈A

∑
t∈T2

wi(pt)V
⋆ =

∑
i∈A

nT2(i)V
⋆. (4)

Using Definition 2.2 of the calibration error and properties of the ℓ2 and ℓ∞ norms, we can further
express nT2

(i) as follows

nT2(i) =
CalErri(hT2

,pT2
) · |T2|

∥p̄T2(i)− h̃∥∞
≤
√
m · CalErri(hT2

,pT2
) · |T2|

∥p̄T2(i)− h̃∥2

(P2)

≤
√
m · rδ(|T2|) · |T2|

ε2
,

where for the second inequality is: since h̃ lies in the ε2-conservative of Pỹ, and p̄T2(i) belongs
to a different and non-intersecting polytope Pi, we know that ∥p̄T2

(i) − h̃∥2 ≥ ε2. See Figure 3
for a geometric interpretation. Finally, bounding the sample complexity for the EXPLORE phase
(Lemma C.4) and taking asymptotics gives the result.

h̃

Pỹ
B2(Pỹ, −ε2)

h⋆

Pi

Pj

p̄T2(i)

p̄T2( j)
≥ε2

≥ε2

Figure 3: Relationship between the robust policy
h̃ and the average predictions p̄T2

(i): Given that
h̃ is in the conservative region B2(Pỹ,−ε2), any
average prediction p̄T2(i) that triggers action i ̸= ỹ
during the COMMIT phase must fall outside of Pỹ

and thus have a distance of at least ε2 from h̃.

The proof sketch above hinges on being able
to identify a strategy for the principal h̃ with
properties (P1), (P2). We outline below how
this is done through Algorithm 2.

At a high level, Algorithm 2 proceeds as fol-
lows. It builds an initialization set I which
consists of pairs (h, y) where h approximately
belongs to the ε2-conservative of y’s best re-
sponse polytope: B2(Py,−ε2). Using these
points in the initialization set I, the algorithm
then solves the convex optimization problem of
maxh UP (h, yi) using membership queries to
B2(Py,−ε2) and the points of I as initial points.
The final solution is obtained as the maximum
of all these convex programs.

There are 2 things left to be specified for Algo-
rithm 2; how to build the membership oracle
to B2(Py,−ε2) given that UA(·) is unknown to
the principal, and how to build the initialization
set I to contain at least one point that is well
centered in Py⋆ . To build set I, Algorithm 2 samples strategies hi uniformly at random for enough

3With post-processing if necessary, see Appendix C.5 for more details.
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Algorithm 2: Principal’s Learning Algorithm for the Optimal Commitment
Originally, initialization set I ← ∅.
/* build initialization set with pairs (h, y), where h ∈ B2(Py,−ε2) */
for i ∈ [O(log(T )/Volume(η)] do

Sample a strategy ht ∈ HP uniformly at random.
Query APPROXMEM (Algorithm 4) for action yi ∈ AA

I ← I ∪ (yi,hi).
/* optimize UP (h, y) using membership queries to B2(Py,−ε2) and set I */
for (yi,hi) ∈ I do

Solve Equation (5) using LSV [42] (initial point: hi, oracle: ε1-approximate membership
oracle to B2(Pyi

,−ε2) simulated by APPROXMEM (Algorithm 4)

max
h

UP (h, yi), subject to h ∈ B2(Pyi
,−ε2), (5)

h̃yi ← ε′-optimal solution of Equation (5)
ỹ ← argmaxyi∈I UP (h̃yi

, yi)

RETURN h̃ỹ

number of rounds to ensure at least one sample in the η/2-ball around the center of Py⋆ with high
probability. To build the approximate membership oracle for the ε2-conservative best-response
polytope for an action y, we use APPROXMEM (Algorithm 4 in Appendix C.2). Specifically, on
input h ∈ HP , APPROXMEM either asserts h ∈ B2(Py,−ε2 + ε1) or h /∈ B2(Py,−ε2 − ε1) with
probability at least 1 − ε3. To do this, it samples Φ points in proximity to h and plays each one
repeatedly for l rounds, while registering the best-response action observed for each one of these. If
the most frequent best-response for all hϕ is y, then we can conclude with good probability that h
was inside B2(Py,−ε2). See Lemma C.2 for more details.

4 Forecasting Algorithm for Adaptive Calibration

In this section, we examine whether there exist natural forecasting procedures that satisfy our
Definition 2.3 about adaptively calibrated forecasts. We answer this question positively.

Theorem 4.1. For all ε > 0 and all binnings Π = {wi : Rm → [0, 1], i ∈ [k]}, there ex-
ists a parameter-free forecasting procedure that is (ε,Π)-adaptively calibrated with rate rδ(t) =

O(
√
log(kmt)/t). Moreover, when Π is a continuous binning (i.e., each wi is continuous), there

exists a forecasting procedure that is (0,Π)-adaptively calibrated with the same rate.

To prove the theorem, we use two main tools; the first one is a well-known algorithm of Luo and
Schapire [44] (ADANORMALHEDGE) applied for online learning in the sleeping experts problem (see
Appendix D for details). Roughly speaking, the sleeping experts is a standard online learning problem
with T rounds and N experts, where at each round t there is only a subset of the experts being “awake”
to be considered by the learner and report their predictions. Let It,i be the binary variable indicating
whether expert i was awake at round t (It,i = 1) or asleep (It,i = 0). The interaction protocol
between the learner and the adversary at each round t is: (i) The learner observes which experts are
awake, i.e., {It,i}i∈[N ]. (ii) The learner selects a probability distribution πt ∈ ∆([N ]) supported on
the set of active experts At ≜ {i : It,i = 1}. (iii) The adversary selects a loss vector {ℓt,i}i∈[N ].
(iv) The learner incurs expected loss ℓ̂t = Ei∼πt [ℓt,i]. ADANORMALHEDGE is a parameter-free
online learning algorithm that when applied on the sleeping experts problem (and with appropriate
initialization) obtains regret Regt(i) = O(

√
Ti log(NTi)), where Ti =

∑
τ∈[t] Iτ,i.

The second tool that we use is No-Regret vs. Best-Response dynamics (NRBR) [34]. NRBR are a
form of no-regret dynamics between two players, where one of the players must also best-respond
on average. Essentially, at each round t ∈ [T ], the forecasting algorithm with the calibration rate
of Theorem 4.1 outputs a randomized forecast pt ∈ FP , by simulating an interaction between two
players described below. For the first player, we construct a sleeping experts problem instance, where
the set of experts is G = {g(s,i,j,σ) : s ∈ [T ], i ∈ AA, j ∈ AP , σ ∈ {±1}}. For each g(s,i,j,(σ) ∈ G
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and t ∈ [T ], we define the loss, sleeping/awake indicator, and instantaneous regret respectively as:

ℓt,g(s,i,j,σ)
≜Lg(s,i,j,σ)

(ht,pt) = wi(pt) · σ · (ht,j − pt,j) ; (6)

It,g(s,i,j,σ)
≜1{t ≥ s}; (7)

rt,g ≜It,g · (ℓt,g − ℓ̂t).

where by ht,j , pt,j we denote the j-th coordinate of ht and pt respectively. We defined the losses
for our newly constructed sleeping experts’ instance as above to make sure that there is a direct
correspondence with the calibration error. Similar ideas for calibration (albeit not for the notion of
adaptivity we consider) have been used in [41, 34]. We describe next the player interaction in NRBR.

Player 1. Runs ADANORMALHEDGE on expert set G with a pre-specified prior π0 over G and
feedback specified in Equations (6), (7). At each round t, Player 1 computes distribution πt ∈
∆(At(G)), where At(G) denotes the set of active experts g(s,i,j,σ) ∈ G with It,g(s,i,j,σ)

= 1.

Player 2. Best responds to πt by selecting Qt ∈ ∆(FP ) that satisfies:
max

ht∈HP

E
g∼πt

pt∼Qt

[ℓt,g] = max
ht∈HP

E
g∼πt

pt∼Qt

[Lg(ht,pt)] ≤ ε. (8)

After simulating the game above, the algorithm outputs forecast pt ∼ Qt. The existence of such
a distribution Qt is justified by the min-max theorem ([34, Fact 4.1] or [28, Theorem 5]). In the
Appendix, we also give an explicit formula for Qt in the special case of m = 2. When Π0 is
continuous, player 2 can select a deterministic pt that achieves Equation (8) with ε = 0. This
stronger property is justified by the outgoing fixed-point theorem [28, Theorem 4]. Note that this
algorithm inherits its parameter-free property directly from ADANORMALHEDGE. We are now ready
to provide a proof sketch for Theorem 4.1.
Proof sketch of Theorem 4.1. Fix an instance of the NRBR game outlined above. We begin by
Definition 2.2 of calibration error translated in the sleeping experts instance that we defined above:

CalErri(hs:t,ps:t) · (t− s) = max
j∈[m]

max
σ∈{±1}

∑
τ∈[s,t]

Iτ,g(s,i,j,σ)
ℓτ,g(s,i,j,σ)

We add and subtract in the above
∑

τ ℓ̂τ to make the regret of the ADANORMALHEDGE on the
sleeping experts instance appear and so the aforementioned becomes:

CalErri(hs:t,ps:t) · (t− s) = Regt(g(s,i,j,σ))︸ ︷︷ ︸
O(
√

(t−s)·log(kmt))

+ max
j∈AP

max
σ∈{±1}

∑
τ∈[s,t]

Iτ,g(s,i,j,σ)
ℓ̂τ,g(s,i,j,σ)︸ ︷︷ ︸

T

where for the regret, we have substituted the regret obtained by ADANORMALHEDGE. Note that
ℓ̂τ = Eg∼πτ [ℓτ,g]. This, together with Equation (6) helps us translate the sleeping experts’ loss to a
loss that depends on hτ ,pτ . Adding and subtracting the term

∑
τ∈[s,t] E g∼πτ

p∼Qτ
[Lg(hτ ,p)]:

T ≤
∑

τ∈[s,t]

max
hτ∈∆(AP )

E
g∼πτ
p∼Qτ

[Lg(hτ ,p)] +
∑

τ∈[s,t]

E
g∼Pτ

[
Lg(hτ ,pτ )− E

p∈Qτ

[Lg(hτ ,p)]

]
The first term above is upper bounded by ε · (t− s) (Equation (8)) (or 0 in the continuous setting).
The second can be bound with martingale concentration inequalities.

5 Continuous Games

In this section, we generalize our results for the case of continuous Stackelberg games. The supple-
mentary material can be found in Appendix E.

Continuous Stackelberg Games. We use again AP and AA to denote the principal and the agent
action spaces, respectively. Both AA,AP are convex, compact sets where AP ⊂ Rm and AA ⊂ Rk.
The utilities of the principal and the agent are given by continuous functions UP : AP ×AA → R+

and UA : AP ×AA → R+. In this setting, we assume that both the principal and the agent can only
play deterministic strategies, i.e.,HP = AP . For x ∈ AP , let BR(x) be the best-response function
that is implicitly defined as ∇2UA(x, BR(x)) = 0. Our continuous games satisfy Assumption 5.1:
(i)-(iii) are standard assumptions used in previous works (e.g., [24]), but (iv) cannot be derived from
(i) and (ii) without further assumptions on the correlation between x, y. Nevertheless, (iv) (and the
conditions under which it holds) has been justified in settings such as strategic classification [21, 51].
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Algorithm 3: Lazy Gradient Descent without a Gradient (LAZYGDWOG)
Initialize h0 = 0.
for epoch ϕ ≥ 0: do

Sample St uniformly at random from the unit sphere Sm−1.
Play hϕ = xϕ + δϕSϕ for M rounds. /* avg feedback gets close to BR(ht) */
Observe agent’s responses yϕ,1, · · · , yϕ,M .
Update action xϕ+1 ← ProjB2(AP ,−δϕ)

(xϕ+γϕ
m
δϕ
StUP (hϕ,

1
M

∑
i∈[M ] yϕ,i)).

