

000 001 002 003 004 005 TALK, EVALUATE, DIAGNOSE: USER-AWARE AGENT 006 EVALUATION WITH AUTOMATED ERROR ANALYSIS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Agent applications are increasingly adopted to automate workflows across diverse tasks. However, due to the heterogeneous domains they operate in, it is challenging to create a scalable evaluation framework. Prior work each employ their own methods to determine task success, such as database lookups, regex match, etc., adding complexity to the development of a unified agent evaluation approach. Moreover, they do not systematically account for the user’s role nor expertise in the interaction, providing incomplete insights into agent’s performance. We argue that effective agent evaluation goes beyond correctness alone, incorporating conversation quality, efficiency and systematic diagnosis of agent errors. To address this, we introduce the TED framework (Talk, Evaluate, Diagnose)¹. (1) Talk: We leverage *reusable, generic* expert and non-expert user persona templates for user-agent interaction. (2) Evaluate: We adapt existing datasets by representing sub-goals—such as tool signatures, and responses—as natural language grading notes, evaluated automatically with LLM-as-a-judge. We propose new metrics that capture both turn efficiency and intermediate progress of the agent complementing the user-aware setup. (3) Diagnose: We introduce an automated error analysis tool that analyzes the inconsistencies of the judge and agents, uncovering common errors, and providing actionable feedback for agent improvement. We show that our TED framework reveals new insights regarding agent performance across models and user expertise levels. **We also demonstrate potential gains in agent performance with peaks of 8-10% on our proposed metrics after incorporating the identified error remedies into the agent’s design.**

1 INTRODUCTION

Large Language Models (LLMs) agents (Liu et al., 2023; Jang et al., 2025; Koh et al., 2024) are increasingly being adopted for many real-world tasks in various domains due to their potential of fully automating mundane workflows and enhancing productivity. However, evaluation of agents remains a challenge today due to the heterogeneous domains the agents operate in. As every domain comes with its own goals, creating a scalable unified evaluation framework which reliably assesses agent performance across diverse tasks is non-trivial. Existing works (Qian et al., 2024; Lu et al., 2024; Barres et al., 2025; Chang et al., 2024) each propose their own evaluation methods, e.g., checking database states, tool signatures, or exact matches which differ in scope and assumptions, making unification challenging. Moreover, since agent behavior is heavily influenced by the conversation trajectory with the user, current assessment methods that overlook the user’s role in the interaction may fail to comprehensively capture agent’s performance.

Given that agents are non-deterministic and it is difficult to craft reference conversations, a common practice to interact with the agent is to dynamically simulate the user responses in the conversation loop with the agent (Yao et al., 2024). This has been adopted as a common practice for agent evaluation because static user setups, where user messages are predetermined, do not work. This is because the agent’s responses to earlier predetermined user inputs may diverge from the reference conversation for which the static messages were curated. However, most works employing dynamic conversation have limitations because they do not systematically separate user persona from task instructions, thus failing to account for the impact of user behavior (independent of the task) on

¹All code and dataset will be made publicly available upon acceptance of the paper.

054 agent performance, providing incomplete insights. This is important as good agents ask clarifying
 055 questions when given incomplete input, while poor agents do not; thus, systematic testing is essential
 056 for fair comparison across agents and tasks. Despite the complexity of agent trajectories, existing
 057 works (Qiao et al., 2024; Xiao et al., 2024; Qian et al., 2025) often stop at metric reporting.

058 To address these shortcomings, we propose the TED framework (Talk, Evaluate, Diagnose). (1) In
 059 the *Talking* stage, we decouple user personas from task instructions and introduce a user-aware agent
 060 evaluation framework based on *reusable, generic* persona templates enabling diverse and systematic
 061 creation of test scenarios. (2) In the *Evaluation* stage, we adapt existing datasets by representing
 062 subgoals—such as tool signatures, and responses—as natural language grading notes, and evaluate
 063 them with LLM-as-a-judge. We propose new metrics that capture not only partial progress and task
 064 success, but also the efficiency of task progression—measured in conversational turns. (3) In the
 065 *Diagnosis* stage, we introduce an automated error analysis tool that examines inconsistencies of
 066 both agents and LLM-as-a-judge, automatically identifies errors, and offer actionable feedback. We
 067 summarize our contributions as follows:

068 i) Propose an agent evaluation framework applicable across heterogeneous agent domains that is
 069 built on *reusable, generic* expert and non-expert persona templates that systematically assess the
 070 impact of users’ role on agent performance.

071 ii) Introduce a benchmark by adapting existing datasets to grading notes—natural language check-
 072 lists of subgoals. Grading notes serve as assertion criteria for LLM-as-a-judge, which scores the
 073 agent performance based on its trajectory log without requiring access to the environment.

074 iii) Introduce new metrics to accompany the user-aware evaluation setup, which are essential for
 075 capturing an agent’s progress with respect to the number of conversational turns.

076 iv) Propose an automated error analysis tool that analyzes the inconsistencies of the judge and agents,
 077 uncovering common errors, and providing actionable feedback for agent improvement.

079 2 RELATED WORKS

080 **Conversation simulation.** A majority of the agents today are conversational and involve invoking
 081 multiple tools to solve a task. With complex tasks requiring human interaction, the literature
 082 (Yao et al., 2024; Wang et al., 2023; Xiao et al., 2024) has adopted a dynamic setup using a LLM-
 083 simulated user (user proxy), for automated testing of agents. However, existing dynamic evaluation
 084 methods face several limitations: some rely on user instruction prompts that are tightly coupled with
 085 specific agents, scenarios, and personas (Yao et al., 2024), while others omit user personas alto-
 086 gether (Lu et al., 2024)—both of which limit the reusability of evaluation methods across different
 087 domains. Although agent performance is influenced by the behavior of user proxy, this dependency
 088 is rarely analyzed systematically due to user personas being inconsistently defined across samples
 089 (Huang et al., 2025). While prior work (Barres et al., 2025) introduced a systematic evaluation
 090 of “easy” and “hard” personas for one of their dataset, their telco-specific user prompt templates
 091 is not generic and limits reusability across domains. Our TED framework differs from prior work
 092 by allowing end-user to systematically test the agent with *reusable, generic* expert and non-expert
 093 personas that are agent- or task-agnostic. We demonstrate this in our experiments on the τ^2 -bench
 094 (Barres et al., 2025) and ToolSandbox (Lu et al., 2024) datasets, which span various domains such
 095 as airline booking, messaging, setting reminders, etc., all evaluated using the same user persona
 096 templates without any tuning.

097 **Metrics and error analysis.** To evaluate agent performance, most prior work (Wang et al., 2023;
 098 Xie et al., 2024) relies on success rate. However, the metric focuses solely on the final outcome and
 099 provide only a coarse-grained assessment of agent behavior. This is first addressed by AgentBoard
 100 (Chang et al., 2024) that introduced progress rate as a fine-grained metric but in a multi-step agent-
 101 environment setting without conversation simulation. We extend this to multi-turn settings and
 102 propose metrics that combine turn-level efficiency and progress rate. Unlike MINT (Wang et al.,
 103 2023), which measures only final success after t interactions, our turn-aware evaluation captures
 104 per-turn progress and efficiency, offering a richer measure of agent performance in complex tasks.
 105 Given the non-deterministic behavior of agents, Yao et al. (2024) reports the $\text{pass}@k$ and pass^k
 106 metrics. In line with the $\text{pass}@k$ metric used to assess the chance of whether at least one out of
 107 k trials is successful, we also report new metrics that capture the best-case performance under the

108 stochastic runs. Instead of checking goal attainment via direct database lookups, tool signatures,
 109 etc., we represent all subgoals as grading notes. This approach abstracts complex goals, is user-
 110 friendly, and does not require system-state access, making our evaluation applicable to both agents
 111 that modify the system state and those that do not. While prior work uses natural language for only
 112 some assertions (Barres et al., 2025), we extend this to cover tool calls and end responses. Similar to
 113 Cui et al. (2025), we identify common errors made by LLM agents; however, our approach discovers
 114 these errors in an unsupervised manner via automatic analysis of real-time logs rather than relying
 115 on predefined categories.

116

117 3 TALK, EVALUATE, DIAGNOSE: TED FRAMEWORK

118

119 We define a LLM agent as an automated system that performs tasks via interactions with users, tools,
 120 and the environment. Its action space includes tool use, responses to users, and internal reasoning.
 121 After each action, the agent receives partial state information, such as API responses, or a subse-
 122 quent user utterance. **To systematically evaluate agents, we introduce the TED framework—Talk,**
 123 **Evaluate, and Diagnose**—as complementary and interdependent stages. In the Talking stage, diverse
 124 user-agent interactions are simulated, to study how robust agents complete tasks, for the different
 125 type of users, such as non-expert users who require more conversational turns. Traditional metrics
 126 like success or progress rates often fail to capture subtleties of turn efficiency, motivating metrics
 127 that consider both task progress and turn-efficiency during the Evaluation stage. Moreover, evalua-
 128 tion using LLM-as-a-judge are subject to stochasticity and potential errors. The Diagnosis stage
 129 helps extract meaningful insights from inconsistencies and errors made by both the agent and LLM-
 130 as-a-judge. Together, these stages form a unified framework as detailed in the following subsections.

131

132 3.1 THE TALKING STAGE

133

134 Dynamic evaluation with expert and non-expert user personas. Existing methods that use LLM-
 135 simulated user also known as user proxy (Yao et al., 2024; Lu et al., 2024) are constrained by either
 136 tightly coupled or missing user personas, hindering systematic analysis of the effect of user behavior
 137 on agent performance. **138 A tightly coupled task complexity and user persona, makes it challenging**
 139 **140 to isolate their individual impacts on agent performance.** For instance, when an agent answers
 141 technical legal questions, the outcome may differ depending on whether the user is an expert or a
 142 layperson, even if the task complexity remains constant. However, if both the task and user expertise
 143 as determined by the user persona vary simultaneously, it becomes difficult to determine which factor
 144 is driving performance differences. In this work, we propose a scalable, dynamic agent evaluation
 145 framework that leverages *reusable, generic* expert and non-expert user personas to simulate realistic
 146 user interactions across a wide range of scenarios. Let $P = \{p_{\text{expert}}, p_{\text{non-expert}}\}$ denote the set
 147 of persona prompts with different user expertise level, I be the set of task instructions, and U be
 148 the set of full user prompt consumed by the LLM-simulated user. We abstract the full user prompt
 149 templating process as a function f , combining *user persona* prompt p , with a *task instruction* i :

$$150 \quad u = f(p, i), \quad (1)$$

151

152 where $p \in P$, $i \in I$, and $u \in U$. The function f includes general rules for the user proxy, along with
 153 a two-step process—reflection followed by response. For each agent and task instruction sample i ,
 154 we vary only the persona prompt p to generate u_{expert} and $u_{\text{non-expert}}$. Refer to Appendix A.3 for
 155 the prompt f and user persona template p . An example of task instruction i is shown in Fig. 4.

156

157 3.2 THE EVALUATION STAGE

158

159 We define the set of grading notes G as natural language text used as assertion-based ground truths
 160 by LLM-as-a-judge. Each subgoal is represented by one such grading note ². Unlike prior work
 161 that uses keypoints (Hao et al., 2025) or limited natural language assertions (Barres et al., 2025), we
 162 expand coverage to include tool calls, their order, and key agent responses in G . While we adopt the
 163 notion of milestones (key events that must happen) (Lu et al., 2024) for the set G , we do not follow
 164 their DAG-based construction method. An example of grading note is: *Agent should enable Wifi*.
 165 More examples are in Appendix A.11.

166 ²Subgoal is represented by grading note which is a natural language text.

