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Abstract

In this work, we propose a novel framework001
that integrates large language models (LLMs)002
with an RL-based dialogue manager for Mo-003
tivational Interviews (MI). MI is a therapeu-004
tic approach that emphasizes collaboration and005
supports behavioral change by guiding patients006
to explore the reason and motivation behind007
their unhealthy behaviors. By leveraging hier-008
archical reinforcement learning to model the009
structured phases of MI and employ meta-010
learning to enhance adaptability across diverse011
user types, our approach enhances adaptabil-012
ity and efficiency, enabling the system to learn013
from limited data, transition fluidly between014
MI phases, and personalize responses to het-015
erogeneous patient needs. Our findings demon-016
strate that the proposed dialogue manager out-017
performs an LLM baseline in terms of reward,018
effectively structuring MI interactions while019
maintaining adaptability.020

1 Introduction021

In recent years, the demand for mental health ser-022

vices has surged, outpacing the availability of re-023

sources and creating a substantial gap in access to024

care (Cameron et al., 2017). As a result, many pa-025

tients face extended waiting periods before receiv-026

ing therapy (Cameron et al., 2017; Denecke et al.,027

2020). To address this challenge, virtual agents ca-028

pable of simulating Motivational Interviewing (MI)029

have been proposed as a potential interim support030

system for individuals awaiting treatment. These031

agents can provide immediate assistance, particu-032

larly beneficial in therapeutic approaches requiring033

multiple sessions (Fiske et al., 2019). However,034

their role is not to replace human therapists but to035

serve as a supplementary tool that enhances exist-036

ing therapeutic interventions.037

Motivational Interviewing (MI) poses a particu-038

larly complex challenge for dialogue systems, tra-039

ditionally addressed through intricate rule-based040

frameworks (Prochaska et al., 2021; Olafsson et al., 041

2020). However, recent advances in natural lan- 042

guage processing (NLP) have paved the way for 043

leveraging large language models (LLMs) such as 044

GPT-like architectures (Baktash and Dawodi, 2023) 045

in such applications (Steenstra et al., 2024), signif- 046

icantly expanding the scope of dialogue systems 047

across various domains. 048

While these models exhibit remarkable language 049

generation capabilities, they also present significant 050

limitations — many of which can be addressed 051

through insights from "traditional" dialogue re- 052

search. In particular, LLMs often lack the control- 053

lability and structured decision-making of conven- 054

tional rule-based systems, that are more predictable 055

and interpretable (Shidara et al., 2020). 056

Ruled-based domain-specific dialogue systems 057

(Hadi et al., 2024) offer notable advantages, includ- 058

ing improved controllability, explainability, and 059

the ability to integrate expert knowledge. How- 060

ever, they are typically less adaptable and more 061

resource-intensive to develop. In contrast, LLMs 062

demonstrate strong adaptability across domains 063

but pose challenges in achieving control, trans- 064

parency, and efficiency. Additionally, incorporat- 065

ing expert knowledge into LLMs often requires 066

extensive domain-specific data (Hadi et al., 2024). 067

Notably, reinforcement learning (RL)-based dia- 068

logue managers (Pecune and Marsella, 2020) have 069

shown promise in enhancing control and coherence 070

in dialogue systems. Hence, a promising approach 071

involves hybrid models that combine the strengths 072

of both paradigms—leveraging the adaptability and 073

generative capabilities of LLMs while integrating a 074

domain-specific dialogue manager to regulate inter- 075

actions (Abu-Rasheed et al., 2024; Galland et al., 076

2024). 077

In this work, we investigate a hybrid approach in 078

which an RL-based dialogue manager governs an 079

LLM to simulate MI dialogues, aiming to balance 080

adaptability and control for more effective virtual 081
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therapy support.082