Assumption 5.1. Utility functions UP , UA, and the domain AP satisfy the following:

(i) For all x ∈ AP , y ∈ AA, UP (x, y) is L1-Lipschitz and concave in x, L2-Lipschitz in y, and
bounded by WP in ℓ2 norm.

(ii) The best-response function BR : AP → AA is LBR-Lipschitz.
(iii) Regularity of the feasible set AP = HP = FP :

• The diameter is bounded: diam(FP ) = suph,h′∈FP
∥h− h′∥2 ≤ DP .

• B(0, r) ⊆ AP ⊆ B(0, R).

(iv) The function UP (h, BR(h)) is concave with respect to h, and has Lipschitz constant LU .

The main result of this section is to show that even in continuous CSGs, we can approximate
asymptotically V ⋆ for the principal’s utility, and that no better utility is actually achieved.
Theorem 5.2. For continuous CSGs satisfying Assumption 5.1, for all ε0 > 0, there ex-
ists a finite binning Π0 such that if the agent is (0,Π0)

4 - adaptively calibrated and the
principal runs an appropriately parametrized instance of LAZYGDWOG (Algorithm 3) then:
lim Φ→∞

M→∞

1
ΦM

∑
ϕ∈[Φ]

∑
i∈[M ] UP (hϕ, yϕ,i) ≥ V ⋆ − ε0. Moreover, for any sequence of the princi-

pal’s actions h[1:T ], it holds that: limT→∞
1
T

∑
t∈[T ] UP (ht, yt) ≤ V ⋆ + ε0.

We outline next how LAZYGDWOG works. LAZYGDWOG is a variant of the gradient descent
without a gradient algorithm (GDWOG) of Flaxman et al. [26]. The main new component of the
algorithm is that it separates the time horizon into epochs and for each epoch it runs an update of
the GDWOG algorithm. During all the rounds that comprise an epoch (M in total), LAZYGDWOG
presents the same (appropriately smoothed-out) strategy to the agent and observes the M different
responses from the agent. The intuition behind repeating the same strategy for M rounds is that
the principal wants to give the opportunity to the agent to recalibrate for a better forecast, i.e.,
limM→∞

1
M |{i ∈ [M ] : ∥pi − h∥ ≥ ε0}| = 0. The remainder of the proof for Theorem 5.2 focuses

on showing that when the calibrated forecasts converge to ht, then the principal’s utility converges to
the utility they would have gotten if the agent was perfectly best responding to ht.

6 Discussion and future directions

In this paper we introduced and studied learning in CSGs, where the agents best respond to the
principal’s actions based on calibrated forecasts that they have about them. Our work opens up
several exciting avenues for future research. First, although our main results prove asymptotic
convergence, it is an open question whether our exact convergence rates can be improved both for
general CSGs and for specific cases of Stackelberg games (e.g., strategic classification in more
general models compared to [21], pricing [1]). Second, it is an interesting question whether our
definition of adaptive calibration (Def. 2.3) can actually hold for the sum over all binning functions,
instead of just the maximum. Finally, to provide our asymptotic convergence results we assumed that
the principal has access to the agent’s calibration rate rδ(·); some information regarding how pt’s
relate to ht’s is necessary to leverage the fact that agents are calibrated. But we think that in some
specific settings (e.g., strategic classification) there may actually exist extra information regarding the
forecasts (compared to just knowing rδ(·)) that can be leveraged to design learning algorithms for the
principal with faster convergence rates. We discuss these directions in more detail in Appendix F.

4We can define (0,Π)-adaptive calibration in continuous CSGs due to the continuous case in Theorem 4.1.
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A Calibrated Forecasts Standard Definition

We give below the standard definition for asymptotic calibration of Foster and Vohra [30] for a
sequence of binary outcomes, i.e., ht ∈ A = {0, 1},∀t ∈ [T ]. The forecasts pt take values in
C = [0, 1]. Let X denote the adaptive adversary generating the events’ sequence (which is of infinite
size), where the T first events are h1, . . . ,hT .
Definition A.1. A forecasting procedure σ is asymptotically calibrated if and only if for any adaptive
adversary X that generates the sequence h1, · · · ,hT ∈ A and the forecasting algorithm σ that
generates (possibly random) forecasts p1, · · · ,pT ∈ C on the same sequence, we have that the
calibration score CT (X,σ) goes to 0 as T →∞:

CT (X,σ) ≜
∑

p∈FP

nT (p;h, σ)

T
|ρT (p;h, σ)− p| (9)

where nT (p;h, σ) ≜
∑

t∈[T ] 1{pt = p} is the number of times that σ predicts p and ρT (p;h, σ) ≜∑
t∈[T ] ht1{pt=p}

nT (p;h,σ) be the fraction (empirical probability) of these times that the actual event was 1.

Note that in Eq. (9), while FP contains an infinite number of distinct p’s (hence an infinite number
of summands), for every finite T , there is only a finite number of p where nT (p;h, σ) is nonzero.
Therefore, CT is well-defined and finite.

Equivalently, the above definition states that for the infinite binning [28] Π =
{
wx(p) : x ∈ C

}
where wx(p) = 1{p = x}, the calibration score can be equivalently expressed as

CT (X,σ) ≜
∑

wx∈Π

nT (x)

T

∥∥hT (x)− pT (x)
∥∥ ,

where nT (x) ≜
∑T

t=1 wx(pt) is the number of times that forecast pt falls into bin x, p̄T (x) ≜∑T
t=1

wx(pt)
nT (x) · pt is the average forecast that activates bin x, which is equal to

∑T
t=1

wx(pt)
nT (x) · x = x

because wx(pt) is nonzero if and only if pt = x, and h̄T (x) ≜
∑T

t=1
wx(pt)
nT (x) · ht is the average

outcome corresponding to bin x. It follows that the score CT is a sum of the calibration errors during
interval [1 : T ] for all bins (with CalErr defined in Definition 2.3).

CT (X,σ) =
∑

wx∈Π

CalErrx(h1:T ,p1:T ).

B Calibrated Forecasts Lead to No Swap Regret

In this section, we show the connection between no-swap-regret agents and adaptively calibrated
ones. As a reminder, no-swap-regret agents (translated to our setting and notation for the ease of
exposition) are defined as follows.
Definition B.1 (Agent’s swap regret [10]). For a sequence of principal’s strategies h1, · · · ,hT ∈ HP

and agent’s actions y1, · · · , yT ∈ AA, the swap regret is defined as

SwapReg(h1:T , y1:T ) = max
π:AA→AA

∑
t∈[T ]

UA(ht, π(yt))−
∑
t∈[T ]

UA(ht, yt).

We say that an agent is a no-swap-regret agent, if for the sequence of actions {yt}t∈[T ] that they are
playing it holds that SwapReg(h1:T , y1:T ) = o(T ).

We next show that calibrated forecasts lead to no swap regret actions for the agent.
Lemma B.2 (Calibrated forecasts lead to no swap regret). If the agent is (ε,Π)-adaptively calibrated,
then the agent’s swap regret on the sequence h1:T is bounded by the calibration error as follows:

• If the agent breaks ties deterministically, then with probability ≥ 1− δ,

SwapReg(h1:T , y1:T ) ≤ 2UmaxmkT (rδ(T ) + ε) ∈ o(T ).
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• If the agent breaks ties randomly, then with probability ≥ 1− 2δ,

SwapReg(h1:T , y1:T ) ≤ Umax

(
O

(√
Tk log

(
k

δ

))
+ 2mkT (rδ(T ) + ε)

)
∈ o(T ).

where Umax = maxh∈AP
maxy∈AA

UA(h, y) is the maximum utility the agent can obtain (without
constraining the agent to play best responses).

Proof. We first present the proof for the case that the agents break ties deterministically. To simplify
notation, we use nT (i) := n[0:T ](i), p̄T := p̄[0:T ](i), and h̄T (i) := h̄[0:T ](i).

Fix a π : AA → AA. Then, with probability at least 1− δ, we have that:
T∑

t=1

UA(ht, π(yt))−
T∑

t=1

UA(ht, yt)

=
∑
i∈AA

T∑
t=1

1{yt = i} (UA(ht, π(i))− UA(ht, i)) (rewriting yt as the exact action)

(a)
=
∑
i∈AA

T∑
t=1

wi(pt) (⟨ht, UA(·, π(i))⟩ − ⟨ht, UA(·, i)⟩) (10)

=
∑
i∈AA

nT (i)
(〈
h̄T (i), UA(·, π(i))

〉
−
〈
h̄T (i), UA(·, i)

〉)
=
∑
i∈AA

nT (i)
(〈
h̄T (i)− p̄T (i), UA(·, π(i))

〉
+ ⟨p̄T (i), UA(·, π(i))− UA(·, i)⟩+

〈
p̄T (i)− h̄T (i), UA(·, i)

〉)
(b)

≤
∑
i∈AA

nT (i)
∥∥p̄T (i)− h̄T (i)

∥∥
∞ (∥UA(·, π(i))∥1 + ∥UA(·, i)∥1)

= 2Umaxm ·
∑
i∈AA

T · CalErri(h1:T ,p1:T ) (Def. 2.3)

≤ 2UmaxmkT (rδ(T ) + ε) .

In the above equations, step (a) is due to the fact that agents best respond with a deterministic tie-
breaking rule: yt = i if and only if i ∈ BR(pt) and i ≻ j,∀j ̸= i, which is equivalent to wi(pt) = 1.
We have also used UA(·, i) to denote the m-dimensional vector where the jth entry is the utility
UA(j, i). Step (b) is because the second term

⟨p̄T (i), UA(·, π(i))− UA(·, i)⟩ = UA(p̄T (i), π(i))− UA(p̄T (i), i)

is non-positive since each pt with wi(pt) = 1 belongs to the best response polytope Pi, so does their
average: p̄t(i) ∈ Pi ⇐⇒ i ∈ BR(p̄t(i)).

Since the above inequality holds for any π, it also holds after taking the maximum over all π : AA →
AA. Therefore, we have the same bound for the agent’s swap regret.

Next, we move to the case when the agent breaks ties randomly. For a fixed π, we have that at every
time step t,

Et−1 [UA(ht, π(yt))] =

∑
i∈BR(pt)

UA(ht, π(i))

|BR(pt)|
=
∑
i∈AA

wi(pt)UA(ht, π(i)).