162 3.2.1 LLM-AS-A-JUDGE AND MAXPROGRESSRATE@k
163

164 **LLM-as-a-judge.** We extend beyond the multi-step agent-environment setting and exact match
165 metric (Chang et al., 2024) by evaluating agents in a multi-turn user-agent setup, where grading
166 notes serves as subgoals to assess both intermediate and final states, tool calls, as well as the agent’s
167 output responses. Let $D = \{(i, G_i) \mid i \in I\}$ be the test dataset, where $i \in I$ is a task instruction,
168 $G_i = \{g_{i,1}, g_{i,2}, \dots, g_{i,n_i}\}$ be the set of grading notes associated with the task instruction i , and $|G_i|$
169 be the number of subgoals, i.e., grading notes. We denote the corresponding agent trajectory, which
170 includes information on tool calls, agent responses and user utterances for the entire conversation
171 up to the final conversational turn, as τ_i . For a task sample (i, G_i) , the progress of the agent given
172 its trajectory τ_i , is defined as the proportion of subgoals achieved:
173

$$174 \text{progress}(i, G_i, \tau_i) = \frac{1}{|G_i|} \sum_{j=1}^{|G_i|} LLM_{\text{judge}}(i, g_{i,j}, \tau_i), \quad (2)$$

175 where $LLM_{\text{judge}}(\cdot)$ returns 1 if the subgoal $g_{i,j}$ is achieved, and 0 otherwise. We define the
176 progress rate as the average progress across all samples in the dataset D , i.e., $\text{progressrate} =$
177 $\mathbb{E}_{(i, G_i) \sim P_D} [\text{progress}(i, G_i, \tau_i)]$. Using LLM-as-a-judge with grading notes reduces the need for
178 custom dataset-specialized evaluation harnesses and infrastructure. In this formulation, the judge is
179 queried once for every subgoal. However, to ensure reliability, we run the judge multiple times and
180 take a majority vote as the final score. We discuss the stability of the judge further in Section 3.3.
181 The $LLM_{\text{judge}}(\cdot)$ prompt is provided in Appendix A.4.
182

183 **From pass@k to MaxProgressRate@k.** Given the non-deterministic nature of agent
184 behavior, a commonly used evaluation metric is $\text{pass}@k = \mathbb{E}_{P_{\text{task}}} [1 - \binom{n-c}{k} / \binom{n}{k}]$ (Yao et al.,
185 2024), which measures the probability that at least one trial succeeds when sampling k out of n
186 total trials. The notation c denotes the number of trials that are successful. Each trial represents a
187 complete multi-turn conversation, consisting of multiple back-and-forth user-agent exchanges. By
188 this definition, when $n = k$, the $\text{pass}@k$ metric evaluates to 1 if at least one of the k trials for a
189 given task is successful, and 0 otherwise. The metric then corresponds to the expected maximum
190 success per task, averaged over all tasks, measuring the agent’s best performance across the trials:
191

$$192 \text{pass}@k = \mathbb{E}_{(i, G_i) \sim P_D} [\max \{ \text{success}(i, G_i, \tau_i^l) \mid l = 1, \dots, k \}], \text{ where } \text{success}(\cdot) \in \{0, 1\}. \quad (3)$$

193 The notation $\text{success}(i, G_i, \tau_i^l)$ for a given sample (i, G_i) represents whether the agent with trajec-
194 tory τ_i^l successfully completes the task on the l -th trial, with a value of 1 for success and 0 for failure.
195 By taking the maximum success over k trials via the $\max\{\cdot\}$ operator, we capture the agent’s best
196 performance across these trials. We then relax the strict success condition in equation 3 by defining
197 a thresholded progress-based success criterion:
198

$$199 \text{pass}@k = \mathbb{E}_{(i, G_i) \sim P_D} [\max \{ \mathbb{1}\{ \text{progress}(i, G_i, \tau_i^l) \geq \text{threshold} \} \mid l = 1, \dots, k \}], \quad (4)$$

200 where $\mathbb{1}\{\cdot\}$ is the indicator function and the $\text{threshold} \in [0, 1]$ defines the minimum progress
201 for a trial to be considered successful. Setting $\text{threshold} = 1$ counts only trials with full sub-
202 goals completion (i.e., $\text{progress}(i, G_i, \tau_i^l) = 1$) as successful, and treats any partial progress (i.e.,
203 $\text{progress}(i, G_i, \tau_i^l) < 1$) as failure.
204

205 Nonetheless, equation 4 applies a hard threshold—treating all progress below the threshold as fail-
206 ure—and discards agent’s fine-grained progress. To retain this information, we define a soft ver-
207 sion, $\text{MaxProgressRate}@k$ to evaluate agent’s best performance based on the maximum progress
208 achieved at the final conversational turn, across k trials, averaged over all samples:
209

$$210 \text{MaxProgressRate}@k = \mathbb{E}_{(i, G_i) \sim P_D} [\max \{ \text{progress}(i, G_i, \tau_i^l) \mid l = 1, \dots, k \}]. \quad (5)$$

211 3.2.2 PROGRESS AND TURN-LEVEL EFFICIENCY
212

213 The turns within each conversational trial are interdependent where errors in the earlier turns can
214 propagate and impact task success. While the $\text{MaxProgressRate}@k$ metric in equation 5 cap-
215 tures non-determinism by measuring agent’s best performance across the k trials and evaluates fine-
216 grained progress only at the final conversational turn, it does not assess how quickly progress is made

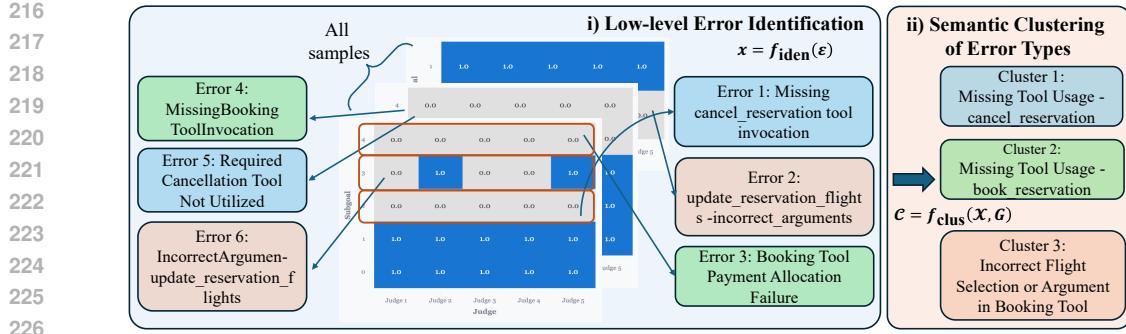


Figure 1: Our proposed two-step automated error discovery approach that automatically identifies common errors of the agent based on judge and agent inconsistencies. Identical error colors indicate that similar low-level errors are clustered into the same high-level category.

throughout the conversation. This gap in evaluation leads us to consider two distinct scenarios: i) where making early progress matters, and ii) where it does not.

i) Early progress matters. In this subsection, we view progress as a function of conversational turns and for notational simplicity, we denote the progress at turn t by $p(t) := \text{progress}(i, G_i, \tau_i^l[1:t])$, where $\tau_i^l[1:t]$ denotes the segment of the agent trajectory τ_i^l from the first turn up to turn t . Let $p(t) : [0, T] \rightarrow \mathbb{R}$ represents the discrete progress values at each turn. For computing AUC, we treat the discrete values $p(t)$ as a continuous, monotonically increasing function obtained via linear interpolation. The function measures the agent’s progress at turn t by the proportion of achieved subgoals, i.e., grading notes, assuming previously completed milestones cannot be undone. The AUC of the continuous progress function is then defined as $AUC = \int_0^T p(t) dt$ where T is the maximum turns of a conversation. For a given task sample $(i, G_i) \in D$, we define $p_1(t)$ and $p_2(t)$ to be the progress functions of two agents, respectively. Consider the case where both agents starts from 0 progress, i.e., $p_1(0) = p_2(0) = 0$ and first agent is strictly more efficient than the second, i.e., $p_1(t) \geq p_2(t), \forall t \in (0, T]$, we have:

$$AUC_1 = \int_0^T p_1(t) dt > \int_0^T p_2(t) dt = AUC_2. \quad (6)$$

In this scenario, an efficient agent—compared to a less efficient one—will achieve a higher AUC score. The AUC rewards agent for achieving subgoals early which is crucial for long-horizon tasks such as navigation (Shridhar et al., 2020; Chevalier-Boisvert et al., 2018), where finding the right room or object early often reduces downstream confusion. Likewise, in multi-step planning tasks, like web browsing (Zhou et al., 2023), early retrieval of relevant results significantly narrows the search space, increasing likelihood of success.

ii) Early progress does not matter. While AUC metric favors early progress, one may argue that this is unnecessary in tasks like booking a trip, where reserving a plane and hotel are interchangeable subtasks, and order should not affect the outcome. In such cases, completing the simpler subtask with less subgoals first, followed by the more complex one (or vice-versa) should not affect the final score, i.e., case where two agents start with zero progress and reach the same progress within the same number of conversational turns, despite the differences in trajectories. To handle scenarios where early progress is not vital, one can weight the increase in progress uniformly by computing the *progress per turn* (*PPT*), forming a telescoping series:

$$PPT = \frac{1}{T} \sum_{t=0}^{T-1} p(t+1) - p(t) = \frac{p(T)}{T}, \quad (7)$$

where $p(t)$ is the discrete progress value at turn t , T is the minimum number of conversational turns to reach the final achieved progress $p(T)$, and $p(0) = 0$. To align with the *MaxProgressRate@k* metric from equation 5, we report both the *MaxAUC@k* and *MaxPPT@k*, averaged over the task samples, while setting $n = k$. Further details are in the Appendix A.5.

270 3.3 THE DIAGNOSIS STAGE
271

272 **Automated Error Analysis.** Although a majority of existing works (Xiao et al., 2024; Qian et al.,
273 2025) stop at reporting final dataset metrics, we argue that evaluation should also include error analysis
274 and actionable improvements. While using grading notes and LLM-as-a-judge simplify our
275 evaluation, the inherent non-determinism of LLMs remains a challenge. Our proposed metrics aggregate
276 results using a majority vote from judge runs and the best agent performance across k trials.
277 However, the aggregation overlooks consistency—an essential aspect of robust agent evaluation. To
278 address this, we further introduce an automated error analysis tool that analyzes both judge and
279 agent inconsistencies by plotting sample-level progress expectations and variances, offering deeper
280 insights on top of the final aggregated metrics.

281 For each subgoal $g_{i,j} \in G_i$, we define a binary r.v. $Z_{i,j}$, where $Z_{i,j} = 1$ if the agent achieves the j -th
282 subgoal [under the given trajectory](#), and 0 otherwise. Let the probability of achieving the subgoal $g_{i,j}$
283 be $Pr(Z_{i,j} = 1) = z_{i,j}$. The progress for the sample (i, G_i) is defined as the proportion of subgoals
284 the agent achieved, i.e., $\text{progress}(i, G_i, \tau_i^l) = \frac{\sum_j Z_{i,j}}{|G_i|}$. Its expectation and variance are given by:
285

$$\mathbb{E}[\text{progress}(i, G_i, \tau_i^l)] = \frac{\sum_j z_{i,j}}{|G_i|}; \quad \text{Var}[\text{progress}(i, G_i, \tau_i^l)] = \frac{\sum_j z_{i,j}(1 - z_{i,j})}{|G_i|^2}, \quad (8)$$

286 where $z_{i,j} = \frac{1}{Q} \sum_{q=1}^Q z_{i,j}^{(q)}$ is estimated by averaging over Q judge runs per subgoal, generalizing the
287 single binary judge output in equation 2 to a probabilistic estimate. Plotting $\mathbb{E}[\text{progress}(i, G_i, \tau_i^l)]$
288 and $\text{Var}[\text{progress}(i, G_i, \tau_i^l)]$ for each task $(i, G_i) \in D$, capture judge’s inconsistency through the
289 variance, while agent’s inconsistency is reflected in the different expected progress values across the
290 k trials.
291

292 Building on this, we propose an automated error discovery approach that automatically identifies
293 the common errors of the agent based on judge and agent inconsistencies. Our approach consists
294 of two steps : (1) low-level error identification, and (2) semantic clustering of error types. For
295 every binary score $z_{i,j}^{(q)}$ from the judge, there is a corresponding explanation $e_{i,j}^{(q)}$. We define $\mathbf{e}_{i,j} =$
296 $\{e_{i,j}^{(1)}, \dots, e_{i,j}^{(Q)}\}$ and the error candidate set $\mathcal{E} = \{(g_{i,j}, \mathbf{e}_{i,j}) \mid Pr(Z_{i,j} = 1) < 1\}$ to be a tuple
297 of subgoals and corresponding explanations where the judge prediction is inconsistent. For each
298 candidate error $\varepsilon \in \mathcal{E}$, we first perform the low-level error identification step, followed by a semantic
299 clustering step:
300

$$x = f_{\text{iden}}(\varepsilon); \quad \mathcal{C} = f_{\text{clus}}(\mathcal{X}, G), \quad (9)$$

