Under review as a conference paper at ICLR 2026

TALK, EVALUATE, DIAGNOSE: USER-AWARE AGENT
EVALUATION WITH AUTOMATED ERROR ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Agent applications are increasingly adopted to automate workflows across diverse
tasks. However, due to the heterogeneous domains they operate in, it is chal-
lenging to create a scalable evaluation framework. Prior work each employ their
own methods to determine task success, such as database lookups, regex match,
etc., adding complexity to the development of a unified agent evaluation approach.
Moreover, they do not systematically account for the user’s role nor expertise in
the interaction, providing incomplete insights into agent’s performance. We argue
that effective agent evaluation goes beyond correctness alone, incorporating con-
versation quality, efficiency and systematic diagnosis of agent errors. To address
this, we introduce the TED framework (Talk, Evaluate, Diagnoseﬂ (1) Talk: We
leverage reusable, generic expert and non-expert user persona templates for user-
agent interaction. (2) Evaluate: We adapt existing datasets by representing sub-
goals—such as tool signatures, and responses—as natural language grading notes,
evaluated automatically with LLM-as-a-judge. We propose new metrics that cap-
ture both turn efficiency and intermediate progress of the agent complementing
the user-aware setup. (3) Diagnose: We introduce an automated error analysis
tool that analyzes the inconsistencies of the judge and agents, uncovering com-
mon errors, and providing actionable feedback for agent improvement. We show
that our TED framework reveals new insights regarding agent performance across
models and user expertise levels. We also demonstrate potential gains in agent
performance with peaks of 8-10% on our proposed metrics after incorporating the
identified error remedies into the agent’s design.

1 INTRODUCTION

Large Language Models (LLMs) agents (Liu et al., 2023} Jang et al., 2025} |Koh et al.,[2024) are in-
creasingly being adopted for many real-world tasks in various domains due to their potential of fully
automating mundane workflows and enhancing productivity. However, evaluation of agents remains
a challenge today due to the heterogeneous domains the agents operate in. As every domain comes
with its own goals, creating a scalable unified evaluation framework which reliably assesses agent
performance across diverse tasks is non-trivial. Existing works (Qian et al., [2024; |Lu et al.| [2024;
Barres et al.| 2025} |Chang et al., 2024)) each propose their own evaluation methods, e.g., checking
database states, tool signatures, or exact matches which differ in scope and assumptions, making
unification challenging. Moreover, since agent behavior is heavily influenced by the conversation
trajectory with the user, current assessment methods that overlook the user’s role in the interaction
may fail to comprehensively capture agent’s performance.

Given that agents are non-deterministic and it is difficult to craft reference conversations, a common
practice to interact with the agent is to dynamically simulate the user responses in the conversation
loop with the agent (Yao et al., [2024). This has been adopted as a common practice for agent
evaluation because static user setups, where user messages are predetermined, do not work. This is
because the agent’s responses to earlier predetermined user inputs may diverge from the reference
conversation for which the static messages were curated. However, most works employing dynamic
conversation have limitations because they do not systematically separate user persona from task
instructions, thus failing to account for the impact of user behavior (independent of the task) on

'All code and dataset will be made publicly available upon acceptance of the paper.

Under review as a conference paper at ICLR 2026

agent performance, providing incomplete insights. This is important as good agents ask clarifying
questions when given incomplete input, while poor agents do not; thus, systematic testing is essential
for fair comparison across agents and tasks. Despite the complexity of agent trajectories, existing
works (Qiao et al.}[2024; |Xiao et al.| 2024} |Qian et al.| [2025) often stop at metric reporting.

To address these shortcomings, we propose the TED framework (Talk, Evaluate, Diagnose). (1) In
the Talking stage, we decouple user personas from task instructions and introduce a user-aware agent
evaluation framework based on reusable, generic persona templates enabling diverse and systematic
creation of test scenarios. (2) In the Evaluation stage, we adapt existing datasets by representing
subgoals—such as tool signatures, and responses—as natural language grading notes, and evaluate
them with LLM-as-a-judge. We propose new metrics that capture not only partial progress and task
success, but also the efficiency of task progression—measured in conversational turns. (3) In the
Diagnosis stage, we introduce an automated error analysis tool that examines inconsistencies of
both agents and LLM-as-a-judge, automatically identifies errors, and offer actionable feedback. We
summarize our contributions as follows:

i) Propose an agent evaluation framework applicable across heterogeneous agent domains that is
built on reusable, generic expert and non-expert persona templates that systematically assess the
impact of users’ role on agent performance.

ii) Introduce a benchmark by adapting existing datasets to grading notes—natural language check-
lists of subgoals. Grading notes serve as assertion criteria for LLM-as-a-judge, which scores the
agent performance based on its trajectory log without requiring access to the environment.

iii) Introduce new metrics to accompany the user-aware evaluation setup, which are essential for
capturing an agent’s progress with respect to the number of conversational turns.

iv) Propose an automated error analysis tool that analyzes the inconsistencies of the judge and agents,
uncovering common errors, and providing actionable feedback for agent improvement.

2 RELATED WORKS

Conversation simulation. A majority of the agents today are conversational and involve invok-
ing multiple tools to solve a task. With complex tasks requiring human interaction, the literature
(Yao et al., 20245 [Wang et al.| [2023; Xiao et al., [2024) has adopted a dynamic setup using a LLM-
simulated user (user proxy), for automated testing of agents. However, existing dynamic evaluation
methods face several limitations: some rely on user instruction prompts that are tightly coupled with
specific agents, scenarios, and personas (Yao et al.| 2024)), while others omit user personas alto-
gether (Lu et al., 2024)—both of which limit the reusability of evaluation methods across different
domains. Although agent performance is influenced by the behavior of user proxy, this dependency
is rarely analyzed systematically due to user personas being inconsistently defined across samples
(Huang et al.| 2025). While prior work (Barres et al., [2025) introduced a systematic evaluation
of “easy” and “hard” personas for one of their dataset, their telco-specific user prompt templates
is not generic and limits reusability across domains. Our TED framework differs from prior work
by allowing end-user to systematically test the agent with reusable, generic expert and non-expert
personas that are agent- or task-agnostic. We demonstrate this in our experiments on the 72-bench
(Barres et al.| 2025)) and ToolSandbox (Lu et al. [2024) datasets, which span various domains such
as airline booking, messaging, setting reminders, etc., all evaluated using the same user persona
templates without any tuning.

Metrics and error analysis. To evaluate agent performance, most prior work (Wang et al., 2023
Xie et al.}2024) relies on success rate. However, the metric focuses solely on the final outcome and
provide only a coarse-grained assessment of agent behavior. This is first addressed by AgentBoard
(Chang et al., [2024) that introduced progress rate as a fine-grained metric but in a multi-step agent-
environment setting without conversation simulation. We extend this to multi-turn settings and
propose metrics that combine turn-level efficiency and progress rate. Unlike MINT (Wang et al.|
2023)), which measures only final success after ¢ interactions, our turn-aware evaluation captures
per-turn progress and efficiency, offering a richer measure of agent performance in complex tasks.
Given the non-deterministic behavior of agents, [Yao et al.| (2024) reports the pass@k and pass k
metrics. In line with the pass@k metric used to assess the chance of whether at least one out of
k trials is successful, we also report new metrics that capture the best-case performance under the

Under review as a conference paper at ICLR 2026

stochastic runs. Instead of checking goal attainment via direct database lookups, tool signatures,
etc., we represent all subgoals as grading notes. This approach abstracts complex goals, is user-
friendly, and does not require system-state access, making our evaluation applicable to both agents
that modify the system state and those that do not. While prior work uses natural language for only
some assertions (Barres et al., [2025]), we extend this to cover tool calls and end responses. Similar to
Cui et al.|(2025), we identify common errors made by LLM agents; however, our approach discovers
these errors in an unsupervised manner via automatic analysis of real-time logs rather than relying
on predefined categories.

3 TALK, EVALUATE, DIAGNOSE: TED FRAMEWORK

We define a LLM agent as an automated system that performs tasks via interactions with users, tools,
and the environment. Its action space includes tool use, responses to users, and internal reasoning.
After each action, the agent receives partial state information, such as API responses, or a subse-
quent user utterance. To systematically evaluate agents, we introduce the TED framework—Talk,
Evaluate, and Diagnose—as complementary and interdependent stages. In the Talking stage, diverse
user-agent interactions are simulated, to study how robust agents complete tasks, for the different
type of users, such as non-expert users who require more conversational turns. Traditional metrics
like success or progress rates often fail to capture subtleties of turn efficiency, motivating metrics
that consider both task progress and turn-efficiency during the Evaluation stage. Moreover, evalu-
ation using LL.M-as-a-judge are subject to stochasticity and potential errors. The Diagnosis stage
helps extract meaningful insights from inconsistencies and errors made by both the agent and LLM-
as-a-judge. Together, these stages form a unified framework as detailed in the following subsections.

3.1 THE TALKING STAGE

Dynamic evaluation with expert and non-expert user personas. Existing methods that use LLM-
simulated user also known as user proxy (Yao et al.|[2024; [Lu et al.| 2024])) are constrained by either
tightly coupled or missing user personas, hindering systematic analysis of the effect of user behavior
on agent performance. A tightly coupled task complexity and user persona, makes it challenging
to isolate their individual impacts on agent performance. For instance, when an agent answers
technical legal questions, the outcome may differ depending on whether the user is an expert or a
layperson, even if the task complexity remains constant. However, if both the task and user expertise
as determined by the user persona vary simultaneously, it becomes difficult to determine which factor
is driving performance differences. In this work, we propose a scalable, dynamic agent evaluation
framework that leverages reusable, generic expert and non-expert user personas to simulate realistic
user interactions across a wide range of scenarios. Let P = {pexpert; Pnon—expert } denote the set
of persona prompts with different user expertise level, I be the set of task instructions, and U be
the set of full user prompt consumed by the LLM-simulated user. We abstract the full user prompt
templating process as a function f, combining user persona prompt p, with a task instruction i :

u= f(p,i), (0

where p € P,i € I, andu € U. The function f includes general rules for the user proxy, along with
a two-step process—reflection followed by response. For each agent and task instruction sample 4,
we vary only the persona prompt p to generate Uexpert aNd Unon—expert- Refer to Appendix for
the prompt f and user persona template p. An example of task instruction ¢ is shown in Fig.%

3.2 THE EVALUATION STAGE

We define the set of grading notes G as natural language text used as assertion-based ground truths
by LLM-as-a-judge. Each subgoal is represented by one such grading note El Unlike prior work
that uses keypoints (Hao et al.,2025)) or limited natural language assertions (Barres et al.,[2025), we
expand coverage to include tool calls, their order, and key agent responses in G. While we adopt the
notion of milestones (key events that must happen) (Lu et al,[2024) for the set GG, we do not follow
their DAG-based construction method. An example of grading note is: Agent should enable Wifi.
More examples are in Appendix [A.T1]

2Subgoal is represented by grading note which is a natural language text.