2 Theoretical background : Motivational083

Interviewing (MI)084

Motivational Interviewing (MI) is a therapeutic ap-085

proach that emphasizes collaboration and supports086

behavioral change by guiding patients to explore087

the reason and motivation behind their unhealthy088

behaviors.089

2.1 Dialogue with Multiple Phases090

Figure 1: Phases of Motivational Interviewing

Complex dialogues, such as those in Motiva-091

tional Interviewing (MI), evolve through distinct092

phases, each guided by unique long-term strategies093

(Miller and Rollnick, 2012) (see Figure 1). The094

dialogue usually begins with an engaging phase,095

where rapport is established, and patient engage-096

ment with the therapist is fostered. This is followed097

by a focusing phase, where core issues, their under-098

lying causes, and the patient’s background are iden-099

tified to set a clear focus for the conversation. The100

third phase is the evoking phase, which involves101

encouraging the patient’s motivation for change102

by eliciting and amplifying “change talk”. Finally,103

planning involves developing a specific, actionable104

plan for behavior change based on the patient’s105

motivation and goals.106

Therapists must ensure that specific objectives,107

such as achieving high levels of engagement, clari-108

fying core issues, and cultivating sufficient motiva-109

tion, are met before transitioning between phases.110

Furthermore, the process is not strictly linear, as111

therapists may need to revisit earlier phases de-112

pending on the patients’ evolving motivation and113

engagement. Individual variability in engagement114

and motivation necessitates a flexible approach.115

For a virtual therapist employing MI, effectively116

navigating across these phases is crucial. This117

requires discerning when to progress to the next118

phase, when to revisit earlier phases, and how to119

adapt the interaction to align with each patient’s120

unique needs and circumstances.121

2.2 Patients types in MI 122

Patients participating in motivational interview- 123

ing (MI) exhibit varying levels of readiness to 124

change their behaviors. As proposed by (anony- 125

mous, 2024a), these patients can be classified into 126

three categories: Open-to-Change, Resistant-to- 127

Change, and Receptive. Open-to-Change individ- 128

uals demonstrate a strong willingness to modify 129

unhealthy behaviors. Resistant-to-Change patients 130

are generally reluctant to alter their current behav- 131

iors, showing a preference for maintaining the sta- 132

tus quo. Receptive patients, while initially exhibit- 133

ing low motivation to change, gradually develop a 134

higher motivation to adopt healthier behaviors as 135

the conversation progresses. 136

These classifications capture variations in pa- 137

tients’ responses and therapists’ strategies, as dis- 138

cussed in (anonymous, 2024a). The ability to adapt 139

the flow of dialogue to these three patient types can 140

significantly enhance the efficiency of the therapist 141

dialogue model. 142

A dialogue system for MI should be able to take 143

into account the particular challenges that such 144

dialogs arises. Such a dialogue system should be 145

able to navigate across phases while being able to 146

adapt to different types of users. 147

3 Related Work 148

Motivational Interviewing (MI) presents significant 149

challenges for dialogue systems, as it necessitates 150

both a structured progression through its four dis- 151

tinct phases —engagement, focusing, evoking, and 152

planning (Miller and Rollnick, 2012) — and adapt- 153

ability to diverse patients profiles (anonymous, 154

2024a). While existing systems such as Woebot 155

(Prochaska et al., 2021) have demonstrated the fea- 156

sibility of MI-based chatbots by incorporating ther- 157

apeutic frameworks like cognitive behavioral ther- 158

apy (CBT) and mindfulness, they predominantly 159

rely on static or rule-based architectures. Steenstral 160

et al. (Steenstra et al., 2024) identified the lim- 161

itations of rule-based approaches in maintaining 162

adherence to therapeutic protocols and proposed 163

leveraging LLMs for this application, demonstrat- 164

ing promising results. 165

The advent of large language models (LLMs) has 166

transformed dialogue generation, offering new pos- 167

sibilities for MI-based interactions (Steenstra et al., 168

2024). Models such as GPT-like systems (Baktash 169

and Dawodi, 2023) exhibit strong generative capa- 170

bilities and adaptability across diverse applications, 171
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which can be leveraged to enhance the social di-172