301 where $f_{\text{iden}}(\cdot)$ and $f_{\text{clus}}(\cdot)$ is the error identification, and clustering prompt functions, respectively,
302 and $x \in \mathcal{X}$ is the low-level error, and \mathcal{C} is the cluster label. This clustering step will merge semantically
303 similar errors into the same group and provide a high-level error summary. We illustrate this
304 two-step process in Fig. 1. Note that the errors with the same color are merged into one cluster
305 label. We also show preliminary results demonstrating agent improvement by leveraging the identified
306 errors. For a detailed algorithm of our automated error analysis method, and the prompt templates
307 used, $f_{\text{iden}}(\cdot)$ and $f_{\text{clus}}(\cdot)$ refer to Appendix A.6.
308

311 4 DATASETS AND EXPERIMENTAL SETUP
312

313 We use two agent benchmarks: τ^2 -bench (Barres et al., 2025) and ToolSandbox (Lu et al., 2024). For
314 τ^2 -bench, we utilize the airline dataset, which contains 21 samples annotated with tool signatures
315 and natural language assertions. Since these assertions closely align with our grading notes, we use
316 them for evaluation. We further divide this dataset into “easy” and “hard” samples. [For ToolSandbox, we select 37 base scenarios and exclude variants with different initial messages or multi-turn conversations, as these can be effectively simulated using our dynamic user proxy](#)—where both
317 initial and subsequent messages are generated dynamically, and the non-expert user persona effectively
318 simulates multi-turn conversations. Our setup offers greater variability than the original
319 variants with fixed initial messages. The base scenarios consist of a variety of task-oriented domains
320 ranging from contact updates and messaging to reminders, currency conversion, etc. We use only
321 milestones (key events that must happen) and convert them into grading notes. Importantly, any ex-
322 isting benchmark can be adapted to fit into our evaluation framework by converting the ground truths
323

324 Table 1: Overall performance of different agent models on τ^2 -bench and ToolSandbox dataset, using
 325 [gpt-4.1 as user proxy and LLM-as-a-judge](#). Results are displayed with scores for Expert Persona |
 326 Non-expert Persona. For metrics with $@k$, the number of trials is $n = k = 20$ for τ^2 -bench and
 327 $n = k = 8$ for ToolSandbox. Here, $\text{MaxProgressRate}@k$ is abbreviated as $\text{MaxProg}@k$.

Agent Model	MeanProg@k	MaxProg@k	MaxAUC@k	MaxPPT@k	pass@k
τ^2 -bench Dataset (Easy)					
gpt-4.1	0.95	0.82	1.00 1.00	0.99 0.81	0.80 0.50
gpt-4o	0.79	0.86	1.00 1.00	0.96 0.86	0.70 0.53
gpt-4o-mini	0.70	0.61	0.90 0.90	0.85 0.73	0.60 0.37
gpt-5	0.92	0.92	1.00 1.00	0.97 0.88	0.67 0.54
mistral-nemo	0.87	0.49	1.00 0.80	0.97 0.67	0.67 0.48
mistral-large	0.65	0.53	1.00 1.00	0.96 0.79	0.60 0.42
ToolSandbox Dataset					
gpt-4.1	0.91	0.87	0.98 0.97	0.96 0.92	0.84 0.73
gpt-4o	0.95	0.94	0.99 1.00	0.98 0.96	0.94 0.81
gpt-4o-mini	0.91	0.85	0.95 0.93	0.94 0.90	0.89 0.77
gpt-5	0.78	0.78	0.97 0.91	0.95 0.84	0.83 0.66
mistral-nemo	0.72	0.71	0.92 0.96	0.88 0.87	0.76 0.65
mistral-large	0.82	0.79	0.94 0.95	0.93 0.91	0.87 0.75

345
 346 into grading notes. We set the maximum number of turns to 15 for τ^2 -bench and 8 for ToolSandbox.
 347 Each sample is evaluated over multiple agent trials, $n = 20$ trials for τ^2 -bench and $n = 8$ trials for
 348 ToolSandbox. We report metrics at $k = n$ trials. [We use the gpt-4.1 model as LLM-as-a-judge for](#)
 349 [grading the subgoals and for error identification and clustering in our experiments. Unless specified,](#)
 350 [the user proxy also uses the gpt-4.1 model.](#) More details are in Appendix A.11 ³.

352 5 RESULTS AND DISCUSSION

353 5.1 MAIN RESULTS

354 Table 1 summarizes the overall performance of various agent models on τ^2 -bench and ToolSandbox,
 355 with gpt-4.1 serving as the user proxy. On easy samples, metrics such as $\text{MaxProgressRate}@k$,
 356 and $\text{pass}@k$ tend to saturate, with most models achieving near-perfect scores. $\text{MeanProg}@k$,
 357 which measures the average progress rate across all k trials, captures how consistently agents can
 358 achieve the subgoals. However, even $\text{MeanProg}@k$ can remain high for strong models making it
 359 less effective at distinguishing between top-performing agents. While $\text{MaxProgressRate}@k$ gives
 360 us the best agent performance over k trials, it fails to give any meaningful distinction between mod-
 361 els, especially for easy samples. These metrics, though useful for establishing baseline performance,
 362 fail to capture the turn-efficiency of the agents.

363 By incorporating $\text{MaxAUC}@k$ and $\text{MaxPPT}@k$, we obtain a more comprehensive evaluation
 364 of agent performance. For example, on τ^2 -bench, gpt-4o-mini (expert) and mistral-large (expert)
 365 achieve similar $\text{MeanProg}@k$ scores (differing by only 5%). However, $\text{MaxAUC}@k$ shows
 366 a larger difference of 10% (0.96 vs 0.85) and a change in rankings. Further comparison of the
 367 $\text{MaxAUC}@k$ with $\text{MaxPPT}@k$ scores for the two models, suggests that mistral-large achieves
 368 greater turn-level efficiency and faster progress in the initial turns, but both models have equal aver-
 369 age progress over turns as indicated by the identical $\text{MaxPPT}@k$ scores. Similar pattern persists
 370 in the ToolSandbox dataset, where models such as gpt-5 and mistral-nemo have larger differences
 371 on the $\text{MaxAUC}@k$ and $\text{MaxPPT}@k$ metrics, when interacting with expert user, but a smaller
 372 difference on $\text{MaxProgressRate}@k$.

373 We also examine the impact of user persona on agent performance. The non-expert user simulates an
 374 inexperienced user, resulting in agents taking more conversational turns to complete the task. This

375
 376
 377 ³We use the AI Security Institute Inspect Framework as an evaluation runner in our experiments.

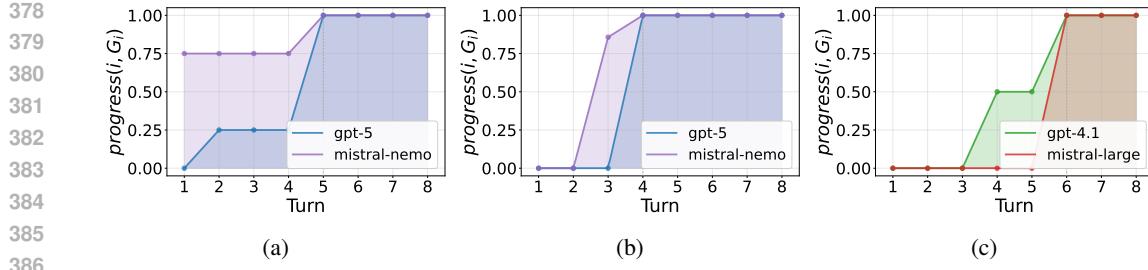


Figure 2: Progress curves for selected ToolSandbox samples. (a) `search_reminder_with_recency_upcoming`: mistral-nemo (non-expert, purple; $AUC=0.88$, $PPT=0.20$) vs. gpt-5 (non-expert, blue; $AUC=0.61$, $PPT=0.20$). (b) `find_current_city_low_battery_mode`: mistral-nemo (expert, purple; $AUC=0.77$) vs. gpt-5 (non-expert, blue; $AUC=0.64$). (c) `addReminderContentAndDateAndTime`: gpt-4.1 (non-expert, green; $AUC=0.50$) vs. mistral-large (non-expert, red; $AUC=0.34$).

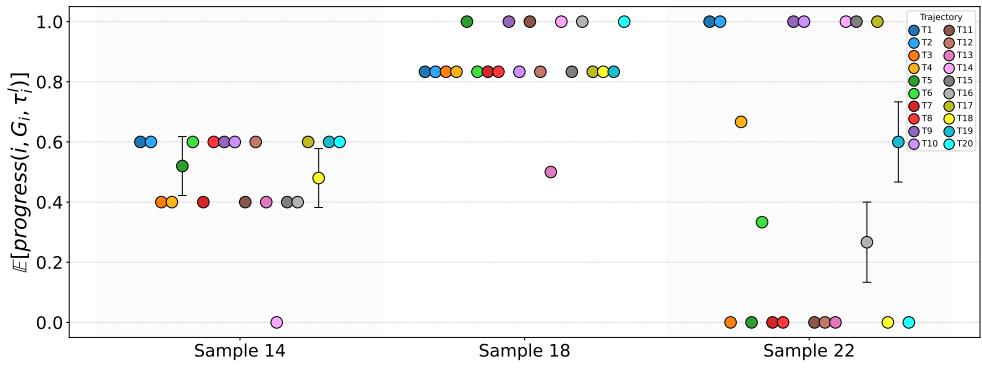


Figure 3: $\mathbb{E}[\text{progress}(i, G_i, \tau_i)]$ (dot) and $\text{Var}[\text{progress}(i, G_i, \tau_i)]$ (error bar) on τ^2 -bench gpt-4o-mini agent using non-expert user proxy gpt-4.1. Each dot is an agent trajectory from a single trial and each task sample is evaluated using $n = k = 20$ agent trials. For illustration, we display only three samples as an example here. Sample 14 belongs to the hard split and others in the easy split.

is consistently reflected in the *MaxAUC@k* scores, which are lower for the non-expert compared to the expert user persona across all models and datasets. It is because the expert persona provides clearer and more informative input, enabling the agents to complete tasks faster. The baseline metric *MaxProgressRate@k* which measures the agent best performance at the end of the conversation, overlooks turn count and thus show similar agent performances when interacting with expert versus non-expert user. The τ^2 -bench agent with gpt-4o-mini achieves the same *MaxProgressRate@k* score of 0.9 for expert and non-expert users, but more conversational turns are required during the interaction with non-expert user as shown in the lower *MaxAUC@k* and *MaxPPT@k* scores when compared to expert user. Another interesting observation is in some cases (e.g., gpt-5 vs mistral-large on τ^2 -bench), both models achieve the same *MaxProgressRate@k* = 1 for both user personas. However, when examining the *MaxAUC@k* metric, we see the performance gap between the two models is notably larger for agents interacting with non-expert user as compared to expert user. This highlights that the type of user interaction can significantly influence agent performance and should be considered as an important dimension when evaluating agents.

Moreover, we know that the *AUC* metric emphasizes early progress, while *PPT* weights the increases in progress uniformly across turns. To illustrate this, we analyze the performance at the sample level. In Fig. 2, we show case instances where two agents reach the same final progress but differ in the number of subgoals achieved at various turns. For example, in the ToolSandbox sample `search_reminder_with_recency_upcoming`, both gpt-5 (non-expert) and mistral-nemo (non-expert) achieve a *PPT* of 0.20, yet their *AUC* scores are 0.61 and 0.88, respectively. The progress rate curves in Fig. 2a demonstrate that mistral-nemo makes rapid early progress, while gpt-5's progress is more gradual. A closer examination of the agent trajectories (see Appendix A.12) re-

432 veals that *mistral-nemo* executes tool calls in the initial turn and then seeks clarification, whereas
 433 *gpt-5* begins by clarifying questions before invoking tools. Since the *AUC* is sensitive to agents that
 434 achieve subgoals earlier in the interaction, *mistral-nemo* has a a much higher *AUC* score than *gpt-5*,
 435 as compared to the *PPT* metric which simply averages the increase uniformly. Hence, in scenarios
 436 where early progress is less relevant, the *PPT* metric may be more suitable.

