
Federated Agent Reinforcement Learning

Canyu Chen*1, Kangyu Zhu*3 , Zhaorun Chen4, Zhanhui Zhou2,
Shizhe Diao5, Yiping Lu1, Tian Li4, Manling Li1, Dawn Song2 †

1Northwestern, 2UC Berkeley, 3Brown, 4UChicago, 5NVIDIA Research
canyuchen@u.northwestern.edu,kangyu_zhu@brown.edu,dawnsong@berkeley.edu

Abstract

Autonomous AI Agents powered by LLMs have shown re-
markable abilities in diverse domains. However, the train-
ing process typically require centralized collection of large
amounts of real-world user data, posing substantial privacy
and regulatory concerns. To this end, we explore a new decen-
tralized training paradigm, namely FEDAGENT (Federated
Agent Reinforcement Learning), which enables collaborative
learning of AI agents across distributed clients without sharing
local data. Moreover, we construct the first decentralized agent
learning environment FEDAGENTGYM, which includes four
types of LLM agents, two application scenarios (WebShop
and ALFWorld), three variations of decentralized settings,
and three newly defined heterogeneity challenges (Preference
Heterogeneity, Coverage Heterogeneity, and Hardness Het-
erogeneity), to systematically investigate its effectiveness and
impact factors. Extensive theoretical and empirical studies
show that FEDAGENT can have comparable performance to
the centralized training paradigm and exhibit strong robust-
ness against heterogeneities, which shows the feasibility of
training AI agents without sacrificing data privacy. The code
is available at https://anonymous.4open.science/r/federated_
agent_submission-4652.

Introduction
The rapid advancement of AI agents, especially those pow-
ered by Large Language Models (LLMs), has demonstrated
remarkable capabilities across diverse domains, from web
navigation to embodied environments (Zhang et al. 2025;
Gao et al. 2025; Liu et al. 2025). However, training these
agents typically requires centralized access to vast amounts
of users’ real-world task query and trajectory data, which
are inherently privacy-sensitive and hard to acquire due to
regulatory compliance. Thus, a foundational question is: how
to train AI agents while protecting users’ data privacy?

In this paper, we explore a new decentralized training
paradigm, namely FEDAGENT (Federated Agent Rein-
forcement Learning), which enables collaborative learning
of AI agents, particularly LLMs, across distributed clients
without sharing local data. In each round, the server dis-
tributes the current model to selected clients, who then train
locally on their own data and send back their updated models.

*These authors contributed equally.
†Accepted at the AAAI26-LaMAS Workshop

The server aggregates these updates by averaging them to cre-
ate an improved global model for the next round. This process
repeats iteratively, facilitating distributed LLM agent training
while preserving data privacy since only model parameters,
not raw data, are exchanged.

Compared with the previous federated learning literature,
FEDAGENT is faced with fundamentally new challenges. The
majority of existing federated learning research has concen-
trated on supervised classification tasks. There are also recent
works that have explored federated reinforcement learning
(FRL) for traditional RL settings (Liu et al. 2024; Qi et al.
2021; Kairouz et al. 2021). However, both of them operate
under distinct assumptions compared to LLM agent learn-
ing. Supervised federated learning is usually built on static
data distributions and one-shot predictions, while traditional
FRL typically assumes simple rewards, well-defined state
and action spaces. In contrast, LLM agent learning involves
diverse task formulations, multi-step natural language rea-
soning, and complex environment interactions, which create
entirely new challenges for federated paradigms.

To systematically investigate the effectiveness of this
new training paradigm as well as the impact factors,
we built the first decentralized agent learning environ-
ment FEDAGENTGYM, which incorporate four types
of LLM agents (Qwen2.5-{1.5,3,7}B-Instruct and
Llama-3.2-3B-Instruct), two applications (WebShop and
ALFWorld), three variations of decentralized settings (sam-
ples per client, clients selected per communication round,
and local training epochs per client per round).

