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ABSTRACT

Recent advancements in large language models (LLMs) have demonstrated re-
markable capabilities across a wide range of tasks. These models are typically pre-
trained on extensive corpora and subsequently fine-tuned on task-specific datasets.
However, during the fine-tuning process, LLMs often suffer from catastrophic
forgetting, wherein previously acquired general knowledge is lost. Traditional
approaches to mitigating forgetting often rely on data replay, which may not be
viable when the original training data is inaccessible. Additionally, methods that
alter the training process or the model architecture can increase complexity and
detract from the accuracy of downstream tasks, thus limiting their generalizabil-
ity. In this paper, we propose Forgetting-Aware Pruning Metric (FAPM), a novel
pruning-based approach to balance forgetting and downstream task performance.
Our investigation reveals that the degree to which task vectors (i.e., the subtraction
of pre-trained weights from the weights fine-tuned on downstream tasks) overlap
with pre-trained model parameters is a critical factor for forgetting. Motivated by
this insight, FAPM employs the ratio of the task vector to pre-trained model pa-
rameters as a metric to quantify forgetting, integrating this measure into the prun-
ing criteria. Importantly, FAPM does not necessitate modifications to the training
process or model architecture, nor does it require any auxiliary data. We con-
ducted extensive experiments across six datasets encompassing natural language
inference, question answering, reading comprehension, and cloze tests. The re-
sults demonstrate that FAPM limits forgetting to just 1% while maintaining 99%
accuracy on downstream tasks, rendering FAPM highly competitive relative to the
state-of-the-art methods that involve modifications to the training process.

1 INTRODUCTION

Large language models have demonstrated impressive general capabilities in handling various tasks
(Bubeck et al., 2023; Rafailov et al., 2024). Nevertheless, practical deployment frequently uncovers
the necessity for augmenting domain-specific competencies (Touvron et al., 2023; Scialom et al.,
2022). To this end, task-oriented datasets are harnessed to fine-tune these models, thereby enhanc-
ing their efficacy in targeted downstream tasks (Zhou et al., 2023; Yang et al., 2024b). Many studies
have found that while LLMs acquire specialized knowledge during instruction fine-tuning, they tend
to forget their general capabilities, especially in full fine-tuning, which is also known as Catastrophic
Forgetting (CF) (Luo et al., 2023; Kong et al., 2023; Wu et al.). Consequently, devising methodolo-
gies to alleviate CF during the instruction fine-tuning phase has become a critical research direction
for LLMs.

Existing methods to mitigate CF can be divided into four categories, as shown in Figure 1: 1)
Replay-based methods incorporate a portion of the pre-training data into the fine-tuning data for
training (Scialom et al., 2022; Huang et al., 2024). 2) Regularization-based methods introduce
additional penalty terms in the loss function, encouraging the fine-tuned model to remain close to
the pre-trained model (Lin et al., 2023; Panigrahi et al., 2023). 3) Weight-based methods introduce
parameter weight coefficients to regulate their updates (Ke et al., 2023; Zhang et al., 2024). 4)
Architecture-based methods design additional modules outside of the original model (Wang et al.,
2023; Hu et al., 2021). Although these methods can alleviate the forgetting problem to a certain
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Figure 1: The diagram illustrates the issue of CF and the desired objectives. It also includes four
existing methods to tackle CF, as well as our proposed FAPM.

extent, they still have the following limitations: 1) The methods that assume a certain amount of
pre-training data can be obtained are unrealistic in practical applications because many open-source
LLMs, e.g., Llama series, have not released their pre-training data. 2) Even if pre-training data could
be obtained, incorporating it into the fine-tuning process would significantly increase training costs.
3) Methods that alter the training process or model architecture not only make the training process
more difficult to control but also degrade the accuracy of downstream tasks(Ke et al., 2023; Zhang
et al., 2024). The limitations of these methods lead us to think about the following question:

Can we solve the problem of catastrophic forgetting without changing training process, without
any additional data, and without altering model structure?

Recent research has highlighted two key findings: 1) There are a significant number of redundant
parameters in large language models (Yadav et al., 2024). 2) The task vector specifies a direction
in the weight space of the pre-trained model and moving towards its direction can improve task
performance (Ilharco et al., 2022). These findings suggest that we can prune portions of the task
vector’s parameters and set them to zero. By doing so, the corresponding positions of the pre-
trained model’s parameters are exposed, potentially preserving the accuracy of downstream tasks
while mitigating catastrophic forgetting to some extent. To this end, we first try to apply existing
pruning methods to prune the task vector to alleviate catastrophic forgetting. Unfortunately, we
find it challenging to strike an optimal balance between maintaining downstream task accuracy and
mitigating catastrophic forgetting using existing pruning techniques alone (Han et al., 2015; Sun
et al., 2023). Specifically, pruning the task vector with a low sparsity ratio fails to effectively mitigate
catastrophic forgetting, whereas pruning with a high sparsity ratio results in poor downstream task
accuracy. We find that there are two main reasons for this problem: 1) The existing pruning criteria
only ensure the balance between downstream task accuracy and sparsity, while not considering
catastrophic forgetting. 2) The extent to which the values of task vectors overlap with pre-trained
model parameters is a critical factor contributing to catastrophic forgetting.

In this paper, we propose a new pruning method called Forgetting-Aware Pruning Metric (FAPM).
FAPM not only applies magnitude as the pruning criterion for task vectors but also uses the ratio of
task vectors to pre-trained model parameters as the criterion for mitigating CF. By adopting FAPM,
we aim to identify, during the pruning process, those parameters in the task vector whose values
are large (crucial for maintaining the accuracy of downstream tasks) and we concurrently intend
to penalize those parameters where the ratio of their magnitude in the task vector to that of the
corresponding parameter in the pre-trained model is notably high (more likely to induce CF). This
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(a) The original accuracy on RTE is 0.890 and
the original average accuracy on four general
tasks is 0.6204.