5.2 ERROR ANALYSIS

Besides reporting the results on the dataset-level, we analyze the expectations and variances of the multiple judge runs and the different k agent trials, as shown in Fig. 3. The different color points for each sample represent the different agent trial runs, which we refer to as trajectories in our discussion. For sample 14⁴, we can clearly see that half of the agent runs have an expected per-sample progress of 0.6, while 35% of them are at 0.4, suggesting that there are one or more subgoals, where the agent consistently fails or succeeds. Upon examining the trajectories, we identify the problematic subgoal to be “Agent should cancel reservation K1NW8N.” Notably the trials in these two clusters have zero variance in the judge runs, indicating that the judge is highly confident in its assessment. For this sample, only trajectories 5 and 18 show relatively large variance bars, suggesting inconsistency in the judge model itself. We then apply our automated error analysis to

Task Instruction for Sample 14:	LLM-summarized error category	Sample 14
..... Then you want to change your recent reservation. You want to keep the same dates but want to change it to the <i>cheapest business round trip</i> , with direct flights or not. If the agent tells you <i>basic economy cannot be changed</i> (do not mention it if the agent does not mention it), you want the agent to <i>cancel the current one and book a new one</i>	1. Missing Communication - Amount/Payment/Breakdown	Trace 18
Dialogue Excerpt: UserProxy: ...So, I was also hoping to change my reservation. Can you help me with that? Tau2Agent: I can help you with modifying your reservation! To get started, I need your user ID and the reservation ID you would like to change <Omit the reservation ID confirmation turn> Tau2Agent: Your reservation ID is **K1NW8N** *	2. Missing Tool Usage: cancel_reservation	Trace 6, 18
UserProxy: Yeah, I just want to switch it to business class, but keep the same dates. Can you check what that would look like? Tau2Agent: Here are the available flights for your round trip after switching to business class <Omit the available flight options for space saving> ... Please confirm if you want to proceed with this change and indicate which return flight you'd like to choose.	3. Incorrect Output Communication - Amount/Value/Payment	Trace 6
UserProxy: Um, can you just pick the cheapest one for the way back? I just want whatever's the lowest price. Tau2Agent: The cheapest return flight option is: <Omit the cheapest business flight options> <Omit the payment way selection>	4. Missing Tool Usage - book_reservation	Trace 18
Tau2Agent: ... Payment Summary: **Total Cost of New Booking:** \$871.00. **Paid with:** **Certificates:** \$567.00. **MasterCard:** \$304.00 (remaining balance)		
Agent Intermediate Trajectories:	Agent Trajectory 11	Agent Trajectory 18
	<p>Turn 11:</p> <p>{ "role": "agent", "content": "There seems to be a mismatch between the flight cost and the payment amount. The correct total should be \$871.00, but the system is incorrectly processing it as \$2,613.00. I will attempt the booking again with the corrected payment amount. Please hold on.", "tool": "call", "args": "{'id': 'call_5Qoxv3MW9YHMcdeJ2XGbd30B', 'name': 'book_reservation', 'arguments': {'user_id': 'mohamed Silva 9265', 'origin': 'JFK', 'destination': 'SFO', 'flight_type': 'round trip', 'cabin': 'business', 'flights': '[{"flight_number": "HAT023", "date": "2024-05-26"}, {"flight_number": "HAT024", "date": "2024-05-28"}]', 'flight': 'HAT100', 'date': '2024-05-28']}, passengers: [{"first_name": "Mohamed", "last_name": "Silva", "dob": "1960-11-26"}, {"first_name": "Raj", "last_name": "Sanchez", "dob": "1986-09-12"}, {"first_name": "Liam", "last_name": "Wilson", "dob": "1980-03-27"}], 'payment_methods': '.....'} } { "role": "tool", "content": "Error: Payment amount does not add up, total price is 2613, but paid 1077.", "tool_id": "call_5Qoxv3MW9YHMcdeJ2XGbd30B"}}</p>	<p>Turn 11:</p> <p>{ "role": "agent", "content": "There seems to be a mismatch between the flight cost and the payment amount. The correct total should be \$871.00, but the system is incorrectly processing it as \$2,613.00. I will attempt the booking again with the corrected payment amount. Please hold on.", "tool": "call", "args": "{'id': 'call_5Qoxv3MW9YHMcdeJ2XGbd30B', 'name': 'book_reservation', 'arguments': {'user_id': 'mohamed Silva 9265', 'origin': 'JFK', 'destination': 'SFO', 'flight_type': 'round trip', 'cabin': 'business', 'flights': '[{"flight_number": "HAT023", "date": "2024-05-26"}, {"flight_number": "HAT024", "date": "2024-05-28"}]', 'flight': 'HAT100', 'date': '2024-05-28']}, passengers: [{"first_name": "Mohamed", "last_name": "Silva", "dob": "1960-11-26"}, {"first_name": "Raj", "last_name": "Sanchez", "dob": "1986-09-12"}, {"first_name": "Liam", "last_name": "Wilson", "dob": "1980-03-27"}], 'payment_methods': '.....'} } { "role": "tool", "content": "Error: Payment amount does not add up, total price is 2613, but paid 1077.", "tool_id": "call_5Qoxv3MW9YHMcdeJ2XGbd30B"}}</p>

Figure 4: τ^2 -bench Sample 14: The blue box shows a truncated task instruction $i \in I$ for the non-expert user proxy gpt-4.1 model. The green boxes contain the truncated dialogue for trajectory 6 (left) and agent’s trajectory 18 (right). The agent model is gpt-4o-mini. The top-right box shows the errors identified. Zoom in for a larger view.

identify the common errors made by the agent. Our tool identifies four distinct errors for sample 14 as shown in Fig. 4. In the trajectory 6, the agent did not check the details of the existing flight, which was supposed to be basic economy. Thus, the agent did not cancel the previous flight when attempting to reschedule causing a discrepancy in the final payment output. This error was consistently captured by our judge as indicated by the zero variance bar. On the other hand, trajectory 18 involves a different payment-related error whereby the agent hallucinates the value \$2613.00, that exceeds the actual cost. This spurious value prevented the agent from calling `book_reservation`, triggering a cascade of three subsequent errors.

5.3 INCORPORATING IDENTIFIED ERRORS INTO AGENT'S DESIGN

To show the effectiveness of our identified errors in improving the agent, we incorporate these errors into the design of the agent using two simple strategies on τ^2 -bench's special split (selected due to their low progress rate and progress-per-turn) and ToolSandbox in Table 2. We use two strategies: (i)

⁴Due to space constraints, we show detailed analysis for only one sample, but our approach generalizes to all samples.

486
487 *Errors Insert*: add the list of identified errors as generated from our error analysis tool in the agent in-
488 struction *without* manual refinement and (ii) *Human Notes*: insert manually refined error notes based
489 on the identified errors from our tool⁵. The Errors Insert strategy improves several setups—notably
490 gpt-4o-mini on τ^2 -bench (+9% in *MeanProg@k*, +5% in *MaxAUC@k*)—implying that aware-
491 ness of common failures helps the agent perform better, with only a few showing declines. In con-
492 trast, the Human Notes strategy gives a more consistent improvement for more setups as compared
493 to Error Insert. We observe in particular a significant gain in *MaxPPT@k* of 7-10% for gpt-4.1
494 using Human Notes on ToolSandbox dataset. It is also observed that with better models like gpt-4.1,
495 both strategies perform consistently well on the ToolSandbox dataset. Despite our simple strate-
496 gies, we achieve comparable performance gains when compared with more sophisticated in-context
497 learning approach Cui et al. (2025). These findings show the usefulness of our identified errors,
498 demonstrating the potential of using such insights to improve agents, where we believe further gains
499 are possible with more sophisticated prompt optimization techniques.

500 Table 2: Error improvement results of agent, using gpt-4.1 as user proxy and LLM-as-a judge.
501 Results are displayed for Expert Persona | Non-expert Persona. The improvement strategies applied
502 on the different agent models are *Error Insert* (EI) and *Human Notes* (HN).

503 Agent Model	504 <i>MeanProg@k</i>	505 <i>MaxProg@k</i>	506 <i>MaxAUC@k</i>	507 <i>MaxPPT@k</i>
<i>τ^2-bench Dataset (Special Split: Samples 7, 14, 21, 23, and 29)</i>				
508 gpt-4o-mini + EI	509 0.37 _{↑0.09}	510 0.31 _{↓0.01}	511 0.66 _{↑0.06}	512 0.61 _{±0.00}
513 gpt-4o-mini + HN	514 0.30 _{↑0.02}	515 0.33 _{↑0.01}	516 0.63 _{↑0.02}	517 0.61 _{±0.00}
518 gpt-4.1 + EI	519 0.52 _{±0.00}	520 0.38 _{±0.00}	521 0.78 _{↑0.04}	522 0.77 _{↓0.08}
523 gpt-4.1 + HN	524 0.53 _{↑0.01}	525 0.41 _{↑0.03}	526 0.78 _{↑0.04}	527 0.85 _{±0.00}
<i>ToolSandbox Dataset</i>				
530 gpt-4o-mini + EI	531 0.87 _{↓0.04}	532 0.89 _{↑0.04}	533 0.97 _{↑0.02}	534 0.98 _{↑0.05}
535 gpt-4o-mini + HN	536 0.88 _{↓0.03}	537 0.91 _{↑0.06}	538 0.96 _{↑0.01}	539 0.96 _{↑0.03}
540 gpt-4.1 + EI	541 0.95 _{↑0.03}	542 0.93 _{↑0.06}	543 0.99 _{↑0.01}	544 0.99 _{↑0.02}
545 gpt-4.1 + HN	546 0.95 _{↑0.03}	547 0.97 _{↑0.10}	548 0.98 _{±0.00}	549 0.99 _{↑0.02}
550	551	552	553	554

555 5.4 ABLATION EXPERIMENTS AND HUMAN STUDY

556 We also report results on the full split of τ^2 -bench in Appendix A.9 and include an ablation on user
557 model variation in Appendix A.10. To validate the correctness of our evaluation, human studies
558 on the user proxy and LLM-as-a-judge are conducted and presented in Appendices A.7 and A.8,
559 respectively. From our human study, we find that the user proxy behaves correctly in most cases and
560 does not suffer from role confusion nor provide erroneous responses. Only a small percentage, i.e.,
561 6-12% of the cases, suffer from instruction following. Likewise, our evaluation of the LLM-as-a-
562 judge reveals only a minimal error range of 0-7% for the different datasets and error types. These
563 low error rates indicate that using LLM as both a user proxy and a judge is reliable and offers a
564 cost-effective alternative to labor-intensive methods.

565 6 CONCLUSION AND FUTURE WORK

566 In this work, we introduced the TED framework that redefines agent evaluation. We showed that
567 including error insights into the agent’s design leads to gains, with peaks of 8% for *MaxAUC@k*
568 and 10% for *MaxPPT@k* metrics. In the future, we aim to integrate these error insights into auto-
569 matic prompt optimization methods to improve the agent performance. We also plan to explore the
570 applicability of our metric to non-task-oriented domains, such as open-ended dialogue with conver-
571 sational agents, where the expected responses of the agent can be assessed using our grading notes.
572 Limitation of our approach and LLM usage are discussed in Appendix A.1 and A.2, respectively.

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083

540 REFERENCES
541

542 UK AI Security Institute. Inspect AI: Framework for Large Language Model Evaluations. URL
543 https://github.com/UKGovernmentBEIS/inspect_ai.

544 Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ^2 -bench: Evaluating
545 conversational agents in a dual-control environment. *arXiv preprint arXiv:2506.07982*, 2025.

546 Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Ling-
547 peng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm agents.
548 *Advances in neural information processing systems*, 37:74325–74362, 2024.

549 Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
550 Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
551 grounded language learning. *arXiv preprint arXiv:1810.08272*, 2018.

552 Yue Cui, Liuyi Yao, Shuchang Tao, Weijie Shi, Yaliang Li, Bolin Ding, and Xiaofang Zhou. En-
553 hancing tool learning in large language models with hierarchical error checklists. *arXiv preprint*
554 *arXiv:2506.00042*, 2025.

555 Yupu Hao, Pengfei Cao, Zhuoran Jin, Huanxuan Liao, Yubo Chen, Kang Liu, and Jun Zhao. Evalu-
556 ating personalized tool-augmented llms from the perspectives of personalization and proactivity.
557 *arXiv preprint arXiv:2503.00771*, 2025.

558 Kung-Hsiang Huang, Akshara Prabhakar, Onkar Thorat, Divyansh Agarwal, Prafulla Kumar
559 Choubey, Yixin Mao, Silvio Savarese, Caiming Xiong, and Chien-Sheng Wu. Crmarena-pro:
560 Holistic assessment of llm agents across diverse business scenarios and interactions. *arXiv*
561 *preprint arXiv:2505.18878*, 2025.