Therefore, by Azuma-Hoeffding’s inequality, w.p. ≥ 1− δ′, we have
T∑

t=1

UA(ht, π(yt)) ≤
T∑

t=1

wi(pt)
∑
i∈AA

UA(ht, π(i)) +O

(√
T log

(
1

δ′

))
. (11)

Since all actions in BR(pt) have the same utility for the agents, we also have

UA(ht, yt) =

∑
i∈BR(pt)

UA(ht, i)

|BR(pt)|
=
∑
i∈AA

wi(pt)UA(ht, i).
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Therefore, using Equations (11) and (12), we have that with probability at least 1− δ′,
T∑

t=1

UA(ht, π(yt))−
T∑

t=1

UA(ht, yt) ≤
∑
i∈AA

T∑
t=1

wi(pt) (UA(ht, π(i))− UA(ht, i))

+O

(√
T log

(
1

δ′

))
. (12)

We can use the same arguments as above (from Equation (10) onwards) to bound the first term on the
right hand side by 2UmaxmkT (rδ(T ) + ε) with probability 1− δ. Finally, setting δ′ = δ/M where
M = kk is the number of possible swap functions, and applying the union bound, we conclude that
with probability ≥ 1− 2δ, the swap regret is bounded by

SwapReg(h1:T , y1:T ) ≤ Umax

(
O

(√
T

(
k log k + log

(
1

δ

)))
+ 2mkT (rδ(T ) + ε)

)
.

C Supplementary Material for Section 3

C.1 Proof of Theorem 3.1

We first formally restate the theorem with exact convergence rates (not just asymptotically).
Theorem C.1 (Formal version of Theorem 3.1). Assume that the agent is (ε,Π)-adaptively calibrated
with rate rδ(·) and let Umax = maxh∈HP

maxy∈AA
UP (h, y). Then, for any sequence {ht}t∈[T ]

for the principal’s strategies in a repeated CSG, with probability at least 1− 2δ, the principal’s utility
is upper bounded as: ∑

t∈[T ]

UP (ht, yt) ≤ V ⋆T + α(Umax,m, k, T, rδ, δ, ε)

where α(Umax,m, k, T, rδ, δ, ε) = Umax ·m · k · T · (rδ(T ) + ε) when the agent uses deterministic
tie-breaking and α(Umax,m, k, T, rδ, δ, ε) = Umax ·m · k · T · (rδ(T ) + ε+

√
T log(1/δ)) when

the agent uses randomized tie-breaking.

Proof. To simplify notation, we use nT (i) := n[0,T ](i). When the agent follows deterministic
tie-breaking, we have:

T∑
t=1

UP (ht, yt) =
∑
i∈AA

T∑
t=1

wi(pt)UP (ht, i)

=
∑
i∈AA

nT (i)UP (h̄T (i), i) (linearity of UP in the principal’s strategy)

=
∑
i∈AA

nT (i)
(
UP (p̄T (i), i) +

〈
UP (·, i), h̄T (i)− p̄T (i)

〉)
(±
∑

i UP (p̄T (i), i))
(a)

≤
∑
i∈AA

nT (i)V
⋆ +

∑
i∈AA

nT (i)
∥∥p̄T (i)− h̄T (i)

∥∥
∞ · ∥UP (·, i)∥1

(b)

≤V ⋆T + Umaxm
∑
i∈AA

T · CalErri(h1:T ,p1:T )

≤V ⋆T + Umax · k ·m · T · (rδ(T ) + ϵ)

where (a) is because UP (p̄T (i), i) ≤ V ⋆ (since i ∈ BR(p̄T )), the Hö(lder’s inequality, and the fact
that ∥ · ∥2 ≤ ∥ · ∥1, and (b) is because of the definition of Umax and Definition 2.3. The proof for the
randomized tie-breaking setting has an extra term from Azuma-Hoeffding’s inequality, similar to the
proof of Theorem B.2.

16



C.2 Approximate membership oracle to conservative polytopes

In this section, we formally present the algorithm (Algorithm 4 for constructing an approximate
membership oracle to the conservative best response polytope for each of the agent’s action. The
sample complexity of the oracle will be presented in Lemma C.2.

Algorithm 4: Approximate membership oracle for the conservative best response polytope
(APPROXMEM)
Input: query h ∈ HP , original polytope Py (y ∈ AA), approximation factor ε1, conservatism

factor ε2, failure probability ε3
Parameters: Number of epochs Φ, radius R, calibration error εcal.
Let l be s.t. rδ(l) = εcal

k
√
m

for epoch ϕ ∈ [Φ] do
Sample a point hϕ such that ∥hϕ − h∥2 = R. /* Sample point hϕ close to h */
if hϕ ̸∈ HP then

RETURN FALSE /* No longer inside the feasible set */
else

Play strategy hϕ for l rounds.
yϕ← most frequent best-response action from agent during the l rounds.
if yϕ ̸= y then RETURN FALSE /* hϕ is too close to Pyϕ */

/* For membership, output yΦ if all {yϕ}ϕ∈[Φ] agree, and N/A otherwise */
RETURN TRUE

In Lemma C.2, we show that the parameters Φ, εcal, R can be tuned to achieve a wide range of
parameters (ε1, ε2, ε3). In Proposition C.3, we provide explicit instantiations of the parameters for
three special cases of (ε1, ε2, ε3) that will be useful in later sections.

Lemma C.2. If the agent is (ε,Π)-adaptively calibrated with rate rδ(·) and infinitesimal ε, and the
parameters Φ, R, εcal satisfy:

ε1 + ε2 −R ≥ εcal (Condition 1)

Φ ≥ 10
√
m

(
1−

(
εcal + ε2

R

)2
)m−1

2

log

(
1

ε3 − δ

)
(Condition 2)

Then Algorithm 4 (APPROXMEM) returns an ε1-approximate membership oracle to P−ε2
y =

B2(Py,−ε2) with probability 1− ε3, using no more than Nε1,ε2,ε3 = O
(
Φr−1

δ ( εcal
k
√
m
)
)

rounds of
interactions with the agent.

Specifically, with probability 1 − ε3, APPROXMEM either returns TRUE which asserts that h ∈
B2(P

−ε2
y ,+ε1), or returns FALSE which asserts that h /∈ B2(P

−ε2
y ,−ε1).

Proposition C.3 (Parameter settings). Assume ε3 = δ + T−2. In the following three cases: ε1
ε2

=

Θ(
√
m), 1, o(1), the proposed setting of parameters εcal, R,Φ satisfy (Condition 1) and (Condition 2)

simultaneously.

Case I. ε1
ε2

= Θ(
√
m).

εcal = ε2, R =
ε1
2
, Φ = 10

√
m

(
1− 4ε2

ε1

)m−1
2

log(T ) = O(
√
m log(T )).

Case II. ε1
ε2

= 1.
εcal = 0.1ε2, R = 1.9ε2, Φ = 1.25m log(T ).

Case III. ε1
ε2

= o(1).

εcal =
ε1
6
, R =

(
ε2 +

ε1
6

)(
1 +

ε1
2ε2

)
, Φ = 10

√
m

(
ε2
ε1

)m
2

log(T ).
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Proof of Lemma C.2. Before we delve into the specifics of the proof, we introduce some notation. In
order to make sure that hϕ is such that ∥h− hϕ∥ = R, we do the following: hϕ ← h+RSϕ, where
Sϕ is sampled uniformly at random from the equator S ∩H, where S = {s ∈ Rm : ∥s∥22 = 1} is the
unit sphere and H = {s ∈ Rm : ⟨s,1⟩ = 0} is an equatorial hyperplane (1 ≜ (1, · · · , 1) ∈ Rm).
Note that this is because we want hϕ to remain a valid probability distribution, i.e., that ⟨hϕ,1⟩ = 1
and hϕ ≥ 0 coordinate-wise; indeed, since we already have ⟨h,1⟩ = 1, we need to make sure that (1)
⟨Sϕ,1⟩ = 0, which is guaranteed by Sϕ ∈ H; (2) hϕ ≥ 0, which is guaranteed by returning FALSE
whenever hϕ /∈ HP .

For the rest of the proof, we condition on the following success event:

E ≜
{
∀[s, t] ⊆ [1, T ], ∀i ∈ AA, CalErri (hs:t,ps:t) ≤ rδ(t− s)

}
.

Since the agent is (ε,Π)-adaptively calibrated with rate rδ , we have Pr(E) ≥ 1− δ.

Recall that εcal = k
√
mrδ(l) denote the error that comes from calibration error. We first show that

conditioned on E , ∀ϕ ∈ [Φ], hϕ ∈ B2(Pyϕ
, εcal). Let lyϕ

be the number of times that agent plays yϕ
during the l repeats, then we have lyϕ

≥ l/k because yϕ is the most frequently played action. Then,
the calibration error bound in Definition 2.3 guarantees that

lyϕ

l
∥p̄(yϕ)− hϕ∥∞ = CalErryϕ

(hϕ,1:l,pϕ,1:l) ≤ rδ(l) + ε

⇒ ∥p̄(yϕ)− hϕ∥2 ≤
√
m ∥p̄(yϕ)− hϕ∥∞ ≤

√
mkrδ(l) = εcal. (13)

where the first inequality in equation (13) is because of the norm property ∥x∥2 ≤
√
d∥x∥∞ for a

vector x ∈ Rd. Since p̄(yϕ) ∈ Pyϕ
because the agent always best responds to forecasts, we obtain

hϕ ∈ B2(Pyϕ
, εcal).

We then prove the following two claims:

(C1) If h ∈ B2(P
−ε2
y ,−ε1), then APPROXMEM returns TRUE.

(C2) If h /∈ B2(P
−ε2
y ,+ε1), then APPROXMEM returns FALSE with probability ≥ 1− (ε3 − δ).

Indeed, if the following two claims hold, then we have established that APPROXMEM asserts one of
two cases correctly with probability ≥ 1− (ε3 − δ) conditioned on E . Together with the fact that
Pr(E) ≥ 1− δ, proves the lemma.

Proof of (C1). Suppose h ∈ B2(P
−ε2
y ,−ε1). Then we know that B2(h, ε1) ⊆ P−ε2

y =
B2(Py,−ε2), which further implies B2(h, ε1 + ε2) ⊆ Py. Therefore, the distance between h
and any other polytope Py′ (y′ ̸= y) must be lower bounded by ε1 + ε2. By triangle inequality,
∀h′ ∈ Py′ where y′ ̸= y, we have

∀ϕ ∈ [Φ], ∥hϕ − h′∥2 ≥ ∥h− h′∥2 − ∥h− hϕ∥2 ≥ ε1 + ε2 −R ≥ εcal,

where the last step follows from (Condition 1).

Since this holds for all h′ ∈ Py′ , it implies hϕ ̸∈ B2(Py′ , εcal) whenever y′ ̸= y. Together with the
fact that hϕ ∈ B2(Pyϕ

, εcal), we must have yϕ = y for all epochs ϕ ∈ [Φ]. Therefore, APPROXMEM
always returns TRUE.

Proof of (C2). Suppose h /∈ B2(P
−ε2
y ,+ε1). We first analyze the probability of returning FALSE for

a fixed epoch ϕ ∈ [Φ]. Let ∂S be the boundary of a convex set S, then by triangle inequality, we have

d(h, ∂B2(Py, εcal)) ≤ d(h, ∂Py) + d(∂Py, ∂B2(Py, εcal)).