50 55 60 65 70 75 80 85 90 95
Sparsity Ratio (%)

0.865

0.870

0.875

0.880

0.885

0.890

0.895

0.900

Do
wn

st
re

am
 Ta

sk
 P

er
fo

rm
an

ce

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ge
ne

ra
l T

as
k 

Pe
rfo

rm
an

ce

MRPC
Downstream Task Performance
General Task Performance

(b) The original accuracy on MRPC is 0.887
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Figure 2: The relationship between the magnitude pruning sparsity ratio, general capability, and
downstream task performance of Llama3-8B on (a) RTE and (b) MRPC, respectively. When sparsity
is below 90%, downstream task performance remains relatively stable, but CF is notably serious
(general task performance is poor). When sparsity exceeds 90%, increasing sparsity alleviates CF
effectively, but significantly reduces downstream task performance. Consequently, achieving an
optimal balance between downstream task performance and CF via magnitude pruning is hard.

balanced approach aspires to surgically retain the most valuable parameters for task performance
while excising those that pose the greatest risk to the model’s generality. Extensive experiments
on different LLMs and various datasets show that FAPM can maintain a downstream task accuracy
of up to 99% while the degree of CF is only 1%. Compared to structure-based strategies, such
as LoRA, FAPM not only achieves superiority in precision but also maintains the same level of
forgetting rate. Compared to other methods that adjust training strategies, it also demonstrates strong
competitiveness.

2 BACKGROUND AND MOTIVATION

Problem Setting. Given downstream data D and a pre-trained model like Llama3, we fine-tune the
model using D. Let the pre-trained model parameters be Wpre and the fine-tuned model parameters
be Wft. In this paper, we perform a series of operations on the task vector. Following previous
work (Ilharco et al., 2022), for a task, the task vector ∆W ∈ Rd can be defined as Wft −Wpre.
This operation allows us to focus on the changes that occur during the fine-tuning stage.

Pruning on the task vector. We first try to apply existing pruning methods to prune the task vector,
which prunes parameters in the task vector according to their magnitude (Han et al., 2015). The red
lines in Figure 2(a) and Figure 2(b) display how downstream performance changes with sparsity ratio
on RTE and MRPC datasets. For each sparsity ratio, the model task vectors are “trimmed” to retain
only the top-k% highest-magnitude values, with the remaining values reset to zero. The green lines
in Figure 2 illustrate the impact of the sparsity ratio of the task vector on general task performance,
focusing particularly on the extent of CF, where higher accuracy indicates lesser forgetting.

From Figure 2, we find that numerous values in a given task vector are redundant, and their removal
does not compromise task accuracy. Remarkably, the downstream task accuracy remains stable
even when the sparsity ratio reaches 90%. This suggests that when the pruned ∆W and Wpre are
combined as the final fine-tuning parameters, 90% parameters in Wpre are exposed. Conversely,
when sparsity exceeds 90%, increasing sparsity can further alleviate CF effectively; however, this
coincides with a marked deterioration in downstream task performance. This paradox highlights the
inherent difficulty in striking an ideal balance between maintaining downstream task performance
and mitigating CF solely through magnitude pruning on ∆W . This raises a pertinent question:

What additional factors, beyond ∆W itself, could also affect the balance between maintaining
downstream task accuracy and mitigating CF?
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3 FAPM: FORGETTING-AWARE PRUNING METRIC

3.1 EXPLORATION AND ANALYSIS

Figure 3: Visualization of the weight matrices in different layers of Llama3-8B fine-tuned on RTE
dataset. From left to right, they represent the magnitude of the pre-trained model weights, the
absolute change magnitude of model weights, the relative change magnitude of model weights, and
a combination of the absolute and relative change magnitude. The absolute and relative changes
patterns show clear differences, such as the channels marked by the red boxes.

Considering Wft = Wpre + ∆W , we hypothesize that the relative magnitude between ∆W and
Wpre is also a crucial factor influencing the balance between downstream task accuracy and forget-
ting. Let’s consider a simple scenario: if the change in parameters during the fine-tuning process is
zero, then the fine-tuned model equals the pre-trained model, making this model optimal for address-
ing the forgetting problem, i.e., there is no forgetting. Conversely, if the change in the pre-trained
model parameters during fine-tuning is substantial, it indicates a significant modification of the pre-
trained model parameters. The greater the difference between the new model and the no-forgetting
model, the more likely it is to result in forgetting.

Intuitively, at a certain parameter position, if the ratio of the magnitudes |∆W |
|Wpre| is larger, it suggests

that the fine-tuning process has a greater impact on the parameters at that position, and thus, it is
more likely to cause forgetting. We refer to this influencing factor as the “relative change mag-
nitude” and refer to the criterion that prunes solely based on the magnitude of ∆W as “absolute
change magnitude” criterion. Compared to absolute change magnitude criterion, the relative change
magnitude models the relative relationship between ∆W and Wpre. Since the pre-trained model
Wpre is crucial for mitigating forgetting, this criterion better reflects which parameters in ∆W are
more critical for mitigating forgetting.

In Figure 3, we illustrate the differences in attention to various positions within the model weight
matrices across different layers, guided by the absolute change magnitude criterion and the relative
change magnitude criterion. Brighter regions in the figure represent parameters with higher scores
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under a specific criterion, while darker regions denote parameters with lower scores. Under the ab-
solute change magnitude criterion, the highlighted areas indicate parameters crucial for downstream
task accuracy. In contrast, under the relative change magnitude criterion, the highlighted regions
indicate parameters important for mitigating forgetting.

