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Abstract

We propose a novel neural algorithm for the fundamental problem of com-
puting the entropic optimal transport (EOT) plan between continuous proba-
bility distributions which are accessible by samples. Our algorithm is based
on the saddle point reformulation of the dynamic version of EOT which is
known as the Schrödinger Bridge problem. In contrast to the prior methods
for large-scale EOT, our algorithm is end-to-end and consists of a single learn-
ing step, has fast inference procedure, and allows handling small values of the
entropy regularization coefficient which is of particular importance in some ap-
plied problems. Empirically, we show the performance of the method on sev-
eral large-scale EOT tasks. The code for the ENOT solver can be found at
https://github.com/ngushchin/EntropicNeuralOptimalTransport.

Figure 1: Trajectories of samples learned by our Algorithm 1 for Celeba deblurring with ϵ = 0, 1, 10.

1 Introduction
Optimal transport (OT) plans are a fundamental family of alignments between probability distributions.
The majority of scalable neural algorithms to compute OT are based on the dual formulations of
OT, see [28] for a survey. Despite the success of such formulations in generative modeling [42, 31],
these dual form approaches can hardly be generalized to the popular entropic OT [12]. This is due
to the numerical instability of the dual entropic OT problem [14] which appears for small entropy
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regularization values which are suitable for downstream generative modeling tasks. At the same time,
entropic OT is useful as it allows to learn one-to-many stochastic mappings with tunable level of
sample diversity. This is particularly important for ill-posed problems such as super-resolution [37].

Contributions. We propose a saddle-point reformulation of the Entropic OT problem via using
its dynamic counterpart known as the Schrödinger Bridge problem (M4.1). Based on our new
reformulation, we propose a novel end-to-end neural algorithm to solve the related entropic OT
problem for a pair of continuous distributions accessible by samples (M4.2). Unlike many predecessors,
our method allows handling small entropy coefficients. This enables practical applications to
data→ data mapping tasks that require slight variability in the learned maps. Furthermore, we
provide an error analysis for solving the suggested saddle point optimization problem through duality
gaps which are the errors of solving the inner and outer optimization problems (M4.3). Empirically,
we illustrate the performance of the method on several toy and large-scale EOT tasks (M5).

2 Background
Optimal Transport (OT) and Schrödinger Bridge (SB) problems imply finding an efficient way to
transform some initial distribution P0 to target distribution P1. While the solution of OT only gives
the information about which part of P0 is transformed to which part of P1, SB implies finding a
stochastic process that describes the entire evolution from P0 to P1. Below we give an introduction
to OT and SB problems and show how they are related. For a detailed overview of OT, we refer to
[49, 41] and of SB – to [32, 11].

2.1 Optimal Transport (OT)
Kantorovich’s OT formulation (with the quadratic cost). We consider D-dimensional Euclidean
spaces X , Y and use P2(X ) = P2(Y) to denote the respective sets of Borel probability distributions
on them which have finite second moment. For two distributions P0 ∈ P2(X ), P1 ∈ P2(Y), consider
the following minimization problem:

inf
π∈Π(P0,P1)

∫
X×Y

||x− y||2

2
dπ(x, y), (1)

where Π(P0,P1) ⊂ P2(X × Y) is the set of probability distributions on X × Y with marginals P0

and P1. Such distributions π ∈ Π(P0,P1) are called the transport plans between P0 and P1. The
set Π(P0,P1) is non-empty as it always contains the trivial plan P0 × P1. A minimizer π∗ of (1)
always exists and is called an OT plan. If P0 is absolutely continuous, then π∗ is deterministic: its
conditional distributions are degenerate, i.e., π∗(·|x) = δT∗(x) for some T ∗ : X → Y (OT map).

Entropic OT formulation. We use H(π) to denote the differential entropy of distribution π and
KL(π||π′) to denote the Kullback-Leibler divergence between distributions π and π′. Two most
popular entropic OT formulations regularize (1) with the entropy H(π) or KL-divergence between
plan π and the trivial plan P0 × P1, respectively (ϵ > 0):

inf
π∈Π(P0,P1)

∫
X×Y

||x− y||2

2
dπ(x, y)− ϵH(π), (2)

inf
π∈Π(P0,P1)

∫
X×Y

||x− y||2

2
dπ(x, y) + ϵKL(π||P0 × P1). (3)

Since π ∈ Π(P0,P1), it holds that KL(π||P0×P1)=−H(π)+H(P0)+H(P1), i.e., both formulations
are equal up to an additive constant when P0 and P1 are absolutely continuous. The minimizer of
(2) is unique since the functional is strictly convex in π thanks to the strict convexity of H(π). This
unique minimizer π∗ is called the entropic OT plan.

2.2 Schrödinger Bridge (SB)
SB with the Wiener prior. Let Ω be the space of RD valued functions of time t ∈ [0, 1] describing
some trajectories in RD, which start at time t = 0 and end at time t = 1. We use P(Ω) to denote the
set of probability distributions on Ω. We use dWt to denote the differential of the standard Wiener
process. Let W ϵ ∈ P(Ω) be the Wiener process with the variance ϵ which starts at P0. This diffusion
process can be represented via the following stochastic differential equation (SDE):

W ϵ : dXt =
√
ϵdWt, X0 ∼ P0. (4)
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We use KL(T ||Q) to denote the Kullback-Leibler divergence between stochastic processes T and Q.
The Schrödinger Bridge problem was initially proposed in 1931/1932 by Erwin Schrödinger [44]. It
can be formulated as follows [11, Problem 4.1]:

inf
T∈F(P0,P1)

KL(T ||W ϵ), (5)

where F(P0,P1) ⊂ P(Ω) is the set of probability distributions on Ω having marginal distributions
P0 and P1 at t = 0 and t = 1, respectively. Thus, the Schrödinger Bridge problem implies finding a
stochastic process T with marginal distributions P0 and P1 at times t = 0 and t = 1, respectively,
which has minimal KL divergence with the prior process W ϵ.

Link to OT problem. Here we recall how Scrödinger Bridge problem (5) relates to entropic OT
problem (2). This relation is well known (see, e.g., [32] or [11, Problem 4.2]), and we discuss it in
detail because our proposed approach (M4) is based on it. Let πT denote the joint distribution of a
stochastic process T at time moments t = 0, 1 and πT

0 , πT
1 denote its marginal distributions at time

moments t = 0, 1, respectively. Let T|x,y denote the stochastic processes T conditioned on values
x, y at times t = 0, 1, respectively. One may decompose KL(T ||W ϵ) as [48, Appendix C]:

KL(T ||W ϵ) = KL(πT ||πW ϵ

) +

∫
X×Y

KL(T|x,y||W ϵ
|x,y)dπ

T (x, y), (6)

i.e., KL divergence between T and W ϵ is a sum of two terms: the first represents the similarity of the
processes at start and finish times t = 0 and t = 1, while the second term represents the similarity
of the processes for intermediate times t ∈ (0, 1) conditioned on the values at t = 0, 1. For the first
term, it holds (see Appendix A or [11, Eqs 4.7-4.9]):

KL(πT ||πW ϵ

) =

∫
X×Y

||x− y||2

2ϵ
dπT (x, y)−H(πT ) + C, (7)

where C is a constant which depends only on P0 and ϵ. In [32, Proposition 2.3], the authors show
that if T ∗ is the solution to (5), then T ∗

|x,y =W ∗
|x,y. Hence, one may optimize (5) over processes T

for which T|x,y =W ϵ
|x,y for every x, y and set the last term in (6) to zero. In this case:

inf
T∈F(P0,P1)

KL(T ||W ϵ) = inf
T∈F(P0,P1)

KL(πT ||πW ϵ

) = inf
πT∈Π(P0,P1)

KL(πT ||πW ϵ

). (8)

i.e., it suffices to optimize only over joint distributions πT at time moments t = 0, 1. Hence,
minimizing (8) is equivalent (up to an additive constant C) to solving EOT (2) divided by ϵ, and their
respective solutions πT∗

and π∗ coincide. Thus, SB problem (5) can be simplified to the entropic OT
problem (2) with entropy coefficient ϵ.

Dual form of EOT. Entropic OT problem (8) has several dual formulations. Here we recall the one
which is particularly useful to derive our algorithm. The dual formulation follows from the weak OT
theory [7, Theorem 1.3] and we explain it in detail in the proof of Lemma B.3:

inf
π∈Π(P0,P1)

KL(π||πW ϵ

) = sup
β

{∫
X
βC(x)dP0(x) +

∫
Y
β(y)dP1(y)

}
,

where βC(x)
def
= infν∈P2(Y)

{
KL

(
ν||πW ϵ

(·|x)
)
−

∫
Y β(y)dν(y)

}
. The sup here is taken over β

belonging to the set of functions

Cb,2(Y)
def
= {β : Y → R continuous s.t. ∃u, v, w ∈ R : u∥ · ∥2 + v ≤ β(·) ≤ w},

i.e., β should be continuous with mild boundness assumptions.

Dynamic SB problem (DSB). It is known that the solution to the SB problem (5) belongs to the class
D(P0) of finite-energy diffusions Tf [32, Proposition 4.1] which are given by:

Tf : dXt = f(Xt, t)dt+
√
ϵdWt, X0 ∼ P0, ETf

[

∫ 1

0

||f(Xt, t)||2dt] <∞, (9)

where f : RD × [0, 1]→ RD is the drift function. The last inequality in (9) means that Tf is a
finite-energy diffusion. Hence, optimizing only over finite-energy diffusions rather than all possible
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processes is enough to solve SB problem (5). For finite-energy diffusions, it is possible to rewrite the
optimization objective. One can show that KL(Tf ||W ϵ) between processes Tf and W ϵ is [40]:

KL(Tf ||W ϵ) =
1

2ϵ
ETf

[

∫ 1

0

||f(Xt, t)||2dt]. (10)

By substituting (10) in (5), SB problem reduces to the following problem [11, Problem 4.3]:

inf
Tf∈D(P0,P1)

KL(Tf ||W ϵ) = inf
Tf∈D(P0,P1)

1

2ϵ
ETf

[

∫ 1

0

||f(Xt, t)||2dt], (11)

where D(P0,P1) ⊂ P(Ω) is the set of finite-energy diffusion on Ω having marginal distributions P0

and P1 at t = 0 and t = 1, respectively. Note that D(P0,P1) ⊂ F(P0,P1). Since the problem (11) is
the equivalent reformulation of (5), its optimal value also equals (8). However, solving this problem,
as well as (8) is challenging as it is still hard to satisfy the boundary constraints.

3 Related Work
In this section, we overview the existing methods to compute the OT plan or map. To avoid any
confusion, we emphasize that popular Wasserstein GANs [5] compute only the OT cost but not the
OT plan and, consequently, are out of scope of the discussion.