For the first term, we have d(h, ∂Py) ≤ ε2 since

h /∈ B2(P
−ε2
y ,+ε1)⇒ h /∈ P−ε2

y = B2(Py,−ε2)⇒ d(h, Py) ≤ ε2.

For the second term, we have
d(∂Py, ∂B2(Py, εcal)) ≤ εcal,

because Py is a convex set. Combining the two bounds, we know that d(h, ∂B2(Py, εcal)) ≤ εcal+ε2.

Since hϕ is uniformly sampled from the sphere of radius R around h, by convexity of B2(Py, εcal)
and the rotation invariance property of a unit sphere, we have

Pr[hϕ /∈ B2(Py, εcal)] ≥ Pr[⟨RSϕ,v⟩ ≥ εcal + ε2] = Pr [⟨Sϕ, e1⟩ ≥ εcal+ε2/R] ,
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where v is a unit vector pointing in the direction of (one of) the projection from h to ∂B2(Py, εcal),
and e1 = (1, 0, · · · , 0) ∈ Rm. According to [23, Lemma 9], we can further lower bound the
probability by

Pr[hϕ /∈ B2(Py, εcal)] ≥
1

2
√
m

(
1−

(
εcal + ε2

R

)2
)m−1

2

.

Finally, the probability that no epoch returns FALSE (failure of APPROXMEM) is at most

(1− δ′)Φ ≤ ε3 − δ, where δ′ =
1

2
√
m

(
1−

(
εcal + ε2

R

)2
)m−1

2

.

Since δ′ ≪ 1, the above inequality holds as long as

Φ ≥ 2

δ′
log

(
1

ε3 − δ

)
= 4
√
m

(
1−

(
εcal + ε2

R

)2
)m−1

2

log

(
1

ε3 − δ

)
,

which follows from (Condition 2). Therefore, h /∈ B2(P
−ε2
y ,+ε1), then APPROXMEM returns

FALSE with probability ≥ 1− (ε3 − δ).

C.3 Complexity of the explore algorithm

Lemma C.4 (Sample complexity of Algorithm 2). Using Algorithm 2, the principal can find with
probability at least 1 − (δ + εopt + T−1), a strategy h̃ ∈ HP that satisfies the two properties in
Lemma C.5. We refer the reader to Theorems C.8 and C.13 for the sample complexity under two
different instantiations of Algorithm 2.
Lemma C.5 (Optimality and robustness of output policy). Under the conditions of Lemma C.4, the
output h̃ of Algorithm 2 satisfies the following two properties:

(P1) UP (h̃, y
⋆) ≥ V ⋆ − εopt, i.e., h̃ is an approximate Stackelberg equilibrium.

(P2) h̃ ∈ B2(Py⋆ ,−εrobust) , i.e., h̃ lies robustly within the best-response polytope for y⋆.

We refer the reader to Theorems C.8 and C.13 for the exact values of εrobust, εopt under two different
instantiations of Algorithm 2.

Before we formally state the proof of Lemmas C.4 and C.5, we first show the sample complexity
guarantee of the exploration phase of Algorithm 2 (Lemma C.6), then state a useful lemma from prior
work on convex optimization from membership queries [42] (Lemma C.7).
Lemma C.6 (Initialization set of Algorithm 2). Let V be the volume of an ℓ2 ball of radius η

2

in Rm. Suppose the principal samples h uniformly from HP for O(V −1 log T ) times and calls
APPROXMEM(ε1 = ε2 = η/4, ε3 = δ + T−2/2) for the membership of each of them, then with
probability at least 1 − δ − T−1, the initialization set I contains (h0, y0) where y0 = y⋆ is the
optimal target, and h0 is η

2 -centered in Py⋆ , i.e., h0 ∈ B2(Py⋆ ,−η
2 ).

The total number of samples required for the initialization phase is
O
(
V −11.25mr−1

δ ( η
k
√
m
) log2 T

)
.

Proof of Lemma C.6. By regularity assumption, there exists ḣ ∈ Py⋆ , s.t. B2(ḣ, η) ∈ Py⋆ . There-
fore, ∀h′ ∈ B2(ḣ,

η
2 ), we have ḣ ∈ B2(Py⋆ ,−η

2 ). Moreover, since h′ lies robustly inside Py⋆ , on
the success event of APPROXMEM(ε1 = ε2 = η

4 ), APPROXMEM(h′) must return membership y⋆,

otherwise we must have h′ /∈ B2(P
− η

4
y⋆ ,−η

4 ) = B2(Py⋆ ,−η
2 ), a contradiction. Since the set of

all such h′ takes up nontrivial volume V inHP , we know that O(V −1 log T ) uniform samples are
guaranteed to hit one with probability 1− 1

(2T ) .

Now we upper bound the failure probability of the initialization phase. Since the agent is miscalibrated
with probability δ, random sampling fails to discover centered h′ with probability 1

(2T ) , and the
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probability that one of the answers from APPROXMEM is wrong with probability 1
(2T ) , the total

failure probability is 1− δ − T−1 as desired.

As for the sample complexity, note that according to Lemma C.2 and proposition C.3,
each call to APPROXMEM takes O

(
1.25mr−1

δ ( η
k
√
m
) log T

)
samples, and the initializa-

tion phase calls APPROXMEM for O(V −1 log T ) times, the total sample complexity is
O
(
V −11.25mr−1

δ ( η
k
√
m
) log2 T

)
.

Lemma C.7 (LSV performance guarantee, Theorems 14 and 15 in [42]). Let K be a convex set
specified by a membership oracle, a point x0 ∈ Rn, and η > 0 such that B2(x0, η/2) ⊆ K ⊆
B2(x0, 1). There exists a universal constant γ0 > 1 such that for any convex function f given
by an evaluation oracle and any ε′ > 0, there is a randomized algorithm that computes a point
z ∈ B2(K, ε′) such that with probability ≥ 1− ε′,

f(z) ≤ min
x∈K

f(x) + ε′ ·
(
max
x∈K

f(x)−min
x∈K

f(x)

)
,

with constant probability using O
(
n2 logO(1)(n/ε′η)

)
calls to the ε1-approximate membership oracle

and evaluation oracle, where ε1 = (ε
′η/n)

γ0 .

Note that in Lemma C.7, the required accuracy (ε1) of the approximate membership oracle is orders
of magnitudes smaller than the suboptimality (ε) of the output solution, i.e., ε1 ≪ ε. Let h̃ denote
the ε-optimal solution returned by LSV. Since we use APPROXMEM which is an ε1-approximate
membership oracle to K = P−ε2

y , h̃ will lie in B2(K, ε) = B2(P
−ε2
y , ε) = B2(Py,−ε2 + ε). In

order to find a near-optimal solution that lies robustly within Py , we can either simulate APPROXMEM
with more epochs to guarantee ε1 ≪ ε ≈ ε2 (see Appendix C.4 for more details), or perform a
post-process to h̃ that pushes it further inside the polytope (see Appendix C.5 for more details).

C.4 More epochs to guarantee robustness

In this section, we show how to use more epochs in the simulation of each APPROXMEM oracle to
obtain higher accuracy feedbacks. This approach directly guarantees that the output of LSV lies
robustly within the polytope.

Theorem C.8. If the principal uses Algorithm 2 with parameters APPROXMEM(ε1 = ( ε
′η
n )γ0 , ε2 =

2ε′, ε3 = δ + T−2) and LSV(ε′), then with probability at least 1− δ − T−1 − ε′, the final solution
h̃ satisfies the following two properties:

(P1) UP (h̃, y
⋆) ≥ V ⋆ − 3ε′, i.e., h̃ is an approximate Stackelberg equilibrium.

(P2) h̃ ∈ B2(Py⋆ ,−ε′), i.e., h̃ lies robustly within the best-response polytope for y⋆.

The total number of samples needed is Õ
(
V −1m

5+mγ0
2 (ηε′)

−mγ0
2 r−1

δ ( (ε′η)γ0

kmγ0
√
m
)
)

.

Proof. We first analyze the failure probability of the algorithm. Since the agent’s adaptive calibration
error is uniformly bounded by rδ(·) with probability 1−δ, the probability that there exists an incorrect
answer from APPROXMEM is bounded by T · T−2 = T−1 conditioned on agent’s calibration error
being bounded, and the probability that LSV returns a bad solution is bounded by ε′, the total failure
probability of the described algorithm is at most δ + T−1 + ε′.

Now we consider the optimization problem for the optimal polytope Py⋆ , with initial point h0 that
is η

2 -centered in Py⋆ . There exists such a pair (h0, y
⋆) ∈ I according to Lemma C.6. Let h̃ be the

solution output by LSV. According to Lemma C.7, h̃ ∈ B2(P
−ε2
y⋆ ,+ε′) ⊆ B2(Py⋆ ,−ε′), which

proves (P2). For (P1), note that Lemma C.7 also guarantees

V ⋆ − UP (h̃, y
⋆) ≤ε′ +

(
V ⋆ − max

h∈P
−ε2
y⋆

UP (h, y
⋆)

)
≤ ε′ + 2ε′ = 3ε′.
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Finally, we compute the total number of samples. By Lemma C.6, the initialization epoch
takes O

(
V −11.25mr−1

δ ( η
k
√
m
) log2 T

)
samples. According to Lemma C.2 and proposi-

tion C.3, each call to the APPROXMEM oracle requires O

(
√
m
(

ε2
ε1

)m
2

r−1
δ ( ε1

k
√
m
) log(T )

)
=

O

(
√
m
(

m
ηε′

)mγ0
2

r−1
δ ( (ε′η)γ0

kmγ0
√
m
) log(T )

)
samples, and Lemma C.7 suggests that there LSV makes

O
(
m2 logO(1)( m

ε′η )
)

oracle calls, where we run O(V −1 log T ) LSV instances for each initial point
in the initialization set. Putting together, the total number of samples is

Õ

(
V −1m

5+mγ0
2 (ηε′)

−mγ0
2 r−1

δ (
(ε′η)

γ0

kmγ0
√
m
)

)
,

where Õ hides logarithm terms in T,m, 1/η, 1/ε′.

C.5 Representation length and post-processing

In this section, we show a post-processing of the output of LSV [42] under the representation length
assumption.
Assumption C.9 (Utility Representation Length). Suppose the utility functions UP and UA are
rational with denominator at most a, and normalized to be [0, 1]. Therefore, the game’s utility
representation length is L = 2mn log a.

The next lemma shows that under Assumption C.9, the optimal solution h⋆ also has a finite represen-
tation length.
Lemma C.10. For any y ∈ AA, let h⋆

y ∈ Rm be the principal’s optimal strategy in Py that achieves
maxh⋆∈Py UP (h

⋆, y). Suppose the utility functions UP , UA satisfy Assumption C.9. Then for all
i ∈ AP , the i-th coordinate of h⋆

y is a rational number with denominator at most 22mL.