Importantly, since the existing heterogeneity challenges in
federated learning have mostly been defined in the context
of supervised classification tasks (Ye et al. 2023; Gao, Yao,
and Yang 2022), which focus on label skew, feature shift, or
quantity imbalance, they are not directly applicable to LLM
agent learning. Thus, we propose three new and orthogonal
definitions of client heterogeneity unique to decentralized
AI agent learning: Preference Heterogeneity, where clients
may prefer distinct types of tasks; Coverage Heterogene-
ity, where the task sampling scope may vary across clients;
Hardness Heterogeneity, where the overall difficulty of tasks
may differ among clients. Moreover, we carefully design
three novel client partitioning strategies PREFERENCEPARTI-
TION, COVERAGEPARTITION, and HARDNESSPARTITION
accordingly, grounded in mathematical techniques such as

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"

Env

𝑠"#$

Client 𝑘

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

Client 1

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

Client 0

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

Client 𝒌

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

LLM Agent

𝑠! 𝑎! 𝑠"𝑟!
𝑟"

𝑎"
Env

𝑠"#$

FedAgent FedAgentGym

Application Datasets:

LLM Agents: qwen2.5-1.5b/-3b/-7b, llama3.2-3b

WebShop ALFWorld

Decentralized Settings: samples per client,
clients selected per round, epochs per client per round

Client Heterogeneity: Preference Heterogeneity,
Coverage Heterogeneity, Hardness Heterogeneity

Client 𝟏

Client 𝟎

…

…

…

Server

Figure 1: An Illustration of FEDAGENT and FEDAGENTGYM.

Gaussian Noise, Multinomial Sampling and Beta Distribu-
tion. These strategies allow us to precisely control the extent
of one type of heterogeneity across clients with a single hy-
perparameter, while keeping the other characteristics of the
client distribution unchanged. We then incorporate them into
FEDAGENTGYM to isolate and analyze the impact of each
form of heterogeneity on FEDAGENT separately.

To validate the effectiveness of FEDAGENT, we first con-
duct a theoretical analysis on its convergence. Then, through
extensive and systematic empirical studies with FEDAGENT-
GYM, we demonstrate that FEDAGENT consistently outper-
forms local agent training and can achieve performance com-
parable with centralized agent training, despite never sharing
local data. Moreover, FEDAGENT exhibits strong robustness
to the aforementioned preference, coverage, and hardness
heterogeneity challenges, while revealing sensitivities to cer-
tain decentralized configurations. Overall, our studies show
the potential of scalable agent learning without sacrificing
data privacy, provide valuable insights that inform practical
deployment, and open new research directions in the field of
agent learning.

Our contributions can be summarized as follows:

• We explored a new decentralized paradigm of training AI
agents, namely FEDAGENT (Federated Agent Reinforce-
ment Learning), which enables collaborative agent learn-
ing across distributed clients without sharing local data.
We also provide a theoretical analysis on its convergence.

• We propose to categorize the new client heterogeneity chal-
lenges in decentralized agent learning into Preference Het-
erogeneity, Coverage Heterogeneity, and Hardness Het-
erogeneity. To investigate how each type of heterogeneity
affects the performance, we introduce three novel client
partitioning methods: PREFERENCEPARTITION, COVER-
AGEPARTITION, and HARDNESSPARTITION.

• We constructed the first decentralized agent learning envi-

ronment FEDAGENTGYM, which includes four types of
LLM agents, two applications (WebShop and ALFWorld),
three variations of decentralized settings, and three hetero-
geneity challenges, to analyze the performance of FEDA-
GENT systematically and controllably, and offer insights to
guide future development.

• Extensive studies show that FEDAGENT not only beats the
single-client local training but also can achieve comparable
performance to the centralized agent learning. Furthermore,
FEDAGENT shows high robustness against the three types
of heterogeneity challenges. We also provide insights on
its sensitivity to different decentralized settings.

• We release our code and environment as an extend-
able open-source library to inspire more future works
in this new direction. The link to the repository is avail-
able https://anonymous.4open.science/r/federated_agent_
submission-4652.

FEDAGENT: Federated Agent Reinforcement
Learning

As shown in Algorithm 1, we consider a federated reinforce-
ment learning setup for FEDAGENT. A population of clients
are indexed by k ∈ [K] = {0, . . . ,K − 1}. Training pro-
ceeds for communication rounds t = 0, . . . , T − 1. At round
t, the server samples a subset St ⊂ [K] of size |St| = M
uniformly without replacement, broadcasts the current global
policy parameters θt, and aggregates the participating clients’
locally updated parameters.