Discrete OT. The majority of algorithms in computational OT are designed for the discrete setting
where the inputs P0,P1 have finite supports. In particular, the usage of entropic regularization
(2) allows to establish efficient methods [13] to compute the entropic OT plan between discrete
distributions with the support size up to 105-106 points, see [41] for a survey. For larger support
sizes, such methods are typically computationally intractable.

Continuous OT. Continuous methods imply computing the OT plan between distributions P0, P1

which are accessible by empirical samples. Discrete methods "as-is" are not applicable to the
continuous setup in high dimensions because they only do a stochastic matching between the train
samples and do not provide out-of-sample estimation. In contrast, continuous methods employ neural
networks to explicitly or implicitly learn the OT plan or map. As a result, these methods can map
unseen samples from P0 to P1 according to the learned OT plan or map.

There exists many methods to compute OT plans [51, 36, 38, 26, 28, 27, 42, 16, 19, 18] but they
consider only unregularized OT (1) rather than the entropic one (2). In particular, they mostly focus
on computing the deterministic OT plan (map) which may not exist. Recent works [31, 30] design
algorithms to compute OT plans for weak OT [20, 7]. Although weak OT technically subsumes
entropic OT , these works do not cover the entropic OT (2) because there is no simple way to estimate
the entropy from samples. Below we discuss methods specifically for EOT (2) and DSB (11).

3.1 Continuous Entropic OT
In LSOT [45], the authors solve the dual problem to entropic OT (2). The dual potentials are then
used to compute the barycentric projection x 7→

∫
Y y dπ

∗(y|x), i.e., the first conditional moment of
the entropic OT plan. This strategy may yield a deterministic approximation of π∗ for small ϵ but
does not recover the entire plan itself.

In [14, Figure 3], the authors show that the barycentric projection leads to the averaging artifacts
which make it impractical in downstream tasks such as the unpaired image super-resolution. To
solve these issues, the authors propose a method called SCONES. It recovers the entire conditional
distribution π∗(y|x) of the OT plan π∗ from the dual potentials. Unfortunately, this is costly. During
the training phase, the method requires learning a score-based model for the distribution P1. More
importantly, during the inference phase, one has to run the Langevin dynamic to sample from π∗(y|x).
The optimization of the above-mentioned entropic approaches requires evaluating the exponent of
large values which are proportional to ϵ−1 [45, Eq. 7]. Due to this fact, those methods are unstable
for small values ϵ in (2). In contrast, our proposed method (M4) resolves this issue: technically, it
works even for ϵ = 0.

3.2 Approaches to Compute Schrödinger Bridges
Existing approaches to solve DSB mainly focus on generative modeling applications (noise→ data).
For example, FB-SDE [10] utilizes data likelihood maximization to optimize the parameters of
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forward and backward SDEs for learning the bridge. On the other hand, MLE-SB [48] and DiffSB
[15] employ the iterative proportional fitting technique to learn the DSB. Another method proposed
by [50] involves solving the Schrodinger Bridge only between the Dirac delta distribution and real
data to solve the data generation problem.

Recent studies [34, 33] have indicated that the Schrödinger Bridge can be considered as a specific
instance of a more general problem known as the Mean-Field Game [1]. These studies have also
suggested novel algorithms for resolving the Mean-Field Game problem. However, the approach
presented by [33] cannot be directly applied to address the hard distribution constraints imposed on
the start and final probability distribution as in the Schrödinger Bridge problem (see Appendix H).
The approach suggested by [34] coincides with that proposed in FB-SDE [10] for the SB problem.

4 The Algorithm
This section presents our novel neural network-based algorithm to recover the solution Tf∗ of the DSB
problem (11) and the solution π∗ of the related EOT problem (8). In M4.1, we theoretically derive the
proposed saddle point optimization objective. In M4.2 we provide and describe the practical learning
procedure to optimize it. In M4.3, we perform the error analysis via duality gaps. In Appendix B, we
provide proofs of all theorems and lemmas.

4.1 Saddle Point Reformulation of EOT via DSB
For two distributions P0 and P1 accessible by finite empirical samples, solving entropic OT (2) "as-is"
is non-trivial. Indeed, one has to (a) enforce the marginal constraints π ∈ Π(P0,P1) and (b) estimate
the entropy H(π) from empirical samples which is challenging. Our idea below is to employ the
relation of EOT with DSB to derive an optimization objective which in practice can recover the
entropic plan avoiding the above-mentioned issues. First, we introduce the functional

L(β, Tf )
def
=

{ =KL(Tf ||W ϵ)︷ ︸︸ ︷
ETf

[ 1
2ϵ

∫ 1

0

||f(Xt, t)||2dt
]
−
∫
Y
β(y)dπ

Tf

1 (y) +

∫
Y
β(y)dP1(y)

}
. (12)

This functional can be viewed as the Lagrangian for DSB (11) with the relaxed constraint dπTf

1 (y) =
dP1(y), and function β : Y → R (potential) playing the role of the Langrange multiplier.
Theorem 4.1 (Relaxed DSB formulation). Consider the following saddle point optimization problem:

sup
β

inf
Tf

L(β, Tf ) (13)

where sup is taken over potentials β ∈ Cb,2(Y) and inf is taken over diffusion processes Tf ∈ D(P0).
Then for every optimal pair (β∗, Tf∗) for (13), i.e.,

β∗ ∈ argsup
β

inf
Tf

L(β, Tf ) and Tf∗ ∈ arginf
Tf

L(β∗, Tf ),

it holds that the process T ∗
f is the solution to SB (11).

Corollary 4.2 (Entropic OT as relaxed DSB). If (β∗,Tf∗ ) solves (13), then πTf∗ is the EOT plan (2).

Our results above show that by solving (13), one immediately recovers the optimal process Tf∗ in
DSB (11) and the optimal EOT plan π∗ = πT∗

f . The notable benefits of considering (13) instead
of (2), (3) and (11) is that (a) it is as an optimization problem over (β, Tf ) without the constraint
dπ

Tf

1 (y) = dP1(y), and (b) objective (12) admits Monte-Carlo estimates by using random samples
from P0, Tf ,P1. In M4.2 below, we describe the straightforward practical procedure to optimize (13)
with stochastic gradient methods and neural nets.

Relation to prior works. In the field of neural OT, there exist so many maximin reformulations of
OT (classic [28, 42, 16, 19, 22], weak [31, 30], general [6]) resembling our (13) that a reader may
naturally wonder (1) why not to apply them to solve entropic OT? (2) how does our reformulation
differ from all of them? It is indeed true that, e.g., algorithm from [31, 6] mathematically covers the
entropic case (2). Yet in practice it requires estimation of entropy from samples for which there is no
easy way and the authors do not consider this case. These methods can be hardly applied to EOT.

In contrast to the prior works, we deal with entropic OT through its connection with the Schrödinger
Bridge. Our max-min reformulation is for DSB and it avoids computing the entropy term H(π)
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in EOT. This term is replaced by the energy of the process ETf

[ ∫ 1

0
||f(Xt, t)||2dt

]
which can be

straightforwardly estimated from the samples of Tf , allowing to establish a computational algorithm.

4.2 Practical Optimization Procedure
To solve (12), we parametrize drift function f(x, t) of the process Tf and potential β(y)4 by neural
nets fθ : RD × [0, 1]→ RD and βϕ : RD → R. We consider the following maximin problem:

sup
β

inf
Tfθ

{ 1

2ϵ
ETfθ

[

∫ 1

0

||fθ(Xt, t)||2dt] +
∫
Y
βϕ(y)dP1(y)−

∫
Y
βϕ(y)dπ

Tfθ
1 (y)

}
. (14)

Algorithm 1: Entropic Neural OT (ENOT)
Input:

samples from distributions P0, P1;
Wiener prior noise variance ϵ ≥ 0;
drift network fθ : RD × [0, 1]→ RD;
beta network βϕ : RD → R;
number of steps N for Eul-Mar (App C);
number of inner iterations Kf .

Output: drift f∗θ of Tf∗
θ

solving DSB (11).
repeat

Sample batches X0 ∼ P0, Y ∼ P1;
{Xn, fn}Nn=0 ← Eul-Mar(X0, Tfθ );
Lβ ← 1

|XN |
∑

x∈XN

βϕ(x)− 1
|Y |

∑
y∈Y

βϕ(y);

Update ϕ by using ∂Lβ

∂ϕ ;
for k = 1 to Kf do

Sample batches X0 ∼ P0, Y ∼ P1;
{Xn, fn}Nn=0 ← Eul-Mar(X0, Tfθ );

K̂L← 1
N

N−1∑
n=0

1
|fn|

|fn|∑
m=1
||fn,m||2 ;

Lf ← K̂L− 1
|XN |

∑
x∈XN

βϕ(x);

Update θ by using ∂Lθ

∂θ ;

until converged;

We use standard Euler-Maruyama (Eul-Mar)
simulation (Algorithm 2 in Appendix C) for
sampling from the stochastic process Tf by
solving its SDE (9). To estimate the value of
ETf

[
∫ 1

0
||f(Xt, t)||2dt] in (14), we utilize the

mean value of ||f(x, t)||2 over time t of trajec-
tory Xt that is obtained during the simulation
by Euler-Maruyama algorithm (Appendix C).
We train fθ and βϕ by optimizing (12) with the
stochastic gradient ascent-descent by sampling
random batches from P0, P1. The optimiza-
tion procedure is detailed in Algorithm 1. We
use fn,m to denote the drift at time step n for
the m-th object of the input sample batch. We
use the averaged of the drifts as an estimate of∫ 1

0
||f(Xt, t)||2dt in the training objective.

Remark. For the image tasks (M5.3, M5.4),
we find out that using a slightly different
parametrization of Tf considerably improves
the quality of our Algorithm, see Appendix F.

It should be noted that the term
ETf

[
∫ 1

0
||f(Xt, t)||2dt] is not multiplied

by 1
2ϵ in the algorithm since this does not affect

the optimal Tf∗ solving the inner optimization
problem, see Appendix D.

Relation to GANs. At the first glance, our method might look like a typical GAN as it solves a
maximin problem with the "discriminator" βϕ and SDE "generator" with the drift fθ. Unlike GANs,
in our saddle point objective (12), optimization of "generator" Tf and "discriminator" β are swapped,
i.e., "generator" is adversarial to "discriminator", not vise versa, as in GANs. For further discussion
of differences between saddle point objectives of neural OT/GANs, see [31, M4.3], [42, M4.3], [16].

4.3 Error Bounds via Duality Gaps
Our algorithm solves a maximin optimization problem and recovers some approximate solution
(β̂, Tf̂ ). Given such a pair, it is natural to wonder how close is the recovered Tf̂ to the optimal Tf∗ .
Our next result sheds light on this question via bounding the error with the duality gaps.