Proof. The proof of this lemma is similar to [12, Lemma 10], which follows from well-known results
in linear programming. We first note that h⋆ is the solution of the linear programming:

max
h

UP (h, y), subject to h⋆ ∈ Py,

where UP (h, y) is linear in h and the best response polytope Py can be represented as a system
{h : AhT ⪰ b}, where the set of constraints are the ones that define probability simplexHP , together
with the constraints of the form UP (h, y)− UP (h, y

′) ≥ 0, ∀y′ ̸= y. Suppose A is normalized so
that each entry is an integer. By Assumption C.9, each coefficient is at most 2L. Since the solution
to the above LP is the intersection of m independent constraints of A (denoted with D), we have
h⋆
y,i =

det(Di)
det(D) by Cramer’s rule, where Di is D with the i-th column replaced by b. According to

Hardamard’s inequality,

det(D) ≤
∏

i∈[m]

√ ∏
j∈[m]

d2ij ≤
∏

i∈[m]

√
m2L = m

m
2 2Lm ≤ 22Lm.

We also make the following assumption on the optimal strategy h⋆: any near-optimal strategy h̃ must
lie in the neighborhood of h⋆.
Assumption C.11 (Near-optimal strategies). There exists a constant c s.t. for all ε ≤ 2−4mL and all
strategy h̃ such that UP (h̃.y

⋆) ≤ V ⋆ − ε, we have ∥h̃− h⋆∥∞ ≤ c2Lε.

Now we are ready to define the post-processing algorithm.
Lemma C.12 (Post-processing). Suppose that Assumptions C.9 and C.11 holds. Assume ε ≤ 2−4mL,
h̃ is an ε-approximate optimal strategy in Pỹ, and h0 is η/2-centered in Pỹ, i.e., B2(h0, η/2) ⊆
Pỹ, then using no more than O

(
22mr−1

δ ( λ
k
√
m
) log T

)
rounds of interactions with the agent,

POSTPROCESS (Algorithm 5) outputs a strategy h that satisfies with probability ≥ 1− δ − T−1:
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Algorithm 5: Post-Processing (POSTPROCESS)

Input: non-robust strategy (h̃, ỹ) s.t. h̃ ∈ B2(Pỹ, ε), robustness parameter λ, intial point h0

Output: robust strategy h
S ←set of strategies h′ ∈ HP s.t. each coordinate h′

i is a rational number with denominator at
most 22mL and |h̃i − hi| ≤ c2Lε

for hj ∈ S do
hj

query ←
(
1− 2λ

η

)
hj + 2λ

η h0

Query APPROXMEMỹ(h
j
query) with ε1 = ε2 = λ

2 , ε3 = δ + T−2

if APPROXMEM returns TRUE then
h←

(
1− 2λ

η

)
hj

query +
2λ
η h0

RETURN h

(i) h lies robustly inside Pỹ: h ∈ B2(Pỹ,−λ);

(ii) h is close to h̃: ∥h− h̃∥2 ≤
√
m
(
c2Lε+ 4λ

η

)
.

Proof. To prove the lemma, we make the following claim: For all h1 ∈ HP , if h1 ∈ Pỹ and

h2 =
(
1− 2λ

η

)
h1 +

2λ
η h0, then we have h2 ∈ B2(Pỹ,−λ). In fact, for all unit vectors s ∈ Rm,

we have

h2 + λs =

(
1− 2λ

η

)
h1 +

2λ

η

(
h0 +

η

2
s
)
.

Since h1 ∈ Pỹ and h0 +
η
2 s ∈ B2(h0, η/2) ⊆ Pỹ from the assumption that h0 is η/2-centered, their

convex combination must also lie in Pỹ because Pỹ is convex. Thus, we have h2 + λs ∈ Pỹ. Since
the above holds for all unit vectors s, we conclude that B2(h2, λ) ⊆ Pỹ. We have thus proved the
claim.

With the above claim, we first show that when all oracle calls return correctly, S contains at least
one point hj such that APPROXMEM returns TRUE on hj

query, and the post-processed version of this
strategy satisfies (i) and (ii).

Since h̃ is an ε-optimal strategy, by Assumption C.11, we know that the true optimal h⋆
ỹ satisfies

∥h⋆
ỹ − h̃∥∞ ≤ c2Lε. According to Lemma C.10, every coordinate of h⋆

ỹ is a rational number with
denominator at most 22mL. Combining the two guarantees, we know that S must contains the true
optimal h⋆

ỹ, which satisfies h⋆
ỹ ∈ Pỹ. Suppose this point is hj . According to the above claim, we

have hj
query ∈ B2(Pỹ,−λ). Since we simulated the APPROXMEM oracle with ε1 = ε2 = λ

2 , it must
return TRUE on strategies that belong to B2(P

−ε2
ỹ ,−ε1) = B2(Py,−λ), therefore, it must return

TRUE on hj
query. This argument shows that POSTPROCESS always return valid strategies.

However, it could be the case that APPROXMEM returns TRUE on strategies hj that are not h⋆
ỹ. We

argue that the guarantee of POSTPROCESS is unaffected by showing that if APPROXMEM returns
TRUE on any hj

query, then we must have hj
query ∈ B2(P

−ε2
ỹ ,+ε1) ⊆ Pỹ from the guarantee of

APPROXMEM (see Lemma C.2). Applying the above claim again, we have that h ∈ B2(Pỹ,−λ) for
the returned strategy h, which proves (i).

As for (ii), note that

∥h− h̃∥2 ≤∥h̃− hj∥2 + ∥hj − hj
query∥2 + ∥hj

query − h∥2

≤
√
m∥h̃− hj∥∞ +

2λ

η

(
∥hj − h0∥2 + ∥hj

query − h0∥2
)

≤c
√
m2Lε+

4λ
√
m

η
.

Finally, we analyze the failure probability and sample complexity of POSTPROCESS. Since the
agent’s adaptive calibration error is uniformly bounded by rδ(·) with probability 1 − δ, and the
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probability that there exists an incorrect answer from APPROXMEM is bounded by T · T−2 = T−1

conditioned on agent’s calibration error being bounded, the failure probability of POSTPROCESS is
at most δ + T−1.

For the sample complexity, since |S| ≤ 2m and each hj ∈ S requires simulating APPROXMEMỹ

with O
(
1.25mr−1

δ ( λ
k
√
m
) log T

)
samples (see Lemma C.2 and proposition C.3), the total number of

samples required is O
(
22mr−1

δ ( λ
k
√
m
) log T

)
.

Theorem C.13. Suppose the utility functions satisfy Assumptions C.9 and C.11. If the principal
uses Algorithm 2 with parameters ε1 =

√
mε2 =

(
η

m24mL

)γ0
, ε3 = δ + T−2 for the APPROXMEM

oracle and ε′ = 2−4mL−1 for LSV, then feed the output of LSV into POSTPROCESS(λ), then with
probability at least 1− δ − T−1 − ε′ the final solution satisfies the following two properties:

(P1) UP (h̃, y
⋆) ≥ V ⋆ − 5mλ

η , i.e., h̃ is an approximate Stackelberg equilibrium.

(P2) h̃ ∈ B2(Py⋆ ,−λ), i.e., h̃ lies robustly within the best-response polytope for y⋆.

The total number of samples needed is expressed in Equation (14).

Proof. The analysis for the failure probability is the same with Theorem C.8 .

Now we consider the optimization problem for the optimal polytope Py⋆ , with initial point h0 that is
η
2 -centered in Py⋆ . Let ĥ be the solution output by LSV, and let h̃ be the solution output by running
POSTPROCESS on ĥ. According to Lemma C.7, ĥ satisfies ĥ ∈ B2(P

−ε2
y⋆ ,+ε′) ⊆ B2(Py⋆ , ε′),

and the suboptimality of ĥ is at most O(ε′ + ε2) ≤ 2−4mL. Since ε′ ≤ 2−4mL, by Lemma C.12,
h̃ ∈ B2(Py⋆ ,−λ), which proves (P2).

To prove (P1), note that since ∥ĥ− h̃∥2 ≤
√
m
(
c2Lε′ + 4λ

η

)
by Lemma C.12, we have

V ⋆ − UP (h̃, y
⋆) ≤

(
V ⋆ − UP (ĥ, y

⋆)
)
+
(
UP (ĥ, y

⋆)− UP (h̃, y
⋆)
)

≤2−4mL +m

(
c2Lε′ +

4λ

η

)
≤ 2−3mL +

4mλ

η
≤ 5mλ

η
.

Finally, we compute the total number of samples. According to Lemma C.2 and propo-
sition C.3, each call to the APPROXMEM oracle requires O

(√
mr−1

δ ( ε2
k
√
m
) log T

)
=

O
(√

mr−1
δ ( 1

km

(
η

m24mL

)γ0
) log T

)
samples, and Lemma C.7 suggests that LSV makes

O
(
m2 logO(1)( m

ε′η )
)

= O
(
m3L logO(1)(mη )

)
oracle calls, where we run O(V −1 log T )

LSV instances for each initial point in the initialization set. In addition, POSTPROCESS

takes O
(
22mr−1

δ ( λ
k
√
m
) log T

)
samples (Lemma C.12), and initialization takes

O
(
V −11.25mr−1

δ ( η
k
√
m
) log2 T

)
samples (Lemma C.6). Adding them all up, the total

number of samples is

Õ

(
V −11.25mr−1

δ (
η

k
√
m
) + V −1m3.5Lr−1

δ (
1

km

( η

m24mL

)γ0

) + 22mr−1
δ (

λ

k
√
m
)

)
. (14)

where Õ hildes logarithm factors in T,m, η−1.

C.6 Proof of Theorem 3.2

In this section, we present the main theorem (Theorem 3.2) in Section 3. We first formally restate the
theorem with exact convergence rate.
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Theorem C.14 (Formal version of Theorem 3.2). There exists an algorithm for the principal in CSGs
that achieves average utility with probability 1− o(1):

lim
T→∞

1

T

∑
t∈[T ]

UP (ht, yt) ≥ V ⋆. (15)

Specifically, for calibrated agents with calibration error rate rδ(t) = O(t−1/β),

(I) If the principal runs the EXPLORE-THEN-COMMIT algorithm (Algorithm 1) where
the explore phase follows the parameter settings in Theorem C.8 with ε′ =

O

(
T− 1

γ1 C
1
γ1
1 η−

γ1−1
γ1

)
, then the limit in (15) approaches V ⋆ with rate

Õ

(
T− 1

γ1 C
1
γ1
1 η−

γ1−1
γ1

)
,

where
C1 ≜ V −1m

5+mγ0+β(2γ0+1)
2 kβ , γ1 ≜ γ0

(m
2

+ β
)
+ 1.

(II) If the principal runs the EXPLORE-THEN-COMMIT algorithm (Algorithm 1) where the ex-

plore phase follows the parameter settings in Theorem C.13 with λ = O

((
ηC2

m

) 1
γ2

T− 1
γ2

)
,

then the limit in (15) approaches V ⋆ with rate

Õ

(
T− 1

γ2

(
m

η

)1− 1
γ2

C
1
γ2
2

)
,

where
C2 ≜ V −125mLβγ0kβ , γ2 ≜ βγ0 + 1.

Proof. According to Lemmas C.4 and C.5, we have that with probability 1− o(1), Algorithm 2 (with
potential post-processing) returns a policy h̃ within N samples, where h̃ satisfies

(P1) UP (h̃, y
⋆) ≥ V ⋆ − εopt, i.e., h̃ is an approximate Stackelberg equilibrium.

(P2) h̃ ∈ B2(Py⋆ ,−εrobust) , i.e., h̃ lies robustly within the best-response polytope for y⋆.