562 Kyochul Jang, Donghyeon Lee, Kyusik Kim, Dongseok Heo, Taewhoo Lee, Woojeong Kim, and
563 Bongwon Suh. Dice-bench: Evaluating the tool-use capabilities of large language models in
564 multi-round, multi-party dialogues. *arXiv preprint arXiv:2506.22853*, 2025.

565 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
566 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
567 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

568 Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
569 Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. *arXiv preprint*
570 *arXiv:2308.03688*, 2023.

571 Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma, Shen
572 Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation
573 benchmark for llm tool use capabilities. *arXiv preprint arXiv:2408.04682*, 2024.

574 Cheng Qian, Peixuan Han, Qinyu Luo, Bingxiang He, Xiusi Chen, Yuji Zhang, Hongyi Du, Jiarui
575 Yao, Xiaocheng Yang, Denghui Zhang, et al. Escapebench: Towards advancing creative intelli-
576 gence of language model agents. *arXiv preprint arXiv:2412.13549*, 2024.

577 Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tür,
578 Gokhan Tur, and Heng Ji. Smart: Self-aware agent for tool overuse mitigation. *arXiv preprint*
579 *arXiv:2502.11435*, 2025.

580 Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun
581 Xie, Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation. *arXiv preprint*
582 *arXiv:2410.07869*, 2024.

583 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
584 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. *arXiv*
585 *preprint arXiv:2010.03768*, 2020.

586 Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
587 Mint: Evaluating llms in multi-turn interaction with tools and language feedback. *arXiv preprint*
588 *arXiv:2309.10691*, 2023.

594 Ruixuan Xiao, Wentao Ma, Ke Wang, Yuchuan Wu, Junbo Zhao, Haobo Wang, Fei Huang, and
595 Yongbin Li. Flowbench: Revisiting and benchmarking workflow-guided planning for llm-based
596 agents. *arXiv preprint arXiv:2406.14884*, 2024.

597
598 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
599 Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osword: Benchmarking multimodal agents
600 for open-ended tasks in real computer environments. *Advances in Neural Information Processing
Systems*, 37:52040–52094, 2024.

601
602 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
603 tool-agent-user interaction in real-world domains, 2024. URL <https://arxiv.org/abs/2406.12045>,
604 2024.

605
606 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
607 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
608 ing autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A APPENDIX**
649650
651 **A.1 LIMITATION OF OUR APPROACH**
652653 Our approach, which uses grading notes and LLM-as-judge, simplifies evaluation by relying solely
654 on the agent’s trajectory, without requiring access to the underlying environment. However, this
655 approach has certain limitations. While we show that multiple judge runs improves reliability and
656 our automated error analysis tool helps in debugging, the method cannot verify whether the database
657 state has actually changed if such modifications are not reflected in the trajectory. Consequently, this
658 limits our ability to capture silent failures that produce no observable outputs.
659660
661 **A.2 LLM USAGE**
662663 LLM is used to assist the writing of UI code for the automated error analysis tool. In addition to
664 that, we use LLM to refine the prompt templates that are used in our experiments. LLM is also used
665 to refine and polish the text in the paper to improve clarity and presentation.
666667
668 **A.3 PROMPT TEMPLATES FOR A SYSTEMATIC DYNAMIC EVALUATION OF AGENT WITH USER**
669 **PERSONAS**
670671 The following are the *reusable, generic* expert and non-expert prompt templates, followed by the
672 templates for the two-step function f in equation 1. The `{user_task_summary}` placeholder
673 corresponds to the task instruction $i \in I$, and the `{agent_desc}` placeholder corresponds to
674 the agent description. For the two-step generation process f -reflection followed by response, the
675 placeholders `{chat_history}` and `{termination_msg}` represent the user-agent chat history
676 up to the current stage of conversation and the termination message that the user should produce at
677 the end of the dialogue, respectively. The placeholder `{reflection_history}` represents the
678 user reflection history up to the current stage of conversation.
679680 **Generic expert user persona prompt template:**
681682 You are acting as an expert LLM-simulated user who fully understands the AI assistant system and
683 goal. Always respond naturally in clear, concise language that fits the expert user role and goal.
684 Provide complete and precise information in your responses. Generate one line at a time. Do not give
685 away all the instructions at once. Only provide the information that is necessary for the current step.
686687 You are provided with the following user task summary:
688 [user_task_summary]
689690 You understand the system well and will provide thorough, accurate responses using only the
691 information provided in the [user_task_summary] section.
692693 If the AI assistant returns output in JSON format, respond only to the content inside the JSON
694 as if the format does not matter.
695696 The following provides an overview of the AI assistant if available.
697 [AI Assistant Description] :
698 {agent_desc}
699700 ---
701 When you as an expert LLM-simulated user is analysing the real-time chat history, carry out a two-step
process as the user:
first, a Reflection Phase, followed by a Response Generation Phase.

702
703**Generic *non-expert* user persona prompt template:**704
705
706

You are simulating a clueless, casual NON-expert user who is interacting with an AI assistant. You don't fully understand how the AI system works, and you tend to give vague or incomplete instructions — often leaving out key steps or context.

707
708

When you respond:

709
710

Speak naturally, casually, like someone who's unsure how to talk to an AI.

711

Be brief and only provide part of the needed information.

712
713

Do not give a full picture unless the assistant directly asks for it.

714
715

Only share details that are directly related to what was just asked or prompted — not more.

716
717

Never proactively explain your reasoning or provide background info unless the assistant digs into it.

718

You are working toward the following general task:

719

[User Task Summary]

720

{user_task_summary}

721
722
723

But since you're not an expert, you'll just sort of "feel your way through it" and leave lots of gaps in your instructions. NEVER provide COMPLETE instructions. ALWAYS OMIT some variables and missing key context.

If the assistant returns something in structured formats like JSON, you can just react casually to the content. Treat the format like it doesn't matter.

724

The following provides an overview of the AI assistant if available.

[AI Assistant Description]:

{agent_desc}

730

When you as a clueless, casual NON-expert user is analysing the real-time chat history, carry out a two-step process as the user:

first, a Reflection Phase, followed by a Response Generation Phase.

731

When simulating your process during the conversation:

736

You go through two internal steps each time:

737

1. Reflection Phase (internal thought):

Take a quick look at the current chat history. Think to yourself:

738

"Okay, what did the assistant just say or ask? What should I probably say next without overexplaining?"

Remember: you're not confident in how this system works, so don't try to be precise.

742

2. Response Generation Phase (your reply):

743

Now write a short, casual message that gives only partial information based on what the assistant asked. Leave things unclear unless the assistant is persistent.

745

746

747

748

749

750

751

752

753

754

755

756

The reflection-step prompt template in the two-step function f equation 1:

757

758

759

The following [Chat History] (if available) provides context and indicates the CURRENT stage of your conversation as a LLM-simulated user with the AI assistant.

760

[Chat History]

{chat_history}

763

Step 1: Reflection Phase

764

765

Given the [Chat History] REFLECT carefully on the AI assistant's last response and what the LLM-simulated user is trying to accomplish based on the [user_task_summary].

766

767

Briefly address:

768

- Your role as the LLM-simulated user.
- The current stage of the conversation. You SHOULD NOT skip any user instructions as mentioned in the [user_task_summary].
- The assistant's last reply in the [Chat History].

769

IMPORTANT CLARIFICATION:

770

- Review the entire [Chat History] and the [user_task_summary] and see what should be your next response as a LLM-simulated user.

771

- At times, the AI assistant's last message may overlap with or anticipate a future user turn. In such cases, treat it strictly as the AI assistant response, not a replacement of the user message

772

Do NOT generate the LLM-simulated user response yet. RESPOND only with a REFLECTION.

773

IMPORTANT remember your user persona as written in the system prompt (eg: expert user or non-expert) and respond with appropriate reflection.

774

775

TERMINATE ONLY IF the conversation is at its FINAL STAGE where the agent has completed all the tasks wanted by the user as shown in the [user_task_summary].

776

If the conversation has concluded, prepare to respond with {termination_msg} in the next response generation phase.

Otherwise, DO NOT consider termination if the current conversation is not at its final stage.

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 The response-step prompt template in the two-step function f equation 1:

A.4 LLM-AS-A-JUDGE PROMPT TEMPLATE

The following is the $LLM_{judge}(i, g_{i,j}, \tau_i)$ prompt template from equation 2. The `{user_task_summary}` placeholder corresponds to the task instruction $i \in I$, the `{grading_note}` placeholder corresponds to the j -th grading notes $g_{i,j}$ for the task instruction i . The remaining placeholders, `{trajectory}`, `{agent_responses}` and `{dynamicDialogue}` represent agent's trajectory, responses output, and the user-agent dialogue, respectively, as extracted from τ_i .

864
865**Prompt Template for LLM-as-a-judge equation 2:**866
867
868
869

You are provided with a sample that contains several key components centered around an interaction between an agent and a simulated user, referred to as the user proxy. The user proxy represents a human-in-the-loop, engaging with the agent by posing questions and guiding the conversation throughout the dialogue.

870
871
872
873
874
875

The [User Summary Instructions] section outlines the user’s goals, expectations, and the overall task the agent is expected to complete. The [Agent Responses Submission] section captures the agent’s actual responses to the user proxy at each turn of the interaction. The [Agent Intermediate Trajectories] section provides a detailed step-by-step reasoning and actions taken by the agent. Finally, the [Dynamic Dialogue] section presents the full conversation between the agent and the user proxy.

876
877
878

As a judge, your task is to determine whether the subgoal specified in the [Ground Truth Subgoal] has been achieved. To make this assessment, evaluate the [Agent Intermediate Trajectories] and [Agent Responses Submission] to ascertain whether the subgoal has been successfully completed.

879
880
881
882
883
884
885

When the completion of a subgoal depends on the availability of a specific tool, and that TOOL is ABSENT, the subgoal must be marked as INCOMPLETE, REGARDLESS of the correctness of the agent’s responses in [Agent Responses Submission]. Tool availability is a hard constraint—no amount of valid reasoning can compensate for its absence. Suggesting or recommending a tool is acceptable only if the subgoal does not require the tool to be used. However, CONCEPTUALIZING or HALLUCINATING a tool call—i.e., falsely implying the tool was invoked—is NOT acceptable, and the subgoal must be marked as INCOMPLETE.

886
887
888
889
890

Additionally if the agent intermediate trajectory are left BLANK or DOES NOT contain relevant tools to the subgoal, it means that the ground truth subgoal is NOT MET and the subgoal is considered as INCOMPLETE, REGARDLESS of the correctness of the agent’s responses in [Agent Responses Submission]. The thought in [Agent Intermediate Trajectories] CANNOT be considered as a substitute for a tool call and the ground truth subgoal is considered to be INCOMPLETE.

891
892

[BEGIN DATA]

[User Summary Instructions]:
{user_task_summary}

[Ground Truth Subgoal]:
{grading_note}

[Agent Intermediate Trajectories]:
{trajectory}

[Agent Responses Submission]:
{agent_responses}

{dynamicDialogue}

[END DATA]

908
909
910

During assessment focus solely on the factual content and the goal completion while disregarding any differences in style, grammar, punctuation, or syntax.

911
912
913
914
915
916
917

Begin by presenting a concise argument to confirm the validity of your conclusion. Avoid simply stating the correct answers at the outset. Decide what type of tools is required and then end with your answer formatted as 'GRADE: \$LETTER' (without quotes) where LETTER is one of C or I. Reply with 'GRADE: C' (without quotes) to indicate COMPLETE if the agent has successfully achieved the subgoal. Otherwise, reply with 'GRADE: I' (without quotes) to indicate INCOMPLETE if the agent did not achieve the subgoal.