Theorem 4.3 (Error analysis via duality gaps). Consider a pair (β̂, Tf̂ ). Define the duality gaps, i.e.,
errors of solving inner and outer optimization problems by:

ϵ1
def
= L(β̂, Tf̂ )− inf

Tf

L(β̂, Tf ), and ϵ2
def
= sup

β
inf

Tf∈D(P0)
L(β, Tf )− inf

Tf

L(β̂, Tf ). (15)

Then it holds that

ρTV(Tf̂ , Tf∗) ≤
√
ϵ1 + ϵ2, and ρTV(π

Tf̂ , πTf∗ ) ≤
√
ϵ1 + ϵ2, (16)

where we use ρTV(·, ·) to denote the total variation norm (between the processes or plans).

4In practice, βϕ ∈ Cb,2(Y) since we can choose u = 0, v = min(float32), w = max(float32).
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(a) x ∼ P0, y ∼ P1 (b) ENOT (ours), ϵ = 0 (c) ENOT (ours), ϵ = 0.01 (d) ENOT (ours), ϵ = 0.1

Figure 2: Gaussian→Mix of 8 Gaussians. The process learned with ENOT (ours) for ϵ=0, 0.01, 0.1.

Relation to prior works. There exist deceptively similar results, see [38, Theorem 3.6], [42, Theorem
4.3], [16, Theorem 4], [6, Theorem 3]. None of them are relevant to our EOT/DSB case.

In [38], [42], [16], the authors consider maximin reformulations of unregularized OT (1), i.e., non-
entropic. Their result requires the potential β (f, ψ in their notation) to be a convex function which in
practice means that one has to employ ICNNs [4] which have poor expressiveness [29, 17, 26]. Our
result is free from such assumptions on β. In [6], the authors consider general OT problem [39] and
require the general cost functional to be strongly convex (in some norm). Their results also do not
apply to our case as the (negative) entropy which we consider is not strongly convex.

5 Experimental Illustrations

In this section, we qualitatively and quantitatively illustrate the performance of our algorithm in
several entropic OT tasks. Our proofs apply only to EOT (ϵ > 0), but for completeness, we also
present results ϵ = 0, i.e., unregularized case (1). Furthermore, we test our algorithm with ϵ = 0 on
the Wasserstein-2 Benchmark [28], see Appendix J. We also demonstrate the extension of our algo-
rithm to costs other than the squared Euclidean distance in Appendix I. The implementation details
are given in Appendices E, F and G. The code is written in PyTorch and is publicly available at

https://github.com/ngushchin/EntropicNeuralOptimalTransport

5.1 Toy 2D experiments
Here we give qualitative examples of our algorithm’s performance on toy 2D pairs of distributions.
We consider two pairs P0,P1: Gaussian→ Swiss Roll, Gaussian→ Mixture of 8 Gaussians. We
provide qualitative results in Figure 2 and Figure 5 (Appendix E), respectively. In both cases, we
provide solutions of the problem for ϵ = 0, 0.01, 0.1 and sample trajectories. For ϵ = 0, all the
trajectories are straight lines as they represent solutions for non-regularized OT (1), see [43, M5.4].
For bigger ϵ, trajectories, as expected, become more noisy and less straight.

5.2 High-dimensional Gaussians
For general continuous distributions P0,P1, the ground truth solution of entropic OT (2) and DSB
(11) is unknown. This makes it challenging to assess how well does our algorithm solve these
problems. Fortunately, when P0 and P1 are Gaussians, there exist closed form solutions of these
related problems, see [25] and [9]. Thus, to quantify the performance of our algorithm, we consider
entropic OT problems in dimensions D ∈ {2, 16, 64, 128} with ϵ = 1 for Gaussian P0 = N (0,Σ0),
P1 = N (0,Σ1). We pick Σ0, Σ1 at random: their eigenvectors are uniformly distributed on the unit
sphere and eigenvalues are sampled from the loguniform distribution on [− log 2, log 2].
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Dim 2 16 64 128

ENOT (ours) 0.01
(±0.006)

0.09
(±0.02)

0.23
(±0.03)

0.50
(±0.08)

LSOT [45] 1.82 6.42 32.18 64.32
SCONES [14] 1.74 1.87 6.27 6.88
MLE-SB [48] 0.41 0.50 1.16 2.13
DiffSB [15] 0.7 1.11 1.98 2.20

FB-SDE-A [10] 0.87 0.94 1.85 1.95
FB-SDE-J [10] 0.03 0.05 0.19 0.39

Table 1: Comparisons of BW2
2-UVP ↓ (%)

between the target P1 and learned marginal π1.

Dim 2 16 64 128

ENOT (ours) 0.012
(±0.003)

0.05
(±0.01)

0.13
(±0.014)

0.29
(±0.04)

LSOT [45] 6.77 14.56 25.56 47.11
SCONES [14] 0.92 1.36 4.62 5.33
MLE-SB [48] 0.3 0.9 1.34 1.8
DiffSB [15] 0.88 1.7 2.32 2.43

FB-SDE-A [10] 0.75 1.36 2.45 2.64
FB-SDE-J [10] 0.07 0.22 0.34 0.58

Table 2: Comparisons of BW2
2-UVP ↓ (%)

between the the EOT plan π∗ and learned plan π .

t, time 0 0.2 0.4 0.6 0.8 1

ENOT (ours) 0
0.01

(±0.001)
0.023

(±0.005)
0.042

(±0.007)
0.067

(±0.015)
0.096

(±0.019)
LSOT [45] 0 N/A N/A N/A N/A 6.42

SCONES [14] 0 N/A N/A N/A N/A 6.88
MLE-SB [48] 0 0.10 0.23 0.30 0.36 0.50
DiffSB [15] 0 0.19 0.48 0.68 0.91 1.11

FB-SDE-A [10] 0 0.17 0.45 0.61 0.77 0.94
FB-SDE-J [10] 0 0.18 0.32 0.31 0.17 0.05

Table 3: Comparisons of BW2
2-UVP ↓ (%) between the learned marginal distributions and the ground

truth marginal distributions at the intermediate time moments t = 0, 2
10 , . . . , 1 in dimension D = 16.

Metrics. We evaluate (a) how precisely our algorithm fits the target distribution P1 on RD; (b) how
well it recovers the entropic OT plan π∗ which is a Gaussian distribution on RD × RD; (c) how
accurate are the learned marginal distributions at intermediate times t = 0, 1

10 , . . . , 1.

In each of the above-mentioned cases, we compute the BW2
2-UVP [29, M5] between the learned and

the ground truth distributions. For two distributions χ̂ and χ, it is the Wasserstein-2 distance between
their Gaussian approximations which is further normalized by the variance of the distribution χ:

BW2
2-UVP

(
χ̂, χ

)
=

100%
1
2Var(χ)

W2
2(N (µχ̂,Σχ̂),N (µχ,Σχ)). (17)

We estimate the metric by using 105 samples.

Baselines. We compare our method ENOT with LSOT [45], SCONES [14], MLE-SB [48],
DiffSB[15], FB-SDE [10] (two algorithms, A and J). Results are given in Tables 1, 2 and 3. LSOT
and SCONES solve EOT without solving SB, hence there are no results in Table 3 for these methods.
Our method achieves low BW2

2-UVP values indicating that it recovers the ground truth process and
entropic plan fairly well. The competitive methods have good results in low dimensions, however
they perform worse in high dimensions. Importantly, our methods scores the best results in recovering
the OT plan (Table 2) and the marginal distributions of the Schrodinger bridge (Table 3). To illustrate
the stable convergence of ENOT, we provide the plot of BW2

2-UVP between the learned plan and the
ground truth plan for ENOT during training in Figure 6 (Appendix E).

5.3 Colored MNIST
In this section, we test how the entropy parameter ϵ affects the stochasticity of the learned plan in
higher dimensions. For this, we consider the entropic OT problem between colorized MNIST digits
of classes "2" (P0) and "3" (P1).

Effect of parameter ϵ. For ϵ = 0, 1, 10, we learn our Algorithm 1 on the train sets of digits "2"
and "3". We show the translated test images in Figures 3a, 3b and 3c, respectively. When ϵ = 0,
there is no diversity in generated "3" samples (Figure 3a), the color remains since the map tried to
minimally change the image in the RGB pixel space. When ϵ = 1, some slight diversity in the shape
of "3" appears but the color of the input "2" is still roughly preserved (Figure 3c). For higher ϵ, the
diversity of generated samples becomes clear (Figure 3c). In particular, the color of "3" starts to
slightly deviate from the input "2". That is, increasing the value ϵ of the entropy term in (2) expectedly
leads to bigger stochasticity in the plan. We add the conditional LPIPS variance [24, Table 1] of
generated samples for test datasets by ENOT to show how diversity changes for different ϵ (Table 4).
We provide examples of trajectories learned by ENOT in Figure 7 (Appendix F).

Metrics and baselines. We compare our method ENOT with SCONES [14], and DiffSB [15] as
these are the only methods which the respective authors applied for data→data tasks. To evaluate the
results, we use the FID metric [23] which is the Bures-Wasserstein (Freschet) distance between the
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(a) ENOT (ours) samples,
ϵ = 0, FID:6.0

(b) ENOT (ours) samples,
ϵ = 1, FID:6.28

(c) ENOT (ours) samples,
ϵ=10, FID:6.9

(d) DiffSB [15] samples,
ϵ = 1, FID:93

(e) DiffSB [15] samples,
ϵ = 10, FID:105

(f) DOT samples,
ϵ = 0, FID:N/A

(g) DOT samples,
ϵ = 1, FID:N/A

(h) DOT samples,
ϵ = 10, FID:N/A

(i) SCONES [14] samples
ϵ = 25, FID:14.73

(j) SCONES [14] samples
ϵ = 100, FID:14.22

Figure 3: Samples of colored MNIST obtained by ENOT (ours) and DOT for different ϵ.

distributions after extracting features using the InceptionV3 model [47]. We measure test FID for
every method and present the results and qualitative examples in Figure 3. There are no results for
SCONES with ϵ = 0, 1, 10, since it is not applicable for such reasonably small ϵ due to computational
instabilities, see [14, M5.1]. DiffSB [15] can be applied for small regularization ϵ, so we test ϵ = 1, 10.
By the construction, this algorithm is not suitable for ϵ = 0.

Our ENOT method outperforms the baselines in FID. DiffSB [15] yield very high FID. This is
presumably due to instabilities of DiffSB which the authors report in their sequel paper [46]. SCONES
yields reasonable quality but due to high ϵ = 25, 100 the shape and color of the generated images "3"
starts to deviate from those of their respective inputs "2".