With properties (P1)and (P2), the arguments in Section 3 give us

V ⋆T −
∑
t∈[T ]

UP (ht, yt) ≲ N + εoptT +
k
√
mTrδ(T )

εrobust
.

Now we plug in specific instantiations of Algorithm 1.

(I) Suppose the principal follows the parameter settings in Theorem C.8. In this case, we have
εopt = 3ε′, εrobust = ε′, and

N =Õ

(
V −1m

5+mγ0
2 (ηε′)

−mγ0
2 r−1

δ (
(ε′η)

γ0

kmγ0
√
m
)

)
=Õ

(
V −1m

5+mγ0+β(2γ0+1)
2 kβ(ηε′)−γ0(m

2 +β)
)
.

Finally, optimizing over ε′ gives the claimed bound.

(II) Suppose the principal follows the parameter settings in Theorem C.13. In this case, we have
εopt =

5mλ
η , εrobust = λ, and

N =Õ

(
V −11.25mr−1

δ (
η

k
√
m
) + V −1m3.5Lr−1

δ (
1

km

( η

m24mL

)γ0

) + 22mr−1
δ (

λ

k
√
m
)

)
=Õ

(
V −11.25m(k

√
m)βη−β + V −125mLβγ0kβλ−βγ0

)
.

Finally, optimizing over λ gives the claimed bound.
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Remark C.15 (Representation length). If we assume the optimal solution h⋆ lies in the grid of size
poly(ε−1), then in case (II) of Theorem C.14, we have 22mL = poly(ε−1) , which leads to a rate

of Õ
(

poly(ε, k,m, η−1, V −1) · T− 1
γ2

)
, where γ2 is a constant that only depends on the agent’s

calibration error rate β. This is the result of replacing Lemma C.10 with the finite grid assumption.

Remark C.16 (Adaptive regret versus calibration). Our primary focus lies on calibration due to
its characterization of agents’ beliefs and the fact that it provides both upper and lower bounds to
the principal’s utility. This is particularly useful for the learning direction, as denoted by the lower
bounds in Theorems 3.2 and C.14. However, a different form of adaptive guarantee would suffice
here: one concerning (external) regret. Nevertheless, we do not focus on regret as a characterization
as it doesn’t offer the same upper bound guarantees — in fact, the principal could potentially extract
more utility than V ⋆. Additionally, regret-based assumptions tend to overly emphasize the agent’s
optimization techniques rather than maintaining a consistent belief about the action being executed.

D Supplementary Material for Section 4

D.1 Background on Sleeping Experts and ADANORMALHEDGE

We start the exposition of this part by introducing the sleeping experts problem [10, 31]. For each
expert i ∈ [N ] and round t ∈ [T ], let ℓt,i ∈ [0, 1] be the loss of expert i, and let It,i be an indicator
that takes value It,i = 1 if expert i is active at round t and It,i = 0 if asleep. The interaction protocol
at each round t goes as follows: The indicators (It,i)i∈[N ] are revealed to the learner. The learner
selects a probability distribution πt ∈ ∆([N ]) that is supported only on the set of active experts
At ≜ {i : It,i = 1}. The adversary selects a loss vector (ℓt,i)i∈[N ]. The learner then suffers expected

loss ℓ̂t = Ei∼πt
[ℓt,i]. The regret with respect to each expert i only accounts for the rounds when i is

awake, which, together with the fact that πt is only supported on active experts, implies that

RegT (i) =
∑
t∈[T ]

It,i

(
ℓ̂t − ℓt,i

)
⇒ RegT = max

i
RegT (i) (16)

One of the algorithms that can be used to provide sublinear regret for the sleeping experts problem
is ADANORMALHEDGE [44]. ADANORMALHEDGE is a powerful, parameter-free algorithm which
provides regret bounds in terms of the cumulative magnitude of the instantaneous regrets, defined as:
rt,i = ℓ̂t − ℓt,i for all experts i ∈ [N ]. As its name suggests, ADANORMALHEDGE uses the well-
known algorithm HEDGE as a backbone; HEDGE maintains a probability distribution over experts
at each round t and draws an expert from said distribution. After the expert’s loss is revealed, the
probability distribution for the next round t+1 is updated using a multiplicative weights argument. For
bandit feedback (i.e., when only the chosen expert’s loss is revealed to the learner), the multiplicative
weights update rule uses an inverse propensity scoring estimator for each expert’s loss in place of
their real loss. The new element that ADANORMALHEDGE brings to the table is a way of defining
the weights at each round t; specifically, the weights are updated proportionally to the sum of
instantaneous regret for each expert until round t. This allows the learner to obtain finer control over
the total regret without needing extra parameters to tune the algorithm at each round. The exact regret
guarantee that ADANORMALHEDGE obtains is stated formally below.

Lemma D.1 (ADANORMALHEDGE [44]). Let rt,i = It,i

(
ℓ̂t − ℓt,i

)
be the instantaneous regret

of any active expert i ∈ At at round t, and ct,i = |rt,i|. Then, ADANORMALHEDGE with prior
q ∈ ∆([N ]) selects experts according to the following distribution

πt,i ∝ qiIt,iw(Rt−1,i, Ct−1,i), where

Rt−1,i =
∑

τ∈[t−1]

rτ,i, Ct−1,i =
∑

τ∈[t−1]

cτ,i,

w(R,C) =
1

2
(Φ(R+ 1, C + 1)− Φ(R− 1, C + 1)) ,

Φ(R,C) = exp

(
max{0, R}2

3C

)
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The regret of ADANORMALHEDGE against any distribution over experts u ∈ ∆([N ]) is bounded by

RegT (u) ≤ O
(√
⟨u,CT ⟩ · (DKL(u∥q) + log log T + log logN))

)
.

where by DKL(u||q) we denote the KL-divergence between distributions u and q.

ADANORMALHEDGE can be used to obtain adaptive regret bounds by creating a sleeping expert
(i, s) for each i ∈ [N ], s ∈ [T ] that has the same loss as expert i but is only awake after s.

Corollary D.2. Running ADANORMALHEDGE for the sleeping expert setting with prior q(i,s) ∝ 1
s2

gives regret

Regt((i, s)) ≤ O
(√

(t− s) (log(Ns) + log log T )
)
,

where Ti =
∑T

t=1 It,i is the total number of rounds in which i is active.

D.2 Formula for Computing Qt when m = 2

To obtain the explicit formula for Qt, we first discretize the space of forecasts FP = [0, 1] (since we
focus on the case where m = 2) to form set Fε

P = {0, ε, 2ε, . . . , 1− ε, 1}. Then, we have that for
each p̂ ∈ Fε

P :

E
g∼πt

[ℓt,g] = E
g∼πt

[Lg (ht,p)] =
∑

g∈At(G)

πt,gwi(p)σ (ht − p)

= (ht − p)
∑
i∈AA

wi(p)
∑
s≤t

(
πt,g(s,i,+1) − πt,g(s,i,−1)

)
︸ ︷︷ ︸

Zp

(17)

where we have omitted index j from the sleeping expert g since because m = 2, we can focus on a
single action j. We assume WLOG that no forecast p ∈ Fε

P falls exactly on the boundary of best
response polytopes, so there is no tie-breaking needed. From Equation (17), we have that:

max
ht∈HP

E
g∼πt

[ℓt,g] = max{Zp, 0} − pZp (18)

where the equation also uses the fact that for m = 2, maxht∈HP
ht = 1.

In the final step, we map p to the discretized grid of Fε
P . Let jε, (j + 1)ε be two adjacent discretized

points and q ∈ [0, 1] such that: qZjε+(1−q)Z(j+1)ε0. Then, setting qt,jε = q and qt,(j+1)ε = 1−q
and using Equation (18) gives that

max
ht∈HP

E
g∼πt
p∼Qt

[ℓt,g] ≤ ε.

D.3 Proof of Theorem 4.1

Proof of Theorem 4.1. We first specify how to build a set of sleeping experts settings from our
problem definition. For that, consider the following set of experts:

G =
{
g(s,i,j,σ) : s ∈ [T ], i ∈ AA, j ∈ AP , σ ∈ {±1}

}
,

i.e., we create a different expert for each round, each principal-agent action pair, and each σ (the use
of which will be made clear in the next paragraph). For each expert g(s,i,j,(σ) ∈ G and t ∈ [T ], we
define the loss, sleeping/awake indicator, and instantaneous regret respectively as:

ℓt,g(s,i,j,σ)
≜Lg(i,i,j,σ)

(ht,pt) = wi(pt) · σ · (ht,j − pt,j) ;

It,g(s,i,j,σ)
≜1{t ≥ s};

rt,g ≜It,g ·
(
ℓt,g − ℓ̂t

)
.

where by ht,j , pt,j we denote the j-th coordinate of the h and p vectors respectively.
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Running ADANORMALHEDGE on the instance with G that we specified above, with prior qg(s,i,j,σ)
∝

1
s2 [44, Section 5.1] guarantees that ∀g(s,i,j,σ) ∈ G,

Regt
(
g(s,i,j,σ)

)
=
∑
τ∈[t]

rt,g(s,i,σ)
≤ Õ

(√
(t− s) log(kmT )

)
. (19)

where Õ(·) hides lower order poly-logarithmic terms. Therefore, by simulating the NRBR dynamics,
we obtain that with probability at least ≥ 1− δ, ∀i ∈ [k] and 1 ≤ s < t ≤ T ,

CalErri(hs:t,ps:t) =
1

t− s
max
j∈AP

max
σ∈{±1}

t∑
τ=s

Iτ,g(s,i,j,σ)
· ℓτ,g(s,i,j,σ)

(Definition 2.3)

=
1

t− s
max
j∈AP

max
σ∈{±1}

t∑
τ=s

Iτ,g(s,i,j,σ)
·
(
ℓτ,g(s,i,j,σ)

− E
g∼πτ

[ℓτ,g]

)
︸ ︷︷ ︸

Regt(g(s,i,j,σ))

+
1

t− s
max
j∈AP

max
σ∈{±1}

t∑
τ=s

Iτ,g(s,i,j,σ)
· E
g∼πτ

[ℓτ,g]

=
1

t− s
max
j∈AP

max
σ∈{±1}

Regt
(
g(s,i,j,σ)

)
+

1

t− s
max
j∈AP

max
σ∈{±1}

t∑
τ=s

E
g∼πτ

[
Lg(s,i,j,σ)

(hτ ,pτ )
]

︸ ︷︷ ︸
T

(20)

where for the first derivation we add and subtract
∑

τ ℓ̂τ and use that because of the NRBR dynamics:
ℓ̂τ = Eg∼Pτ

[ℓτ,g], and for the last derivation we have used the definition of ℓτ,g = Lg(hτ ,pτ )
(Equation (6)). We next upper bound the term T as follows:

T =

t∑
τ=s

E
g∼πτ
p∼Qτ

[Lg(hτ ,p)] +

t∑
τ=s

E
g∼πτ

[Lg(hτ ,pτ )]−
t∑

τ=s

E
g∼πτ
p∼Qτ

[Lg(hτ ,p)]

≤
t∑

τ=s

max
hτ∈∆(AP )

E
g∼πτ
p∼Qτ

[Lg(hτ ,p)] +

t∑
τ=s

E
g∼πτ

[
Lg(hτ ,pτ )− E

p∈Qτ

[Lg(hτ ,p)]

]
≤ ε · (t− s) +

√
(t− s) log((t− s)/δ)

where the first inequality is by the property of hτ being the best strategy for the principal, and the
last one uses the fact that maxhτ∈∆(AP ) E g∼πτ

p∼Qτ
[Lg(hτ ,p)] ≤ ε from the NRBR Equation (8) and a

martingale concentration bound on the second term.