By comparing the images in the middle two columns, we observe a significant divergence in scoring
patterns between the absolute change magnitude criterion and the relative change magnitude crite-
rion. The highlighted areas under the absolute change magnitude criterion do not entirely correspond
to those under the relative change magnitude criterion. This discrepancy indicates that parameters
retained under the absolute change magnitude criterion may not be effective in mitigating catas-
trophic forgetting. This also explains why it is difficult to balance downstream task accuracy and
forgetting when using |∆W | as the pruning criterion alone. To achieve a more favorable balance
between downstream task accuracy and CF, we propose a hybrid pruning criterion that incorporates
both the absolute change magnitude and relative change magnitude. This combined criterion fuses
the strengths of both individual criteria and exhibits a distinct pattern that differs from using either
criterion in isolation as shown in the rightmost part of Figure 3.

3.2 PRUNING METRIC

Magnitude Pruning
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Figure 4: Illustration of FAPM, compared with the magnitude pruning. If |∆W i| is large (indicating
it will be retained by magnitude pruning) and |∆W i|

|W i
pre|

is also large (suggesting it may contribute CF),
our FAPM will penalize and possibly prune this parameter, e.g., the value 1.1 in the middle of ∆W .
By doing so, most large-magnitude parameters in ∆W are retained, while only a small subset are
replaced by parameters with smaller |∆W i|

|W i
pre|

values.

Consider a linear layer in ∆W with weights ∆W i of shape (Cin, Cout), corresponding to the linear
layer representation W i

pre in Wpre. We propose to evaluate each weight matrix’s importance by
subtracting the relative change magnitude criterion from the absolute change magnitude criterion.
Specifically, the pruning criterion for ∆W i is defined as follows:

Si = |∆W i| − |W i
pre|avg

|∆W i|
|W i

pre|
(1)

where |·| denotes the absolute value operation, and avg represents the averaging operation on the pa-
rameter matrix. i denotes one of the matrices in the ∆W parameter matrix. We included |W i

pre|avg
in the formula due to our observations during practical operations. We found that the numerical
values of |∆W i|

|W i
pre|

and |∆W i| do not fall within the same range. For instance, the order of magnitude

of |∆W i|
|W i

pre|
is approximately 1× 10−2, whereas that of |∆W i| is around 1× 10−4. This will lead one

criterion to predominate over the other, weakening the impact of the other. Therefore, to balance the
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numerical values of |∆W i|
|W i

pre|
and |∆W i|, we have introduced |W i

pre|avg . The specific pruning process
of FAPM can be seen in Figure 4.

Our FAPM has several intriguing properties. Firstly, when the value of a parameter in |∆W i| is
large (indicating that the parameter would typically be retained according to traditional magnitude
pruning criteria) and simultaneously, |∆W i|

|W i
pre|

is also large (suggesting that this parameter may con-
tribute to catastrophic forgetting), the FAPM pruning strategy will penalize and potentially prune
this parameter. Under the FAPM criteria, to ensure downstream task accuracy, most parameters with
large magnitudes will still be retained, while only a small subset will be replaced by parameters
with smaller |∆W i|

|W i
pre|

values. Secondly, the computation of FAPM is both simple and efficient. We
only need to obtain the fine-tuned and pre-trained model parameters, eliminating the need for ad-
ditional data. The computational overhead associated with this method is minimal, enhancing the
generalizability of FAPM. We provide the pseudocode implementation of FAPM in Appendix A.

4 EXPERIMENT SETUP

Models and Evaluation: We evaluate FAPM on two widely adopt LLMs: Llama3-8B (Dubey et al.,
2024) and Qwen2-7B (Yang et al., 2024a). Following previous studies (Yadav et al., 2024; Wu et al.,
2024; Han et al., 2024), we evaluate FAPM’s specialized performance across four key tasks: natu-
ral language inference, question answering, cloze tests, and reading comprehension. We utilize the
MRPC (3.67k training samples) (Wang et al., 2019) and RTE (2.49k training samples) (Wang et al.,
2019) datasets for natural language inference, with accuracy as the evaluation metric. For question
answering, we employ the WikiQA (20.4k training samples) (Yang et al., 2015) and QASC (8.13k
training samples) datasets (Khot et al., 2020), using ROUGE-L as the evaluation metric. We use the
Winogrande dataset (10.2k training samples) (Sakaguchi et al., 2021) for cloze tests, measuring per-
formance with accuracy. Lastly, we utilize the SQuAD dataset (87.6k training samples) (Rajpurkar
et al., 2016) for reading comprehension, with the F1-score as the evaluation metric.

To evaluate the generality of LLMs, we integrate insights from previous studies (Dubey et al.,
2024; Yang et al., 2024a) and focus on four key aspects. We use MMLU (Hendrycks et al., 2021)
to assess the inherent world knowledge stored in the LLM, C-Eval (Huang et al., 2023) to evalu-
ate the model’s understanding of general knowledge in Chinese, GSM8K (Cobbe et al., 2021) to
evaluate mathematical reasoning, and HumanEval (Chen et al., 2021) to assess the code generation
capabilities.