Under review as a conference paper at ICLR 2026

3.2.1 LLM-AS-A-JUDGE AND MAXPROGRESSRATE@k

LLM-as-a-judge. We extend beyond the multi-step agent-environment setting and exact match
metric (Chang et al.| [2024) by evaluating agents in a multi-turn user-agent setup, where grading
notes serves as subgoals to assess both intermediate and final states, tool calls, as well as the agent’s
output responses. Let D = {(i,G;) | ¢ € I} be the test dataset, where ¢ € I is a task instruction,
Gi =1{9i1,9i2 -, Gin, } be the set of grading notes associated with the task instruction ¢, and |G|
be the number of subgoals, i.e., grading notes. We denote the corresponding agent trajectory, which
includes information on tool calls, agent responses and user utterances for the entire conversation
up to the final conversational turn, as 7;. For a task sample (i, G;), the progress of the agent given
its trajectory T;, is defined as the proportion of subgoals achieved:

|Gl
. 1 .
progress(i, G;, 1) = 7|G| E LLM;jyage(t, gi j, i), 2)
i

where LLMjudge(-) returns 1 if the subgoal g; ; is achieved, and O otherwise. We define the
progress rate as the average progress across all samples in the dataset D, i.e., progressrate =
E(;,c)~pp | progress(i, Gy, ;) |. Using LLM-as-a-judge with grading notes reduces the need for
custom dataset-specialized evaluation harnesses and infrastructure. In this formulation, the judge is
queried once for every subgoal. However, to ensure reliability, we run the judge multiple times and
take a majority vote as the final score. We discuss the stability of the judge further in Section 3.3}
The LLMjyqgc(-) prompt is provided in Appendix

From pass@k to MaxProgressRateQk. Given the non-deterministic nature of agent
behavior, a commonly used evaluation metric is pass@Qk = Ep,,, [1— (".¢)/(})] (Yao et all
2024])), which measures the probability that at least one trial succeeds when sampling k£ out of n
total trials. The notation ¢ denotes the number of trials that are successful. Each trial represents a
complete multi-turn conversation, consisting of multiple back-and-forth user-agent exchanges. By
this definition, when n = k, the pass@k metric evaluates to 1 if at least one of the k trials for a
given task is successful, and 0 otherwise. The metric then corresponds to the expected maximum
success per task, averaged over all tasks, measuring the agent’s best performance across the trials:

pass@Qk = E(; g,)~pp [max {success(i, Gy, 7!) | 1=1,...,k}], where success(-) € {0,1}.

€]
The notation success(i, G;, 7}) for a given sample (i, G;) represents whether the agent with trajec-
tory 7! successfully completes the task on the [-th trial, with a value of 1 for success and 0 for failure.
By taking the maximum success over k trials via the max{-} operator, we capture the agent’s best
performance across these trials. We then relax the strict success condition in equation 3] by defining
a thresholded progress-based success criterion:

passQk =K ay~pp [max {]l{ progress(i, Gy, ') > threshold } |1 =1,..., k}} , @

where 1{-} is the indicator function and the threshold € [0,1] defines the minimum progress
for a trial to be considered successful. Setting threshold = 1 counts only trials with full sub-
goals completion (i.e., progress(i, G;,7!) = 1) as successful, and treats any partial progress (i.e.,
progress(i,G;, 71) < 1) as failure.

Nonetheless, equation [applies a hard threshold—treating all progress below the threshold as fail-
ure—and discards agent’s fine-grained progress. To retain this information, we define a soft ver-
sion, M ax ProgressRate@QF to evaluate agent’s best performance based on the maximum progress
achieved at the final conversational turn, across k trials, averaged over all samples:

Maz ProgressRateQk = E(; ¢,)~p,, [max {progress(i, Gt |l=1,..., kz}]) (5)

3.2.2 PROGRESS AND TURN-LEVEL EFFICIENCY

The turns within each conversational trial are interdependent where errors in the earlier turns can
propagate and impact task success. While the MaxProgressRate@Fk metric in equation [5] cap-
tures non-determinism by measuring agent’s best performance across the k trials and evaluates fine-
grained progress only at the final conversational turn, it does not assess how quickly progress is made

Under review as a conference paper at ICLR 2026

All i) Low-level Error Identification [ii) Semantic Clustering)

samples X = fiden(® of Error Types
TS TR
_— .
Error 4:
MissingBooking —

Cluster 1:
Missing Tool Usage -
cancel reservation

e)
Cluster 2:

‘ Missing Tool Usage -

_book reservation)

Error 1: Missing
cancel_reservation tool
invocation

Toollnvocation
T R
Error 5: Required

Cancellation Tool

Error 2:

Not Utilized update_reservation_flight

— s -incorrect_arguments c=f clus(x' G)
LEEE(E 2 Cluster 3:
IncorrectArgumen- Error 3: Booking Tool g I
update_reservation_f Payment Allocation Stilgsiton o Agameit
lights i Failure in Booking Tool
- i N~

Figure 1: Our proposed two-step automated error discovery approach that automatically identifies
common errors of the agent based on judge and agent inconsistencies. Identical error colors indicate
that similar low-level errors are clustered into the same high-level category.

throughout the conversation. This gap in evaluation leads us to consider two distinct scenarios: 1)
where making early progress matters, and ii) where it does not.

i) Early progress matters. In this subsection, we view progress as a function of conversational
turns and for notational simplicity, we denote the progress at turn ¢ by p(t) := progress(i, Gy, 7i[1 :
t]), where 7{[1 : t] denotes the segment of the agent trajectory 7! from the first turn up to turn ¢.
Let p(t) : [0,7] — R represents the discrete progress values at each turn. For computing AUC, we
treat the discrete values p(t) as a continuous, monotonically increasing function obtained via linear
interpolation. The function measures the agent’s progress at turn ¢ by the proportion of achieved
subgoals, i.e., grading notes, assuming previously completed milestones cannot be undone. The

AUC of the continuous progress function is then defined as AUC = fOT p(t) dt where T is the
maximum turns of a conversation. For a given task sample (i, G;) € D, we define p; (t) and po(t)
to be the progress functions of two agents, respectively. Consider the case where both agents starts
from O progress, i.e., p1(0) = p2(0) = 0 and first agent is strictly more efficient than the second,
ie., p1(t) > pa(t),Vt € (0,T], we have:

T T
AUC, = / P1 (t) dt > / P2 (t) dt = AUCQ . (6)
0 0

In this scenario, an efficient agent—compared to a less efficient one—will achieve a higher AUC
score. The AUC rewards agent for achieving subgoals early which is crucial for long-horizon tasks
such as navigation (Shridhar et all 2020} [Chevalier-Boisvert et al, 2018)), where finding the right
room or object early often reduces downstream confusion. Likewise, in multi-step planning tasks,
like web browsing (Zhou et al, 2023), early retrieval of relevant results significantly narrows the
search space, increasing likelihood of success.

ii) Early progress does not matter. While AUC metric favors early progress, one may argue that
this is unnecessary in tasks like booking a trip, where reserving a plane and hotel are interchangeable
subtasks, and order should not affect the outcome. In such cases, completing the simpler subtask
with less subgoals first, followed by the more complex one (or vice-versa) should not affect the final
score, i.e., case where two agents start with zero progress and reach the same progress within the
same number of conversational turns, despite the differences in trajectories. To handle scenarios
where early progress is not vital, one can weight the increase in progress uniformly by computing
the progressperturn (PPT), forming a telescoping series:

L p(T)
PPT=T;p(t+1)—p(t)=T, @)

where p(¢) is the discrete progress value at turn ¢, 7" is the minimum number of conversational turns
to reach the final achieved progress p(T'), and p(0) = 0. To align with the M ax ProgressRate@QFk
metric from equation[5] we report both the M ax AUCQFk and M ax P PTQF, averaged over the task
samples, while setting n = k. Further details are in the Appendix [A23]

Under review as a conference paper at ICLR 2026

3.3 THE DIAGNOSIS STAGE

Automated Error Analysis. Although a majority of existing works (Xiao et al., 2024} |Qian et al.,
2025)) stop at reporting final dataset metrics, we argue that evaluation should also include error anal-
ysis and actionable improvements. While using grading notes and LLM-as-a-judge simplify our
evaluation, the inherent non-determinism of LLMs remains a challenge. Our proposed metrics ag-
gregate results using a majority vote from judge runs and the best agent performance across k trials.
However, the aggregation overlooks consistency—an essential aspect of robust agent evaluation. To
address this, we further introduce an automated error analysis tool that analyzes both judge and
agent inconsistencies by plotting sample-level progress expectations and variances, offering deeper
insights on top of the final aggregated metrics.

For each subgoal g; ; € G;, we define a binary r.v. Z; ;, where Z; ; = 1 if the agent achieves the j-th
subgoal under the given trajectory, and 0 otherwise. Let the probability of achieving the subgoal g; ;
be Pr(Z; ; = 1) = z; ;. The progress for the sample (z G}) is defined as the proportion of subgoals

. .) Z,
the agent achieved, i.e., progress(i, G;, 7}) = Z‘ al . Its expectation and variance are given by:

> % > 71— 2i)
= Var[progress(i, Gi,TZ-l)] == "
ef G2

where z; ; = o) Z g1 l]) is estimated by averaging over () judge runs per subgoal, generalizing the

single binary judge output in equat10nlt0 a probabilistic estimate. Plotting E[progress(i, G;, 7})]

1 1y
and Var[progress(i, G;, 7})] for each task (i,G;) € D, capture judge’s inconsistency through the
variance, while agent’s 1ncon81stency is reflected in the different expected progress values across the

k trials.