LLM Agent Training. The agent is a parametric policy πθ

(an LLM) that, conditioned on a task description c and an
interaction history hu up to step u, produces an action au ∼
πθ(· | hu, c). An action often contains both a sequence of
free-form tokens (i.e., the agent’s intermediate reasoning) and
environment-facing choice (e.g., tool API calling). Each client

k operates in a Markov Decision Process (MDP) environment
Mk = (Sk,Ak, Pk, rk, ρk, γ) with state space Sk, action
space Ak, transition kernel Pk, reward function rk, initial-
state distribution ρk, and discount γ ∈ (0, 1]. Client k also
has a distribution Dk over textual task descriptions c ∈ Ck.
Fix k and a task description c ∼ Dk. The agent interacts with
Mk for horizon H , producing a trajectory:

χ = (c, s0, a0, r0, . . . , sH), s0 ∼ ρk(· | c)

au ∼ πθ(· | hu, c), su+1 ∼ Pk(· | su, au, c).

The discounted return of χ is R(χ) =
∑H−1

u=0 γuru. It is
worth noting that when the LLM agents generate H con-
secutive textual actions (a0, ..., a(H−1)) in a trajectory χ,
each action may span thousands of tokens, considering LLM
agents’ long reasoning capacity (DeepSeek-AI et al. 2025).
This makes token-level credit assignment across the trajectory
particularly challenging.

Local objective (client k). Client k aims to maximize the
expected episodic return of the policy on its own environ-
ments and tasks:

Jk(θ) = Ec∼Dk
Eχ∼(πθ,Mk,c)

[
R(χ)

]
. (1)

During round t, each participating client initializes a local
iterate at the broadcast model, θk,t,0 ← θt, and performs
τ steps of stochastic policy optimization. At local step i ∈
{0, . . . , τ − 1}, the client collects a batch of trajectories
Bk,t,i = {χ(b)}Nk,t,i

b=1 by interacting withMk under πθk,t,i

and computes a policy-gradient estimate:

gk,t,i = ∇θĴk(θk,t,i;Bk,t,i)

=
1

Nk,t,i

Nk,t,i∑
b=1

H(χ(b))−1∑
u=0

∇θ log πθk,t,i

(
a(b)u | h(b)

u , c(b)
)
Â(b)

u .

(2)

where Â(b)
u is any valid return/advantage signal (e.g., a GRPO-

style estimator (Shao et al. 2024)). The local update is
θk,t,i+1 = θk,t,i + η gk,t,i, (i = 0, . . . , τ − 1) with step
size η > 0. After τ steps the client returns its local model
θk,t,τ (equivalently the update ∆θk,t = θk,t,τ − θt) to the
server.

Global objective and aggregation. The federated learning
goal is to maximize a weighted average of client objectives:

Jglobal(θ) =

K−1∑
k=0

wk Jk(θ), wk ≥ 0,

K−1∑
k=0

wk = 1.

(3)
In the FEDAGENT, the server uses uniform model averaging
over the M participating clients each round (i.e., wk = 1

K
conceptually, with partial participation realized by St). Upon
receiving the τ -step local models {θk,t,τ}k∈St

, the server
performs model averaging: θt+1 = 1

M

∑
k∈St

θk,t,τ = θt +
1
M

∑
k∈St

(
θk,t,τ − θt

)
. After T rounds the server outputs

θfinal = θT .

Algorithm 1 FEDAGENT with Client and Server training

Require: Total clients K, rounds T , clients-per-round M ,
local steps τ , learning rate η

Ensure: Final LLM-based global policy parameters θfinal
1: Initialize global policy parameters θ0 (an LLM)
2: for t = 0 to T − 1 do
3: Server: sample client subset St ⊂ [K] with |St| =

M (uniform without replacement)
4: Server: broadcast θt to all k ∈ St

5: for each k ∈ St in parallel do

6: Set local iterate θk,t,0 ← θt
7: for i = 0 to τ − 1 do
8: Collect a mini batch of trajectories Bk,t,i us-

ing policy πθk,t,i
in environmentMk

9: Estimate policy gradient for Jk(θk,t,i) on
client k:

gk,t,i ← ∇θĴk(θk,t,i;Bk,t,i) (e.g., GRPO)
10: Local update: θk,t,i+1 ← θk,t,i + η gk,t,i
11: end for
12: Client returns local model θk,t,τ ▷ equivalently

∆θk,t = θk,t,τ − θt
13: end for

14: Server: Aggregation via model averaging:

θt+1 ←
1

M

∑
k∈St

θk,t,τ
(equivalently θt+1=θt +

1
M

∑
k∈St

(θk,t,τ − θt))

15: end for
16: return θfinal ← θT

FEDAGENTGYM: A Decentralized Agent
Learning Environment

LLM Agents and Application Datasets
FEDAGENTGYM is designed as an environment to inves-
tigate the impact factors of training AI agents, especially
LLM, in a decentralized way. It includes four types of
LLM agents, including Qwen2.5-{1.5,3,7}B-Instruct
and Llama-3.2-3B-Instruct, and two challenging appli-
cation datasets (WebShop (Yao et al. 2022) and ALF-
World (Shridhar et al. 2020)), which require complex rea-
soning process and multi-step environment interactions. We
adopt these two datasets to simulate the real-world scenarios
where data privacy concerns are paramount.

WebShop is a web-based interactive platform that evaluates
LLM agents within authentic e-commerce scenarios. Task
completion requires agents to navigate a simulated HTML
shopping interface to locate, browse, and purchase appropri-
ate items. The dataset features an extensive catalog of over
1.1 million products paired with 12, 000 user instructions,
creating a rich and varied action space.

ALFWorld provides an embodied simulation benchmark

that evaluates LLM agents’ capacity for sequential decision-
making tasks. Each scenario presents the agent with a textual
objective that must be achieved through iterative environment
interaction. The dataset encompasses 3, 827 task instances
spanning six types of household activities: Pick & Place
(Pick), Examine in Light (Look), Clean & Place (Clean),
Heat & Place (Heat), Cool & Place (Cool), and Pick Two &
Place (Pick2).

Decentralized Settings
We comprehensively examine the impact of different decen-
tralized settings on FEDAGENT performance across three
critical dimensions. First, we vary the number of samples
per client, which determines the sampling scope for each
LLM agent’s exploration of the action space and response
generation, directly affecting both the diversity of experiences
collected and the quality of policy gradient estimates. Second,
we change the number of clients selected per communica-
tion round, controlling both the computational parallelism
and the degree of heterogeneity in exploration strategies in-
corporated during global model aggregation. Third, we adjust
the number of local training batches per client per round,
governing the extent of local optimization on the sampled
trajectories before synchronization with the central server.
These parameters collectively influence fundamental trade-
offs between exploration diversity, communication overhead,
and convergence stability in the federated setting. Through
extensive studies across these dimensions, we characterize
how different decentralized training design choices affect the
final policy performance of FEDAGENT.

Heterogeneity Challenges
To systematically evaluate how FEDAGENT performs un-
der realistic client distributions, we propose three novel and
orthogonal heterogeneity definitions, as conventional het-
erogeneity dimensions in federated classification tasks (e.g.,
feature or label skew) (Ye et al. 2023; Gao, Yao, and Yang
2022) are not directly applicable. We also propose the corre-
sponding client partitioning strategies, allowing us to under-
stand the individual impact of different heterogeneity types
separately.

Preference Heterogeneity: When Clients Have Different
Task Preferences. In real-world federated learning, differ-
ent clients often prefer distinct types of tasks. For example,
in the ALFWorld, some users might frequently interact with
kitchen-related tasks (like “put the apple in the fridge”), while
others primarily encounter bedroom tasks (like “examine
the lamp”). In WebShop, some may have mostly electron-
ics searches while others mainly focus on clothing or home
goods.

To simulate this preference heterogeneity, we propose the
PREFERENCEPARTITION algorithm. The pseudo code is illus-
trated in Algorithm 2 in Appendix. We model this by starting
with the global distribution of task categories and introducing
controlled noise to create client-specific preferences. Specifi-
cally, we add Gaussian Noise to the log-probabilities of the
global category distribution, apply softmax normalization,
and use the resulting probabilities to sample L instructions

per client via Multinomial Sampling. This approach allows
precise control over client distributions with a hyperparame-
ter ω on topical preference heterogeneity, while maintaining
the same total dataset size and per-client instruction count.
More specifically, small noise values produce clients with
similar task distributions, while larger noise creates highly
specialized clients with distinct preferences.