For completeness, we provide the results of the stochastic matching of the test parts of the datasets
by the discrete OT for ϵ = 0 and EOT [12] for ϵ = 1, 10 (Figures 3f, 3g, 3h). This is not the
out-of-sample estimation, obtained samples "3" are just test samples of "3" (this setup is unfair).
Discrete OT is not a competitor here as it does not generate new samples and uses target test samples.
Still it gives a rough estimate what to expect from the learned plans for increasing ϵ.

5.4 Unpaired Super-resolution of Celeba Faces
ϵ 0 1 10

Colored MNIST 0 5.3 · 10−3 2.0 · 10−2

Celeba 0 3.4 · 10−2 5.1 · 10−2

Table 4: LPIPS variability of ENOT samples.

For the large-scale evaluation, we adopt the exper-
imental setup of SCONES [14]. We consider the
problem of unpaired image super-resolution for the
64× 64 aligned faces of CelebA dataset [35].

We do the unpaired train-test split as follows: we split the dataset into 3 parts: 90k (train A1), 90k
(train B1), 20k (test C1) samples. For each part we do 2× bilinear downsample and then 2× bilinear
upsample to degrade images but keep the original size. As a result, we obtain degraded parts A0, B0,
C0. For training in the unpaired setup, we use parts A0 (degraded faces, P0) and B1 (clean faces, P1).
For testing, we use the hold-out part C0 (unseen samples) with C1 considered as the reference.

We train our model with ϵ=0, 1, 10 to and test how it restores C1 (Figure 4a) from C0 images (Figure
4b) and present the qualitative results in Figures 4f, 4g, 4h. We provide examples of trajectories
learned by ENOT in Figure 1.

Metrics and baselines. To quantify the results, as in [14], we compute the FID score [23] between
the sets of mapped C0 images and C1 images (Table 5). The FID of ENOT is better than FID values
of the other methods, but increases with ϵ probably due to the increasing variance of gradients during
training . As in M5.1 and M5.3, the diversity of samples increases with ϵ. Our method works with
small values of ϵ and provides reasonable amount of diversity in the mapped samples which grows
with ϵ (Table 4). As the baseline among other methods for EOT we consider only SCONES, as it is
the only EOT/DSB algorithm which has been applied to data→data task at 64× 64 resolution. At
the same time, we emphasize that SCONES is not applicable for small ϵ due to instabilities, see [14,
M5.1]. This makes it impractical, as due to high ϵ, its produces up-scaled images (Figures 4c) are
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(a) (b) (c) SCONES, ϵ = 100 (d) ICNN (e) AugCycleGAN

(f) ENOT (ours), ϵ = 0 (g) ENOT (ours), ϵ = 1 (h) ENOT (ours), ϵ = 10

Figure 4: Faces produced by ENOT (ours) and SCONEs for various ϵ.
Figure 4a shows test degraded images (C0), 4b – their original high-resolution counterparts (C1).

Method ENOT, ϵ = 0 ENOT, ϵ = 1 ENOT, ϵ = 10 SCONES [14], ϵ = 100 AugCycleGAN [2] ICNN [38]
FID 3.78 7.63 14.8 18.88 15.2 22.2

Table 5: Test FID values of various methods in unpaired super-resolution of faces experiment.

nearly random and do not reflect the attributes of the input images (Figure 4a). We do not provide
results for DiffSB [15] since it already performs bad on Colored MNIST (M5.3) and the authors also
did not consider any image-to-image apart of grayscale 28x28 images.

For completeness, we present results on this setup for other methods, which do not solve EOT: ICNN-
based OT [38] and AugCycleGAN [2]. ICNN (4d) learns a deterministic map. AugCycleGAN (4e)
learns a stochastic map, but the generated samples differ only by brightness.

6 Discussion
Potential impact. There is a lack of scalable algorithms for learning continuous entropic OT plans
which may be used in data→data practical tasks requiring control of the diversity of generated
samples. We hope that our results provide a new direction for research towards establishing scalable
and efficient methods for entropic OT by using its connection with SB.

Potential social impact. Like other popular methods for generating images, our method can be used
to simplify the work of designers with digital images and create new products based on it. At the
same time, our method may be used for creating fake images just like the other generative models.

Limitations. To simulate the trajectories following SDE (9), we use the Euler-Maruyama scheme. It
is straightforward but may be imprecise when the number of steps is small or the noise variance ϵ is
high. As a result, for large ϵ, our Algorithm 1 may be computationally heavy due to the necessity to
backpropagate through a large computational graph obtained via the simulation. Employing time and
memory efficient SDE integration schemes is a promising avenue for the future work.

ACKNOWLEDGEMENTS. This work was partially supported by Skoltech NGP program (Skoltech-
MIT joint project).
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A Extended background: KL divergence with the Wiener process plan

This section illustrates that (7) holds. Consider a process T ∈ F(P0), i.e., T is a probability
distribution on Ω with the marginal P0 at t = 0.

Let W ϵ be the Wiener process with variance ϵ starting at P0, i.e., it satisfies dXt =
√
ϵdWt with

X0 ∼ P0. Hence, πW ϵ

(y|x) is the normal distribution dπWϵ
(y|x)

dy = N (y|x, ϵI). Then KL(πT ||πW ϵ

)

between joint distributions at times t = 0 and t = 1 of these processes is given by:

KL(πT ||πW ϵ

) = −
∫
X×Y

log
dπW ϵ

(x, y)

d[x, y]
dπT (x, y)+

∫
X×Y

log
dπT (x, y)

d[x, y]
dπT (x, y)︸ ︷︷ ︸

=−H(πT )

, (18)

where dπ(x,y)
d[x,y] denotes the joint density of distribution π. We derive

−
∫
X×Y

log
dπW ϵ

(x, y)

d[x, y]
dπT (x, y) = −

∫
X×Y

log
dπW ϵ

(y|x)
dy

dπW ϵ

(x)

dx
dπT (x, y) =

−
∫
X×Y

log
dπW ϵ

(y|x)
dy

dπT (x, y)−
∫
X

∫
Y
log

dπW ϵ

(x)

dx
dπT (y|x)

dπT
0 (x)︷ ︸︸ ︷

dP0(x) =

−
∫
X×Y

log
dπW ϵ

(y|x)
dy

dπT (x, y)−
∫
X
log

dπW ϵ

(x)

dx

[ ∫
Y
1dπT (y|x)

]
dP0(x) =

−
∫
X

∫
Y
log

dπW ϵ

(y|x)
dy

dπT (x, y)−
∫
X
log

dπW ϵ

(x)

dx
dP0(x) =

−
∫
X

∫
Y
log

dπW ϵ

(y|x)
dy

dπT (x, y)−
∫
X
log

dP0(x)

dx
dP0(x) =

−
∫
X×Y

log
dπW ϵ

(y|x)
dy

dπT (x, y) +H(P0) =

−
∫
X×Y

log

(
(2πϵ)

−D
2 exp

(
−||x− y||

2

2ϵ

))
dπT (x, y) +H(P0) =

+
D

2
log(2πϵ) +

∫
X×Y

||x− y||2

2ϵ
dπT (x, y) +H(P0).

After substituting this result into (18), one obtains:

KL(πT ||πW ϵ

) =

∫
X×Y

||x− y||2

2ϵ
dπT (x, y)−H(πT ) +

D

2
log(2πϵ) +H(P0)︸ ︷︷ ︸

=C in (7)

. (19)

B Proofs

In this section, we provide the proof for our main theoretical results (Theorems 4.1 and 4.3). The
proofs require several auxiliary results which we formulate and prove in MB.1 and MB.2.

In MB.1, we show that entropic OT can be reformulated as a maximin problem. This is a technical
intermediate result needed to derive our main maximin reformulation of SB (Theorem 4.1). More
precisely, in MB.2, we show that these maximin problems for entropic OT and SB are actually
equivalent. By using this observation and related facts, in MB.3, we prove our Theorems 4.1 and 4.3.

B.1 Relaxation of entropic OT

To begin with, we recall some facts regarding EOT and SB. Recall the definition of EOT (2):

inf
π∈Π(P0,P1)

∫
X×Y

||x− y||2

2
dπ(x, y)− ϵH(π). (20)
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Henceforth, we assume that P0 and P1 are absolutely continuous. The situation when P0 or P1 is
not absolutely continuous is not of any practical interest: there is no π ∈ Π(P0,P1) for which the
differential entropy H(π) is finite which means that (20) equals to +∞ for every π ∈ Π(P0,P1),
i.e., every plan is optimal. In turn, when P0 and P1 are absolutely continuous, the OT plan is unique
thanks to the strict convexity of entropy (on the set of absolutely continuous plans).

Recall equation (19) for KL(π||πW ϵ

):

KL(π||πW ϵ

) =

∫
X×Y

||x− y||2

2ϵ
dπ(x, y)−H(π) + C. (21)

We again note that

inf
π∈Π(P0,P1)

KL(π||πW ϵ

) =
1

ϵ
inf

π∈Π(P0,P1)

{∫
X×Y

||x− y||2

2
dπ(x, y)− ϵH(π)

}
+ C,

i.e., problems (20) and (21) can be viewed as equivalent as their minimizers are the same. For
convenience, we proceed with infπ∈Π(P0,P1) KL(π||πW ϵ

) and denote its optimal value by L∗, i.e.,

L∗ def
= inf

π∈Π(P0,P1)
KL(π||πW ϵ

).

For a given β ∈ Cb,2(Y), we define an auxiliary joint distribution dπβ(x, y) = dπβ(y|x)dP0(x),
where dπβ(y|x) is given by

dπβ(y|x) = 1

Cx
β

exp(β(y))dπW ϵ

(y|x),

where Cx
β (x)

def
=

∫
Y exp(β(y))dπW ϵ

(y|x). Note that Cx
β <∞ since β ∈ Cb,2(Y) is upper bounded.

Before going further, we need to introduce several technical auxiliary results.

Proposition B.1. For ν ∈ P2(Y) and x ∈ X it holds that

KL(ν||πW ϵ

(·|x))−
∫
Y
β(y)dν(y) = KL(ν||πβ(·|x))− logCx

β . (22)

Proof of Proposition B.1. We derive

KL(ν||πW ϵ

(·|x))−
∫
Y
β(y)dν(y) =

∫
Y
log

dν(y)

dπW ϵ(y|x)
dν(y)−

∫
Y
β(y)dν(y) =∫

Y
log

dν(y)

exp(β(y))dπW ϵ(y|x)
dν(y) =

∫
Y
log

Cx
βdν(y)

Cx
β exp(β(y))dπW ϵ(y|x)

dν(y) =∫
Y
log

dν(y)

dπβ(y|x)
dν(y)− logCx

β = KL(ν||πβ(·|x))− logCx
β .