E[progress(i, G;, Tf)] =

®)

Building on this, we propose an automated error discovery approach that automatically identifies
the common errors of the agent based on judge and agent inconsistencies. Our approach consists
of two steps : (1) low-level error identification, and (2) semantic clustering of error types. For

every binary score z(q) from the judge, there is a corresponding explanation 61('?]')~ We define e; ; =

{ef},. . 1 } and the error candidate set £ = {(g; j,€;;) | Pr(Z;; = 1) < 1} to be a tuple
of subgoals and corresponding explanations where the judge prediction is inconsistent. For each
candidate error € € &£, we first perform the low-level error identification step, followed by a semantic

clustering step:
T = figen(€); C = faus(X,G), 9

where figen(+) and feus(+) is the error identification, and clustering prompt functions, respectively,
and z € X is the low-level error, and C is the cluster label. This clustering step will merge seman-
tically similar errors into the same group and provide a high-level error summary. We illustrate this
two-step process in Fig. [I} Note that the errors with the same color are merged into one cluster la-
bel. We also show preliminary results demonstrating agent improvement by leveraging the identified
errors. For a detailed algorithm of our automated error analysis method, and the prompt templates

used, figen(-) and fous(+) refer to Appendix [A.6]

4 DATASETS AND EXPERIMENTAL SETUP

We use two agent benchmarks: 72-bench (Barres et al.,[2025)) and ToolSandbox (Lu et al.,[2024)). For
72-bench, we utilize the airline dataset, which contains 21 samples annotated with tool signatures
and natural language assertions. Since these assertions closely align with our grading notes, we use
them for evaluation. We further divide this dataset into “easy” and “hard” samples. For ToolSand-
box, we select 37 base scenarios and exclude variants with different initial messages or multi-turn
conversations, as these can be effectively simulated using our dynamic user proxy—where both
initial and subsequent messages are generated dynamically, and the non-expert user persona ef-
fectively simulates multi-turn conversations. Our setup offers greater variability than the original
variants with fixed initial messages. The base scenarios consist of a variety of task-oriented domains
ranging from contact updates and messaging to reminders, currency conversion, etc. We use only
milestones (key events that must happen) and convert them into grading notes. Importantly, any ex-
isting benchmark can be adapted to fit into our evaluation framework by converting the ground truths

Under review as a conference paper at ICLR 2026

Table 1: Overall performance of different agent models on 72-bench and ToolSandbox dataset, using
gpt-4.1 as user proxy and LLM-as-a judge. Results are displayed with scores for Expert Persona |
Non-expert Persona. For metrics with @k, the number of trials is n = k = 20 for 72-bench and
n = k = 8 for ToolSandbox. Here, M ax ProgressRate@k is abbreviated as M ax ProgQk.

Agent Model MeanProg@Qk MaxProgQk MaxAUCQk MaxPPTQk passQk

12-bench Dataset (Easy)

gpt-4.1 0.95]0.82 1.00 | 1.00 0.99 | 0.81 0.80 | 0.50 1.00 | 1.00
gpt-4o 0.79 | 0.86 1.00 | 1.00 0.96 | 0.86 0.70] 0.53 1.00 | 1.00
gpt-40-mini 0.70] 0.61 0.90 | 0.90 0.85]0.73 0.60 | 0.37 0.80 | 0.80
gpt-5 0.92] 0.92 1.00 | 1.00 0.97 | 0.88 0.67 | 0.54 1.00 | 1.00
mistral-nemo 0.87 | 0.49 1.00 | 0.80 0.97 | 0.67 0.67 | 0.48 1.00 | 0.60
mistral-large 0.651]0.53 1.00 | 1.00 0.96 1 0.79 0.60 | 0.42 1.00 | 1.00
ToolSandbox Dataset
gpt-4.1 0.911]0.87 0.98 1 0.97 0.96 | 0.92 0.84 1 0.73 0.9210.92
gpt-4o 0.95] 0.94 0.99 | 1.00 0.98 | 0.96 0.94 | 0.81 0.95]0.97
gpt-40-mini 0.910.85 0.95|0.93 0.94 | 0.90 0.89 | 0.77 0.89 | 0.84
gpt-5 0.78 1 0.78 0.97] 0.91 0.951]0.84 0.83 | 0.66 0.95]0.84
mistral-nemo 0.7210.71 0.92] 0.96 0.88 1 0.87 0.76 | 0.65 0.8410.92
mistral-large 0.82]0.79 0.94|0.95 0.93]0.91 0.87|0.75 0.89 | 0.89

into grading notes. We set the maximum number of turns to 15 for 72-bench and 8 for ToolSandbox.
Each sample is evaluated over multiple agent trials, n = 20 trials for 72-bench and n = 8 trials for
ToolSandbox. We report metrics at £ = n trials. We use the gpt-4.1 model as LLM-as-a-judge for
grading the subgoals and for error identification and clustering in our experiments. Unless specified,
the user proxy also uses the gpt-4.1 model. More details are in Appendix ﬂ

5 RESULTS AND DISCUSSION

5.1 MAIN RESULTS

Table summarizes the overall performance of various agent models on 72-bench and ToolSandbox,
with gpt-4.1 serving as the user proxy. On easy samples, metrics such as MaxProgressRateQk
and passQk tend to saturate, with most models achieving near-perfect scores. M eanProgQk,
which measures the average progress rate across all & trials, captures how consistently agents can
achieve the subgoals. However, even M ean ProgQ@Fk can remain high for strong models making it
less effective at distinguishing between top-performing agents. While M ax ProgressRateQk gives
us the best agent performance over k trials, it fails to give any meaningful distinction between mod-
els, especially for easy samples. These metrics, though useful for establishing baseline performance,
fail to capture the turn-efficiency of the agents.

By incorporating Max AUCQk and MaxPPTQk, we obtain a more comprehensive evaluation
of agent performance. For example, on 72-bench, gpt-4o-mini (expert) and mistral-large (expert)
achieve similar MeanProgressQk scores (differing by only 5%). However, M ax AU CQk shows
a larger difference of 10% (0.96 vs 0.85) and a change in rankings. Further comparison of the
Max AUCQE with MaxPPTQEk scores for the two models, suggests that mistral-large achieves
greater turn-level efficiency and faster progress in the initial turns, but both models have equal aver-
age progress over turns as indicated by the identical M ax P PTQk scores. Similar pattern persists
in the ToolSandbox dataset, where models such as gpt-5 and mistral-nemo have larger differences
on the Maxr AUCQk and M ax P PT@Qk metrics, when interacting with expert user, but a smaller
difference on M ax ProgressRateQk.

We also examine the impact of user persona on agent performance. The non-expert user simulates an
inexperienced user, resulting in agents taking more conversational turns to complete the task. This

3We use the |AI Security Institute| Inspect Framework as an evaluation runner in our experiments.

Under review as a conference paper at ICLR 2026

1.00 P 1.00 1.00
= Y, -~ v =
D0.75) oo Yo.7s / So7s
B o.50 %050 / B 0.50
©0.25 —— gpt-5 ©0.25 —— gpt-5 ©0.25 —— gpt-4.1
Q mistral-nemo | & mistral-nemo | & —— mistral-large
0.00 0.00 0.00 -
i 2 3 4 5 6 7 8 i 2 3 4 5 6 7 8 12 3 4 5 6 7 8
Turn Turn Turn
(@) (b) (©
Figure 2: Progress curves for selected ToolSandbox samples. (a)
search_reminder_with_recency_upcoming: mistral-nemo (non-expert, pur-

ple; AUC=0.88, PPT=0.20) vs. gpt-5 (non-expert, blue; AUC=0.61, PPT=0.20). (b)
find.-current_city_-lowlbatterymode: mistral-nemo (expert, purple; AUC=0.77)
vs. gpt-5 (non-expert, blue; AUC=0.64). (c) add_-reminder_content_and.-date_and_time:
gpt-4.1 (non-expert, green; AUC=0.50) vs. mistral-large (non-expert, red; AUC=0.34).

1.0 e @0 00 © e @ e e
Q@m2 @12
QT3 QT3
- @200 @80 © ® © GO0 o on
= Q@16 QTi6
@7 O
= (e} @18 QT8
_D; 0.6 e o e O 0@ -
0 .
s 0.4 @ e e 0 @
o °
2
g 0.2
0.0 ©) © e e 000 [OXG)
Sample 14 Sample 18 Sample 22

Figure 3: E[progress(i, G;, 7!)] (dot) and Var[progress(i, G;, 7})] (error bar) on 72-bench gpt-4o-

mini agent using non-expert user proxy gpt-4.1. Each dot is an agent trajectory from a single trial
and each task sample is evaluated using n = k = 20 agent trials. For illustration, we display only
three samples as an example here. Sample 14 belongs to the hard split and others in the easy split.

is consistently reflected in the Max AU CQE scores, which are lower for the non-expert compared
to the expert user persona across all models and datasets. It is because the expert persona provides
clearer and more informative input, enabling the agents to complete tasks faster. The baseline metric
MazProgress Rate@Fk which measures the agent best performance at the end of the conversation,
overlooks turn count and thus show similar agent performances when interacting with expert versus
non-expert user. The 72-bench agent with gpt-4o-mini achieves the same M ax ProgressRate@Qk
score of 0.9 for expert and non-expert users, but more conversational turns are required during the
interaction with non-expert user as shown in the lower MaxAUCQk and MaxPPTQFk scores
when compared to expert user. Another interesting observation is in some cases (e.g., gpt-5 vs
mistral-large on 72-bench), both models achieve the same MaxProgressRate@k = 1 for both
user personas. However, when examining the M ax AUCQFk metric, we see the performance gap
between the two models is notably larger for agents interacting with non-expert user as compared
to expert user. This highlights that the type of user interaction can significantly influence agent
performance and should be considered as an important dimension when evaluating agents.

Moreover, we know that the AUC metric emphasizes early progress, while PPT weights the in-
creases in progress uniformly across turns. To illustrate this, we analyze the performance at the
sample level. In Fig. 2l we show case instances where two agents reach the same final progress
but differ in the number of subgoals achieved at various turns. For example, in the ToolSandbox
sample search_reminder_with_recency_upcoming, both gpt-5 (non-expert) and mistral-nemo (non-
expert) achieve a PPT of 0.20, yet their AUC scores are 0.61 and 0.88, respectively. The progress
rate curves in Fig. [2a] demonstrate that mistral-nemo makes rapid early progress, while gpt-5s
progress is more gradual. A closer examination of the agent trajectories (see Appendix [A.12)) re-

Under review as a conference paper at ICLR 2026

veals that mistral-nemo executes tool calls in the initial turn and then seeks clarification, whereas
gpt-5 begins by clarifying questions before invoking tools. Since the AU C' is sensitive to agents that
achieve subgoals earlier in the interaction, mistral-nemo has a a much higher AUC score than gpt-5,
as compared to the P PT metric which simply averages the increase uniformly. Hence, in scenarios
where early progress is less relevant, the P PT metric may be more suitable.