Compared Methods We compared FAPM with the full-parameter SFT (Full SFT) and four CF
baselines, which are described in detail in Appendix B. These baselines are carefully categorized
into three groups: 1) Regularization-based: These methods introduce additional terms in the loss
function to constrain parameter changes. The selected comparison baselines are L1 regulariza-
tion (Kirkpatrick et al., 2017). 2) Weight-based: These methods design a coefficient for each weight
to control its update during training. The selected baselines include V-SoftMask (Ke et al., 2023)
and CoFiTune (Zhang et al., 2024). 3) Architecture-based: These methods introduce additional pa-
rameters to ensure the pre-trained model’s parameters remain frozen during training. The selected
baseline is LoRA (Hu et al., 2021).

Experimental Setting: During training, we set the learning rate to 5e-6 and the batch size to 2. Each
dataset was trained for 3 epochs. The AdamW optimizer was used for fine-tuning. We employed
LLaMA-Factory (Zheng et al., 2024) as the training platform and vLLM (Kwon et al., 2023) for
inference. When implementing the FAPM algorithm, we applied a 90% sparsity rate across all
models and datasets.

5 RESULTS

In this section, we aim to investigate the effectiveness of the FAPM method in maintaining gener-
alization capabilities while learning downstream tasks. We fine-tune the Llama3-8B (Dubey et al.,
2024) and Qwen2-7B (Yang et al., 2024a) models on MRPC (Wang et al., 2019), RTE (Wang et al.,
2019), WikiQA (Yang et al., 2015), Winogrande (Sakaguchi et al., 2021), QASC (Khot et al., 2020),
and SQuAD datasets (Rajpurkar et al., 2016). The performance of FAPM is compared against sev-
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Tasks Methods C-Eval GSM8K MMLU HumanEval Avg. Performance

RTE

Pre-trained model 0.4386 0.7922 0.6594 0.5914 0.6204 0.819
Full SFT 0.2311 0.075 0.2554 0.0 0.1403 0.890

L1-reg (Kirkpatrick et al., 2017) 0.3735 0.7353 0.6012 0.5367 0.5616 0.843
V-SoftMask (Ke et al., 2023) 0.4144 0.7811 0.5702 0.4919 0.5644 0.886

CoFiTune (Zhang et al., 2024) 0.4542 0.7869 0.6492 0.5815 0.6180 0.882
LoRA (Hu et al., 2021) 0.4435 0.7892 0.6574 0.5915 0.6204 0.866

FAPM (Ours) 0.4623 0.7915 0.6454 0.5975 0.6242 0.897

WikiQA

Pre-trained model 0.4386 0.7922 0.6594 0.5914 0.6204 0.913
Full SFT 0.2547 0.0 0.2422 0.0 0.1242 0.966

L1-reg (Kirkpatrick et al., 2017) 0.4271 0.7591 0.5780 0.5549 0.5797 0.945
V-SoftMask (Ke et al., 2023) 0.2944 0.7282 0.5677 0.2910 0.4703 0.963

CoFiTune (Zhang et al., 2024) 0.4164 0.7702 0.6309 0.5666 0.5960 0.960
LoRA (Hu et al., 2021) 0.4423 0.8013 0.6429 0.5919 0.6196 0.955

FAPM (Ours) 0.4749 0.7975 0.6563 0.5853 0.6285 0.964

Winogrande

Pre-trained model 0.4386 0.7922 0.6594 0.5914 0.6204 0.519
Full SFT 0.2792 0.0606 0.3438 0.0 0.1709 0.820

L1-reg (Kirkpatrick et al., 2017) 0.4234 0.7572 0.6245 0.5667 0.5904 0.737
V-SoftMask (Ke et al., 2023) 0.4089 0.7017 0.5528 0.5003 0.5409 0.828

CoFiTune (Zhang et al., 2024) 0.4719 0.7817 0.6410 0.5743 0.6172 0.813
LoRA (Hu et al., 2021) 0.4622 0.7922 0.6429 0.5975 0.6237 0.810

FAPM (Ours) 0.4829 0.7680 0.6472 0.5731 0.6178 0.824

SQuAD

Pre-trained model 0.4386 0.7922 0.6594 0.5914 0.6204 0.371
Full SFT 0.2806 0.0212 0.3206 0.0 0.1556 0.646

L1-reg (Kirkpatrick et al., 2017) 0.3990 0.6605 0.5800 0.5113 0.5377 0.565
V-SoftMask (Ke et al., 2023) 0.3757 0.0786 0.4755 0.5013 0.3578 0.635

CoFiTune (Zhang et al., 2024) 0.4619 0.7596 0.6356 0.5766 0.6084 0.633
LoRA (Hu et al., 2021) 0.4795 0.7255 0.5914 0.5853 0.5954 0.648

FAPM (Ours) 0.4738 0.7310 0.6455 0.5748 0.6063 0.637

Table 1: The comparison results of FAPM and different baselines on various datasets using the
Llama3-8B model. “Avg.” represents the average results across the C-Eval, GSM8K, MMLU,
and HumanEval datasets. “Performance” indicates the accuracy on the respective downstream task
datasets.

eral baseline methods. The evaluation focuses on performance changes in downstream tasks and
generalization ability metrics, using the performance of Full SFT and the pre-trained models as
reference points.

5.1 COMPARATIVE ANALYSIS OF FAPM AGAINST VARIOUS BASELINES

In Tables 1 and 2, we present the comparative results of FAPM and various baselines on different
datasets, using the Llama3-8B and Qwen2-7B models. Due to space constraints, in the main text,
we have chosen one dataset from each of the four downstream tasks for presentation. For natural
language inference, we selected the RTE dataset, and for question answering, we chose the WikiQA
dataset. The experimental results for MRPC and QASC can be found in Appendix C.