Lemma B.2. For π ∈ Π(P0), i.e., probability distributions π ∈ P2(X × Y) whose projection to X
equals P0, we have

KL(π||πW ϵ

)−
∫
Y
β(y)dπ(y) = KL(π||πβ)−

∫
X
logCx

βdP0(x). (23)

Proof of Lemma B.2. For each x ∈ X , we substitute ν = π(·|x) to (22) and integrate over x ∼ P0.
For the left part, we obtain the following:∫

X

(
KL(π(·|x)||πW ϵ

(·|x))−
∫
Y
β(y)dπ(y|x)

)
dP0(x) =∫

X
KL(π(·|x)||πW ϵ

(·|x))dP0(x)−
∫
X×Y

β(y)dπ(y|x)dP0(x) =
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∫
X

∫
Y
log

dπ(y|x)
dπW ϵ(y|x)

dπ(y|x)dP0(x)−
∫
Y
β(y)dπ1(y) =∫

X

∫
Y
log

dπ(y|x)dP0(x)

dπW ϵ(y|x)dP0(x)
dπ(y|x)dP0(x)−

∫
Y
β(y)dπ1(y) =∫

X×Y
log

dπ(x, y)

dπW ϵ(x, y)
dπ(x, y)−

∫
Y
β(y)dπ1(y) =

KL(π||πW ϵ

)−
∫
Y
β(y)dπ1(y).

For the right part, we obtain: ∫
X

{
KL(π(·|x)||πβ(·|x))− logCx

β

}
dP0(x) =∫

X
KL(π(·|x)||πβ(·|x))dP0(x)−

∫
X
logCx

βdP0(x) =∫
X

∫
Y
log

dπ(y|x)
dπβ(y|x)

dπ(y|x)dP0(x)−
∫
X
logCx

βdP0(x) =∫
X

∫
Y
log

dπ(y|x)dP0(x)

dπβ(y|x)dP0(x)
dπ(y|x)dP0(x)−

∫
X
logCx

βdP0(x) =∫
X×Y

log
dπ(x, y)

dπβ(x, y)
dπ(x, y)−

∫
X
logCx

βdP0(x) =

KL(π||πβ)−
∫
X
logCx

βdP0(x).

Hence, the equality (23) holds.

Now we introduce the following auxiliary functional L̃:

L̃(β, π) def
= KL(π||πW ϵ

)−
∫
Y
β(y)dπ1(y) +

∫
Y
β(y)dP1(y).

Recall that π1 denotes the second marginal distribution of π. We use this functional to derive the
saddle point reformulation of EOT.
Lemma B.3 (Relaxation of entropic optimal transport). It holds that

L∗ = inf
π∈Π(P0,P1)

KL(π||πW ϵ

)= sup
β

inf
π∈Π(P0)

L̃(β, π), (24)

where sup is taken over potentials β ∈ Cb,2(Y) and inf over π ∈ Π(P0).

Proof of Lemma B.3. We obtain

inf
π∈Π(P0,P1)

KL
(
π||πW ϵ)

= inf
π∈Π(P0,P1)

{∫
X

KL
(
π(y|x)||πW ϵ

(y|x)
)
dP0(x)

}
=

inf
π∈Π(P0,P1)

∫
X
C
(
x, π(y|x)

)
dP0(x), (25)

where C
(
x, ν

) def
= KL

(
ν||πW ϵ

(y|x)
)
. The last problem in (25) is known as weak OT [7, 20] with a

weak OT cost C. For a given β ∈ Cb,2(Y), consider its weak C-transform given by:

βC(x)
def
= inf

ν∈P2(Y)

{
C(x, ν)−

∫
Y
β(y)dν(y)

}
. (26)

Since C : X × P2(Y)→ R is lower bounded (by zero), convex in the second argument and jointly
lower semi-continuous, the following equality holds [7, Theorem 1.3]:

L∗ = inf
π∈Π(P0,P1)

∫
X
C
(
x, π(y|x)

)
dP0(x) = sup

β

{∫
X
βC(x)dP0(x) +

∫
Y
β(y)dP1(y)

}
, (27)
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where sup is taken over β ∈ Cb,2(Y). We use our Proposition B.1 to note that

βC(x) = inf
ν∈P2(Y)

{
KL

(
ν||πW ϵ

(y|x)
)
−

∫
Y
β(y)dν(y)

}
=

inf
ν∈P2(Y)

{
KL(ν||πβ(·|x))− logCx

β} = − logCx
β .

This allows us to derive ∫
X
βC(x)dP0(x) +

∫
Y
β(y)dP1(y) = (28)

−
∫
X
logCx

βdP0(x) +

∫
Y
β(y)dP1(y) =

=0︷ ︸︸ ︷{
inf

π∈Π(P0)
KL(π||πβ)

}
−
∫
X
logCx

βdP0(x) +

∫
Y
β(y)dP1(y) =

inf
π∈Π(P0)

{
KL(π||πβ)−

Do not depend on π︷ ︸︸ ︷∫
X
logCx

βdP0(x) +

∫
Y
β(y)dP1(y)

}
=

inf
π∈Π(P0)

{
KL(π||πW ϵ

)−
∫
Y
β(y)dπ(y) +

∫
Y
β(y)dP1(y)

}
= inf

π∈Π(P0)
L̃(β, π). (29)

Here in transition to line (29), we use our Lemma B.2. It remains to take supβ in equality between
(28) and (29) and then recall (27) to finish the proof and obtain desired (24).

Thus, we can obtain the value L∗ (8) by solving maximin problem (24) with only one constraint
π ∈ Π(P0). Moreover, our following lemma shows that in all optimal pairs (β∗, π∗) which solve
maximin problem (24), π∗ is necessary the unique entropic OT plan between P0 and P1.

Lemma B.4 (Entropic OT plan solves the relaxed entropic OT problem). Let π∗ be the entropic OT
plan between P0 and P1. For every optimal β∗ ∈ argsupβ infπ∈Π(P0) L(β, π), we have

π∗ = arginf
π∈Π(P0)

L̃(β∗, π). (30)

Proof of Lemma B.4. Since β∗ is optimal, we know from Lemma B.3 that infπ∈Π(P0) L(β∗, π) = L∗.
Thanks to π∗ ∈ Π(P0,P1), we have π∗

1 = P1. We substitute π∗ to L(β∗, π) and obtain

L(β∗, π∗) = KL(π∗||πW ϵ

) +

∫
Y
β(y)dP1(y)−

∫
Y
β(y)

=dP1(y)︷ ︸︸ ︷
dπ∗

1(y) = KL(π∗||πW ϵ

) = L∗. (31)

The functional π 7→ L(β∗, π) is strictly convex (in the convex subset of Π(P0) of distributions π for
which KL(π||πW ϵ

) <∞). Thus, it has a unique minimizer, which is π∗.

From our Lemmas B.3 and B.4 it follows that to get the OT plan π∗ one may solve the maximin
problem (24) to obtain an optimal saddle point (β∗, π∗). Unfortunately, it is challenging to estimate
KL(π||πW ϵ

) from samples, which limits the usage of this objective in practice.

B.2 Equivalence of EOT and DSB relaxed problems

Below we show how to relax SB problem (11) and link its solution to the relaxed entropic OT (24).

For a given β ∈ Cb,2(Y), we define an auxiliary process T β such that its conditional distributions are
T β
|x,y =W ϵ

|x,y and its joint distribution πTβ

at t = 0, 1 is given by πβ .

To simplify many of upcoming formulas, we introduce Cβ
def
=

∫
X logCx

βdP0(x). Also, we introduce
F(P0) to denote the set of processes starting at P0 at time t = 0.
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Lemma B.5 (Inner objectives of relaxed EOT and SB are KL with T β and πTβ

). For π ∈ Π(P0)
and T ∈ F(P0), the following equations hold:

L̃(β, π) = KL(π||πTβ

)− Cβ +

∫
Y
β(y)dP1(y), (32)

L(β, T ) = KL(T ||T β)− Cβ +

∫
Y
β(y)dP1(y). (33)

Note that the last two terms in each line depend only on β but not on π or T .

Proof of Lemma B.5. The first equation (32) directly follows from Lemma B.2. Now we prove (33):

L(β, T )−
∫
Y
β(y)dP1(y) = KL(T ||W ϵ)−

∫
β(y)dπT

1 (y) =

KL(πT ||πW ϵ

) +

∫
X×Y

KL(T|x,y||W ϵ
|x,y)dπ

T (x, y)−
∫
β(y)dπT

1 (y) = (34)

KL(πT ||πTβ

)− Cβ +

∫
X×Y

KL(T|x,y||W ϵ
|x,y)dπ

T (x, y) =

KL(πT ||πTβ

)− Cβ +

∫
X×Y

KL(T|x,y||T β
|x,y)dπ

T (x, y) = KL(T ||T β)− Cβ . (35)

In the transition to line (34), we use the disintegration formula (6). In line (35), we use the definition
of T β , i.e., we exploit the fact that T β

|x,y =W ϵ
|x,y and again use (6).

As a result of Lemma B.5, we obtain the following important corollary.
Corollary B.6 (The solution to the inner problem of relaxed SB is a diffusion). Consider the problem

inf
T∈F(P0)

L(β, T ). (36)

Then T β is the unique optimizer of (36) and it holds that T β ∈ D(P0), i.e., it is a diffusion process:

T β = arginf
T∈F(P0)

L(β, T ) = arginf
Tf∈D(P0)

L(β, Tf ). (37)

Proof. Thanks to (33), we see that T β is the unique minimizer of (36). Now let Q def
= πTβ

1 . Then

T β = arginf
T∈F(P0)

L(β, T ) = arginf
T∈F(P0)

[
KL(T ||W ϵ)−

∫
Y
β(y)dπT

1 (y)
]
=

arginf
T∈F(P0,Q)

[
KL(T ||W ϵ)−

∫
Y
β(y)dπT

1 (y)︸ ︷︷ ︸
=Const, since πT

1 =πTβ
1 =Q

]
= arginf

T∈F(P0,Q)

KL(T ||W ϵ) =

arginf
Tf∈D(P0,Q)

KL(Tf ||W ϵ) = arginf
Tf∈D(P0,Q)

1

2ϵ
ETf

[

∫ 1

0

||f(Xt, t)||2dt]. (38)

In transition to (38), we use the fact that the process solving the Schrödinger Bridge (this time
between P0 and Q) with the Wiener Prior is a diffusion process (see Dynamic SB problem in M2.2
for details). As a result, we obtain T β ∈ D(P0,Q) ⊂ D(P0) and finish the proof.

Below we show that for a given β, minimization of the SB relaxed functional L(β, Tf ) over Tf is
equivalent to the minimization of relaxed EOT functional L̃(β, π) (24) with the same β.
Lemma B.7 (Equivalence of the inf values of the relaxed functionals). It holds that

inf
Tf∈D(P0)

L(β, Tf ) = inf
π∈Π(P0)

L̃(β, π) = −Cβ +

∫
β(y)dP1(y). (39)

Moreover, the unique minimizers are given by T β ∈ D(P0) and πTβ ∈ Π(P0), respectively.
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Proof of Lemma B.7. Follows from Lemma B.5 and Corollary B.6.