5.2 ERROR ANALYSIS

Besides reporting the results on the dataset-level, we analyze the expectations and variances of the
multiple judge runs and the different & agent trials, as shown in Fig. 3] The different color points
for each sample represent the different agent trial runs, which we refer to as trajectories in our
discussion. For sample 14 EI, we can clearly see that half of the agent runs have an expected per-
sample progress of 0.6, while 35% of them are at 0.4, suggesting that there are one or more subgoals,
where the agent consistently fails or succeeds. Upon examinining the trajectories, we identify the
problematic subgoal to be “Agent should cancel reservation KINWS8N.” Notably the trials in these
two clusters has zero variance in the judge runs, indicating that the judge is highly confident in
its assessment. For this sample, only trajectories 5 and 18 show relatively large variance bars,
suggesting inconsistency in the judge model itself. We then apply our automated error analysis to

. LLM- ized 1t y S: le 14
Task Instruction for Sample 14: Sl el il ila
1. Missing C ication - Amous Trace 18

...... Then you want to change your recent reservation. You want to keep the same dates but

2. Missing Tool Usage: cancel_reservation Trace 6, 18

want to change it to the cheapest business round trip, with direct flights or not. If the agent tells o

you basic economy cannot be changed (do not mention it if the agent does not mention it), you 3. Incorrect Output C - Amou e Trace 6

want the agent to cancel the current one and book a new one....... 4. Missing Tool Usage - book_reservation Trace 18

Dialogue Excerpt: Agent Intermediate Trajectories:

UserProxy: ...So, I was also hoping to change my reservation. Can you help me with that? Turn 11:

Tau2Agent: I can help you with modifying your reservation! To get started, I need your user ID | | { xEn'or 1!

and the reservation ID you would like to change 'role': 'agent!, - -

<Omit the reservation ID confirmation turn> Error 2: Fails to cancel previous 'content’: "There seems to be a mismatch between the flight cost and the payment amount. The_:

Tau2Agent : Your reservation ID is **KINWEN**. booking before switching. comect total should be $871.00, but the system is incorrectly processing it as §2,613.00. 1 will
attempt the booking again with the corrected payment amount. Please hold on.",

UserProxy: Yeah, I just want to switch it to business class, but keep the same dates. Can you

'tool_calls": [{

'id' 5Qoxv3IMWIYHMcdEJ2XGbd3OB', 'name': 'book i reservalmn ‘arguments':
Tau2Agent : Here are the available flights for your round trip after switching to business class: : 'mohamed_silva_9265', 'origin': 'JFK', 'destination': ', 'flight_type': 'round_trip',
<Omit the available flight options for space saving> in': business', 'lights': [{flight_number’: HAT023', 'date’; '2024-05-26}, {flight_number":
... Please confirm if you want to proceed with this change and indicate which return [*:/?7304 dateM 2}?24 ‘;5 2]8)| { ﬂ‘g""sﬂ;"“beé bl‘{Al-gégol ld;Gt = (2?24t05 FEI P

; dli irst_name': 'Mohamed!, 'last_name': 'Silva', 'do irst_name': 'Raj',
flightyoudlikelfojchooses last_name’: ‘Sanchez', 'dob': '1986-09-12'}, {first_name': 'Liam', last_name": 'Wilson', ‘dob
'1980-03-27'}], 'payment_methods’..., ...)

check what that would look like?

UserProxy: Um, can you just pick the cheapest one for the way back? I just want whatever’s

the lowest price. N

Tau2Agent : The cheapest return flight option is: }
<Omit the cheapest business flight options> XErmr 31 {'role': 'tool', 'content': 'Error: Payment amount does not add up, total price is 2613, but paid 1077',

<Qmit the pavment way selectic 'tool_id": 'call_5QoxvAMW9YHMcdEJ2XGbd30B’}

Tau2Agent : Payment Summary: - **Total Cost of New Booking:** $871.00 - **Paid]

with:** - **Certi :** $567.00 - **MasterCard:** $304.00 (ining balance)

Trajectory 6 Trajectory 18

X Error 4: Tool call for book_reservation raises error!

Figure 4: 72-bench Sample 14: The blue box shows a truncated task instruction i € I for the non-
expert user proxy gpt-4.1 model. The green boxes contain the truncated dialogue for trajectory 6
(left) and agent’s trajectory 18 (right). The agent model is gpt-4o-mini. The top-right box shows the
errors identified. Zoom in for a larger view.

identify the common errors made by the agent. Our tool identifies four distinct errors for sample
14 as shown in Fig. [In the trajectory 6, the agent did not check the details of the existing
flight, which was supposed to be basic economy. Thus, the agent did not cancel the previous flight
when attempting to reschedule causing a discrepancy in the final payment output. This error was
consistently captured by our judge as indicated by the zero variance bar. On the other hand, trajectory
18 involves a different payment-related error whereby the agent hallucinates the value $2613.00,
that exceeds the actual cost. This spurious value prevented the agent from calling book_reservation,
triggering a cascade of three subsequent errors.

5.3 INCORPORATING IDENTIFIED ERRORS INTO AGENT’S DESIGN

To show the effectiveness of our identified errors in improving the agent, we incorporate these errors
into the design of the agent using two simple strategies on 72-bench’s special split (selected due to
their low progress rate and progress-per-turn) and ToolSandbox in Table[2] We use two strategies: (i)

“Due to space constraints, we show detailed analysis for only one sample, but our approach generalizes to
all samples.

Under review as a conference paper at ICLR 2026

Errors Insert: add the list of identified errors as generated from our error analysis tool in the agent in-
struction without manual refinement and (ii) Human Notes: insert manually refined error notes based
on the identified errors from our tool ﬂ The Errors Insert strategy improves several setups—notably
gpt-4o-mini on 72-bench (+9% in MeanProg@k, +5% in Max AUCQFk)—implying that aware-
ness of common failures helps the agent perform better, with only a few showing declines. In con-
trast, the Human Notes strategy gives a more consistent improvement for more setups as compared
to Error Insert. We observe in particular a significant gain in MaxPPTQk of 7-10% for gpt-4.1
using Human Notes on ToolSandbox dataset. It is also observed that with better models like gpt-4.1,
both strategies perform consistently well on the ToolSandbox dataset. Despite our simple strate-
gies, we achieve comparable performance gains when compared with more sophisticated in-context
learning approach (2025). These findings show the usefulness of our identified errors,
demonstrating the potential of using such insights to improve agents, where we believe further gains
are possible with more sophisticated prompt optimization techniques.

Table 2: Error improvement results of agent, using gpt-4.1 as user proxy and LLM-as-a judge.
Results are displayed for Expert Persona | Non-expert Persona. The improvement strategies applied
on the different agent models are Error Insert (EI) and Human Notes (HN).

Agent Model MeanProgQk MazxProgQk Max AUCQEk MaxPPTQk

72-bench Dataset (Special Split: Samples 7, 14, 21, 23, and 29)

gpt-4o-mini + EI 0.3710.09 | 0.3110.01 0.6610.06 | 0.61-0.00 0.5910.05 | 0.3940.02 0.2710.03 | 0.1110.01
gpt-4o-mini + HN 0.3010.02 | 0.3310.01 0.6310.02 | 0.61+0.00 0.530.01 | 0.45t0.04 0.24+0.00 | 0.1410.02

gpt-4.1 + EI 0.52-+0.00 | 0.38+0.00 0.7810.04 | 0.7710.08 0.6610.02 | 0.4110.06 0.261001 | 0.1010.02
gpt-4.1 + HN 0.53t0.01 | 0.4110.03 0.7810.04 | 0.85+0.00 0.6610.02 | 0.5510.08 0.27-+0.00 | 0.1410.02

ToolSandbox Dataset

gpt-4o-mini + EI 0.8710.04 | 0.8910.04 0.9710.02 | 0.9810.05 0.94-+0.00 | 0.9110.01 0.8510.04 | 0.6640.11
gpt-4o-mini + HN 0.8810.03 | 0.9110.06 0.9610.01 | 0.9610.03 0.95t0.01 | 0.9210.02 0.9010.01 | 0.7410.03

gpt-4.1 + EI 0.9510.03 | 0.93 10.06 0.9910.01 | 0.99 10.02 0.9710.01 | 0.93 t0.01 0.8710.03 | 0.76 10.03
gpt-4.1 + HN 0.9510.03 | 0.97 +0.10 0.98-+0.00 | 0.99 10.02 0.9710.01 | 0.95 10.03 0.9110.07 | 0.83 t0.10

5.4 ABLATION EXPERIMENTS AND HUMAN STUDY

We also report results on the full split of 72-bench in Appendix and include an ablation on user
model variation in Appendix [A-T0] To validate the correctness of our evaluation, human studies
on the user proxy and LLM-as-a-judge are conducted and presented in Appendices [A.7] and [A8]
respectively. From our human study, we find that the user proxy behaves correctly in most cases and
does not suffer from role confusion nor provide erroneous responses. Only a small percentage, i.e.,
6-12% of the cases, suffer from instruction following. Likewise, our evaluation of the LLM-as-a-
judge reveals only a minimal error range of 0-7% for the different datasets and error types. These
low error rates indicate that using LLM as both a user proxy and a judge is reliable and offers a
cost-effective alternative to labor-intensive methods.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced the TED framework that redefines agent evaluation. We showed that
including error insights into the agent’s design leads to gains, with peaks of 8% for Max AUCQEk
and 10% for M ax P PT@QFL metrics. In the future, we aim to integrate these error insights into auto-
matic prompt optimization methods to improve the agent performance. We also plan to explore the
applicability of our metric to non-task-oriented domains, such as open-ended dialogue with conver-
sational agents, where the expected responses of the agent can be assessed using our grading notes.
Limitation of our approach and LLM usage are discussed in Appendix [A.T|and [A-2] respectively.

SAn example is “You must strictly check and double confirm all requirements for change flight actions
before calling the tool. If you are unsure or confused, always ask clarifying questions to the user.”

10

Under review as a conference paper at ICLR 2026

REFERENCES

UK AI Security Institute. Inspect Al: Framework for Large Language Model Evaluations. URL
https://github.com/UKGovernmentBEIS/inspect_ai.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. 72-bench: Evaluating
conversational agents in a dual-control environment. arXiv preprint arXiv:2506.07982, 2025.

Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn 1lm agents.
Advances in neural information processing systems, 37:74325-74362, 2024.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Yue Cui, Liuyi Yao, Shuchang Tao, Weijie Shi, Yaliang Li, Bolin Ding, and Xiaofang Zhou. En-
hancing tool learning in large language models with hierarchical error checklists. arXiv preprint
arXiv:2506.00042, 2025.

Yupu Hao, Pengfei Cao, Zhuoran Jin, Huanxuan Liao, Yubo Chen, Kang Liu, and Jun Zhao. Evalu-
ating personalized tool-augmented llms from the perspectives of personalization and proactivity.
arXiv preprint arXiv:2503.00771, 2025.