Table 1 shows that Full SFT exhibits significant forgetting on Llama3-8B, with average accuracy on
four general datasets maintaining only around 0.15. This indicates that the fine-tuned model loses
almost all generalization capability, demonstrating that full fine-tuning severely exacerbates catas-
trophic forgetting. On the Llama3-8B model, FAPM achieves an average performance of 0.8445 on
six downstream datasets, compared to Full SFT’s 0.8454, indicating that FAPM has minimal impact
on downstream task performance. Furthermore, FAPM’s average performance on the four general
tasks is 0.6196, a decrease of only 0.08% compared to the Pre-trained model, demonstrating that
FAPM significantly alleviates forgetting. Similar trends are observed with the Qwen2-7B model
as shown in Table 2. These results indicate that our proposed FAPM method effectively maintains
downstream task performance while alleviating catastrophic forgetting.

Compared to L1-regularization, FAPM demonstrates a stronger ability to preserve downstream task
accuracy and better addresses catastrophic forgetting. Specifically, for the Llama3-8B model, L1-
regularization results in an average performance drop of 5.99% across six downstream datasets.
While both LoRA and FAPM similarly mitigate catastrophic forgetting, LoRA slightly compromises
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Tasks Methods C-Eval GSM8K MMLU HumanEval Avg. Performance

RTE

Pre-trained model 0.7478 0.8180 0.6884 0.7682 0.7556 0.574
Full SFT 0.2602 0.075 0.2423 0.0 0.1443 0.890

L1-reg (Kirkpatrick et al., 2017) 0.7108 0.7463 0.6143 0.7118 0.6958 0.847
V-SoftMask (Ke et al., 2023) 0.7317 0.7371 0.6448 0.7111 0.7062 0.896

CoFiTune (Zhang et al., 2024) 0.7591 0.8125 0.6808 0.7560 0.7521 0.886
LoRA (Hu et al., 2021) 0.7456 0.8133 0.6897 0.7500 0.7496 0.877

FAPM (Ours) 0.7568 0.8104 0.6857 0.7500 0.7507 0.903

WikiQA

Pre-trained model 0.7478 0.8180 0.6884 0.7682 0.7556 0.896
Full SFT 0.2510 0.076 0.2434 0.0 0.1426 0.965

L1-reg (Kirkpatrick et al., 2017) 0.6818 0.7582 0.6186 0.7091 0.6919 0.955
V-SoftMask (Ke et al., 2023) 0.6862 0.6585 0.5331 0.6759 0.6384 0.965

CoFiTune (Zhang et al., 2024) 0.7527 0.7755 0.6358 0.7195 0.7208 0.961
LoRA (Hu et al., 2021) 0.7519 0.8119 0.6873 0.7621 0.7533 0.960

FAPM (Ours) 0.7555 0.8036 0.6902 0.7621 0.7529 0.962

Winogrande

Pre-trained model 0.7478 0.8180 0.6884 0.7682 0.7556 0.558
Full SFT 0.4090 0.0303 0.2996 0.0609 0.1999 0.790

L1-reg (Kirkpatrick et al., 2017) 0.7283 0.7609 0.6401 0.7277 0.7143 0.703
V-SoftMask (Ke et al., 2023) 0.7321 0.7098 0.6241 0.6861 0.6880 0.791

CoFiTune (Zhang et al., 2024) 0.7550 0.7990 0.6820 0.7500 0.7465 0.771
LoRA (Hu et al., 2021) 0.7530 0.8118 0.6861 0.7500 0.7502 0.782

FAPM (Ours) 0.7618 0.8068 0.6845 0.7395 0.7482 0.785

SQuAD

Pre-trained model 0.7478 0.8180 0.6884 0.7682 0.7556 0.451
Full SFT 0.3531 0.0212 0.3183 0.0 0.1731 0.624

L1-reg (Kirkpatrick et al., 2017) 0.6481 0.6614 0.5883 0.6681 0.6414 0.561
V-SoftMask (Ke et al., 2023) 0.6369 0.5881 0.5933 0.6451 0.6159 0.624

CoFiTune (Zhang et al., 2024) 0.7451 0.7626 0.6584 0.7621 0.7321 0.619
LoRA (Hu et al., 2021) 0.7253 0.7665 0.6537 0.7482 0.7234 0.620

FAPM (Ours) 0.7410 0.8006 0.6752 0.7500 0.7417 0.615

Table 2: The results of FAPM and different baselines on various datasets on Qwen2-7B.

downstream task accuracy, particularly on the MRPC and RTE datasets. V-SoftMask excels in
preserving downstream task accuracy but performs poorly in addressing catastrophic forgetting, with
an average performance drop of 10.92% on four general tasks. Compared to the CoFiTune method,
FAPM also demonstrates comparable performance. Overall, FAPM shows strong competitiveness in
both maintaining downstream task accuracy and mitigating catastrophic forgetting when compared
to existing regularization-based, weight-based, and architecture-based methods.

5.2 COMPARATIVE ANALYSIS OF DIFFERENT PRUNING CRITERIA

One question that needs to be analyzed is why FAPM is improved based on Magnitude Pruning
instead of the SOTA LLM pruning method. To elucidate this choice, this section examines the ap-
plication of a straightforward and efficient pruning method, Wanda (Sun et al., 2023), to mitigate the
issue of catastrophic forgetting. Wanda addresses pruning by removing weights with the smallest
magnitudes, as determined by the product of the weight magnitudes and the norms of the corre-
sponding input activations, thereby preventing the need for retraining or weight updates, which is
formulated as Sij = |Wij | · ∥Xj∥2. We prune ∆W according to this criterion in our experiments.