Finally, we see that both the maximin problems are equivalent.
Corollary B.8 (Equivalence of EOT and DSB maximin problems). It holds that

L∗ = sup
β

inf
Tf∈D(P0)

L(β, Tf ) = sup
β

inf
π∈Π(P0)

L̃(β, π) (40)

Proof of Corollary B.8. We take supβ of both parts in equation (39).

Also, it follows that the maximization of infTf∈D(P0) L(β, Tf ) over β allows to solve entropic OT.

B.3 Proofs of main results

Finally, after long preparations, we prove our main Theorem 4.1.

Proof of Theorem 4.1 and Corollary 4.2. From our Lemma B.7 and Corollary B.8 it follows that

β∗∈argsup
β

inf
Tf∈D(P0)

L(β, Tf )⇔ β∗∈argsup
β

inf
π∈Π(P0 )̃

L(β, π),

i.e., both maximin problems share the same optimal β∗. Thanks to our Lemma B.7, we already know
that the process T β∗ ∈ D(P0) and the plan πTβ∗

∈ Π(P0) are the unique minimizers of problems

inf
Tf∈D(P0)

L(β∗, Tf ) = inf
π∈Π(P0 )̃

L(β∗, π),

respectively. Therefore, Tf∗ = T β∗
and, in particular, πTf∗ = πTβ∗

. Moreover, since (β∗, πTf∗ ) is
an optimal saddle point for L̃, from Lemma B.4 we conclude that πTf∗ = π∗, i.e., πTf∗ is the EOT
plan between P0 and P1. In particular, πTf∗ ∈ Π(P0,P1) which also implies that Tf∗ ∈ D(P0,P1).
The last step is to derive

L∗ = L(β∗, Tf∗) = KL(Tf∗ ||W ϵ) +

∫
Y
β∗(y)dP1(y)−

∫
Y
β∗(y)

=dP1(y)︷ ︸︸ ︷
dπ

Tf∗

1 (y)︸ ︷︷ ︸
=0 since Tf∗∈D(P0,P1)

= KL(Tf∗ ||W ϵ).

which concludes that Tf∗ is the solution to SB (5).

Proof of Theorem 4.3. Part 1. From Lemma B.5 and Corollary B.6 it follows that that infTf
L(β̂, Tf )

has the unique minimizer T β̂ whose conditional distributions are T β̂
|x,y =W ϵ

|x,y . Therefore,

ϵ1 = L(β̂, Tf̂ )− inf
Tf

L(β̂, Tf ) =[
KL(Tf̂ ||T

β̂)− Cβ̂ +

∫
Y
β̂(y)dP1(y)

]
−
[
− Cβ̂ +

∫
Y
β̂(y)dP1(y)

]
= KL(Tf̂ ||T

β̂). (41)

Part 2. Now we consider ϵ2. We know that

L∗ = KL(Tf∗ ||W ϵ) =

KL(πTf∗ ||πW ϵ

) +

∫
X×Y

KL(Tf∗|x,y||W ϵ
|x,y)dπ

Tf∗ (x, y) = KL(πTf∗ ||πW ϵ

).

From Lemma B.5 and Corollary B.6, we also know that

inf
Tf

L(β̂, Tf ) = −Cβ̂ +

∫
β̂(y)dP1(y).

Therefore:

ϵ2 = L∗ − inf
Tf

L(β̂, Tf∗) = KL(πTf∗ ||πW ϵ

) + Cβ̂ −
∫
β̂(y)dP1(y) =
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KL(πTf∗ ||πWϵ) +

∫
X
logCx

β̂
dP0(x)−

∫
β̂(y)dP1(y) =∫

X
KL(πTf∗ (·|x)||πW ϵ

(·|x))dP0(x) +

∫
X
logCx

β̂
dP0(x)−

∫
β̂(y)dP1(y) =∫

X
KL(πTf∗ (·|x)||πW ϵ

(·|x))dP0(x) +

∫
X
logCx

β̂
dP0(x)−

∫
β̂(y)dπTf∗ (y|x)dP0(x) =∫

X

{
KL(πTf∗ (·|x)||πW ϵ

(·|x)) + logCx
β̂
−

∫
Y
β̂(y)dπTf∗ (y|x)

}
dP0(x) =∫

X

{
KL(πTf∗ (·|x)||πT β̂

(·|x))− logCx
β̂
+ logCx

β̂

}
dP0(x) =∫

X
KL(πTf∗ (·|x)||πT β̂

(·|x))dP0(x) = KL(πTf∗ ||πT β̂

) =

KL(πTf∗ ||πT β̂

) +

∫
X×Y

KL(Tf∗|x,y||T β̂
|x,y)dπ

Tf∗ (x, y)︸ ︷︷ ︸
=0, since Tf∗|x,y=T β̂

|x,y
=W ϵ

|x,y

= KL(Tf∗ ||T β̂). (42)

Thus, we obtain ϵ2 = KL(Tf∗ ||T β̂).

Part 3. By summing (41) and (42) and using the Pinsker inequality, we obtain

ϵ1 + ϵ2 = KL(Tf̂ ||T
β̂) + KL(Tf∗ ||T β̂) ≥ 2ρ2TV(Tf̂ , T

β̂) + 2ρ2TV(Tf∗ , T β̂) ≥[
ρTV(Tf̂ , T

β̂) + ρTV(Tf∗ , T β̂)
]2 ≥ ρ2TV(Tf̂ , Tf∗). (43)

Here we use the triangle inequality in line (43). Therefore, ρTV(Tf̂ , Tf∗) ≤
√
ϵ1 + ϵ2.

Part 4. By summing (41) and (42) and using the Pinsker inequality, we obtain

ϵ1 + ϵ2 = KL(Tf̂ ||T
β̂) + KL(Tf∗ ||T β̂) =

KL(πTf̂ ||πT β̂

) +

∫
X×Y

KL(Tf̂ |x,y||T
β̂
|x,y)dπ

Tf̂ (x, y) +

KL(πTf∗ ||πT β̂

) +

∫
X×Y

KL(Tf∗|x,y||T β̂
|x,y)dπ

Tf∗ (x, y) ≥

KL(πTf̂ ||πT β̂

) + KL(πTf∗ ||πT β̂

) ≥ 2ρ2TV(π
Tf̂ , πT β̂

) + 2ρ2TV(π
Tf∗ , πT β̂

) ≥[
ρTV(π

Tf̂ , πT β̂

) + ρTV(π
Tf∗ , πT β̂

)
]2 ≥ ρ2TV(π

Tf̂ , πTf∗ ).

Thus, ρTV(π
Tf∗ , πT β̂

) ≤
√
ϵ1 + ϵ2.

C Euler-Maruyama

In our Algorithm 1, at both the training and the inference stages, we use the Euler-Maruyama
Algorithm 2 to solve SDE.

D Drift Norm Constant Multiplication Invariance

Our Algorithm 1 aims to solve the following optimization problem:

sup
β

inf
Tf∈D(P0)

{
ETf

[

∫ 1

0

C||f(Xt, t)||2dt] +
∫
Y
β(y)dP1(y)−

∫
Y
β(y)dPTf

1 (y)

}
︸ ︷︷ ︸

def
=LC(β,Tf )

,

with C = 1. At the same time, we use C = 1
2ϵ in our theoretical derivations (12). We emphasize that

the actual value of C > 0 does not affect the optimal solution Tf∗ to this problem. Specifically, if
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Algorithm 2: Euler-Maruyama algorithm
Input :batch of initial states X0 at time moment t = 0;

SDE drift network fθ : RD × [0, 1]→ RD;
number of steps for the SDE solver N ≥ 1;
noise variance ϵ ≥ 0.

Output :batches {Xn}Nn=0 of intermediate states at t = n
N simulating the proccess

dXt=f(Xt, t)dt+
√
ϵdWt;

batches {fn}Nn=0 of drift values f(Xn, tn) at t = n−1
N simulating the process;

∆t← 1
N ;

for t = 1, 2, . . . , N do
for i = 1, 2, . . . , |X0| do

Sample noise W from N (0, I) ;
ft−1,i ← f(Xt−1, t− 1) ;
Xt,i ← Xt−1,i + ft−1,i∆t+

√
ϵ∆tW ;

(β∗, Tf∗) is the optimal point for the problem with C = 1, then (C̃β∗, Tf∗) is the optimal point for
C = C̃. Indeed, for a pair (β, Tf ) it holds that

L1(β, Tf ) = ETf
[

∫ 1

0

||f(Xt, t)||2dt] +
∫
Y
β(y)dP1(y)−

∫
Y
β(y)dPTf

1 (y) =

1

C̃

{
ETf

[

∫ 1

0

C̃||f(Xt, t)||2dt] +
∫
Y
C̃β(y)dP1(y)−

∫
Y
C̃β(y)dPTf

1 (y)

}
=

1

C̃

{
ETf

[

∫ 1

0

C̃||f(Xt, t)||2dt] +
∫
Y
β̃(y)dP1(y)−

∫
Y
β̃(y)dPTf

1 (y)

}
=

1

C̃
LC̃(β̃, Tf ), (44)

where we use β̃ def
= C̃β. Hence problems supβ infTf

L1(β, Tf ) and supβ̃ infTf
LC̃(β̃, Tf ) can be

viewed as equivalent in the sense that one can be derived one from the other via the change of
variables and multiplication by C̃ > 0. For completeness, we also note that the change of variables
β ↔ β̃ actually preserves the functional class of β, i.e., β ∈ Cb,2(Y)⇐⇒ β̃ ∈ Cb,2(Y).

For convenience, we get rid of dependence on ϵ in the objective (12) and consider L1 for optimization,
i.e., use C = 1 in Algorithm 1. Still the dependence on ϵ remains in supβ infTf

L1(β, Tf ) as
Tf ∈ D(P0) is a diffusion process with volatility ϵ. Interestingly, this point of view (optimizing
L1 instead of L 1

2ϵ ) technically allows to consider even ϵ = 0. In this case, the optimization is
performed over deterministic trajectories Tf determined by the velocity field f(Xt, t). The problem
supβ infTf

L1(β, Tf ) may be viewed as a saddle point reformulation of the unregularized OT with
the quadratic cost in the dynamic form, also known as the Benamou-Brenier formula [43, M6.1]. This
particular case is out of scope of our paper (it is not EOT/SB) and we do not study the properties of
L1 in this case. However, for completeness, we provide experimental results for ϵ = 0.