Kung-Hsiang Huang, Akshara Prabhakar, Onkar Thorat, Divyansh Agarwal, Prafulla Kumar
Choubey, Yixin Mao, Silvio Savarese, Caiming Xiong, and Chien-Sheng Wu. Crmarena-pro:
Holistic assessment of llm agents across diverse business scenarios and interactions. arXiv
preprint arXiv:2505.18878, 2025.

Kyochul Jang, Donghyeon Lee, Kyusik Kim, Dongseok Heo, Taewhoo Lee, Woojeong Kim, and
Bongwon Suh. Dice-bench: Evaluating the tool-use capabilities of large language models in
multi-round, multi-party dialogues. arXiv preprint arXiv:2506.22853, 2025.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
benchmark for 1lm tool use capabilities. arXiv preprint arXiv:2408.04682, 2024.

Cheng Qian, Peixuan Han, Qinyu Luo, Bingxiang He, Xiusi Chen, Yuji Zhang, Hongyi Du, Jiarui
Yao, Xiaocheng Yang, Denghui Zhang, et al. Escapebench: Towards advancing creative intelli-
gence of language model agents. arXiv preprint arXiv:2412.13549, 2024.

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tiir,
Gokhan Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation. arXiv preprint
arXiv:2502.11435, 2025.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. arXiv preprint
arXiv:2410.07869, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023.

11

https://github.com/UKGovernmentBEIS/inspect_ai

Under review as a conference paper at ICLR 2026

Ruixuan Xiao, Wentao Ma, Ke Wang, Yuchuan Wu, Junbo Zhao, Haobo Wang, Fei Huang, and
Yongbin Li. Flowbench: Revisiting and benchmarking workflow-guided planning for llm-based
agents. arXiv preprint arXiv:2406.14884, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040-52094, 2024.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv. org/abs/2406.12045,
2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LIMITATION OF OUR APPROACH

Our approach, which uses grading notes and LL.M-as-judge, simplifies evaluation by relying solely
on the agent’s trajectory, without requiring access to the underlying environment. However, this
approach has certain limitations. While we show that multiple judge runs improves reliability and
our automated error analysis tool helps in debugging, the method cannot verify whether the database
state has actually changed if such modifications are not reflected in the trajectory. Consequently, this
limits our ability to capture silent failures that produce no observable outputs.

A.2 LLM USAGE

LLM is used to assist the writing of UI code for the automated error analysis tool. In addition to
that, we use LLM to refine the prompt templates that are used in our experiments. LLM is also used
to refine and polish the text in the paper to improve clarity and presentation.

A.3 PROMPT TEMPLATES FOR A SYSTEMATIC DYNAMIC EVALUATION OF AGENT WITH USER
PERSONAS

The following are the reusable, generic expert and non-expert prompt templates, followed by the
templates for the two-step function f in equation m The {user_task_summary} placeholder
corresponds to the task instruction ¢ € I, and the {agent_desc} placeholder corresponds to
the agent description. For the two-step generation process f-reflection followed by response, the
placeholders {chat _history} and {termination.msg} represent the user-agent chat history
up to the current stage of conversation and the termination message that the user should produce at
the end of the dialogue, respectively. The placeholder {reflection_history} represents the
user reflection history up to the current stage of conversation.

Generic expert user persona prompt template:

You are acting as an expert LLM-simulated user who fully understands the Al assistant system and
goal. Always respond naturally in clear, concise language that fits the expert user role and goal.
Provide complete and precise information in your responses. Generate one line at a time. Do not give
away all the instructions at once. Only provide the information that is necessary for the current step.

You are provided with the following user task summary:
[user_task_summary]
{user_task_summary}

You understand the system well and will provide thorough, accurate responses using only the
information provided in the [user_task_summary] section.

If the AI assistant returns output in JSON format, respond only to the content inside the JSON
as if the format does not matter.

The following provides an overview of the Al assistant if available.
[AI Assistant Description] :
{agent_desc}

When you as an expert LLM-simulated user is analysing the real-time chat history, carry out a two-step
process as the user:
first, a Reflection Phase, followed by a Response Generation Phase.

13

Under review as a conference paper at ICLR 2026

Generic non-expert user persona prompt template:

You are simulating a clueless, casual NON-expert user who is interacting with an AI assistant. You
don’t fully understand how the Al system works, and you tend to give vague or incomplete instructions
— often leaving out key steps or context.

‘When you respond:

Speak naturally, casually, like someone who’s unsure how to talk to an Al

Be brief and only provide part of the needed information.

Do not give a full picture unless the assistant directly asks for it.

Only share details that are directly related to what was just asked or prompted — not more.

Never proactively explain your reasoning or provide background info unless the assistant digs
into it.

You are working toward the following general task:
[User Task Summary]
{user_-task_summary}

But since you’re not an expert, you’ll just sort of “feel your way through it” and leave lots of
gaps in your instructions. NEVER provide COMPLETE instructions. ALWAYS OMIT some
variables and missing key context.

If the assistant returns something in structured formats like JSON, you can just react casually to the
content. Treat the format like it doesn’t matter.

The following provides an overview of the Al assistant if available.
[AI Assistant Description]:
{agent_desc}

When you as a clueless, casual NON-expert user is analysing the real-time chat history, carry out a
two-step process as the user:
first, a Reflection Phase, followed by a Response Generation Phase.

When simulating your process during the conversation:
You go through two internal steps each time:

1. Reflection Phase (internal thought):

Take a quick look at the current chat history. Think to yourself:

“Okay, what did the assistant just say or ask? What should I probably say next without overexplain-
ing?”

Remember: you’re not confident in how this system works, so don’t try to be precise.

2. Response Generation Phase (your reply):
Now write a short, casual message that gives only partial information based on what the assistant
asked. Leave things unclear unless the assistant is persistent.

14

Under review as a conference paper at ICLR 2026

The reflection-step prompt template in the two-step function f equation 1:

The following [Chat History] (if available) provides context and indicates the CURRENT stage of your
conversation as a LLM-simulated user with the Al assistant.

[Chat History]

{chat-history}

Step 1: Reflection Phase

Given the [Chat History] REFLECT carefully on the Al assistant’s last response and what the
LLM-simulated user is trying to accomplish based on the [user_task_summary].

Briefly address:

- Your role as the LLM-simulated user.

- The current stage of the conversation. You SHOULD NOT skip any user instructions as mentioned
in the [user_task_summary].

- The assistant’s last reply in the [Chat History].

IMPORTANT CLARIFICATION:

- Review the entire [Chat History] and the [user_task_summary] and see what should be your next
response as a LLM-simulated user.

- At times, the Al assistant’s last message may overlap with or anticipate a future user turn. In such
cases, treat it strictly as the Al assistant response, not a replacement of the user message

Do NOT generate the LLM-simulated user response yet. RESPOND only with a REFLECTION.
IMPORTANT remember your user persona as written in the system prompt (eg: expert user or
non-expert) and respond with appropriate reflection.

TERMINATE ONLY IF the conversation is at its FINAL STAGE where the agent has completed all
the tasks wanted by the user as shown in the [user_task_summary].

If the conversation has concluded, prepare to respond with {termination_msg} in the next re-
sponse generation phase.

Otherwise, DO NOT consider termination if the current conversation is not at its final stage.

15

Under review as a conference paper at ICLR 2026

The response-step prompt template in the two-step function f equation 1:

The following [Chat History] (if available) provides context and indicates the CURRENT stage of your
conversation as a LLM-simulated user with the Al assistant.

[Chat History]

{chat-history}

The following is the LLM-simulated user reflection.
[Reflection]
{reflection_-history}

Step 2: Response Generation Phase

Given the [Chat History] and [Reflection], GENERATE the LLM-simulated user NEXT RE-
SPONSE that:

i) Naturally continues the conversation WITHOUT ADDING NEW TASK that is NOT found
in the [user_task_summary]. You SHOULD NOT skip any tasks for the LLM-simulated user.

ii) Avoids revealing or repeating the Al assistant’s answers.

iv) Responds appropriately to the assistant’s actual reply, even if vague or off-track. If the Al
assistant’s last message echoes or resembles any part of a user message, it’s the Al assistant response,
NOT a new user turn. Note that suggestions or recommendations by the Al assistant should NEVER
be MISTAKEN for actual actions taken.

GENERATE the LLM-simulated USER RESPONSE based on the [Reflection]. Return ONLY
the LLM-simulated user response.

IMPORTANT# remember your user persona as written in the system prompt (eg: expert
user or non-expert) and respond with appropriate response.

TERMINATE ONLY IF the conversation is at its FINAL STAGE where the agent has com-
pleted all the tasks wanted by the user as shown in the [user_task_summary].

If the conversation has concluded, prepare to respond with {terminationmsg} in the next
response generation phase.

Otherwise, DO NOT consider termination if the current conversation is not at its final stage.

A.4 LLM-AS-A-JUDGE PROMPT TEMPLATE

The following is the LLM;yqge(4,9i;,7) prompt template from equation The
{user_task_summary} placeholder corresponds to the task instruction ¢ € I, the
{grading_note} placeholder corresponds to the j-th grading notes g; ; for the task instruction .

The remaining placeholders, {trajectory}, {agent_responses} and
{dynamicDialogue} represent agent’s trajectory, responses output, and the user-agent
dialogue, respectively, as extracted from ;.

16

Under review as a conference paper at ICLR 2026

Prompt Template for LLM-as-a-judge equation 2:

You are provided with a sample that contains several key components centered around an interaction
between an agent and a simulated user, referred to as the user proxy. The user proxy represents
a human-in-the-loop, engaging with the agent by posing questions and guiding the conversation
throughout the dialogue.

The [User Summary Instructions] section outlines the user’s goals, expectations, and the over-
all task the agent is expected to complete. The [Agent Responses Submission] section captures the
agent’s actual responses to the user proxy at each turn of the interaction. The [Agent Intermediate
Trajectories] section provides a detailed step-by-step reasoning and actions taken by the agent.
Finally, the [Dynamic Dialogue] section presents the full conversation between the agent and the user

proxy.

As a judge, your task is to determine whether the subgoal specified in the [Ground Truth Sub-
goal] has been achieved. To make this assessment, evaluate the [Agent Intermediate Trajectories] and
[Agent Responses Submission] to ascertain whether the subgoal has been successfully completed.