Plugging the upper bound for Q back to Equation (20) and using the regret bound for AdaNormal-
Hedge (Equation (19)) we get:

CalErri(hs:t,ps:t) ≤ Õ

(
log(kmT )

t− s

)
+O

(
log((t− s)/δ)

t− s

)
+ ε ≤ rt(δ) + ϵ.

E Supplementary Material for Section 5

E.1 Proof of Theorem 5.2

Theorem 5.2 (Restated). For continuous CSGs satisfying Assumption 5.1, for all ε0 > 0, there exists
a finite binning Π0 such that if the agent is (0,Π0) - adaptively calibrated and the principal runs an
appropriately parametrized instance of LAZYGDWOG (Algorithm 3) then:

lim
Φ→∞
M→∞

1

ΦM

∑
ϕ∈[Φ]

∑
i∈[M ]

UP (hϕ, yϕ,i) ≥ V ⋆ − ε0.
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Moreover, for any sequence of the principal’s actions h[1:T ], it holds that:

lim
T→∞

1

T

∑
t∈[T ]

UP (ht, yt) ≤ V ⋆ + ε0.

E.1.1 Proof of Lower Bound

Proof. Before delving into the proof of the lower bound, we first introduce some notations. Let
C(h) ≜ UP (h, BR(h)). Let V ⋆

δ ≜ maxh∈B2(AP ,−δ) C(h) be the optimal utility restricted in the
smaller strategy set B2(AP ,−δ). We use yϕ ≜ 1

M

∑
s∈[M ] yϕ,s to denote the average feedback that

LAZYGDWOG uses to update the strategies.

We first consider any fixed ε > 0. Combining the guarantees of Lemmas E.4 and E.5, we conclude
that there exists a finite binning Π0 and Mε < ∞, such that if the agent is (0,Π0)-adaptively
calibrated, then ∀M ≥Mε, the following two inequalities are satisfied at the same time:

sup
ϕ∈[Φ]

∥∥yϕ − BR(hϕ)
∥∥
2
≤ ε (by Lemma E.4) (21)

sup
ϕ∈Φ

1

M

∑
s∈[M ]

UP (hϕ, yϕ,s) ≥ C(hϕ)− ε; (by Lemma E.5) (22)

Set the parameters according to γϕ = γ0m
− 1

2ϕ− 3
4 and δϕ ≡ δ = δ0m

1
2Φ− 1

4 in Algorithm 3, then
similar arguments to [51, Theorem 3.1] guarantee that

V ⋆
δ −

1

Φ

∑
ϕ∈[Φ]

E[C(hϕ)] ≤
(
D2

P

2γ0
+

2W 2
P

δ20

)√
mΦ− 1

4 + LBRDP
1

Φ

∑
ϕ∈[Φ]

∥yϕ − BR(hϕ)∥2

(a)

≤
(
D2

P

2γ0
+

2W 2
P

δ20

)√
mΦ− 1

4 + LBRDP · ε,

where (a) is from Equation (21).

Now we upper bound the difference between V ⋆ and V ⋆
δ = maxh∈B2(AP ,−δ) C(h), then we have

V ⋆ − V ⋆
δ ≤ max

h⋆∈AP

min
h′∈B2(AP ,−δ)

C(h⋆)− C(h′) ≤ LU max
h⋆∈AP

min
h′∈B2(AP ,−δ)

∥h⋆ − h′∥2 ≤ LUδ,

where the second inequality follows from Assumption 5.1 that C(h) is LU -Lipschitz.

The next step is to upper bound the difference between the actual average utility and
1
Φ

∑
ϕ∈[Φ] E[C(hϕ)]. From Equation (22), we have

1

Φ

∑
ϕ∈[Φ]

E[C(hϕ)]−
1

ΦM

∑
ϕ∈[Φ]

∑
i∈[M ]

UP (hϕ, yϕ,i) ≤ ε.

Finally, putting the above inequalities together, we obtain

V ⋆ − 1

ΦM

∑
ϕ∈[Φ]

∑
i∈[M ]

UP (hϕ, yϕ,i)

≤ (V ⋆ − V ⋆
δ ) +

V ⋆
δ −

1

Φ

∑
ϕ∈[Φ]

E[C(hϕ)]

+

 1

Φ

∑
ϕ∈[Φ]

E[C(hϕ)]−
1

ΦM

∑
ϕ∈[Φ]

∑
i∈[M ]

UP (hϕ, yϕ,i)


≤LUδ0m

1
2Φ− 1

4 +

(
D2

P

2γ0
+

2W 2
P

δ20

)√
mΦ− 1

4 + LBRDP · ε+ ε.

Taking the limit of Φ→∞, the above inequalities imply

lim
Φ→∞
M→∞

1

ΦM

∑
ϕ∈[Φ]

∑
i∈[M ]

UP (hϕ, yϕ,i) ≥ V ⋆ − ε (LBRDP + 1) .

Since the above arguments hold for all ε > 0, taking ε = ε0
LBRDP+1 proves the theorem.
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E.1.2 Proof of Upper Bound

For a fixed ε > 0, let Dε = {x1, · · · , xI} be an ε-grid of FP under ℓ2 distance, and let Π0 be the
continuous binning specified by Equation (26). We have:∑
t∈[T ]

UP (ht, yt) =
∑
i∈[I]

∑
t∈[T ]

wi(pt)UP (ht, BR(pt))

(a)

≤
∑
i∈[I]

∑
t∈[T ]

wi(pt)

UP (ht, BR(xi)) + L2 · LBR ∥pt − xi∥2︸ ︷︷ ︸
≤2ε


(b)

≤
∑
i∈[I]

∑
t∈[T ]

wi(pt)

UP

(∑t∈[T ] wi(pt)ht∑
t∈[T ] wi(pt)

, BR(xi)
)
+ 2L2LBRεT

(c)
=
∑
i∈[I]

nT (i)UP (hT (i), BR(xi)) + 2L2LBRεT

(d)

≤
∑
i∈[I]

nT (i)
(
UP (pT (i), BR(xi)) + L1

∥∥pT (i)− hT (i)
∥∥
2

)
+ 2L2LBRεT

=
∑
i∈[I]

nT (i)UP (pT (i), BR(xi))︸ ︷︷ ︸
(A)

+L1

∑
i∈[I]

nT (i)
∥∥pT (i)− hT (i)

∥∥
2︸ ︷︷ ︸

(B)

+2L2LBRεT

(23)

In the above inequalities that lead to (23), step (a) is because UP is L2-Lipschitz in the second
argument and BR(·) is LBR-Lipschitz, and the fact that wi(pt) > 0 only when ∥pt − xi∥2 < 2ε. In
step (b), we used Jensen’s inequality because UP in concave in the first argument. Step (c) follows
from the definition of nT (i) and hT (i) in Definition 2.3. The last inequality (d) uses the fact that
UP is L1-Lipschitz in the first argument to decompose UP (pT (i), BR(xi)) into calibration error (i.e.,
term (B)) and UP (pT (i), BR(xi)) where the strategy that the agent best responds to is close to the
principal’s strategy (i.e., term (A)).

We can further bound (A) and (B) in Equation (23) respectively as follows:

(A) ≤
∑
i∈[I]

nT (i) (UP (xi, BR(xi)) + L1∥xi − pT (i)∥2) ≤ V ⋆T + L1(2ε)T,

and
(B) ≤ L1T

∑
i∈[I]

CalErri(h1:T ,p1:T ) ≤ L1|Dε|rδ(T )T w.p. ≥ 1− δ.

Therefore, putting the above bounds together, we obtain that with probability ≥ 1− δ,

1

T

∑
t∈[T ]

UP (ht, yt) ≤ V ⋆ + (L1|Dε|)rδ(T ) + 2(L1 + L2LBR)ε.

Since the above derivation holds for any ε > 0, it suffices to take ε such that 2(L1 + L2LBR)ε = ε0.
Finally, since |Dε| <∞ and rδ(T ) = o(1), taking the limit of T →∞ proves the upper bound:

lim
T→∞

1

T

∑
t∈[T ]

UP (ht, yt) ≤ V ⋆ + ε0.

E.2 Key lemma: asymptotically correct forecast

In this section, we state and prove the key lemma for establishing Theorem 5.2. Intuitively, this
lemma states that for any strategy h ∈ AP , as long as the principal repeatedly plays h for enough
rounds, the fraction of times where the agent’s forecast is close to h will converge to 1.
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Lemma E.1. For any ε0 > 0, there exists a finite binning Π0, such that if the principal repeatedly
plays any h ∈ AP for M rounds and the agent’s forecasts p1:M are (0,Π0)- adaptively calibrated,
then:

lim
M→∞

1

M

∣∣∣{s ∈ [M ] : ∥ps − h∥2 ≥ ε0}
∣∣∣ = 0 (24)

In particular, if the calibration error (defined in Definition 2.3) has rate r(·) ∈ o(1) with respect to
Π0, then

1

M

∣∣∣{s ∈ [M ] : ∥ps − h∥2 ≥ ε0}
∣∣∣ ≤ 8

√
m|Π0|2

ε0
r(M). (25)

Proof of Lemma E.1. We first describe the construction of Π0. For ε = 1
4ε0, let Dε = {x1, · · · , xI}

be an ε-grid of FP under ℓ2 distance, and Λ(p;x,R) ≜ (R− ∥p− x∥2)+ be the tent function with
center x and radius R. Consider the following binning

Π0 =

{
wi(p) ≜

Λ(p;xi, 2ε)∑
j∈[I] Λ(p;xj , 2ε)

: xi ∈ Dε

}
. (26)

Clearly, |Π0| = I <∞ because the diameter of FP is bounded as stated in Theorem 5.1. We can also
verify that Π0 satisfies

∑
i∈[I] wi(p) = 1 for all p ∈ FP because wi(p) is defined as the normalized

tent function.

Now we prove that Π0 satisfies the desired property. Since the agent is adaptively calibrated to Π0,
we have that ∀i ∈ [I],

n[M ](i)

M

∥∥p̄[M ](i)− h
∥∥
2
≤
√
m lim

M→∞

n[M ](i)

M

∥∥p̄[M ](i)− h
∥∥
∞ ≤

√
mr(M).