E ENOT for Toy Experiments and High-dimensional Gaussians

In 2D toy experiments, we consider 2 tasks: Gaussian → 8 gaussians and Gaussian → Swiss roll.
Results for the last one (Figure 5) are qualitatively similar to results of the first one (Figure 2), which
we discussed earlier (M5.1). For both tasks, we parametrize the SDE drift function in Algorithm 1
by a feedforward neural network fθ with 3 inputs, 3 linear layers (100 hidden neurons and ReLU
activations) and 2 outputs. As inputs, we use 2 coordinates and time value t (as is). Analogically,
we parametrize the potential by a feedforward neural network βϕ with 2 inputs, 3 linear layers (100
hidden neural and ReLU activations) and 2 outputs. In all the cases, we use N = 10 discretization
steps for solving SDE by Euler-Maruyama Algorithm 2, Adam with lr = 10−4, batch size 512. We
train the model for 20000 total iterations of βϕ, and on each of them, we do Kf = 10 updates for the
SDE drift function fθ.
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(a) Input and target samples (b) ENOT (ours), ϵ = 0 (c) ENOT (ours), ϵ = 0.01 (d) ENOT (ours), ϵ = 0.1

Figure 5: Gaussian→ Swiss roll, learned stochastic process with ENOT (ours).

In the experiments with high-dimensional Gaussians, we use exactly the same setup as for toy 2D
experiments but chose N = 200 discretization steps for SDE, all hidden sizes in neural networks
are 512, and we train our model for 10000 iterations. To illustrate the stability of the algorithm, we
provide the plot of BW2

2-UVP (%) between the ground truth EOT plan π∗ and the learned plan π of
ENOT during training for DIM = 128 in Figure 6.

Figure 6: BW2
2-UVP ↓ (%) between the the EOT plan π∗ and the learned plan π of ENOT and

MLE-SB during the training (DIM = 128).

F ENOT for Colored MNIST and Unpaired Super-resolution of Celeba Faces

For the image tasks (M5.3, M5.4), we find out that using the following reparametrization of Euler-
Maruyama Algorithm 2 considerably improves the quality of our Algorithm 1. In the Euler-Maruyama
Algorithm 2, instead of using a neural network to parametrize drift function f(Xt, t) and calculating
the next state as Xt+1 = Xt + f(Xt, t)∆t+

√
ϵ∆t, we parametrize g(Xt, t) = Xt + f(Xt, t)∆t

by a neural network gθ, and calculate the next state as Xt+1 = gθ(Xt, t) +
√
ϵ∆t. In turn, the drift

function is given by f(Xt, t) =
1
∆tg(Xt, t)−Xt. Also, we do not add noise at the last step of the

Euler-Maruyama simulation because we find out that it provides better empirical performance.
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Figure 7: Trajectories from our learned ENOT (ours) for colored MNIST for different ϵ.

We use WGAN-QC discriminator’s ResNet architecture 5 for the potential β. We use UNet 6 as
gθ(Xt, t) of SDE in our model. To condition it on t, we first obtain the embedding of t by using
the positional embedding 7. Then we add conditional instance normalization (CondIN) layers after
each UNet’s upscaling block 8. We use Adam with lr = 10−4, batch size 64 and 10:1 update ratio
for fθ/βϕ. For ϵ = 0 and ϵ = 1 our model converges in ≈ 20000 iterations, while for ϵ = 10 it
takes ≈ 70000 iteration to convergence. The last setup takes more iterations to converge because
adding noise with higher variance during solving SDE by Euler-Maruyama Algorithm 2 increases the
variance of stochastic gradients.

In the unpaired super-resolution of Celeba faces, we use the same experimental setup as for the
colored MNIST experiment. It takes ≈ 40000 iterations for ϵ = 0 and ≈ 70000 iterations for ϵ = 1
and ϵ = 10 to converge. In Figures 7, 1 we present trajectories provided by our algorithm for Colored
MNIST and Celeba experiments.

Computational complexity. In the most challenging task (M5.4), ENOT converges in one week on
2× A100 GPUs.

G Details of the baseline methods

In this section, we discuss details of the baseline methods with which we compare our method.

G.1 Gaussian case (M5.2).

SCONES [14]. We use the code from the authors’ repository

https://github.com/mdnls/scones-synthetic

for their evaluation in the Gaussian case. We employ their configuration blob/main/config.py.

LSOT [45]. We use the part of the code of SCONES corresponding to learning dual OT potentials
blob/main/cpat.py and the barycentric projection blob/main/bproj.py in the Gaussian case
with configuration blob/main/config.py.

FB-SDE-J [10]. We utilize the official code from

https://github.com/ghliu/SB-FBSDE

with their configuration blob/main/configs/default_checkerboard_config.py for the
checkerboard-to-noise toy experiment, changing the number of steps of dynamics from 100 to
200 steps. Since their hyper-parameters are developed for their 2-dimensional experiments, we
increase the number of iterations for dimensions 16, 64 and 128 to 15 000.

FB-SDE-A [10]. We also take the code from the same repository as above. We base our configura-
tion on the authors’ one (blob/main/configs/default_moon_to_spiral_config.py) for the
moon-to-spiral experiment. As earlier, we increase the number of steps of dynamics up to 200. Also,
we change the number of training epochs for dimensions 16, 64 and 128 to 2,4 and 8 correspondingly.

5github.com/harryliew/WGAN-QC
6github.com/milesial/Pytorch-UNet
7github.com/rosinality/denoising-diffusion-pytorch
8github.com/kgkgzrtk/cUNet-Pytorch
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DiffSB [15]. We utilize the official code from

https://github.com/JTT94/diffusion_schrodinger_bridge

with their configuration blob/main/conf/dataset/2d.yaml for toy problems. We increase the
amount of steps of dynamics to 200 and the number of steps of IPF procedure for dimensions 16, 64
and 128 to 30, 40 and 60, respectively.

MLE-SB [48]. We use the official code from

https://github.com/franciscovargas/GP_Sinkhorn

with hyper-parameters from blob/main/notebooks/2D Toy Data/2d_examples.ipynb. We
set the number of steps to 200. As earlier, we increase the number of steps of IPF procedure for
dimensions 16, 64 and 128 to 1000, 3500 and 5000, respectively.

G.2 Colored MNIST (M5.3)

SCONES [14]. In order to prepare a score-based model, we use the code from

https://github.com/ermongroup/ncsnv2

with their configuration blob/master/configs/cifar10.yml. Next, we utilize the code of
SCONES from the official repository for their unpaired Celeba super-resolution experiment
(blob/main/scones/configs/superres_KL_0.005.yml). We adapt it for 32×32 ColorMNIST
images instead of 64×64 celebrity faces.

DiffSB [15]. We use the official code with their configuration blob/main/conf/mnist.yaml
adopting it for three-channel ColorMNIST images instead of one-channel MNIST digits.

G.3 CelebA (M5.4)

SCONES [14]. For the SCONES, we use their exact code and configuration from
blob/main/scones/configs/superres_KL_0.005.yml. As for the score-based model for
celebrity faces, we pick the pre-trained model from

https://github.com/ermongroup/ncsnv2

It is the one used by the authors of SCONES in their paper.

Augmented Cycle GAN [2]. We use the official code from

https://github.com/NathanDeMaria/AugmentedCycleGAN

with their default hyper-parameters.

ICNN [38]. We utilize the reworked implementation by

https://github.com/iamalexkorotin/Wasserstein2Benchmark.

which is a non-minimax version [26] of ICNN-based approach [38]. That is, we use
blob/main/notebooks/W2_test_images_benchmark.ipynb and only change the dataloaders.

H Mean-Field Games

This appendix discusses the relation between the Mean-Field Game problem and Schrödinger Brdiges.

H.1 Intro to the Mean-Field game.

Consider a game with infinitely many small players. At time moment t = 0, they are distributed
according to X0 ∼ ρ0. Every player controls its behavior through drift α of the SDE:

dXt = α(Xt, t, ρt)dt+
√
2νdWt
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Here ρt is the distribution of all the players at the time moment t. When we consider a specific player,
we consider ρt as a parameter. Each player aims to minimize the quantity:

E[
∫ T

0

(L(Xt, αt, ρt) + f(Xt, ρt))dt+ g(XT , ρT )].

Here L(x, α, ρ) is similar to the Lagrange function in physics and describes the cost of moving in
some direction given the current position and the other players’ distribution. The additional function
f(Xt, ρt) is interpreted as the cost of the player’s interaction at coordinate x with all the others. Now
we can introduce the value function ϕ(x, t), which for position x and start time t returns the cost in
case of the optimal control:

ϕ(x, t)
def
= inf

α
E[
∫ T

t

(L(Xt, αt, ρt) + f(Xt, ρt))dt+ g(XT , ρT )].

Before considering the Mean-Field game, we need to define an additional function H(x, p, ρ). It is
similar to the Hamilton function and is defined as the Legendre transform of Lagrange function L:

H(x, p, ρ)
def
= sup

α
[−αp− L(x, α, ρ)].

Mean-Field game implies finding the Nash equilibrium for all players of such the game. It is known
[1] that the Nash equilibrium is the solution of the system of Hamilton-Jacobi-Bellman (HJB) and
Fokker-Planck (FP) PDE equations. For two functions H(x, p, ρ) and f(x, ρ), Mean-Field game
formulates as a system of two PDE with two constraints:

−∂tϕ− ν∆ϕ+H(x,∇ϕ, ρ) = f(x, ρ) (HJB)

−∂tρ− ν∆ρ− div(ρ∇pH(x,∇ϕ)) = 0 (FP)

s.t. ρ(x, 0) = ρ0 , ϕ(x, T ) = g(x, ρ(·, T ))

The solution of this system is two functions ρ(x, t) and ϕ(x, t), which describe all players’ dynamics.
Also, in Nash equilibrium, the specific player’s behavior is described by the following SDE:

dXt = −∇pH(Xt,∇ϕ(Xt, t), ρ)dt+
√
2νdWt.

H.2 Relation to our work.

In recent work [34], the authors show that the Schrodinger Bridger problem could be formulated as a
Mean-Field game with hard constraints on distribution ρ(·, T ) = ρtarget(·, T ) via choosing proper
function g(x, ρ(·, T )) such as:

g(x, ρ(·, T )) =
{
∞, if ρ(·, T ) ̸= ρtarget(·, T )
0, ρ(·, T ) = ρtarget(·, T )

Also, the authors proposed an extension of DiffSB [34] algorithm for the Mean-Field game problem.

In [33], the authors in their experiments consider only soft constraints on the target density. More
precisely, they consider only simple constraints such as g(x, ρ) = ||x− xtarget||2, where xtarget is a
given shared target point for every player, and every player is penalized for being far from this. Such
soft constraint force players to have delta distribution at point xtarget.