When the completion of a subgoal depends on the availability of a specific tool, and that TOOL is
ABSENT, the subgoal must be marked as INCOMPLETE, REGARDLESS of the correctness of
the agent’s responses in [Agent Responses Submission]. Tool availability is a hard constraint—no
amount of valid reasoning can compensate for its absence. Suggesting or recommending a tool is
acceptable only if the subgoal does not require the tool to be used. However, CONCEPTUALIZING
or HALLUCINATING a tool call—i.e., falsely implying the tool was invoked—is NOT acceptable,
and the subgoal must be marked as INCOMPLETE.

Additionally if the agent intermediate trajectory are left BLANK or DOES NOT contain rele-
vant tools to the subgoal, it means that the ground truth subgoal is NOT MET and the subgoal is
considered as INCOMPLETE, REGARDLESS of the correctness of the agent’s responses in [Agent
Responses Submission]. The thought in [Agent Intermediate Trajectories] CANNOT be considered as
a substitute for a tool call and the ground truth subgoal is considered to be INCOMPLETE.

[BEGIN DATA]

sfesfeok sk sk sk sk

[User Summary Instructions]:
{user_task_summary}

skoskeok sk ok skok ok

[Ground Truth Subgoal]:
{grading.note}

sk stk sk ok ok skok

[Agent Intermediate Trajectories]:
{trajectory}

skt stk sk sk ok skok

[Agent Responses Submission]:
{agent_responses}

s sk sk ok sfe st ko s sfeskok

{dynamicDialogue}
[END DATA]

During assessment focus solely on the factual content and the goal completion while disregarding any
differences in style, grammar, punctuation, or syntax.

Begin by presenting a concise argument to confirm the validity of your conclusion. Avoid
simply stating the correct answers at the outset. Decide what type of tools is required and then end
with your answer formatted as ’"GRADE: SLETTER’ (without quotes) where LETTER is one of C
or I. Reply with "GRADE: C’ (without quotes) to indicate COMPLETE if the agent has successfully
achieved the subgoal. Otherwise, reply with ’'GRADE: I’ (without quotes) to indicate INCOMPLETE
if the agent did not achieved the subgoal.

17

1

2
3
4

5

10

11

13
14
15
16

17
18
19
20

Under review as a conference paper at ICLR 2026

A.5 ADDITIONAL DETAILS ON PROGRESS AND TURN-LEVEL EFFICIENCY SECTION

To align with the M ax ProgressRate@k metric from equation [5) which evaluates the agent’s best
performance across k trials, we report both the max AUC and max PPT of the k trials averaged
over the task samples:

MarAUCQk = E(; g,y~pp, | max{AUC; |1 =1,...,k}]. (10)

MaxPPTQk = E(; g,)~p, [max{PPT; |l =1,...,k}]. (11)

We show in our experiments that the proposed metrics provide interesting insights into the agent
behavior that existing metrics failed to capture.

A.6 ADDITIONAL DETAILS ON AUTOMATED ERROR ANALYSIS

The error candidate set £ = {(g;;,€; ;) | Pr(Z;; = 1) < 1} can have two situations: i) when
all the judge trials consistently score 0, ii) judge model has disagreement across multiple judge
trials. For the first case, we can select any e; ; of the @ trials to get the final x; ;. Usually in our
implementation, we select the first explanation e}, i However, for second case, the figen Will take
all e; ; and apply another selective prompt function fieecive to decide the low-level error z. We
illustrate the entire algorithm in the below pseudo-code:

Algorithm 1: Automated Error Analysis Method

Input: Judge outputs {(Zi(g), el(-?j),gi,j)} for samples 4, subgoals 7, trials ¢ = 1...Q.
Output: High-level error types.

Initialize £ « 0;

// Low-level error identification

for each (i,j) do

if (Vg, Z\") =0)or (0 € Zi; A1 €s, ;) then

€+ EU{(gi4.ei5)};

if Vg, Z\” = 0 then

// Consistent failure

// Select the first judge explanation

1
Tij < fiden(gi,ja 61(7]));

end
else
// Disagreement across Jjudge trials
Tmp + [|;
forg=1to @ do
| Tmp Trmp U { fiaen(gij. i)}
end
Tij < fselective(Tmp);

end
end

end

// Semantic clustering of error types
reX;

G < unique subgoals {g; ; };

C«+ fclus(X; g),

return high-level error types C;

18

Under review as a conference paper at ICLR 2026

Prompt Template for figen in Automated Error Analysis:

You are tasked with summarizing the error type in a concise and abstract manner based on the
provided explanation. This explanation is generated by a judge model, which evaluates whether
the agent’s response satisfies the specified subgoals. In the explanation, a grade of ”C” (Complete)
indicates success, while ”I”” (Incomplete) indicates failure.

Your goal is to produce an error type that:

¢ Clearly captures the core failure or issue at an abstract level.

* Avoids restating the explanation verbatim.

« Is short, specific, and phrased like a category label rather than a long sentence.

* Does not include sensitive details or unnecessary context.

« If the error type involves tool usage, explicitly include the tool name in the error type.

You will be provided with:
* Ground truth subgoals
¢ Judge model’s explanation of the agent’s response

[BEGIN DATA]

koksk

[Ground Truth Subgoals] : {subgoals}

skoksk

[Explanation] : {explanation}

ok

[END DATA]

Please return your output in the following **strict JSON format**:

{
"error_type": "<error_type>",
"explanation": "<explanation>"

19

Under review as a conference paper at ICLR 2026

Prompt Template for fseiective in Automated Error Analysis:

You are given multiple independent predictions of the same data row. Each prediction includes an
error type assigned by a model. Your task is to determine the **most probable true error type** using
a majority voting approach.

Instructions:

1. Review all provided error types carefully.

2. Group similar or semantically equivalent error types together, even if their wording differs.
3. Count how many times each grouped error type appears.

4. Select the error type with the highest count as the final result.

5. If there is a tie:

- Prefer the error type that is more specific and informative.

- If still tied, choose the one most consistent with the majority wording.

6. Output ONLY the most probable error type, without extra commentary.

[BEGIN DATA]
[Error Types] : {error_type_list}
[END DATA]

Please return your output in the following **strict JSON format**:

{

"most_probable_error_type": "<most_probable_error_type>"

}

20

Under review as a conference paper at ICLR 2026

Prompt Template for f.us in Automated Error Analysis:

You are tasked with clustering the following error types based on their semantic similarity. The goal is
to group related error types under broader, more abstract categories to reduce redundancy and improve
generalization.

Important:

* The cluster_label should be primarily grounded in the <subgoals> provided.

¢ Only if you are very certain that an error type is entirely unrelated to the subgoals should you create
a new cluster label not derived from them.

» Always aim to preserve the subgoal’s intent when naming clusters.

Guidelines:

* Error types are not mutually exclusive and may overlap in meaning.

¢ Each cluster should reflect the most abstract and inclusive label that unifies all error types within it.
* Do not merge error types referring to different tools into a single cluster.

* Clusters involving tool usage must be separated by tool name.

* The cluster_label for each tool-related cluster must explicitly include that tool’s name.

* Minimize the number of clusters while maintaining clear and meaningful distinctions.

* Avoid overly specific wording—cluster labels should be reusable in other contexts where the same
subgoal applies.

[BEGIN DATA]

sekeok

[Subgoals] : {subgoals}

skeor

[Error Types] : {error_types}
sk
[END DATA]

Please return your output in the following strict JSON format:

{

"clusters": |
{
"cluster_label": "<generalized_error_type>",
"error_types": ["<error_type_1>", "<error_type_2>", ...1],
"error_ids": ["<error_id_1>", "<error_id_2>", ...]

b

21

Under review as a conference paper at ICLR 2026

A.7 HUMAN STUDY ON THE CORRECTNESS OF USER PROXY

To ensure the reliability of our user proxy simulation, we manually validate user proxy utterances
through human evaluation on 16 randomly selected expert and 16 non-expert user-agent dialogues on
72-bench and ToolSandbox datasets. We categorize errors into three types: (1) user role confusion,
where the user mistakes their role for the agent’s; (2) failure to follow the specified task instructions
1 € I, termed as missing or violate instructions; and (3) nonsensical or erroneous user responses.
Based on Table[3] we observe that the user proxy in general behaves as expected except for a small
number of cases where it does not follow the task instructions. While no Al system can be expected
to achieve 100% accuracy, the low number of such errors supports our belief in the user proxy’s
inherent potential for agent evaluation.

Table 3: Correctness of user proxy. Both agent and user proxy use gpt4.1 model.

User Persona - — - Errqrs -

Role confusion | Missing or violate instructions | Erroneous responses
Expert 0.0 0.06 0.0
Non-expert 0.0 0.125 0.0

A.8 HUMAN STUDY ON THE CORRECTNESS OF LLM-AS-A-JUDGE

To ensure the reliability of our LLM-as-a-judge evaluation, which uses grading notes (i.e., subgoals)
as ground truths, we conducted multiple runs of the judge and used majority vote to determine
the final scores. The human study in Table 4] are conducted on these majority-vote outcomes. We
randomly select 10 samples containing both expert and non-expert users from the 72-Bench dataset,
and another 10 samples from the ToolSandbox dataset, resulting in 42 and 31 subgoals, respectively.
Since each subgoal is evaluated independently, we report human evaluation results at the subgoal
level. Based on Tabld4] we observe a slight misalignment between the LLM-as-a-judge and human
judgment. Additionally, 6% of the ToolSandbox results are ambiguous even to human evaluators,
indicating that this is not a straightforward judgment task for the LLM. Given the low error rate
and only occasional ambiguity, these findings reinforce that our approach using grading notes and
LLM-as-a-judge still offers a reliable, scalable, and cost-effective alternative to other more complex
evaluation methods.

Table 4: Correctness of LLM-as-a-judge. The agent uses gpt-5 model while the LLM-as-a-judge
and the user proxy use gpt4.1 model.

Dataset - - Per-subgoal error__ .
Misalignment with human | Ambiguity with human
72-bench 0.07 0.0
ToolSandbox | 0.03 0.06

22

Under review as a conference paper at ICLR 2026

A.9 ABLATION STUDY ON THE FULL 72-BENCH DATASET

Analyzing the result with easy samples was important because traditional metrics tend to saturate
and give limited information. As an ablation we extend our analysis to include hard samples as well.

Table 5] presents the performance of various agent models under easy and more challenging setting.
We gain some insights into agent behavior by including hard samples.

First, we observe a general decline across all metrics, reflecting the increased difficulty of the dataset.
MeanProg@Qk and passQk scores drop substantially for all models, indicating that agents are less
likely to achieve full task completion on harder samples. While M ax ProgressRate@QFk remains
relatively high for most models (eg: gpt-4.1, gpt-5, mistral-nemo, for expert persona), this metric
only indicates that most agents can complete the task at least once.