918 A.5 ADDITIONAL DETAILS ON PROGRESS AND TURN-LEVEL EFFICIENCY SECTION
919920 To align with the $MaxProgressRate@k$ metric from equation 5, which evaluates the agent’s best
921 performance across k trials, we report both the max AUC and max PPT of the k trials averaged
922 over the task samples:
923

924
$$MaxAUC@k = \mathbb{E}_{(i, G_i) \sim P_D} [\max\{AUC_l \mid l = 1, \dots, k\}]. \quad (10)$$

925

926
927
$$MaxPPT@k = \mathbb{E}_{(i, G_i) \sim P_D} [\max\{PPT_l \mid l = 1, \dots, k\}]. \quad (11)$$

928

929 We show in our experiments that the proposed metrics provide interesting insights into the agent
930 behavior that existing metrics failed to capture.
931932 A.6 ADDITIONAL DETAILS ON AUTOMATED ERROR ANALYSIS
933934 The error candidate set $\mathcal{E} = \{(g_{i,j}, \mathbf{e}_{i,j}) \mid \Pr(Z_{i,j} = 1) < 1\}$ can have two situations: i) when
935 all the judge trials consistently score 0, ii) judge model has disagreement across multiple judge
936 trials. For the first case, we can select any $e_{i,j}$ of the Q trials to get the final $x_{i,j}$. Usually in our
937 implementation, we select the first explanation $e_{i,j}^1$. However, for second case, the f_{iden} will take
938 all $e_{i,j}$ and apply another selective prompt function $f_{\text{selective}}$ to decide the low-level error x . We
939 illustrate the entire algorithm in the below pseudo-code:
940

941

942 **Algorithm 1:** Automated Error Analysis Method
943

944 **Input:** Judge outputs $\{(Z_{i,j}^{(q)}, e_{i,j}^{(q)}, g_{i,j})\}$ for samples i , subgoals j , trials $q = 1 \dots Q$.
 945 **Output:** High-level error types.

1 Initialize $\mathcal{E} \leftarrow \emptyset$;
 // Low-level error identification

2 **for** each (i, j) **do**

3 **if** $(\forall q, Z_{i,j}^{(q)} = 0)$ **or** $(0 \in Z_{i,j} \wedge 1 \in \mathbf{s}_{i,j})$ **then**

4 $\mathcal{E} \leftarrow \mathcal{E} \cup \{(g_{i,j}, \mathbf{e}_{i,j})\}$;

5 **if** $\forall q, Z_{i,j}^{(q)} = 0$ **then**

6 // Consistent failure
 // Select the first judge explanation

7 $x_{i,j} \leftarrow f_{\text{iden}}(g_{i,j}, e_{i,j}^{(1)})$;

8 **end**

9 **else**

10 // Disagreement across judge trials

11 $Tmp \leftarrow []$;

12 **for** $q = 1$ **to** Q **do**

13 $Tmp \leftarrow Tmp \cup \{f_{\text{iden}}(g_{i,j}, e_{i,j}^{(q)})\}$;

14 **end**

15 $x_{i,j} \leftarrow f_{\text{selective}}(Tmp)$;

16 **end**

17 **end**

18 // Semantic clustering of error types

19 $x \in \mathcal{X}$;

20 $\mathcal{G} \leftarrow \text{unique subgoals } \{g_{i,j}\}$;

21 $\mathcal{C} \leftarrow f_{\text{clus}}(\mathcal{X}, \mathcal{G})$;

22 **return** high-level error types \mathcal{C} ;

971

1026
1027 **Prompt Template for $f_{\text{selective}}$ in Automated Error Analysis:**

1028 You are given multiple independent predictions of the same data row. Each prediction includes an
1029 error type assigned by a model. Your task is to determine the **most probable true error type** using
1030 a majority voting approach.

1031 Instructions:
1032 1. Review all provided error types carefully.
1033 2. Group similar or semantically equivalent error types together, even if their wording differs.
1034 3. Count how many times each grouped error type appears.
1035 4. Select the error type with the highest count as the final result.
1036 5. If there is a tie:
1037 - Prefer the error type that is more specific and informative.
1038 - If still tied, choose the one most consistent with the majority wording.
1039 6. Output ONLY the most probable error type, without extra commentary.

1040 [BEGIN DATA]

1041 [Error Types] : {error_type_list}

1042 [END DATA]

1043
1044 Please return your output in the following **strict JSON format**:

1045 {
1046 "most_probable_error_type": "<most_probable_error_type>"
1047 }

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081**Prompt Template for f_{clus} in Automated Error Analysis:**1082
1083
1084

You are tasked with clustering the following error types based on their semantic similarity. The goal is to group related error types under broader, more abstract categories to reduce redundancy and improve generalization.

1085
1086
1087
1088
1089**Important:**

- The cluster_label should be primarily grounded in the <subgoals> provided.
- Only if you are very certain that an error type is entirely unrelated to the subgoals should you create a new cluster label not derived from them.
- Always aim to preserve the subgoal's intent when naming clusters.

1090
1091
1092
1093
1094
1095
1096
1097
1098**Guidelines:**

- Error types are not mutually exclusive and may overlap in meaning.
- Each cluster should reflect the most abstract and inclusive label that unifies all error types within it.
- Do not merge error types referring to different tools into a single cluster.
- Clusters involving tool usage must be separated by tool name.
- The cluster_label for each tool-related cluster must explicitly include that tool's name.
- Minimize the number of clusters while maintaining clear and meaningful distinctions.
- Avoid overly specific wording—cluster labels should be reusable in other contexts where the same subgoal applies.

1099
1100

[BEGIN DATA]

1101
1102

[Subgoals] : {subgoals}

1103
1104

1105
1106
1107

[Error Types] : {error_types}

1108

[END DATA]

1109
1110

Please return your output in the following strict JSON format:

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

```
{
  "clusters": [
    {
      "cluster_label": "<generalized_error_type>",
      "error_types": ["<error_type_1>", "<error_type_2>", ...],
      "error_ids": ["<error_id_1>", "<error_id_2>", ...]
    },
    ...
  ]
}
```

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135

A.7 HUMAN STUDY ON THE CORRECTNESS OF USER PROXY

1136
1137
1138
1139
1140
1141
1142
1143
1144

To ensure the reliability of our user proxy simulation, we manually validate user proxy utterances through human evaluation on 16 randomly selected expert and 16 non-expert user-agent dialogues on τ^2 -bench and ToolSandbox datasets. We categorize errors into three types: (1) user role confusion, where the user mistakes their role for the agent's; (2) failure to follow the specified task instructions $i \in I$, termed as missing or violate instructions; and (3) nonsensical or erroneous user responses. Based on Table 3, we observe that the user proxy in general behaves as expected except for a small number of cases where it does not follow the task instructions. While no AI system can be expected to achieve 100% accuracy, the low number of such errors supports our belief in the user proxy's inherent potential for agent evaluation.

1145
1146

Table 3: Correctness of user proxy. Both agent and user proxy use gpt4.1 model.

1147
1148
1149
1150
1151
1152
1153

A.8 HUMAN STUDY ON THE CORRECTNESS OF LLM-AS-A-JUDGE

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

To ensure the reliability of our LLM-as-a-judge evaluation, which uses grading notes (i.e., subgoals) as ground truths, we conducted multiple runs of the judge and used majority vote to determine the final scores. The human study in Table 4 are conducted on these majority-vote outcomes. We randomly select 10 samples containing both expert and non-expert users from the τ^2 -Bench dataset, and another 10 samples from the ToolSandbox dataset, resulting in 42 and 31 subgoals, respectively. Since each subgoal is evaluated independently, we report human evaluation results at the subgoal level. Based on Table 4, we observe a slight misalignment between the LLM-as-a-judge and human judgment. Additionally, 6% of the ToolSandbox results are ambiguous even to human evaluators, indicating that this is not a straightforward judgment task for the LLM. Given the low error rate and only occasional ambiguity, these findings reinforce that our approach using grading notes and LLM-as-a-judge still offers a reliable, scalable, and cost-effective alternative to other more complex evaluation methods.

1166
1167
1168

Table 4: Correctness of LLM-as-a-judge. The agent uses gpt-5 model while the LLM-as-a-judge and the user proxy use gpt4.1 model.

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Dataset	Per-subgoal error	
	Misalignment with human	Ambiguity with human
τ^2 -bench	0.07	0.0
ToolSandbox	0.03	0.06

1188 A.9 ABLATION STUDY ON THE FULL τ^2 -BENCH DATASET
11891190 Analyzing the result with easy samples was important because traditional metrics tend to saturate
1191 and give limited information. As an ablation we extend our analysis to include hard samples as well.
11921193 Table 5 presents the performance of various agent models under easy and more challenging setting.
1194 We gain some insights into agent behavior by including hard samples.
11951196 First, we observe a general decline across all metrics, reflecting the increased difficulty of the dataset.
1197 *MeanProg@k* and *pass@k* scores drop substantially for all models, indicating that agents are less
1198 likely to achieve full task completion on harder samples. While *MaxProgressRate@k* remains
1199 relatively high for most models (eg: gpt-4.1, gpt-5, mistral-nemo, for expert persona), this metric
1200 only indicates that most agents can complete the task at least once.
12011202 When we shift our focus to *MaxAUC@k*, the model ranking changes noticeably (eg: gpt-5, mistral-
1203 nemo, mistral-large for expert persona). This shift highlights that while many models can eventually
1204 solve difficult tasks, only a few do so efficiently and consistently. This effect is more pronounced for
1205 the non-expert persona: gpt-4.1 and gpt-4o maintain high *MaxProgressRate@k* (0.96 and 0.88),
1206 but their *MaxAUC@k* scores are much lower (0.68 and 0.65).
12071208 Another interesting observation is that non-expert persona sometimes has higher
1209 *MaxProgressRate@k* (eg: gpt-5, gpt-4o-mini). Upon closer examination, we found in-
1210 stances where the expert persona provided all relevant information in the very first turn, which
1211 sometimes overwhelmed the agent and led to hallucinations. In contrast, the non-expert persona
1212 distribute information gradually over multiple turns, allowing the agent to respond more effectively.
1213 This finding highlights the influence of user interaction style on agent performance.
12141215 Table 5: Overall performance of different agent models on τ^2 -bench dataset, using gpt-4.1 as user
1216 proxy and LLM-as-a-judge.. Dataset contains easy and hard samples. Results are displayed with
1217 scores for Expert Persona | Non-expert Persona. For metrics with @k, the number of trials is n =
1218 k = 20
1219

Agent Model	MeanProg@k	MaxProg@k	MaxAUC@k	MaxPPT@k	Pass@k
τ^2 -bench Dataset (Easy + Hard)					
gpt-4.1	0.75	0.67	0.94	0.96	0.85
gpt-4o	0.63	0.55	0.91	0.88	0.84
gpt-4o-mini	0.53	0.53	0.86	0.88	0.79
gpt-5	0.80	0.77	0.96	0.97	0.89
mistral-nemo	0.67	0.36	0.96	0.71	0.87
mistral-large	0.54	0.51	0.94	0.93	0.68