Table 3 and Table 4 present the comparative results of FAPM and different pruning criteria methods,
with all results using a 90% sparsity ratio. These tables reveal that while Wanda can somewhat miti-
gate catastrophic forgetting, it significantly impairs performance on downstream tasks. For example,
in the Llama3-8B model, Wanda results in an average performance decline of 3.6% across six down-
stream datasets when compared to Full SFT, whereas Magnitude Pruning exhibits negligible impact
on downstream task accuracy. Given the necessity to preserve downstream task accuracy, we have
opted to use Magnitude Pruning as our foundational pruning criterion. Furthermore, Wanda requires
a small amount of calibration data while Magnitude Pruning does not necessitate any auxiliary data.
This further reinforces our decision to select Magnitude Pruning as the basis for our methodology.
More experimental results on MRPC and QASC can be found in Appendix C.
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Tasks Methods C-Eval GSM8K MMLU HumanEval Avg. Performance

RTE
Magnitude (Han et al., 2015) 0.3063 0.6631 0.4052 0.4843 0.4647 0.901

Wanda (Sun et al., 2023) 0.4675 0.7827 0.6465 0.5732 0.6174 0.878
FAPM (Ours) 0.4623 0.7915 0.6454 0.5975 0.6242 0.897

WikiQA
Magnitude (Han et al., 2015) 0.2606 0.0 0.2553 0.0 0.1289 0.964

Wanda (Sun et al., 2023) 0.4760 0.7804 0.6432 0.5834 0.6207 0.961
FAPM (Ours) 0.4749 0.7975 0.6563 0.5853 0.6285 0.964

Winogrande
Magnitude (Han et al., 2015) 0.4957 0.6148 0.6236 0.5731 0.5768 0.828

Wanda (Sun et al., 2023) 0.4748 0.7762 0.6508 0.5919 0.6234 0.750
FAPM (Ours) 0.4829 0.7680 0.6472 0.5731 0.6178 0.824

SQuAD
Magnitude (Han et al., 2015) 0.4504 0.1 0.5816 0.1951 0.3318 0.641

Wanda (Sun et al., 2023) 0.4648 0.6686 0.6284 0.3536 0.5288 0.611
FAPM (Ours) 0.4738 0.7310 0.6455 0.5748 0.6063 0.637

Table 3: The results of FAPM and different pruning methods on various datasets on Llama3-8B.

Tasks Methods C-Eval GSM8K MMLU HumanEval Avg. Performance

RTE
Magnitude (Han et al., 2015) 0.7144 0.7346 0.5190 0.6943 0.6655 0.895

Wanda (Sun et al., 2023) 0.7442 0.8025 0.6774 0.7542 0.7445 0.877
FAPM (Ours) 0.7568 0.8104 0.6857 0.7500 0.7507 0.903

WikiQA
Magnitude (Han et al., 2015) 0.7162 0.0416 0.2560 0.0 0.2535 0.965

Wanda (Sun et al., 2023) 0.7520 0.7793 0.6784 0.7134 0.7307 0.958
FAPM (Ours) 0.7555 0.8036 0.6902 0.7621 0.7529 0.962

Winogrande
Magnitude (Han et al., 2015) 0.6849 0.5056 0.6133 0.5975 0.6003 0.742

Wanda (Sun et al., 2023) 0.7549 0.7915 0.6806 0.5914 0.7046 0.731
FAPM (Ours) 0.7618 0.8068 0.6845 0.7395 0.7482 0.785

SQuAD
Magnitude (Han et al., 2015) 0.7189 0.1501 0.6135 0.0976 0.3950 0.588

Wanda (Sun et al., 2023) 0.7315 0.4291 0.6573 0.3170 0.5337 0.533
FAPM (Ours) 0.7410 0.8006 0.6752 0.7500 0.7417 0.615

Table 4: The results of FAPM and different pruning methods on various datasets on Qwen2-7B.
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Figure 5: Performance of FAPM on downstream task accuracy and mitigation of catastrophic for-
getting with different sparsity ratios on Llama3-8B.

5.3 EFFECTS OF SPARSITY

In this section, we explore the performance of FAPM under different sparsity ratios. Figure 5 shows
the impact of FAPM on downstream task accuracy and catastrophic forgetting at different spar-
sity ratios on Llama3-8B. As observed in Figure 2, using |∆W | as the pruning criterion results in
severe catastrophic forgetting at an 85% sparsity ratio. However, with the application of FAPM,
catastrophic forgetting is substantially mitigated even at the 85% sparsity level. Notably, FAPM
continues to alleviate catastrophic forgetting to some extent at a 55% sparsity ratio in the QASC and
RTE datasets, highlighting its effectiveness in preventing catastrophic forgetting. Moreover, it was
observed that downstream task accuracy significantly declines when the sparsity ratio exceeds 90%.
Conversely, when the sparsity ratio is maintained below 90%, the impact on downstream task accu-
racy is minimal, although the incidence of catastrophic forgetting gradually increases. These obser-
vations suggest that a 90% sparsity ratio may represent an optimal balance, preserving downstream
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task accuracy while minimizing catastrophic forgetting. More experimental results on Qwen2-7B
are presented in Appendix C.