mensions of interaction. This aspect is particularly173

relevant, as Kanaoka et al. (Kanaoka and Mutlu,174

2015) emphasized the critical role of social engage-175

ment and rapport in facilitating behavioral change.176

Recent research has underscored the importance177

of cognitive modeling and adaptability in dialogue178

systems to more accurately account for the mental179

states of both the agent and the user. For instance,180

He et al. (He et al., 2024) introduced dual reason-181

ing mechanisms that enable LLMs to incorporate182

contextual nuances, while Zhang et al. (Zhang183

et al., 2020) explored interactive agent representa-184

tions to improve dialogue coherence. Despite these185

advancements, LLMs remain constrained in terms186

of controllability and domain specificity (Shidara187

et al., 2020). Recent efforts have sought to en-188

hance control and applicability, particularly within189

task-oriented dialogue systems. Yao et al. (Yao190

et al., 2023) employed reinforcement learning (RL)191

to optimize LLM prompting strategies; however,192

black-box LLMs continue to exhibit limitations193

in controllability and often generate repetitive re-194

sponses. To address these shortcomings, Xu et195

al. (Xu et al., 2023) demonstrated the advantages196

of integrating fine-tuned, smaller language mod-197

els with larger LLMs, while Yu et al. (Yu et al.,198

2023) employed Monte Carlo tree search for op-199

timal action selection, improving both coherence200

and practical utility. Although these studies mark201

significant progress in hybrid model design, they202

often fall short of accommodating a broad spec-203

trum of user types. Integrating the structured con-204

trollability of classical dialogue models with the205

generative flexibility of LLMs within an adaptive206

hybrid framework could facilitate more dynamic,207

personalized, and effective MI interactions.208

Reinforcement learning has been instrumental in209

optimizing dialogue policies and refining system210

behavior. Traditional RL-based approaches have211

primarily focused on enhancing user engagement212

and task success rates. Walker et al. (Walker, 2000)213

and Li et al. (Li et al., 2016) demonstrated the214

efficacy of RL in training conversational agents215

for goal-oriented tasks, while Weber et al. (Weber216

et al., 2018) illustrated its effectiveness in selecting217

contextually appropriate actions, such as humor or218

sound effects, to enrich user experiences. More ad-219

vanced frameworks have incorporated both social220

and task-oriented rewards (Pecune and Marsella,221

2020) or jointly trained user and dialogue policies222

(Takanobu et al., 2020). Although these methods223

enable adaptation to different user types, they re- 224

main largely confined to task-oriented systems that 225

rely on predefined natural language templates. 226

In this work, we propose a novel framework 227

that integrates LLMs with an RL-based dialogue 228

manager to structure MI dialogues across differ- 229

ent phases while dynamically adapting to diverse 230

patient profiles. By synergizing structured control 231

with generative flexibility, our approach enhances 232

adaptability and efficiency, enabling the system to 233

learn from limited data, transit fluidly between MI 234

phases, and personalize responses to heterogeneous 235

patient needs. 236

The remainder of this paper is organized as fol- 237

lows: Section 4 details our proposed methodology, 238

while Section 5 describes our evaluation environ- 239

ment. Section 6 presents the experimental results, 240

and Section 7 provides an analysis and interpreta- 241

tion of our findings. 242

4 Method 243

This section outlines the methodology for devel- 244

oping a dialogue manager capable of navigating 245

the distinct phases of Motivational Interviewing 246

(MI) while adapting to diverse patients profile. The 247

complete architecture is depicted in Figure 2. 248

4.1 Problem description 249

The objective of the proposed model is to predict 250

the optimal action at at each time step t, given the 251

dialogue context c. Each action corresponds to a di- 252

alogue act representing the virtual therapist’s strate- 253

gic behavior. The agent sentence is then generated 254

by a conditioned large language model (LLM) that 255

produces an utterance coherent with the context 256

and realizes the selected dialogue act, as validated 257

in (anonymous, 2024b).