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

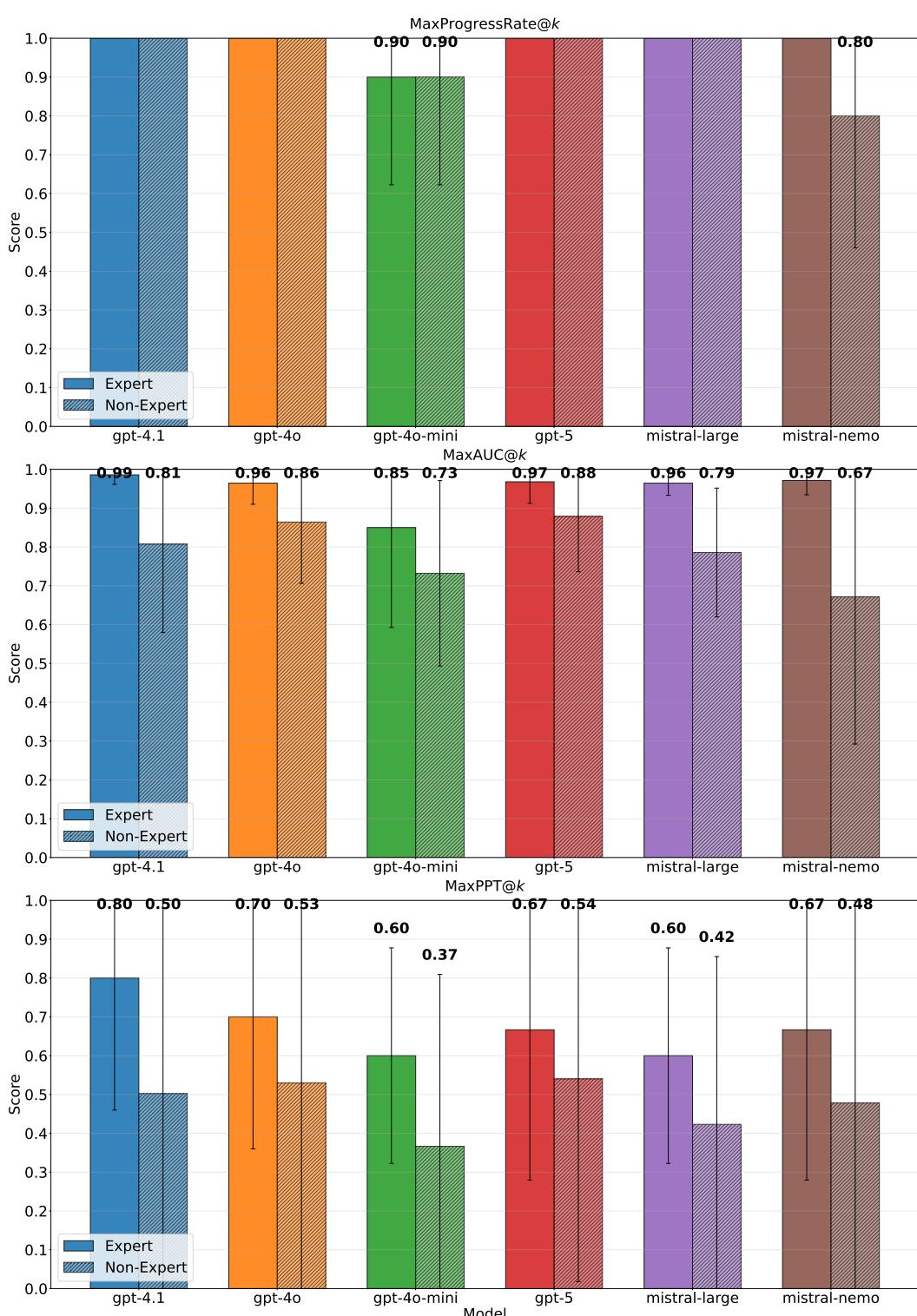


Figure 5: Dataset level performance of different agent models on the τ^2 -bench easy dataset, with error bars representing 95% confidence intervals. The top graph shows the *MaxProgressRate@k*, middle graph shows *MaxAUC@k*, bottom graph shows *MaxPPT@k*.

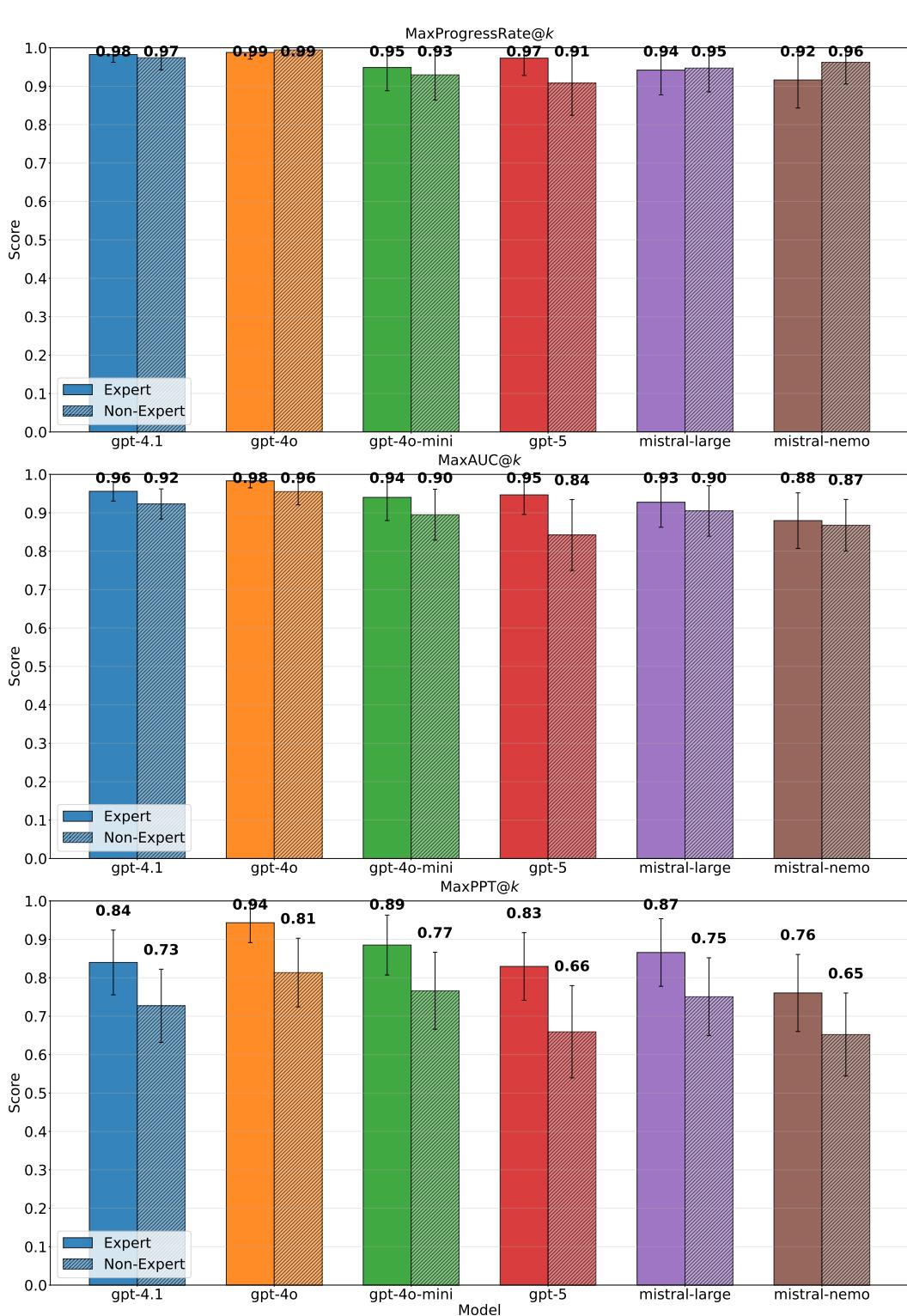


Figure 6: Dataset level performance of different agent models on the ToolSandbox dataset, with error bars representing 95% confidence intervals. The top graph shows the *MaxProgressRate@k*, middle graph shows *MaxAUC@k*, bottom graph shows *MaxPPT@k*.

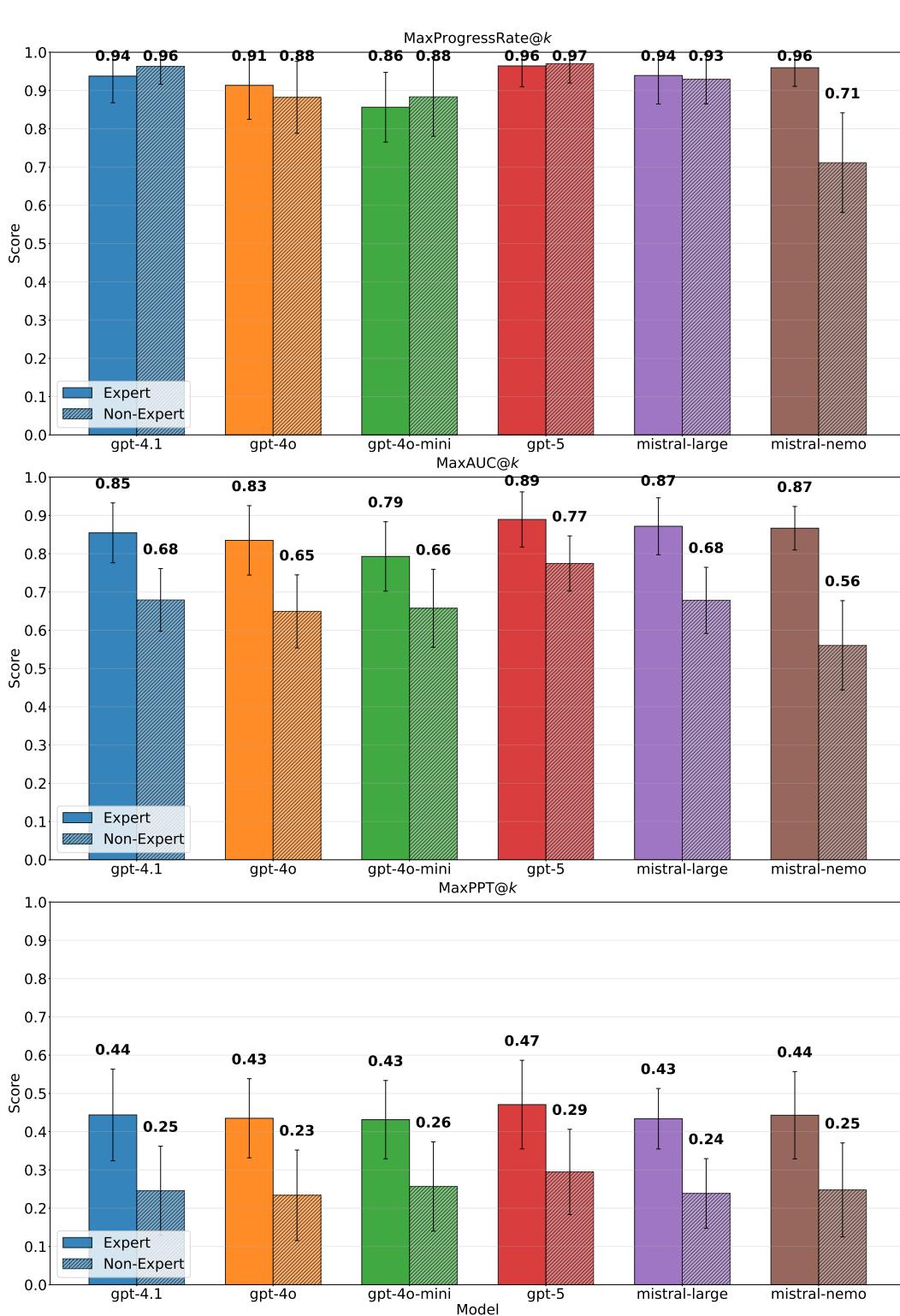


Figure 7: Dataset level performance of different agent models on the τ^2 -bench (easy+hard) dataset, with error bars representing 95% confidence intervals. The top graph shows the $\text{MaxProgressRate}@k$, middle graph shows $\text{MaxAUC}@k$, bottom graph shows $\text{MaxPPT}@k$.

1404
1405

A.10 ABLATION STUDY ON THE DIFFERENT USER MODELS

1406
1407

Besides varying the model for agents, we also conducted an ablation study by varying the user models across the gpt family as shown in Table 6. We observe a similar trend emerges as in earlier analyses: the gap across traditional metrics becomes narrower, and the agent performance difference between expert and non-expert user personas is relatively small. This further highlights the importance of our proposed metrics in capturing agent behavior with respect to turns which is beyond what conventional metrics do. As expected, the agent interacting with expert user achieves consistently higher performance on $MaxAUC@k$ and $MaxPPT@k$ metrics, confirming our hypothesis that agent can resolve tasks more efficiently as expert users tend to understand the system well and provide complete information for the agent. Interestingly, if we use stronger models such as gpt-5 for the user proxy, we see a smaller gap between expert and non-expert personas. This suggests that as the model capability of the user proxy improves, the model proxy with a non-expert persona behaves more like an expert, and achieves performance closer to expert-level outcomes. Based on the current observation, we believe that varying the user model also changes the user expertise level, which potentially simulates different user expertise levels.

1419

1420
1421
1422
1423

Table 6: Overall performance of a gpt-4.1 agent with different user proxy models on the τ^2 -bench dataset, [using gpt-4.1 model as LLM-as-a-judge](#). Dataset contains easy and hard samples. Results are displayed with scores for Expert Persona | Non-expert Persona. For metrics with $@k$, the number of trials is $n = k = 20$.

1424

User Model	MeanProg@k	MaxProg@k	MaxAUC@k	MaxPPT@k	pass@k
τ^2 -bench Dataset (Easy + Hard)					
gpt-4.1	0.75 0.67	0.94 0.96	0.85 0.68	0.44 0.25	0.81 0.86
gpt-4o	0.72 0.61	0.95 0.95	0.82 0.66	0.36 0.22	0.81 0.81
gpt-4o-mini	0.73 0.64	0.95 0.95	0.80 0.65	0.35 0.22	0.86 0.86
gpt-5	0.71 0.73	0.92 0.95	0.85 0.83	0.46 0.37	0.76 0.86

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458
1459

A.11 ADDITIONAL INFORMATION ON DATASET AND EXPERIMENTAL SETUP

1460
1461
1462

τ^2 -bench. For τ^2 -bench, we split the airline dataset into "easy" and "hard" subsets using the *passk* metric, with $n = k = 4$. We consider samples that are always completed in all 4 independent runs as "easy".