Now, for δ = 3ε = 3
4ε0, let D(δ)

ε ⊆ Dε be defined as

D(δ)
ε = {xi ∈ Dε : ∥xi − h∥ ≥ δ} . (27)

Since |D(δ)
ε | ≤ |Dε| = I <∞, taking the sum of calibration error over bins in D

(δ)
ε , we obtain

∑
xi∈D

(δ)
ε

n[M ](i)

M

∥∥p̄[M ](i)− h
∥∥
2
=

1

M

∑
xi∈D

(δ)
ε

∥∥∥∥∥∥
∑

s∈[M ]

wi(ps)(h− ps)

∥∥∥∥∥∥
2

≤
√
mIr(M). (28)

We can further lower bound (28) and get:

1

M

∑
xi∈D

(δ)
ε

∥∥∥∥∥∥
∑

s∈[M ]

wi(ps)(h− ps)

∥∥∥∥∥∥
2

=
1

M

∑
xi∈D

(δ)
ε

∥∥∥∥∥∥
∑

s∈[M ]

wi(ps)
(
(h− xi) + (xi − ps)

)∥∥∥∥∥∥
2

(a)

≥ 1

M

∑
xi∈D

(δ)
ε

∥∥∥∥∥∥
∑

s∈[M ]

wi(ps)(h− xi)

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
∑

s∈[M ]

wi(ps)(xi − ps)

∥∥∥∥∥∥
2


(b)

≥ 1

M

∑
xi∈D

(δ)
ε

∑
s∈[M ]

wi(ps)
(
∥h− xi∥2 − ∥xi − ps∥2

)
(c)

≥ 1

M

∑
xi∈D

(δ)
ε

n[M ](i)(δ − 2ε) ≥ ε0
4M

∑
xi∈D

(δ)
ε

n[M ](i).

In the above inequalities, (a) and (b) are both due to triangle inequalities, and (c) is because ∥h−
xi∥2 ≥ δ from the definition of D(δ)

ε in (27) and ∥xi − ps∥2 < 2ε whenever wi(ps) > 0 ⇐⇒
Λ(ps;xi, 2ε) > 0. Together with (28), the above set of inequalities imply

1

M

∑
xi∈D

(δ)
ε

n[t](i) ≤
(

4

ε0

)
1

M

∑
xi∈D

(δ)
ε

∥∥∥∥∥∥
∑

s∈[M ]

wi(ps)(h− ps)

∥∥∥∥∥∥
2

≤ 4
√
mI

ε0
r(M). (29)
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On the other hand, since Dε is an ε-grid of FP , if ∥ps − h∥2 ≥ ε0, there must exist xi ∈ Dε such
that ∥xi − ps∥2 ≤ ε, which implies

∥xi − h∥2 ≥ ∥ps − h∥2 − ∥xi − ps∥2 ≥ ε0 − ε =
3

4
ε0 = δ ⇒ xi ∈ D(δ)

ε .

As for the weight that wi assigns to ps, we also have

wi(ps) =
Λ(ps;xi, 2ε)∑

j∈[I] Λ(ps;xj , 2ε)
≥ 2ε− ε

I · 2ε
=

1

2I
.

Therefore, we have
1

M

∣∣∣{s ∈ [M ] : ∥ps − h∥ ≥ ε0}
∣∣∣ ≤ 1

M

∑
xi∈D

(δ)
ε

∑
s∈[M ]

(2I)wi(ps) =
2I

t

∑
xi∈D

(δ)
ε

n[M ](i) (30)

Finally, combining inequalities (29) and (30), we conclude that

1

M

∣∣∣{s ∈ [M ] : ∥ps − h∥ ≥ ε0}
∣∣∣ ≤ (2I) lim

M→∞

1

M

∑
xi∈D

(δ)
ε

n[M ](i) ≤
8
√
mI2

ε0
r(M),

which proves (25). The proof is complete by taking the limit of M → 0, which guarantees r(M)→ 0
and immediately implies the convergence result in (24).

Note that the rate in Equation (25) does not depend on strategy h. Therefore, in the context of running
LAZYGDWOG (Algorithm 3), we can turn Lemma E.1 into the following uniform convergence result
across epochs:
Proposition E.2. For any ε0 > 0, there exists a finite binning Π0, such that ∀Φ > 0, if the principal
runs LAZYGDWOG for Φ epochs where each epoch has length M , and the agent’s forecasts
(pϕ,s)ϕ∈[Φ],s∈[M ] are adaptively calibrated with respect to Π0, then we have the following uniform
convergence guarantee:

lim
M→∞

sup
ϕ∈[Φ]

1

M

∣∣∣{s ∈ [M ] : ∥pϕ,s − hϕ∥2 ≥ ε0}
∣∣∣ = 0 (31)

Remark E.3. Note that the rate in (25) has a polynomial dependency on |Π0|, which, due to the
construction in the proof of Lemma E.1, ends up being exponential in m because it is the size of
a ε0

4 grid of the domain AP . To improve on this exponential dependency, one possible approach
is to design an adaptive calibration algorithm for the agent that achieves the stronger notion of ℓ1
calibration, which is more common in recent literature. For example, Hart [36], Foster and Vohra
[29, 30] are defined using ℓ1 calibration error rather than ℓ∞. Another approach is to avoid using
naive conversion from ℓ∞ to ℓ1 calibration error in (28), which leads to a polynomial dependency on
the number of bins. These two approaches are equivalent ways of formulating the problem, and they
both lead to interesting open directions.

E.3 More auxiliary lemmas: approximate best response and closeness in utility

In this section, we use the results in Appendix E.2 to show that the average feedback 1
M

∑
s∈[M ] yϕ,s

in epoch ϕ ∈ [Φ] is close to the best response BR(hϕ) (Lemma E.4), and that the principal’s average
utility in this epoch is close to UP (hϕ, BR(hϕ)) (Lemma E.5).
Lemma E.4. For any ε1 > 0, there exists a finite binning Π0 and M0 <∞ such that when agent’s
forecasts p1:t are adaptively calibrated with respect to Π0, then we have that ∀M ≥M0,

sup
ϕ∈[Φ]

∥∥∥∥∥∥ 1

M

∑
s∈[M ]

yϕ,s − BR(hϕ)

∥∥∥∥∥∥
2

≤ ε1.

Proof. Let ε0 = ε1
2LBR

and Π0 be the binning that satisfies Proposition E.2 for parameter ε0. Therefore,
we know from Equation (31) in Proposition E.2 that for ε2 = ε1

2·DP ·LBR
there exists M0 such that

∀M ≥M0,

sup
ϕ∈[Φ]

1

M

∣∣∣{s ∈ [M ] : ∥pϕ,s − hϕ∥2 ≥ ε0}
∣∣∣ ≤ ε2. (32)

31



Using Lipschitzness of the best response mapping BR(·), we have that ∀ϕ ∈ [Φ],∥∥∥∥∥∥ 1

M

∑
s∈[M ]

yϕ,s − BR(hϕ)

∥∥∥∥∥∥
≤ 1

M

∑
s∈[M ]

∥yϕ,s − BR(hϕ)∥2 (Triangle inequality)

≤LBR
1

M

∑
s∈[M ]

∥pϕ,s − hϕ∥2 (BR(·) is LBR-Lipschitz)

≤LBR
1

M

 ∑
s∈[M ]:∥pϕ,s−hϕ∥≥ε0

diam(HP ) +
∑

s∈[M ]:∥pϕ,s−hϕ∥<ε0

ε0


≤LBR

1

M
(ε2M ·DP +M · ε0) (Eq. (32) & diam(HP ) ≤ DP )

≤DP · LBR · ε2 + LBR · ε0 =
ε1
2

+
ε1
2

= ε1.

Lemma E.5. For any ε1 > 0, there exists a finite binning Π0 and M0 <∞ such that when agent’s
forecasts p1:t are adaptively calibrated with respect to Π0, then we have that ∀M ≥M0,

sup
ϕ∈[Φ]

∣∣∣∣∣∣ 1M
∑

s∈[M ]

UP (hϕ, yϕ,s)− UP (hϕ, BR(hϕ))

∣∣∣∣∣∣ ≤ ε1. (33)

Proof. The proof of this lemma is very similar to that of Lemma E.4, with a different choice of
constants ε0 and ε2. Note that since UP is L2-Lipschitz in the second argument, we have∣∣∣∣∣∣ 1M

∑
s∈[M ]

UP (hϕ, yϕ,s)− UP (hϕ, BR(hϕ))

∣∣∣∣∣∣ ≤ 1

M

∑
s∈[M ]

∥UP (hϕ, yϕ,s)− UP (hϕ, BR(hϕ))∥2

≤L2 ·
1

M

∑
s∈[M ]

∥yϕ,s − BR(hϕ)∥2 .

The rest of the proof follows from Lemma E.4 by choosing ε0 = ε1
2L2LBR

and ε2 = ε1
2·DP ·LBRL2

.

F Future Directions

Adaptive Calibration Although the results in this paper are all stated in terms of the ℓ∞-calibration
error (e.g., maximum instead of sum over bins), a lot of the existing calibration literature focuses on ℓ1-
calibration error [29, 30]. It is an interesting problem whether we can get ℓ1-adaptive calibration error
bounds without a polynomial dependency in the number of binning functions, where obtaining such
bounds lead to polynomial improvements on the dependency of m (the number of agent’s actions). In
the case of continuous calibration, it is an open problem to obtain uniform (adaptive) calibration error
bounds for parametric or nonparametric continuous binning function classes. Resolving this open
problem could lead to a better rate for the learning direction of Theorem 5.2, as the current result
uses naive ℓ∞-to-ℓ1 conversion of calibration error that leads to linear dependency on the number of
binning functions, which turns out to be exponential in the dimension of the principal’s action space.
See Remark E.3 for more details.

Convex optimization from membership oracles In the case of finite Stackelberg games, we use the
results of Lee et al. [42] to solve the constrained convex optimization problem in each polytope from
approximate membership queries, where the key step is a polynomial reduction from approximate
separation oracles to approximate membership oracles. However, the precision of the constructed
separation oracle is worse than the precision of the membership oracle, which naturally leads to a
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worse precision of the final optimization solution. To be more specific, given an ε-membership oracle
to a convex set K, Lee et al. [42] can only guarantee the returned solution to be ε1/γ0-optimal and
contained in B2(K, ε1/γ0), where γ0 > 6 is a fixed constant. An understudied open direction in the
optimization community is whether a variant of Lee et al. [42] can return a solution in B2(K, ε+ δ)
for δ that is any tunable parameter, with runtime depending polynomially on 1/δ.
Open Problem F.1. Given an ε-approximate membership oracle of a convex set K ⊆ Rm and an eval-
uation oracle of a convex function f , is there an optimization algorithm that, under sufficient regularity
conditions, for any tunable δ, finds a near-optimal solution x̂ such that f(x̂) ≤ minx∈K f(x)+ε1/γ0

and x̂ ∈ B2(K, ε+ δ) within poly(m, 1/δ, log(1/ε)) calls to both oracles?

We note that resolving Open Problem F.1 will immediately lead to exponentially improved rates for
our Theorem C.14 for any finite Stackelberg games. To see this, recall that the algorithms that achieve
Theorem C.14 require repeated calls to the constructed APPROXMEM oracle. This oracle provides
an ε1-approximate response, indicating whether or not the query point belongs to the ε2-conservative
version of each best response polytope. The number of samples used in simulating each oracle call is
exponential in ε2

ε1
. The algorithm by Lee et al. [42] amplifies the inaccuracy of APPROXMEM at a

polynomial rate of γ0. Consequently, imposing a constraint of ε1 ≲ εγ0

2 . However, resolving Open
Problem F.1 removes this constraint and introduces a much milder one, i.e., ε1 ≲ ε2 − δ, where δ is a
tunable parameter. This adjustment leads to exponential improvement in the final sample complexity.
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