Figure 2: Hierarchical architecture of the dialogue man-
ager

258
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4.2 Hierarchical RL for Managing Dialogue259

Phases260

The dialogue manager employs a hierarchical rein-261

forcement learning (HRL) framework to manage262

dialogue phases comprising a master policy and263

N sub-policies. Each sub-policy is dedicated to264

a specific phase of the Motivational Interviewing265

(MI) process, while the master policy governs tran-266

sitions between these phases over a fixed horizon267

H (see Figure 2). The master policy orchestrates268

the dialogue by selecting the appropriate phase269

for the next H dialogue turns based on the cur-270

rent master state. Meanwhile, sub-policies exe-271

cute phase-specific strategies and actions, lever-272

aging their respective sub-policy states. Notably,273

the master state and the sub-policy state differ in274

composition, as long-term planning requires dis-275

tinct information from short-term decision-making.276

This hierarchical structure ensures dynamic and277

context-sensitive dialogue management, allowing278

real-time adjustments to both the patient’s evolv-279

ing needs and the interaction context. It balances280

global objectives, such as increasing motivation for281

behavior change, with more localized goals, such282

as answering patient inquiries. The fixed decision283

interval of H turns reduces the training horizon,284

simplifying the learning process and enhancing the285

model’s adaptability to diverse users by focusing286

on shorter-term adjustments. By leveraging hier-287

archical reinforcement learning (HRL), the model288

effectively manages the different phases of MI di-289

alogue while minimizing adaptation complexity.290

The sub-policies handle local objectives, while the291

master policy adjusts to user-specific global goals.292

Once the sub-policies are trained, adapting to a293

new user requires fine-tuning only the master pol-294

icy, which operates on a smaller horizon and action295

space. This approach enables efficient transitions296

between MI phases, ensuring that interactions re-297

main tailored to the needs of each individual user.298

4.3 Meta-Learning for User Adaptation299

To facilitate rapid adaptation to new users, the mas-300

ter policy is trained using meta-learning techniques,301

specifically the Model-Agnostic Meta-Learning302

(MAML) algorithm (Finn et al., 2017). This ap-303

proach enables the dialogue manager to generalize304

efficiently across diverse user types while retain-305

ing the flexibility to quickly adapt to novel ones.306

By leveraging MAML, the master policy not only307

learns strategies shared among various patients’308

profiles but also fine-tunes its behavior in response 309

to individual patients needs, ensuring both robust- 310

ness and personalization. 311

4.4 Algorithm and Training Framework 312

In this subsection we present formally our algo- 313

rithm and training framework. 314

4.4.1 Dialogue Management Algorithm 315

The model aims to predict the optimal dialogue 316

act at to maximize a reward function R(st, at). 317

The system comprises a master policy θ and a set 318

of N sub-policies ψ0, . . . , ψN . The master policy, 319

with a discrete action space of size N , determines 320

the appropriate sub-policy to use for the next H 321

turns, while each sub-policy ψi manages the dia- 322

logue acts of the corresponding phase within an 323

action space of size Nda = 13. At each time 324

step t, the algorithm operates as follows. If t 325

mod H = 0, the master policy selects the next 326

sub-policy: At = θ(smaster
t ). Otherwise, the pre- 327

vious master action is reused: At = At−1. The 328

sub-policy corresponding to At then generates the 329

next dialogue act: at = ψAt(st). This action at 330

influences the environment, producing a user re- 331

sponse and updating the state to st+1 and smaster
t+1 . 332

The detailed algorithm is presented in Algorithm 1 333

4.4.2 Training Framework 334

The training framework leverages a model-based 335

reinforcement learning (RL) approach. A model- 336

based approach enables efficient reuse of dialogue 337

turns across multiple iterations as policies evolve. 338

Specifically, we utilize the Soft Actor-Critic (SAC) 339

algorithm (Haarnoja et al., 2018), which enhances 340

the system’s adaptability to new human users in on- 341

line interactions. This approach allows for policy 342

updates at each turn, maintaining the information 343

from previous turns. Each training epoch targets 344

a specific user type and begins with cloning the 345

master policy θ. The optimization process occurs 346

in two phases. In the first phase, the master pol- 347

icy θ is fixed, and the sub-policies ψ0, . . . , ψn are 348

optimized using SAC. In the second phase, the 349

sub-policies remain fixed while the cloned master 350

policy θclone is optimized using SAC. After these 351

optimizations, the updated policies are evaluated. 352

Finally, the master policy θ is updated using the 353

MAML algorithm. The complete training process 354

is detailed in Algorithm 2. 355
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Algorithm 1 Hierarchical Dialogue Management Algorithm