1463

1464

ToolSandbox. For ToolSandbox, we do not split the samples as we consider them to be easy samples. We use gpt-4.1 to convert the milestones into grading notes. Each data sample or scenario consists of a set of milestone $M = m_1, m_2, \dots, m_n$, and may include a directed acyclic graph (DAG) of dependencies $E = \{(i, j)\}$, where each edge (i, j) indicates that milestone m_j depends on m_i . The conversion process extracts key information from each milestone, such as required tool calls, expected agent-to-user communications, and ground truth state changes, and assembles this with a DAG structure into a structured prompt. The prompt template is used to produce actionable grading notes, and expresses dependencies using connectors like "before" or "after".

1471

1472

1473

1474

1475

1476

1477

1478

1479

ToolSandbox dataset contains multiple variations of the same scenario - for example, the base scenario *find_days_till_holiday* has variants like *find_days_till_holiday_alt* (which starts with an alternate input message) and *find_days_till_holiday_multiple_user_turn* (which intentionally provides less information to force a multi-turn conversation). These variations serve as a crude simulation of user expertise, and their grading notes do not differ significantly from the base scenario. Since we have our own generic user persona templates and these variants share similar milestones, we only use the base scenario (eg., *find_days_till_holiday*) and ignore the variants. After this process, we manually reviewed the dataset to ensure that the generated grading notes were correct and meaningful and further refine the generated grading notes.

1480

1481

The prompt template used for each scenario is as follows:

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

Prompt Template for Creating Grading Notes section 4:

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

You are creating grading notes for agent evaluation that include dependency relationships. Convert these milestones into concise statements about what the agent should accomplish, including any sequence requirements.

SCENARIO: {scenario_name}

DESCRIPTION: {scenario_description}

TOTAL MILESTONES: {total_milestones}

MILESTONE DEPENDENCIES (DAG edges): {milestone_edge_list}

DEPENDENCY ANALYSIS: {human readable description of which milestone dependency}

MILESTONES:

Milestone 0: {details including constraint type}

Milestone 1: {details including constraint type} ...

RULES:

1. Create one or MORE natural language subgoals per milestones as needed to capture all required actions
2. Mention specific tool names when relevant: "Agent should call tool_name"
3. Use natural language to describe the purpose: "Agent should call search_contacts to find Homer's information"
4. Include sequence requirements when dependencies exist: "before", "after", "then", "first"
5. Break down complex milestones into multiple subgoals if needed
6. Use format: "Agent should [natural action description]"
7. Focus on what needs to be accomplished, be specific and actionable

EXAMPLES OF GOOD NATURAL LANGUAGE GRADING NOTES:

- "Agent should call set_wifi_status to turn off wifi"
- "Agent should inform the user that wifi is turned off"
- "Agent should enable cellular service before sending message"
- "Agent should enable cellular service before sending message"
- "Agent should update contact phone number after finding the contact"

SPECIAL HANDLING FOR COMMUNICATION MILESTONES:

- If target_data has sender=AGENT and recipient=USER with content, the grading note should be: "Agent should inform/tell the user [content]"
- If target_data has sender=EXECUTION_ENVIRONMENT and recipient=AGENT with tool_trace, focus on the tool call requirement
- Focus on what the agent needs to DO or COMMUNICATE, not technical database states

CONSTRAINT TYPES:

- snapshot_similarity: Agent should achieve the target state
- addition_similarity: Agent should add/create the target data
- removal_similarity: Agent should remove/delete the target data
- update_similarity: Agent should modify/update the target data

RESPONSE FORMAT:

Return a JSON array where each element can be either a single string or an array of strings for that milestone: {json_schema}

Each milestone can have one or multiple grading notes as subgoals. Include dependency relationships when they exist.

1566 Additionally, we provide examples of the generated grading notes for ToolSandbox Lu et al. (2024)
 1567 below. We will release the full dataset together with our code.
 1568

1569
 1570 **Sample: *modify_contact_with_message_recency***

1571 • Agent should call `get_current_timestamp` to retrieve the current time
 1572 • Agent should call `search_contacts` to find the contact information
 1573 • Agent should call `search_messages` after getting the current timestamp to
 1574 find the last person the user sent a message to
 1575 • Agent should update the contact's phone number to +10293847563 after iden-
 1576 tifying the person is Homer S.
 1577 • Agent should inform the user: 'The phone number of the person you last talked
 1578 to has been updated to +10293847563' after updating the contact
 1579
 1580

1581
 1582 Figure 8: Example of generated grading notes for the ToolSandbox sample ***mod-***
 1583 ***ify_contact_with_message_recency***.
 1584

1585
 1586 **Sample: *update_contact_relationship_with_relationship_twice_multiple_user_turn***

1587 • Agent should call `search_contacts` to find contacts with the relationship
 1588 'friend'.
 1589 • Agent should call `modify_contact` to update Fredrik Thordendal's rela-
 1590 tionship to 'enemy' after finding the contact.
 1591 • Agent should call `modify_contact` to update John Petrucci's relationship
 1592 to 'enemy' after finding the contact.
 1593 • Agent should inform the user: 'Fredrik Thordendal and John Petrucci are now
 1594 your enemies.
 1595 • Agent should again call `modify_contact` to update Fredrik Thordendal's
 1596 and John Petrucci relationship from 'enemy' to 'friend' again.
 1597
 1598

1600
 1601 Figure 9: Example of generated grading notes for the ToolSandbox sample ***up-***
 1602 ***date_contact_relationship_with_relationship_twice_multiple_user_turn***.
 1603

1604
 1605 **Sample: *find_current_city_low_battery_mode***

1606 • Agent should ensure low battery mode is disabled
 1607 • Agent should enable WiFi
 1608 • Agent should enable WiFi after ensuring low battery mode is disabled
 1609 • Agent should enable location services
 1610 • Agent should enable location services after ensuring low battery mode is dis-
 1611 abled
 1612 • Agent should call `get_current_location` to retrieve the user's location
 1613
 1614 • Agent should inform the user: You are currently in Cupertino
 1615
 1616

1617
 1618 Figure 10: Example of generated grading notes for the ToolSandbox sample
 1619 ***find_current_city_low_battery_mode***.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673**Sample: *convert_currency***

- Agent should call `convert_currency` with the arguments: `amount=2048, from_currency_code='USD', to_currency_code='CNY'`

Figure 11: Example of generated grading notes for the ToolSandbox sample ***convert_currency***.**Sample: *search_message_with_recency_oldest***

- Agent should call `get_current_timestamp` to retrieve the current timestamp
- Agent should call `search_messages` to find the oldest message
- Agent should call `search_messages` after getting the current timestamp
- Agent should inform the user: Your oldest message says 'Hey kid, you want some GPU?'.

Figure 12: Example of generated grading notes for the ToolSandbox sample ***search_message_with_recency_oldest***.**Sample: *search_reminder_with_recency_yesterday***

- Agent should call `get_current_timestamp` to retrieve the current date and time
- Agent should call `search_reminder` to find reminders for the day before the retrieved timestamp
- Agent should call `search_reminder` after getting the current timestamp
- Agent should inform the user: Your reminder from yesterday says 'Look for Company SF tickets'.

Figure 13: Example of generated grading notes for the ToolSandbox sample ***search_reminder_with_recency_yesterday***.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Sample: *search_reminder_with_recency_yesterday*

Answer AI assistant's questions given the following task you (LLM-simulated user) want AI assistant to complete: Ask AI assistant to find the content of your (LLM-simulated user's) reminder from yesterday. It should say Look for Company SF tickets. Do not leak this information. You do not have any more information.

When AI assistant completed the task, even if you (LLM-simulated user) don't have enough information to validate the correctness, break out of the simulation and end the conversation using the termination message.

Start your first message as: "What's on my reminder yesterday?"

Sample: *send_message_with_phone_number_and_content*

Answer AI assistant's questions given the following task you (LLM-simulated user) want AI assistant to complete: Send a message to +12453344098 saying: How's the new album coming along. You do not have more information. AI assistant completed the task, even if you (LLM-simulated user) don't have enough information to validate the correctness, break out of the simulation and end the conversation using the termination message.

Figure 14: Example of user task instructions for the ToolSandbox samples

Sample: 1

Domain: airline

Reason for Call: You had a mixup with your assistant and booked multiple flights for the same day.

Known Information: You are Sophia Martin.

Your user id is `sophia_martin_4574`.

Task Instructions: You want to first check if there are cases like this in your profile. You want the agent to fix the situation for you. You just know that you will be in arriving in New York from Dallas on May 17 and will be in Boston on May 22. You want to let the agent figure out which flights should be cancelled. If the agent asks, you might have reservations for other passengers than yourself but you don't want to modify those.

The task is considered complete if the instruction goal is satisfied or you are transferred to another agent or you find yourself in a situation in which the scenario does not provide enough information for you to continue the conversation.

Sample: 2

Domain: airline

Reason for Call: You just faced some money issue and want to downgrade all business flights to economy, without changing the flights or passengers.

Known Information: Your name is Omar Davis.

Your user id is `omar_davis_3817`.

Task Instructions: You are fine with refunding to original payment for each reservation. You want to know how much money you have saved in total. You are emotional and a bit angry, but you are willing to cooperate with the agent. The task is considered complete if the instruction goal is satisfied or you are transferred to another agent or you find yourself in a situation in which the scenario does not provide enough information for you to continue the conversation.

Figure 15: Example of user task instructions for the τ^2 -bench samples

1728 A.12 ADDITIONAL DETAILS ON AGENT TRAJECTORIES
1729

1730	Task Instruction	Grading Notes
1731	...Ask AI assistant to find the content of your (LLM-simulated user's)	Agent should call <code>get_current_timestamp</code> to retrieve the current time
1732	upcoming reminder today. It should say Buy a nice rich navy bathing dress.	Agent should call <code>search_reminder</code> to find upcoming reminders
1733	IMPORTANT: Do NOT leak this information...	Agent should call <code>search_reminder</code> after retrieving the current timestamp
1734		Agent should inform the user: Buy a nice rich navy bathing dress
1735		
1736	GPT-5 Dialogue Excerpt:	No Tool Calls Made
1737	UserProxy: Hey, um, can you check what my reminder is for today? I'm not sure how to see it.	UserProxy: Hey, um, can you check what my reminder is for today? I think I set something but I'm not totally sure.
1738	Tau2Agent: What time zone are you in?	Tau2Agent: I couldn't find any reminders that you have set for today. If you still believe you have a reminder, it is possible that it was set for yesterday or tomorrow.
1739	Do you want all reminders scheduled for today, or just the next upcoming one?	
1740		UserProxy: Uh, I'm in Eastern time, I think. Just, like, whatever's next for today is fine.
1741		Tau2Agent: Got it—I'll look for the next reminder scheduled for today in Eastern time (currently UTC-4).
1742	To pull your reminders, I need the identifier for your reminders profile.	
1743	:	
1744		UserProxy: Uh, yeah, maybe check for tomorrow then? I'm not really sure what day it was set for.
1745	UserProxy: Uh, I don't really remember what email I used, sorry. I think the reminder is about buying something? Not sure what time though. Does that help?	Tau2Agent: I couldn't find any reminders that you have set for tomorrow. If you still believe you have a reminder, it is possible that it was set for yesterday or in the future.
1746	Tau2Agent: Thanks—that helps. I searched for reminders in Eastern time, and found this next one:	
1747	"Buy a nice rich navy bathing dress"...	UserProxy: Hmm, I guess just check for any reminders in the future then? Maybe I set it for a random day.
1748		Tau2Agent: I found a reminder that is set to go off in the future. Here are the details: Reminder ID: 54f20be9-eac3-5e76-8e57-724e48d3d477 Content: Buy a nice rich navy bathing dress...
1749		
1750	Figure 16: Agent dialogue excerpt for gpt-5 and Mistral-Nemo, illustrating how Mistral-Nemo makes tool calls early and quickly satisfies the grading notes, while gpt-5 asks clarifying questions and progresses more gradually. Despite these differing strategies, both agents complete the task in the same number of turns.	
1751		
1752		
1753		
1754		
1755		
1756		
1757		
1758		
1759		
1760		
1761		
1762		
1763		
1764		
1765		
1766		
1767		
1768		
1769		
1770		
1771		
1772		
1773		
1774		
1775		
1776		
1777		
1778		
1779		
1780		
1781		