To solve the Mean-Field problem, the authors parameterize value function ϕ(x, t) by a neural network
and use different neural network Nθ to sample from ρt. The authors penalize the violation of
Mean-Field game PDEs for optimizing these networks. After the convergence, one can sample
from the distribution ρt by using neural network Nθ. Approach [33] has the advantage that authors
do not need to use SDE solvers, which require more steps with growing parameter ν of diffusion
operator. However, computation of Laplacian and divergence for high-dimensional spaces (e.g.,
space 12228-dimensional space of 3x64x64 images) at each iteration of the training step may be
computationally hard, restricting the applicability of their method to large-scale setups.
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In our approach, we initially work with the SDE:

dXt = α(Xt, t, ρt)dt+
√
2νdWt,

which describes the player’s behavior and use a neural network to parametrize the drift α. We consider
only hard constraints on the target distribution, f(Xt, ρt) = 0 and L(Xt, αt, ρt) =

1
2 ||αt||2 since

this variant of Mean-Field game is also the particular case of Schrodinger Bridge problem and is
equivalent to the entropic optimal transport. Since we do not need to compute Laplacian or divergence,
our approach scales better with the dimension. However, for high values of diffusion parameter ν
(which is equal to the 1

2ϵ in our notation, where ϵ is the entropic regularization strength), our approach
needs more steps for accurate solving of the SDE to provide samples, as we mentioned in limitations.

I Extending ENOT to other costs

In the main text, we focus only on EOT with the quadratic cost c(x, y) = 1
2∥x− y∥

2 which coincides
with SB with the Wiener prior W ϵ. However, one could use a different prior Qv instead of W ϵ in (5):

Qv : dXt = v(Xt, t)dt+
√
ϵdWt,

and solve the problem

inf
Tf∈D(P0,P1)

KL(Tf ||Qv) = inf
Tf∈D(P0,P1)

1

2ϵ
ETf

[

∫ 1

0

||f(Xt, t)− v(Xt, t)||2dt].

Here we just use the known expression (6) for KL(Tf ||Qv) between two diffusion processes through
their drift functions. Using the same derivation as in the main text M2.2, it can be shown that this new
problem is equivalent to solving the EOT with cost c(x, y) = − log πQv (y|x), where πQv (y|x) is a
conditional distribution of the stochastic process Qv at time t = 1 given the starting point x at time
t = 0. For example, for W ϵ (which we consider in the main text) we have

c(x, y) = − log πW ϵ

(y|x) = 1

2ϵ
(y − x)T (y − x) + Const,

i.e., we get the quadratic cost. Thus, using different priors for the Schrodinger bridge problem makes
it possible to solve Entropic OT for other costs. We conjecture that most of our proofs and derivations
can be extended to arbitrary prior process Qv just by slightly changing the minimax functional (12):

sup
β

inf
Tf

(
1

2ϵ
ETf

[

∫ 1

0

||f(Xt, t)− v(Xt, t)||2dt] +
∫
Y
βϕ(y)dP1(y)−

∫
Y
βϕ(y)dπ

Tf

1 (y)

)
.

We conduct a toy experiment to support this claim and consider Qv with ϵ = 0.01 and v(x, t) =
∇ log p(x), where log p(x) is a 2D distribution with a wave shape, see Figure 8. Intuitively, it means
that trajectories should be concentrated in the regions with a high density of p. In Figure e 8, there
the grey-scale color map represents the density of p, start points (P0) are green, target points (P1) are
red, obtained trajectories are pink and mapped points are blue.

J ENOT for the unregularized OT (ϵ = 0)

Our proposed algorithm is designed to solve entropic OT and the equivalent SB problem. This
implies that ϵ > 0. Nevertheless, our algorithm technically allows using even ϵ = 0, in which case
it presumably computes the unegularized OT map for the quadratic cost. Here we present some
empirical evidence supporting this claim as well some theoretical insights.

EMPIRICAL EVIDENCE. We consider the experimental setup with images from the continuous
Wasserstein-2 benchmark [28, M4.4]. The images benchmark provides 3 pairs of distributions (Early,
Mid, Late) for which the ground truth unregularized OT map for the quadratic cost is known by the
construction. Hence, we may compare the map learned with our method (ϵ = 0) with the true one.

We train our method with ϵ = 0 on each of 3 benchmark pairs and present the quantitative results
in Table 6. We use the same L2-UVP metric [28, M4.2] as the authors of the benchmark. As the
baselines, we include the results of MM:R method from [28] and the method from [3]. Both methods
are minimax and have some similarities with our approach. As we can see, ENOT with ϵ = 0
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Figure 8: Toy example with ENOT (ours) for the complex prior Qv : dXt = v(Xt, t)dt+
√
ϵdWt.

Benchmark Early Mid Late
[28]* 1.4 0.4 0.22
[3]* 0.61 0.20 0.09

ENOT (ours) 0.77 0.21 0.09

Table 6: Comparison on W2 benchmark. *Results are taken from [3, Table 2].

works better than the MM:R solver but slightly underperforms compared to [3]. This evaluation
demonstrates that our method recovers the unregularized OT map for the quadratic cost with the
comparable quality to the existing saddle point OT methods.

THEORETICAL INSIGHTS. We see that empirically our method with ϵ = 0 recovers the unregularized
OT map. At the same time, this is not supported by our theoretical results as they work exclusively
for ϵ > 0 and rely on the properties of the KL divergence.

Overall, it seems like for ϵ = 0 our method yields a saddle point reformulation of the Benamou-
Brenier (BB) [8] problem which is also known as the dynamic version of the unregularized OT
(ϵ = 0) with the quadratic cost. This problem can be formulated as follows:

inf
Tf

{
1

2
ETf

[

∫ 1

0

||f(Xt, t)||2dt]
}

s.t. Tf : dXt = f(Xt, t)dt, X0 ∼ P0, X1 ∼ P1, (45)

i.e., the goal is to find the process Tf of the minimal energy which moves the probability mass of P0

to P1. BB (45) is very similar to DSB (11) but there is no multiplier 1
ϵ , and the stochastic process Tf

is restricted to be deterministic (ϵ = 0). It is governed by a vector field f . Just like the DSB (11) is
equivalent to EOT (2), it is known that BB (45) is equivalent to unregularized OT with the quadratic
cost (ϵ = 0). Namely, the distribution πTf∗ is the unregularized OT plan between P0 and P1.

In turn, our Algorithm 1 for ϵ = 0 optimizes the following saddle point objective:

sup
β

inf
Tf

L(β, Tf )
def
= sup

β
inf
Tf

{
1

2
ETf

[

∫ 1

0

||f(Xt, t)||2dt]+
∫
Y
β(y)dP1(y)−

∫
Y
β(y)dPTf

1 (y)

}
, (46)

where Tf : dXt = f(Xt, t)dt with X0 ∼ P0 (the constraint X1 ∼ P1 here is lifted) and β ∈ C2,b(Y).
Just like in the Entropic case, functional L can be viewed as the Lagrangian for BB (45) with β
playing the role of the Lagrange multiplier for the constraint dπTf

1 (y) = dP1(y). Naturally, it is
expected that the value (45) coincides with (46), and we provide a sketch of the proof of this fact.

Overall, the proof logic is analogous to the Entropic case but the actual proof is much more technical
as we can not use the KL-divergence machinery which helps to avoid non-uniqueness, etc.

Step 1 (Auxiliary functional, analog of Lemma B.3). We introduce an auxiliary functional

L̃(β,H)
def
=

∫
X

1

2
∥x−H(x)∥2dP0(x)−

∫
X
β(H(x))dP0(x) +

∫
Y
β(y)dP1(y),

27



where β is a potential and H : RD → RD is a measurable map. This functional is nothing but the
well-known max-min reformulation of static OT problem (in Monge’s form) with the quadratic cost
[3, Eq. 4], [28, Eq.9]. Hence,

sup
β

inf
H
L̃(β,H) = inf

H♯P0=P1

∫
X

1

2
||x−H(x)||2dP0(x)︸ ︷︷ ︸

def
=L∗

.

Step 2 (Solution of the inner problem is always an OT map). An existence of some minimizer
H = Hβ in infH L̃(β,H) can be deduced from the measurable argmin selection theorem, e.g., [21,

Theorem 18.19]. For this Hβ we consider P′ def
= Hβ♯P0. Recall that

Hβ ∈ arginf
H

L̃(β,H) = arginf
H

∫
X

{∥x−H(x)∥2

2
− β(H(x))

}
dP0(x).

Here we may add the fictive constraint H♯P0 = P′ which is anyway satisfied by Hβ and get

Hβ ∈ arginf
H♯P0=P′

∫
X

{∥x−H(x)∥2

2
− β(H(x))

}
dP0(x) = arginf

H♯P0=P′

∫
X

∥x−H(x)∥2

2
dP0(x).

The last equality holds since
∫
β(H(x))dP0(x) =

∫
β(y)dP′(y) does not depend on the choice of

H due to the constraint H♯P0 = P′. The latter is the OT problem between P and P′ and we see that
Hβ is its solution.

Step 3 (Equivalence for inner objective values). Since Hβ is the OT map between P0,P′ (it
is unique as P0 is absolutely continuous [43]), it can be represented as an ODE solution Tfβ to
the Benamour Brenier problem between P0,P′, i.e., Tfβ : dXt = fβ(Xt, t)dt and Hβ(X0) =

X0 +
∫ 1

0
fβ(Xt, t)dt. Furthermore, in this case, ∥X0 −Hβ(X0)∥2 =

∫ 1

0
||fβ(Xt, t)||2dt. Hence, it

can be derived that
inf
H
L̃(β,H) = inf

Tf

L(β, Tf ).

Step 4 (Equivalence of the saddle point objective). Take sup over β ∈ Cb,2(Y) and get the final
equivalence:

sup
β

inf
H
L̃(β,H) = sup

β
inf
H
L(β, Tf ) = L∗.

Step 5 (Dynamic OT solutions are contained in optimal saddle points). Pick any optimal β∗ ∈
argsupβ infH L(β, Tf∗) and let Tf∗ be any solution to the Benamou-Brenier problem. Checking
that T ∗ ∈ infH L(β∗, Tf ) can be done analogously to [31, Lemma 4], [42, Lemma 4.1]. □

The derivation above shows the equivalence of objective values of dynamic unregularized OT (45)
and our saddle point reformulation of BB (45). Additionally, it shows that solutions Tf∗ can be
recovered from some optimal saddle points (β∗, Tf∗) of our problem. At the same time, unlike the
EOT case (ϵ > 0), it is not guaranteed that for all the optimal saddle points (β∗, Tf∗) it holds that
Tf∗ is the solution to the BB problem. This aspect seems to be closely related to the fake solutions
issue in the saddle point methods of OT [30] and may require further studies.
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