1: Input: State st and smaster
t , Master policy θ, Sub-policies ψ0, . . . , ψn, Time horizon H

2: Initialize: Master policy θ, Sub-policies ψ0, . . . , ψn

3: for each time step t do
4: if t mod H = 0 then
5: Compute master action At = θ(smaster

t )
6: else
7: Reuse previous master action At = At−1

8: end if
9: Select sub-policy ψAt based on At

10: Compute dialogue act at = ψAt(st)
11: Apply action at to the environment
12: Observe user response and new state st+1 and smaster

t+1

13: end for

Algorithm 2 Training Process for Hierarchical Dialogue Manager

1: Input: Master policy θ, Sub-policies ψ0, . . . , ψn, User simulator, Replay buffer Dsub, Replay buffer
Dmaster

2: Initialize: Master policy θ, Sub-policies ψ0, . . . , ψn, Replay buffer Dsub, Replay buffer Dmaster

3: for each training epoch do
4: Sample user type t and apply to the simulator
5: Phase 1: Sub-policy Optimization
6: Fix θ and for Nsub dialogues:
7: for each dialogue do
8: Generate transition (st, at, rt, st+1, At) and store in replay buffer Dsub

9: Sample a batch B from Dsub

10: for each sub-policy ψi do
11: Optimize ψi: ψi ← SAC(ψi, BAt=i)
12: end for
13: end for
14: Phase 2: Master Policy Optimization
15: Clone master policy: θclone ← θ
16: Fix ψ0, . . . , ψn and for Nmaster dialogues:
17: for each dialogue do
18: Generate transition (st, at, rt, st+1) and store in replay buffer Dmaster

19: Optimize θclone: θclone ← SAC(θclone)
20: end for
21: Evaluation
22: Evaluate the updated policies θclone and ψ0, . . . , ψn on the task
23: Master Policy Update
24: Update the master policy θ using the MAML algorithm: θ ← MAML(θclone)
25: Empty Replay buffer Dsub and Replay buffer Dmaster

26: end for
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5 Evaluation Environment356