6 RELATED WORK

Catastrophic Forgetting in LLMs. Fine-tuning LLMs with additional task-specific data, a com-
mon practice to enhance model specialization, often leads to catastrophic forgetting of previously
acquired general capabilities (Luo et al., 2023; Kong et al., 2023; Wu et al.). Existing approaches
to mitigate catastrophic forgetting can be broadly categorized into four main categories: 1) Replay-
based methods (Scialom et al., 2022; Huang et al., 2024) typically integrate some pre-training data
into the fine-tuning dataset for training. However, the assumption of access to a certain amount of
pre-training data is often unrealistic in practice. 2) Regularization-based methods (Lin et al., 2023;
Panigrahi et al., 2023) introduce additional penalty terms in the loss function, encouraging the fine-
tuned model to maintain proximity to the pre-trained model. 3) Weight-based methods (Ke et al.,
2023; Zhang et al., 2024) introduce parameter weight coefficients to modulate their updates, thereby
ensuring controlled adjustments during the optimization process. However, both regularization-
based and weight-based methods require to modify the optimization process, which makes the train-
ing process more challenging. 4) Architecture-based methods (Wang et al., 2023; Hu et al., 2021;
Razdaibiedina et al., 2023) involve the design of additional modules external to the original model.
These methods enhance models’ specialization without altering the core architecture but their effects
on improving downstream task accuracy are limited.

LLM Pruning. Network pruning (LeCun et al., 1989; Han et al., 2015), which shrinks network
sizes by removing specific weights, is often considered a popular approach for compressing LLMs.
Magnitude Pruning (Han et al., 2015) is a standard pruning technique to induce sparsity in models.
It removes individual weights based on their magnitudes, where weights with magnitudes below a
certain threshold are removed. Recent LLM pruning methods typically involve calculating pruning
metrics according to model weights and activations by using some additional data. SparseGPT
(Frantar & Alistarh, 2023) frames pruning as an extensive sparse regression problem and solves it
using an approximate sparse regression solver. Wanda (Sun et al., 2023) prunes weights with the
smallest magnitudes multiplied by the norm of the corresponding input activations, without the need
for retraining or weight updates. DSnoT (Zhang et al., 2023) minimizes the reconstruction error
between dense and sparse models through iterative weight pruning and growing. All these methods
aim to increase the sparsity of the model as much as possible and reduce the model parameters
while maintaining model performance. Different from this, in this paper, we intend to achieve a
better balance mitigating CF and improving downstream accuracy by pruning task vectors in LLM
fine-tuning.

7 CONCLUSION

In this study, we present a straightforward and efficient method to tackle the issue of catastrophic
forgetting that emerges during the continuous fine-tuning of LLMs. Inspired by the magnitude-
based pruning techniques employed in LLMs, we propose a new pruning criterion, known as the
Forgetting-Aware Pruning Metric, which effectively addresses catastrophic forgetting while pre-
serving the performance of the fine-tuning tasks. Our research reveals that the extent to which task
vectors overlap with the pre-trained model parameters is a key factor influencing catastrophic for-
getting. Based on this insight, FAPM integrates the ratio of the task vector to the pre-trained model
parameters as a criterion, combining it with the magnitude-based pruning metric. Our FAPM does
not require any additional auxiliary data, nor does it necessitate alterations to the training process or
model structure. It operates solely during the inference phase, thereby enhancing its versatility. We
hope our work serves as a baseline for future research in this area and encourages further exploration
into understanding CF during the inference phase of LLMs.
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A PSEUDOCODE FOR FAPM

In this section, we describe the pseudocode for FAPM. A detailed introduction to FAPM can be
found in Section 3 of the main paper.

Algorithm 1 FAPM Procedure

Input: pre-trained model Wpre, fine-tuned model Wft, layer number L, desired sparsity s.
Output: pruned W i

ft.
for i ∈ [0, L] do

∆W i = W i
ft −W i

pre.

Calculate score vector Si ← |∆W i| −Avg(|W i
pre|) ∗

|∆W i|
|W i

pre|
.

Obtain pruning threshold ti according to s and Si.
Obtain pruning mask matrix M i = 1[[Si > ti]].
∆W i ← ∆W i ⊙M i.
W i

ft = W i
pre + ∆W i.

end for

B BASELINE DESCRIPTIONS

In this Section, we describe the baseline method in our setting in detail.

L1 regularization (Kirkpatrick et al., 2017) adds an L1 penalty term to the original loss function to
promote sparsity in the parameter updates. The modified loss function is L (θ) + λ1∥θ − θpre∥1,
with the regularization hyperparameter set to 1e-6.

Ke et al. (Ke et al., 2023) proposed the Vanilla Soft-masking method to address the issue of catas-
trophic forgetting in language models during continual fine-tuning. Specifically, this method em-
ploys a gradient-based detection technique to calculate the importance of units within both the
attention and feed-forward network (FFN) modules across all transformer layers. The obtained
importance weights are then used to control the backpropagation of gradients.

Zhang et al. (Zhang et al., 2024) proposed the CoFiTune method to tackle the issue of catastrophic
forgetting. CoFiTune employs a two-stage approach. At the coarse-grained level, an empirical tree-
search algorithm is used to identify and update specific modules that are crucial for the fine-tuning
task, while keeping other parameters frozen. At the fine-grained level, a soft-masking mechanism is
employed to adjust the updates of the large model, thereby alleviating catastrophic forgetting.

Inspired by the perspective that “pre-trained models have a lower intrinsic dimension when fine-
tuned on specific tasks,” Hu et al. (Hu et al., 2021) proposed a fine-tuning method called LoRA.
During the training process of LoRA, the pre-trained parameters are kept frozen to preserve their
general capabilities, while all the decomposition matrices within the low-rank matrix are trainable.