When we shift our focus to M ax AU CQFk, the model ranking changes noticeably (eg: gpt-5, mistral-
nemo, mistral-large for expert persona). This shift highlights that while many models can eventually
solve difficult tasks, only a few do so efficiently and consistently. This effect is more pronounced for
the non-expert persona: gpt-4.1 and gpt-4o maintain high M ax ProgressRate@QFk (0.96 and 0.88),
but their M ax AU CQE scores are much lower (0.68 and 0.65).

Another interesting observation is that non-expert persona sometimes has higher
MaxProgressrateQk (eg: gpt-5, gpt-4o-mini). Upon closer examination, we found in-
stances where the expert persona provided all relevant information in the very first turn, which
sometimes overwhelmed the agent and led to hallucinations. In contrast, the non-expert persona
distribute information gradually over multiple turns, allowing the agent to respond more effectively.
This finding highlights the influence of user interaction style on agent performance.

Table 5: Overall performance of different agent models on 72-bench dataset, using gpt-4.1 as user
proxy and LLLM-as-a-judge.. Dataset contains easy and hard samples. Results are displayed with
scores for Expert Persona | Non-expert Persona. For metrics with @k, the number of trials is n =
k=20

Agent Model MeanProg@Qk MaxProgQk MaxAUCQk MaxPPTQk PassQk

12-bench Dataset (Easy + Hard)

gpt-4.1 0.75]0.67 0.94|0.96 0.850.68 044025 0.81]0.86
gpt-4o 0.63]0.55 0.910.88 0.840.65 044023 0.81]0.71
gpt-4o-mini 0.53]0.53 0.86 | 0.88 0.79 | 0.66 043026 0.62]0.76
gpt-5 0.80 | 0.77 0.96 | 0.97 0.89 | 0.77 0.470.30 0.91]0.91
mistral-nemo 0.67 | 0.36 0.96 | 0.71 0.87]0.56 044025 0.86]0.38
mistral-large 0.54]0.51 0.94 0.93 0.87 | 0.68 043024 0.86]0.76

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

MaxProgressRate@k
1.0
0.9 /%
.
Z
.
. -
Lo _
: .
04 //,///
- /////
03 ;////
2
0.2 //
0.1/ HEE Expert %;///
7 Non-Expert W
0.0 7,
: gpt-4.1 gpt-4o0 gpt-40-mini gpt-5 mistral-large mistral-nemo
MaxAUC@k
90
0.9
0.8
-
0.7 // /
_
06 o .
o
805 7/,/
v} /
0.3 ;%%Z
7
o .
.
o .
0.1/ HEE Expert y//////
@A Non-Expert A
0.0 ?éé% 22 . :
gpt-4.1 gpt-40-mini gpt-5 mistral-large mistral-nemo
MaxPPT@k
1.0 0.80 0.50 0.67 0. 48
0.9
0.8
0.7
0.6
o .
$0.5 _
(%]
0.4
0.3
0.2
0.1/ HEE Expert

@A Non-Expert

0.0

Figure 5: Dataset level performance of different agent models on the 72-bench easy dataset, with
error bars representing 95% confidence intervals. The top graph shows the M ax ProgressRateQk,

gpt-4.1

//%/ 4
gpt-4o0

gpt-40-mini gpt-5
Mode

mistral-large

middle graph shows M ax AU CQF, bottom graph shows M ax P PT'Qk.

24

mistral-nemo

Under review as a conference paper at ICLR 2026

1296
1297
MaxProgressRate@k
1298 10— ar 057 —a-ao s 05 oo
1299
1300 0.9
1301 0.8
1302
0.7
1303
1304 0.6
o
1305 S0.5
1306 n
1307 0-4
1308 0.3
1309
0.2
1310
1311 0.1 HEE Expert
@z Non-Expert
1312 0.0
1313 ' gpt-4.1 gpt-40 gpt-40-mini gpt-5 mistral-large mistral-nemo
MaxAUC@k
1314 1.0y 90 P
1315 0.9
1316
1317 0.8
1318 0.7
1319
0.6
1320 o
1321 30.5
(%]
1322 0.4
1323
1324 03
1325 0.2
1326 0.1/ HEE Expert
1327 @7 Non-Expert
1328 0.0 gpt-4.1 gpt-40 gpt-40-mini gpt-5 mistral-large mistral-nemo
1329 MaxPPT@k
1330 L0 0.84 : 0.89 0.83 0-87
1331 0.9 77
1332 0.8
1333
1334 0.7
1335 0.6
1336 o
$0.5
1337 0
1338 0.4
1339 0.3
1340
1341 0-2
1342 0.1/ HEEE Expert
1343 @A Non-Expert
1344 0.0 gpt-4.1 gpt-4o gpt-40-mini gpt-5 mistral-large mistral-nemo
Mode
1345

1346 Figure 6: Dataset level performance of different agent models on the ToolSandbox dataset, with
1347 error bars representing 95% confidence intervals. The top graph shows the M ax ProgressRateQk,
1345 middle graph shows Max AU CQk, bottom graph shows M ax P PT'Qk.

1349

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1.0y
0.9
0.8

0.7

0.1{ HEEE Expert
@z Non-Expert

gpt-4.1

e@k

MaxProgressRat
o0 V.90 U m!

gpt-40-mini gpt-5
MaxAUC@k

mistral-large

mistral-nemo

10 0.85 0.33

0.1{ HEE Expert
@z Non-Expert

0.0 gpt-4.1

U.69 V.67

0.79

gpt-40-mini gpt-5
MaxPPT@k

mistral-large

0.87

mistral-nemo

1.0

0.9

0.6 0.44 0.43

0.3
0.1{ HEEE Expert f//%%%
@22 Non-Expert %//%

gpt-40

0.0 opt-4.1

Figure 7: Dataset level performance of different agent models on the 72-bench (easy+hard)
dataset, with error bars representing 95% confidence intervals.
Max ProgressRateQk, middle graph shows Max AU CQk, bottom graph shows M ax P PTQk.

0.47
0.43

gpt-40-mini gpt-5
Model

mistral-large

26

0.44

mistral-nemo

The top graph shows the

Under review as a conference paper at ICLR 2026

A.10 ABLATION STUDY ON THE DIFFERENT USER MODELS

Besides varying the model for agents, we also conducted an ablation study by varying the user
models across the gpt family as shown in Table[6] We observe a similar trend emerges as in earlier
analyses: the gap across traditional metrics becomes narrower, and the agent performance difference
between expert and non-expert user personas is relatively small. This further highlights the impor-
tance of our proposed metrics in capturing agent behavior with respect to turns which is beyond
what conventional metrics do. As expected, the agent interacting with expert user achieves consis-
tently higher performance on Max AUCQE and M ax P PT@k metrics, confirming our hypothesis
that agent can resolve tasks more efficiently as expert users tend to understand the system well and
provide complete information for the agent. Interestingly, if we use stronger models such as gpt-5
for the user proxy, we see a smaller gap between expert and non-expert personas. This suggests
that as the model capability of the user proxy improves, the model proxy with a non-expert persona
behaves more like an expert, and achieves performance closer to expert-level outcomes. Based on
the current observation, we believe that varying the user model also changes the user expertise level,
which potentially simulates different user expertise levels.

Table 6: Overall performance of a gpt-4.1 agent with different user proxy models on the 72-bench
dataset, using gpt-4.1 model as LLM-as-a-judge. Dataset contains easy and hard samples. Results
are displayed with scores for Expert Persona | Non-expert Persona. For metrics with @k, the number
of trials is n = k = 20.

User Model MeanProgQk MaxProgQk MazAUCQk MaxPPTQk passQk

12-bench Dataset (Easy + Hard)

gpt-4.1 0.75 | 0.67 0.94 | 0.96 0.85 | 0.68 044025 0.81]0.86
gpt-do 0.72]0.61 0.95 | 0.95 0.82] 0.66 036022 0.81]0.81
gpt-do-mini 0.73 | 0.64 0.95 | 0.95 0.80 | 0.65 035022 0.86]0.86
apt-5 0.71]0.73 0.92 0.95 0.85 | 0.83 0.46 | 0.37 0.76 | 0.86

27

Under review as a conference paper at ICLR 2026

A.11 ADDITIONAL INFORMATION ON DATASET AND EXPERIMENTAL SETUP

72-bench. For 72-bench, we split the airline dataset into “easy” and hard” subsets using the passk
metric, with n = k = 4. We consider samples that are always completed in all 4 independent runs
as “easy”’.

ToolSandbox. For ToolSandbox, we do not split the samples as we consider them to be easy
samples. We use gpt-4.1 to convert the milestones into grading notes. Each data sample or scenario
consists of a set of milestone M = m1, ma, ..., m,, and may include a directed acyclic graph (DAG)
of dependencies E = {(4, j)}, where each edge (i, j) indicates that milestone m; depends on m;.
The conversion process extracts key information from each milestone, such as required tool calls,
expected agent-to-user communications, and ground truth state changes, and assembles this with a
DAG structure into a structured prompt. The prompt template is used to produce actionable grading
notes, and expresses dependencies using connectors like ’before” or "after”.

ToolSandbox dataset contains multiple variations of the same scenario - for example, the base sce-
nario find_days_till_holiday has variants like find_days_till_holiday_alt (which starts with an alternate
input message) and find_days_till_holiday_multiple user_turn (which intentionally provides less in-
formation to force a multi-turn conversation). These variations serve as a crude simulation of user
expertise, and their grading notes do not differ significantly from the base scenario. Since we have
our own generic user persona templates and these variants share similar milestones, we only use the
base scenario (eg., find_days_till_holiday) and ignore the variants. After this process, we manually
reviewed the dataset to ensure that the generated grading notes were correct and meaningful and
further refine the generated grading notes.

The prompt template used for each scenario is as follows:

28

Under review as a conference paper at ICLR 2026

Prompt Template for Creating Grading Notes section 4:

You are creating grading notes for agent evaluation that include dependency relationships. Convert
these milestones into concise statements about what the agent should accomplish, including any
sequence requirements.

SCENARIO: {scenario_name}

DESCRIPTION: {scenario._description}

TOTAL MILESTONES: {total milestones}

MILESTONE DEPENDENCIES (DAG edges): {milestone_edge_-list}
DEPENDENCY ANALYSIS: {human readable description of which milestone dependency }
MILESTONES:

Milestone 0: {details including constraint type}

Milestone 1: {details including constraint type} ...