In this section we present the evaluation env of357

our framework on a MI dialogue environment and358

compare our model with a state of the art LLM359

baseline. We also perform ablations to demonstrate360

the efficiency of each of the model components361

showing that incorporating knowledge on the flow362

of the dialogue in the dialogue manager develop-363

ment improves the resulting conversations.364

5.1 Baseline365

We use as a baseline a Nemo Instruct LLM1366

prompted as validated in (Steenstra et al., 2024).367

The prompt incorporates information on MI strate-368

gies, as well as techniques for addressing specific369

problems, such as Drinking, Smoking, and Seden-370

tary Lifestyle. This approach was validated in371

(Steenstra et al., 2024) through experiments with372

human participants.373

5.2 Evaluation Environment374

The evaluation environment includes a simu-375

lated user described in Section 5.2.1 with a spe-376

cific type T and a problem P , where P ∈377

{Smoking, Alcohol, Sedentary Lifestyle}. Addi-378

tionally, the environment incorporates a Mistral379

LLM, specifically a Nemo Instruct LLM1, which380

is prompted to generate both therapist and patient381

utterances based on the context, discussion theme,382

and dialogue act. This generation was validated in383

(anonymous, 2024c).384

5.2.1 Simulate patients in MI385

Simulating patients in MI has been explored in386

prior research. For instance, (anonymous, 2024c)387

proposed a prompt to simulate a user with a large388

language model (LLM) (anonymous, 2024b). This389

approach has been validated to produce contextu-390

ally relevant, natural dialogue acts and utterances391

(anonymous, 2024b,c), although the differences be-392

tween user types have not been tested and might be393

a limitation of this simulator. We use this user sim-394

ulator to train and evaluate our dialogue manager.395

In the following of this article, the term user refers396

to this user simulator.397

5.2.2 Action Space398

The agent operates in a discrete action space con-399

sisting of 13 possible dialogue acts, which are cat-400

egorized into task-oriented dialogue acts and so-401

1https://huggingface.co/mistralai/Mistral-Nemo-
Instruct-2407

cially oriented dialogue acts. Task-oriented dia- 402

logue acts include Asking for Consent or Valida- 403

tion, Providing Medical Education and Guidance, 404

Planning with the Patient, Giving a Solution, Ask- 405

ing about Current Emotions, Inviting a Shift in 406

Outlook, Asking for Information, and Reflection. 407

Socially-oriented dialogue acts include Empathic 408

reactions, Acknowledging Progress and Encour- 409

aging, Backchanneling, Greeting or Closing, and 410

Normalizing Experiences while Providing Reassur- 411

ance. This taxonomy was introduced in (anony- 412

mous, 2024a). 413

5.2.3 State Space 414

The agent’s state space includes information from 415

the most recent agent’s and user’s dialogue acts. 416

User can use 9 different dialogue acts: Changing 417

Unhealthy Behavior, Sustaining Unhealthy Behav- 418

ior, Sharing Negative/Positive Feelings or Emo- 419

tions, Sharing Personal Information, Realization 420

or Understanding, Greeting or Closing, Backchan- 421

neling, and Asking for Medical Information. Ad- 422

ditionally, the state space incorporates the current 423

timestamp and an encoded representation of the 424

dialogue context, which comprises the last three 425

utterances. 426

5.2.4 Master State Space 427

The master policy’s state space is composed of 428

an approximation of COntext knowledge, engage- 429

ment approximation and Evocation approximation. 430

Context knowledge approximation is measured by 431

the number of times the user employs the Sharing 432

Personal Information dialogue act. Engagement ap- 433

proximation is determined by the number of times 434

the user utilizes the Sharing Positive/Negative Feel- 435

ings dialogue act. Evocation approximation is 436

quantified by the number of uses of the Under- 437

standing or New Perspective dialogue act. 438

5.2.5 Reward Function 439

The reward function is designed to predict therapy 440

outcomes by assigning specific values to different 441

user dialogue acts. Prior research underscores the 442

critical role of user responses, such as sustain talk, 443

which is linked to poorer treatment outcomes (Mag- 444

ill et al., 2014), and change talk, which is associ- 445

ated with reduced risk behaviors during follow-up 446

assessments (Magill et al., 2018). Additionally, the 447

reward function incentivizes structured progression 448

through the MI phases. A reward of +5 is assigned 449

for Changing Unhealthy Behavior, as this repre- 450

sents the desired outcome, whereas a penalty of−5 451
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Figure 3: Evolution of the reward function during train-
ing