C MORE EXPERIMENTAL RESULTS

Due to space constraints in the main text, we included only one dataset for each of the four down-
stream tasks: RTE, WikiQA, Winogrande, and SQuAD. The experimental results for MRPC and
QASC are presented in this section.
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C-Eval GSM8K MMLU HumanEval Avg. Performance

MRPC

Pre-trained model 0.4386 0.7922 0.6594 0.5914 0.6204 0.686
Full SFT 0.2603 0.0 0.2483 0.0 0.1271 0.887

L1-reg (Kirkpatrick et al., 2017) 0.4062 0.7470 0.6200 0.5434 0.5766 0.821
V-SoftMask (Ke et al., 2023) 0.4200 0.7474 0.5229 0.5122 0.5506 0.888

CoFiTune (Zhang et al., 2024) 0.4513 0.7863 0.6382 0.5821 0.6145 0.884
LoRA (Hu et al., 2021) 0.4546 0.7890 0.6506 0.5936 0.6210 0.846

FAPM (Ours) 0.4662 0.7711 0.6410 0.5791 0.6144 0.882

QASC

Pre-trained model 0.4386 0.7922 0.6594 0.5914 0.6204 0.630
Full SFT 0.4284 0.0379 0.5115 0.0121 0.2474 0.864

L1-reg (Kirkpatrick et al., 2017) 0.4133 0.7744 0.6119 0.5507 0.5875 0.802
V-SoftMask (Ke et al., 2023) 0.4372 0.7245 0.5922 0.5781 0.5830 0.853

CoFiTune (Zhang et al., 2024) 0.4836 0.7919 0.6457 0.5992 0.6301 0.835
LoRA (Hu et al., 2021) 0.4833 0.7930 0.6471 0.5731 0.6241 0.856

FAPM (Ours) 0.4836 0.7983 0.6326 0.5914 0.6265 0.863

Table 5: More results of different CF methods on various datasets using the Llama3-8B model.

C-Eval GSM8K MMLU HumanEval Avg. Performance

MRPC

Pre-trained model 0.7478 0.8180 0.6884 0.7682 0.7556 0.765
Full SFT 0.2598 0.0 0.2481 0.0 0.1269 0.914

L1-reg (Kirkpatrick et al., 2017) 0.7136 0.7779 0.6261 0.7171 0.7086 0.823
V-SoftMask (Ke et al., 2023) 0.7418 0.6933 0.6095 0.6901 0.6836 0.919

CoFiTune (Zhang et al., 2024) 0.7612 0.8036 0.6795 0.7317 0.7440 0.899
LoRA (Hu et al., 2021) 0.7468 0.8125 0.6873 0.7439 0.7476 0.873

FAPM (Ours) 0.7564 0.7938 0.6837 0.7682 0.7505 0.892

QASC

Pre-trained model 0.7478 0.8180 0.6884 0.7682 0.7556 0.701
Full SFT 0.5876 0.0470 0.5445 0.2621 0.3603 0.866

L1-reg (Kirkpatrick et al., 2017) 0.7300 0.7813 0.6453 0.7091 0.7164 0.781
V-SoftMask (Ke et al., 2023) 0.7452 0.7636 0.6388 0.7195 0.7167 0.857

CoFiTune (Zhang et al., 2024) 0.7744 0.8006 0.6778 0.7500 0.7507 0.848
LoRA (Hu et al., 2021) 0.7677 0.8218 0.6872 0.7134 0.7475 0.855

FAPM (Ours) 0.7679 0.8157 0.6815 0.7500 0.7538 0.851

Table 6: More results of different CF methods on various datasets using the Qwen2-7B model.

C-Eval GSM8K MMLU HumanEval Avg. Performance

MRPC
Magnitude (Han et al., 2015) 0.3801 0.6100 0.3378 0.4731 0.4502 0.892

Wanda (Sun et al., 2023) 0.4635 0.7845 0.6506 0.5958 0.6236 0.816
FAPM (Ours) 0.4662 0.7711 0.6410 0.5791 0.6144 0.882

QASC
Magnitude (Han et al., 2015) 0.4916 0.7263 0.6053 0.5223 0.5864 0.861

Wanda (Sun et al., 2023) 0.4705 0.7819 0.6456 0.5886 0.6216 0.839
FAPM (Ours) 0.4836 0.7983 0.6326 0.5914 0.6265 0.863

Table 7: More results of different pruning methods on various datasets using the Llama3-8B model.

C-Eval GSM8K MMLU HumanEval Avg. Performance

MRPC
Magnitude (Han et al., 2015) 0.7412 0.1296 0.2473 0.1768 0.3238 0.911

Wanda (Sun et al., 2023) 0.7458 0.7989 0.6813 0.7482 0.7435 0.826
FAPM (Ours) 0.7564 0.7938 0.6837 0.7682 0.7505 0.892

QASC
Magnitude 0.7559 0.7760 0.6407 0.7073 0.7199 0.851

Wanda (Sun et al., 2023) 0.7567 0.8072 0.6858 0.7378 0.7468 0.828
FAPM (Ours) 0.7679 0.8157 0.6815 0.7500 0.7538 0.851

Table 8: More results of different pruning methods on various datasets using the Qwen2-7B model.
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Figure 6: Performance of FAPM on downstream task accuracy and mitigation of catastrophic for-
getting with different sparsity ratios on Qwen2-7B.
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(a) The original accuracy on RTE is 0.890 and
the original average accuracy on four general
tasks is 0.7556.
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(b) The original accuracy on MRPC is 0.914
and the original average accuracy on four gen-
eral tasks is 0.7556.

Figure 7: The relationship between the magnitude pruning sparsity ratio, general capability, and
downstream task performance of Qwen-7B on (a) RTE and (b) MRPC, respectively.
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Figure 8: Visualization of the weight matrices in different layers of Qwen2-7B fine-tuned on RTE
dataset. From left to right, they represent the magnitude of the pre-trained model weights, the
absolute change magnitude of model weights, the relative change magnitude of model weights, and
a combination of the absolute and relative change magnitude.
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