Coverage Heterogeneity: When Clients Have Different
Task Sampling Scopes. Even when clients encounter simi-
lar types of tasks, they may face vastly different quantities.
A larger quantity of tasks indicates coverage of a broader
sampling scope per epoch in reinforcement learning (we fol-
low the setting in (Feng et al. 2025) to iteratively sample
with replacement from the local data each epoch), while the
sampling size remains fixed. Importantly, this differs from
the quantity imbalance in conventional supervised federated
classification tasks, where training proceeds over the entire
dataset each epoch. In WebShop, for instance, some users
might have extensive browsing histories with hundreds of
product interactions, while others have only completed a few
shopping sessions.

To model this coverage heterogeneity, we develop the COV-
ERAGEPARTITION algorithm. The pseudo code is shown in
Algorithm 3. We fix a global overlap target r (representing
the average number of clients that see each instruction) and
draw each client’s data quantity from a Beta Distribution,
which we then map to the range [Lmin, Lmax]. Task instruc-
tions are allocated to clients using weighted sampling without
replacement to satisfy both individual client quotas and the
global overlap constraint. This method isolates the effect of
task sampling scope on FEDAGENT performance while keep-
ing the underlying task distribution consistent across clients.
Also, this method controls the extent of coverage heterogene-
ity via hyperparameter ξ without impacting the overall mean
of client quantities.

Hardness Heterogeneity: When Clients Face Different
Task Difficulties. A particularly important but often over-
looked source of heterogeneity is the overall difficulty of
tasks that different clients encounter, which can be quantified
by the success rate of tasks. For example, in ALFWorld, some
clients might consistently face simple navigation tasks with
high success rates, while others encounter complex multi-step
reasoning tasks that frequently result in failure.

As demonstrated in Algorithm 4, our proposed HARD-
NESSPARTITION algorithm addresses this by partitioning
the task instruction pool into “successful” and “unsuccess-
ful” examples with a pretrained checkpoint. Then, using our
COVERAGEPARTITION method, we first distribute success-
ful instructions according to a Beta Distribution that deter-
mines each client’s success rate. We then fill remaining slots
with unsuccessful examples sampled uniformly, ensuring all
clients have exactly L instructions. This method enables us
to study how different success rate distributions, which are
controlled by a hyperparameter ξ′ and measures the extent of
hardness of task distributions for each client, affect FEDA-
GENT while maintaining consistent dataset sizes and global
overlap patterns across all clients.

Theoretical Analysis on Convergence
Theorem 1 (Convergence of FEDAGENT). Under Assump-
tions 1–5, suppose that at each communication round t
the server uniformly samples without replacement a subset
St ⊂ [K] of size M ≤ K and aggregates only those clients’
updates:θt+1 = θt +

1
M

∑
k∈St

∆θk,t, with the same local
inner loop and notation as in Algorithm 1. Let each selected
client perform τ local steps with stepsize η. Choose the step-
size η = 1

Lτ and let θ̃ be a uniform random iterate drawn
from {θt}T−1

t=0 . Then

E
[
J(θ⋆)− J(θ̃)

]
≤ L

µT

(
J(θ⋆)− J(θ0)

)
+

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.

(4)

In particular, the convergence rate remains O(1/T). The
“noise floor” comprises: (i) an O(1/M) local stochastic term,
(ii) an O

(
K−M

M(K−1)

)
heterogeneity term due to client sampling,

and (iii) an O
((τ−1)2

τ2

)
local-drift term that vanishes when

τ = 1.

Remark. Theorem 1 establishes that the FEDAGENT
paradigm converges to a neighborhood of the optimum under
the PL and smoothness conditions. With stepsize η = 1/(Lτ)
and T communication rounds, the suboptimality decomposes
into (i) a transient term that decays as O(1/T) and (ii) a
time-invariant “noise floor”. The floor tightens with a larger
M , vanishes in the full-participation and single-step homo-
geneous limit (M = K, τ = 1, ζ2 ≈ 0), and otherwise
quantifies the computation–communication trade-off. The
proof of Theorem 1 is in Appendix. The key implications are:

1. Convergence rate (O(1/T)): The term
L
µT (J(θ

∗)− J(θ0)) exhibits a linear-in-1/T convergence
rate with respect to the number of communication rounds.
Better conditioning (smaller L/µ) accelerates approach
towards the asymptotic regime.