is given for Sustaining Unhealthy Behavior, which452

should be discouraged. In the Engagement phase,453

a reward of +50 is granted for expressing feelings.454

Once at least two emotions have been expressed455

by the user, a reward of +100 is assigned for pro-456

viding information in the Focusing phase. After at457

least two pieces of information have been shared,458

a reward of +150 is given for evoking-related di-459

alogue acts, culminating in a reward of +200 for460

planning-related dialogue acts.461

5.2.6 Episode Termination462

An episode concludes after 40 turns or when the463

agent performs a closing action, marking the end464

of the dialogue interaction.465

5.3 Hyperparameters466

The model is trained for 22 epochs, with 105 con-467

versations conducted per epoch. Of these, 30 are468

used to train the master policy, while 60 are ded-469

icated to training the sub-policies and 5 to evalu-470

ation. To speed up the training process, 5 conver-471

sations are performed in parallel. There are 6 sub-472

policies in total, and the master policy is executed473

every 3 turns. The user’s type is fixed randomly474

at the beginning of each epoch. The sub-policies475

are trained with a learning rate of 10−7 and batch476

size of 10, the master policy uses a learning rate of477

10−6 and batch size of 10, and the MAML (Model-478

Agnostic Meta-Learning) algorithm operates with479

a learning rate of 4 ∗ 10−7. Each network is com-480

posed of 2 linear layers intercalated with Leaky481

ReLU activation functions and hiddensize of 32.482

The model is trained over 16 hours using a 42GB483

GPU.484

6 Results485

In this section, we present our results and ablation486

studies. Figure 3 illustrates the mean reward evolu-487

Table 1: Experiment Results with Mean Rewards (* =
Statistical difference with baseline)

Experiment Mean Reward (± SD)
Baseline 235± 106
Without MAML 303 ± 93
Without HRL 460 ± 102
Full model 526 ± 161 *

tion across all three user types—Open to Change, 488

Resistant to Change, and Hesitant—throughout the 489

training process. At each evaluation epoch, five 490

conversations are conducted with each user type. 491

Additionally, Table 1 presents the final experimen- 492

tal results. Our model’s reward performance signifi- 493

cantly surpasses that of the baseline, demonstrating 494

that conditioning an LLM with our dialogue man- 495

ager enhances the proportion of desirable dialogue 496

acts. However, the reward fluctuates significantly 497

during training due to the high variability in the en- 498

vironment. This instability is likely caused by the 499

user simulator, which can exhibit erratic behavior 500

at times. 501

6.1 Ablation Studies 502

We conduct two ablation studies to evaluate the 503

impact of each design choice. In the first abla- 504

tion study, we perform the same training procedure 505

without employing MAML to train the master pol- 506

icy. In the second ablation study, we remove the 507

hierarchical reinforcement learning (HRL) frame- 508

work and train solely with the SAC algorithm (see 509

Figure 3 and Table 1). 510

Effect of MAML The inclusion of MAML im- 511

proves the accumulated reward (see Table 1), sug- 512

gesting that it enhances the learning of the master 513

policy by explicitly accounting for variations across 514

user types. Standard training can be biased by the 515

sequence in which different user types are encoun- 516

tered, whereas MAML mitigates this by guiding 517

the master policy toward an initialization that en- 518

ables rapid adaptation to diverse users. 519

Effect of HRL The effectiveness of HRL is fur- 520

ther supported by the experimental results. Train- 521

ing with only the SAC algorithm leads to a lower ac- 522

cumulated reward, likely because the phase-based 523

structure of MI dialogues is more challenging to 524

capture without hierarchical modeling. 525
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Figure 4: Dialogue act distribution over time, highlight-
ing different dialogue phases for the full model. The
intensity of the color is proportional to the use of the corre-
sponding dialog act in the turn.

7 Interpretation526

In this section, we analyze the generated dialogues527

and examine how our design choices influence528

them. Specifically, we investigate the different MI529

phases to determine whether they emerge as ex-530

pected and assess the impact of HRL. Additionally,531

we explore variations across user types and evaluate532

the effect of MAML on the generated dialogues.533

Differences Between Phases To analyze the MI534

phases, we examine the distribution of dialogue535

acts across different dialogue turns. Dialogue acts536

associated with the Engaging phase, such as ask-537

ing about emotions or sharing emotions, should538

be more prevalent at the beginning of the con-539

versation, whereas those related to the Planning540

phase, such as providing solutions or promoting541

behavior change, should appear more frequently542

towards the end (Miller and Rollnick, 2012). While543

Engaging should occur throughout the entire dia-544

logue, the later stages should be more focused on545

Planning. The phases are interwoven rather than546

strictly sequential (see Figure 1). Figure 4 shows547

that both the full model and the HRL ablation em-548

ploy engagement-related dialogue acts throughout549

the conversation. However, the HRL ablation tends550

to use Evoking and Planning-related acts too early,551

rather than focusing primarily on Engaging and552

Focusing at the beginning. This issue is particu-553

larly noticeable with the Invite to Shift Outlook554

dialogue act. Notably, in the full model, Asking for555

Information and Focusing gradually decrease once556

sufficient information has been gathered, reflecting557

a more structured and adaptive dialogue flow.558

Differences between user types In this section,559

we examine the impact of meta-learning on train-560

ing the master policy. Figure 5 illustrates the dis-561

tribution of master actions activation over time for562

different user types. The models effectively dif-563

ferentiates between distinct phases, initially engag-564

Figure 5: Distribution of phase activation over time
across different user types. The intensity of the color is
proportional to the use of the corresponding dialog act in the
turn.