RULES:
1. Create one or MORE natural language subgoals per milestones as needed to capture all required
actions

2. Mention specific tool names when relevant: ”Agent should call tool_name”

3. Use natural language to describe the purpose: ”Agent should call search_contacts to find Homer’s
information”

. Include sequence requirements when dependencies exist: “’before”, “after”, “then”, "first”

. Break down complex milestones into multiple subgoals if needed

. Use format: ”Agent should [natural action description]”

. Focus on what needs to be accomplished, be specific and actionable

~N o~

EXAMPLES OF GOOD NATURAL LANGUAGE GRADING NOTES:

”Agent should call set_wifi_status to turn off wifi”

” Agent should inform the user that wifi is turned off”

”Agent should enable cellular service before sending message”
”Agent should enable cellular service before sending message”
”Agent should update contact phone number after finding the contact”

SPECIAL HANDLING FOR COMMUNICATION MILESTONES:

o If target_data has sender=AGENT and recipient=USER with content, the grading note should be:
”Agent should inform/tell the user [content]”

o If target_data has sender=EXECUTION_ENVIRONMENT and recipient=AGENT with tool_trace,
focus on the tool call requirement

* Focus on what the agent needs to DO or COMMUNICATE, not technical database states

CONSTRAINT TYPES:

 snapshot_similarity: Agent should achieve the target state

* addition_similarity: Agent should add/create the target data

e removal_similarity: Agent should remove/delete the target data

» update_similarity: Agent should modify/update the target data

RESPONSE FORMAT:

Return a JSON array where each element can be either a single string or an array of strings for that
milestone: {json_schema}

Each milestone can have one or multiple grading notes as subgoals. Include dependency relationships
when they exist.

29

Under review as a conference paper at ICLR 2026

Additionally, we provide examples of the generated grading notes for ToolSandbox [Lu et al.|(2024)

below. We will release the full dataset together with our code.

e

Sample: modify _contact_with_message_recency

* Agent should call get _current_timestamp to retrieve the current time
* Agent should call search_contacts to find the contact information

» Agent should call search_messages after getting the current timestamp to
find the last person the user sent a message to

» Agent should update the contact’s phone number to +10293847563 after iden-
tifying the person is Homer S.

» Agent should inform the user: *The phone number of the person you last talked
to has been updated to +10293847563’ after updating the contact

-

J

Figure 8: Example of generated grading notes for the ToolSandbox

ify_contact_with_message recency.

sample mod-

-
Sample: update_contact relationship with_relationship twice _multiple _user_turn

* Agent should call search_contacts to find contacts with the relationship
“friend’.

* Agent should call modify_contact to update Fredrik Thordendal’s rela-
tionship to ’enemy’ after finding the contact.

* Agent should call modify_contact to update John Petrucci’s relationship
to ’enemy’ after finding the contact.

Agent should inform the user: "Fredrik Thordendal and John Petrucci are now
your enemies.

Agent should again call modify_contact to update Fredrik Thordendal’s
and John Petrucci relationship from ’enemy’ to ’friend’ again.

-

J

Figure 9: Example of generated grading notes for the ToolSandbox
date_contact relationship with_relationship twice_multiple user_turn.

sample up-

p
Sample: find_current _city _low _battery_mode

¢ Agent should ensure low battery mode is disabled

* Agent should enable WiFi

» Agent should enable WiFi after ensuring low battery mode is disabled

» Agent should enable location services

Agent should enable location services after ensuring low battery mode is dis-
abled

Agent should call get _current_location to retrieve the user’s location

Agent should inform the user: You are currently in Cupertino

Figure 10: Example of generated grading notes for the ToolSandbox

find _current _city _low battery_mode.

30

sample

Under review as a conference paper at ICLR 2026

Sample: convert_currency

* Agent should call convert_currency with the arguments: amount=2048,
from_currency_code="USD’, to_currency_code="CNY’

Figure 11: Example of generated grading notes for the ToolSandbox sample convert_currency.

s N
Sample: search_message with recency_oldest
* Agent should call get _current_timestamp to retrieve the current times-
tamp
¢ Agent should call search_messages to find the oldest message
* Agent should call search_messages after getting the current timestamp
* Agent should inform the user: Your oldest message says "Hey kid, you want
some GPU?’.

\ J
Figure 12: Example of generated grading notes for the ToolSandbox sample
search _message _with_recency _oldest.

s N

Sample: search_reminder_with_recency yesterday

* Agent should call get_current_timestamp to retrieve the current date
and time

* Agent should call search_reminder to find reminders for the day before
the retrieved timestamp

* Agent should call search_reminder after getting the current timestamp

* Agent should inform the user: Your reminder from yesterday says *Look for
Company SF tickets’.

\ J
Figure 13: Example of generated grading notes for the ToolSandbox sample

search _reminder _with recency yesterday.

31

Under review as a conference paper at ICLR 2026

Sample: search_reminder_with_recency yesterday

Answer Al assistant’s questions given the following task you (LLM-simulated user)
want Al assistant to complete: Ask Al assistant to find the content of your (LLM-
simulated user’s) reminder from yesterday. It should say Look for Company SF tickets.
Do not leak this information. You do not have any more information.

When Al assistant completed the task, even if you (LLM-simulated user) don’t have
enough information to validate the correctness, break out of the simulation and end the
conversation using the termination message.

Start your first message as: ”"What’s on my reminder yesterday?”

Sample: send_message _with_phone_number_and_content

Answer Al assistant’s questions given the following task you (LLM-simulated user)
want Al assistant to complete: Send a message to +12453344098 saying: How’s the
new album coming along. You do not have more information.Al assistant completed the
task, even if you (LLM-simulated user) don’t have enough information to validate the
correctness, break out of the simulation and end the conversation using the termination
message.

Figure 14: Example of user task instructions for the ToolSandbox samples

Sample: 1

Domain: airline

Reason for Call: You had a mixup with your assistant and booked multiple flights for
the same day.

Known Information: You are Sophia Martin.

Your user id is sophia martin_4574.

Task Instructions: You want to first check if there are cases like this in your profile. You
want the agent to fix the situation for you. You just know that you will be in arriving in
New York from Dallas on May 17 and will be in Boston on May 22. You want to let
the agent figure out which flights should be cancelled. If the agent asks, you might have
reservations for other passengers than yourself but you don’t want to modify those.
The task is considered complete if the instruction goal is satisfied or you are transferred
to another agent or you find yourself in a situation in which the scenario does not
provide enough information for you to continue the conversation.

Sample: 2

Domain: airline

Reason for Call: You just faced some money issue and want to downgrade all business
flights to economy, without changing the flights or passengers.

Known Information: Your name is Omar Davis.

Your user id is omar_davis_3817.

Task Instructions: You are fine with refunding to original payment for each reservation.
You want to know how much money you have saved in total. You are emotional and a bit
angry, but you are willing to cooperate with the agent. The task is considered complete
if the instruction goal is satisfied or you are transferred to another agent or you find
yourself in a situation in which the scenario does not provide enough information for
you to continue the conversation.

Figure 15: Example of user task instructions for the 72-bench samples

32

Under review as a conference paper at ICLR 2026

A.12 ADDITIONAL DETAILS ON AGENT TRAJECTORIES

No Tool Calls Made
UserProxy: Hey, um, can you check what my reminder is for today? I'm
not sure how to see it.
Tau2Agent: What time zone are you in?
Do you want all reminders scheduled for today, or just the next upcoming
one?

UserProxy: Uh, I’'m in Eastern time, I think. Just, like, whatever’s next for
today is fine.

Tau2Agent: Got it—I'll look for the next reminder scheduled for today in
Eastern time (currently UTC-4).

To pull your reminders, I need the identifier for your reminders profile.

UserProxy: Uh, I don’t really remember what email I used, sorry. I think
the reminder is about buying something? Not sure what time though. Does
that help?

Tau2Agent : Thanks—that helps. I searched for reminders in Eastern time,
and found this next one:

“Buy a nice rich navy bathing dress”...

(S

J

(N\ ([Y
Task Instruction Grading Notes

...Ask Al assistant to find the content of your (LLM-simulated user's) Agent s:ou}g caﬁ get_c}?rrent._tgnesta:‘np dm remey e the c.uréem e

upcoming reminder today. It should say Buy a nice rich navy bathing dress. Agent should call searc _reminder wiim upcoming reminders

IMPORTANT: Do NOT leak this information... Agent should .call search_reminder aﬂgr rettrlevlng the cment timestamp

Agent should inform the user: 'Buy a nice rich navy bathing dress
A VAN J
GPT-5 Dialogue Excerpt: Mistral-Nemo Dialogue Excerpt:

3 Tool Calls Made
UserProxy: Hey, um, can you check what my reminder is for today? I think
1 set something but I’m not totally sure.
Tau2Agent: I couldn’t find any reminders that you have set for today. If
you still believe you have a reminder, it is possible that it was set for
yesterday or tomorrow.

UserProxy: Uh, yeah, maybe check for tomorrow then? I'm not really sure
what day it was set for.

Tau2Agent: I couldn’t find any reminders that you have set for tomorrow. If
you still believe you have a reminder, it is possible that it was set for
yesterday or in the future.

.

UserProxy: Hmm, I guess just check for any reminders in the future then?
Maybe I set it for a random day.

Tau2Agent : I found a reminder that is set to go off in the future. Here are
the details:

Reminder ID: 54f20be9-eac3-5¢76-8e57-724e48d3d477

Content: Buy a nice rich navy bathing dress...

-

J

Figure 16: Agent dialogue excerpt for gpt-5 and Mistral-Nemo, illustrating how Mistral-Nemo
makes tool calls early and quickly satisfies the grading notes, while gpt-5 asks clarifying questions
and progresses more gradually. Despite these differing strategies, both agents complete the task in
the same number of turns.

33

	Introduction
	Related Works
	 Talk, Evaluate, Diagnose: TED Framework
	The Talking Stage
	The Evaluation Stage
	LLM-as-a-judge and MaxProgressRate@k
	Progress and Turn-level Efficiency

	The Diagnosis Stage

	Datasets and Experimental Setup
	Results and Discussion
	Main Results
	Error Analysis
	Incorporating Identified Errors into Agent's Design
	Ablation Experiments and Human Study

	Conclusion and Future Work
	Appendix
	Limitation of our approach
	LLM Usage
	Prompt templates for a systematic dynamic evaluation of agent with user personas
	LLM-as-a-judge prompt template
	Additional details on progress and turn-level efficiency section
	Additional details on automated error analysis
	Human study on the correctness of user proxy
	Human study on the correctness of LLM-as-a-judge
	Ablation study on the full 2-bench dataset
	Ablation study on the different user models
	Additional information on dataset and experimental setup
	Additional details on agent trajectories