ing in Engaging/Focusing phases (Master action 565

5 for the full model and 2 for the ablation) before 566

transitioning into Evoking/Planning phases (Mas- 567

ter action 3 for the full model and 3 and 5 for the 568

ablation). For the full model, this transition oc- 569

curs earlier in the dialogue for Hesitant users, as 570

they require additional motivation, the Evoking 571

phase then tends to be prolonged, aligning with 572

prior findings (anonymous, 2024a). In contrast, in 573

the MAML ablation, the Evoking (Master action 574

5) and Planning (Master action 3) phases are less 575

stable, with the model frequently oscillating be- 576

tween them, especially for Resistant users. This 577

instability suggests that the ablation struggles to 578

maintain a well-structured dialogue flow, making it 579

more susceptible to variations in user types. This 580

qualitative analysis helps explain the significant dif- 581

ference in reward observed between the full model 582

and the MAML ablation. It highlights the bene- 583

fits of incorporating meta-learning, as it enhances 584

the model’s ability to structure MI phases effec- 585

tively and provide a more personalized dialogue 586

experience. 587

8 Conclusion 588

In this paper, we present a dialogue manager for 589

MI dialogue design, addressing the unique chal- 590

lenges posed by this type of interaction. We lever- 591

age HRL to model the structured phases of MI 592

and employ meta-learning to enhance adaptability 593

across diverse user types. Our findings demonstrate 594

that the proposed dialogue manager outperforms an 595

LLM baseline in terms of reward. Additionally, our 596

analysis of the generated conversations provides 597

valuable insights into how HRL and meta-learning 598

contribute to the structured yet adaptive nature of 599

the dialogue. 600

8



9 Limitations601

The current framework is trained using a single602

implementation of a simulated user, which limits603

its generalizability. To fully assess its effectiveness,604

the model should be tested with human participants605

or on diverse datasets that capture a broader range606

of user behaviors and characteristics.607

Moreover, the simulator is based on a Mistral608

LLM, which requires significant processing time to609

generate user behaviors. This limitation constrains610

the training capacity, as complex reinforcement611

learning (RL) problems like this one require ex-612

tensive trial and error. As a result, certain design613

choices—such as small batch sizes and a limited614

number of conversations per epoch—were neces-615

sary, contributing to the observed training instabil-616

ity. Addressing this issue in future work could lead617

to more robust and efficient training.618

Additionally, the analysis of dialogue phases cur-619

rently relies on predefined heuristics, making it620

inherently subjective. A more rigorous approach621

would involve annotation and validation by pro-622

fessional MI annotators to ensure alignment with623

clinical practices, thereby improving the system’s624

reliability.625

10 Ethical Implications626

This work introduces a dialogue manager designed627

for Motivational Interviewing interactions. Its ob-628

jective is not to replace therapists but to provide629

supplementary support or serve as an introduction630

to therapy. The focus of this research is exclusively631

on the dialogue management component, which op-632

erates within a constrained set of possible actions.633

All the LLMs are run locally and no sensitive infor-634

mation is sent to outside services.635

Given the sensitive nature of such applications,636

careful examination and validation of the language637

model outputs remain essential. It is imperative to638

emphasize in both the codebase and accompanying639

documentation that these interactions are not in-640

tended to replace professional therapists but rather641

to complement their efforts in appropriate contexts.642

Ensuring transparency and adherence to ethical643

standards is fundamental to responsibly deploying644

this technology.645
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