2. Effect of partial participation (O(1/M)): The variance
term G2+σ2

M decays inversely with the number of partici-
pating clients each round. Increasing M reduces stochas-
tic noise in the aggregated update. In the limit M=K, it
matches the variance level under full participation.

3. Client sampling and heterogeneity (O
(

K−M
M(K−1)

)
): The

middle term K−M
M(K−1) ζ

2 is induced by client sampling
each round without replacement under the heterogeneity
assumption. It vanishes when M = K and grows with
smaller M and larger heterogeneity ζ2, implying the po-
tential benefits of a larger number of clients each round,
stratified or clustered client sampling.

4. Local-drift from multiple local steps (O
((τ−1)2

τ2

)
): Per-

forming τ > 1 local steps introduces a bias captured by
(τ−1)2

2τ2 (G2 + σ2). This term is 0 at τ = 1 and approaches
1
2 (G

2 + σ2) as τ →∞, quantifying the classic trade-off
between fewer communications and increased drift.

5. Noise floor and tuning guidelines: The bracketed expres-
sion in Theorem 1 is a T -independent error floor. Once the
O(1/T) term becomes negligible as the number of rounds
grows, additional rounds do not improve the bound unless
one (a) increases M , (b) reduces heterogeneity (e.g., via
smarter client selection that lowers ζ2), or (c) decreases τ
to curb local drift.

Main Experiments
Experiment Setup. In this section, we aim to investigate
the performance of FEDAGENT under a uniform client dis-
tribution, which is independent of the aforementioned three
types of client heterogeneities. We partitioned the whole
dataset (WebShop or ALFWorld) into 100 clients. Each client
has 100 task instructions and there is a potential overlap be-
tween clients. 2 clients are randomly selected each round.
Each client is trained for 3 epochs per round, with a total of
70 rounds and 210 epochs overall. For each epoch, 64 tasks
are sampled iteratively with replacement from local data.

As for FEDAGENT, we adopt GRPO (Shao et al. 2024)
for policy optimization. Then, following the literature in
federated learning (Liu et al. 2024), we select two typical
baselines: Centralized Agent Training and Local Agent
Training. Centralized Agent Training uses the full dataset
(i.e., 64 tasks are sampled iteratively from the whole dataset
each epoch), while Local Agent Training uses only a specific
client’s dataset (we selected client index 21, 42, or 84 as the
baselines). Both of them run for the same total epochs as
FEDAGENT and also adopt GRPO for policy optimization.

Result Analysis. As shown in Table 1, FEDAGENT con-
sistently outperforms Local Agent Training and achieves
comparable performance to Centralized Agent Training.
For instance, on ALFWorld using Qwen2.5-1.5B-Instruct,
FEDAGENT achieves a 61.7% success rate compared to local
training variants that range from 47.7% to 57.0%, while
nearly matching the centralized training performance of
57.8%. This pattern is consistently observed across different
model scales (1.5B, 3B, 7B), model architectures (qwen and
llama), and client indexes (21, 42, and 84). Similarly, on
the WebShop benchmark, FEDAGENT maintains this advan-
tage with Qwen2.5-7B-Instruct achieving 68.9% success
rate versus local training with different indexes ranging from
33.6% to 49.2%, while remaining competitive with central-
ized training at 64.7%. These results demonstrate the advan-
tage of FEDAGENT in achieving competitive performance
while preserving users’ data privacy inherently.

Figure 2 shows the whole training dynamics of
FEDAGENT and Centralized Agent Training with
Qwen2.5-1.5B-Instruct on WebShop and ALFWorld
datasets. Both paradigms ultimately converge to similar
success rates despite different training dynamics (∼ 0.6
for WebShop, ∼ 0.5 for ALFWorld). In WebShop (left), both
approaches demonstrate steady monotonic improvement,
with centralized training initially outperforming FEDAGENT
until approximately epoch 120, after which both converge
to similar success rates around 0.6. In contrast, ALFWorld
(right) exhibits relatively more volatile training dynamics
with frequent performance fluctuations for both methods,

Method ALFWorld WebShop

Pick Look Clean Heat Cool Pick2 All Score Succ.
Qwen2.5-1.5B-Instruct
Local (Client 21) 42.9 25.0 38.5 37.5 14.3 14.3 29.7 69.9 57.0
Local (Client 42) 50.0 37.5 76.9 25.0 42.9 14.3 45.3 75.1 53.1
Local (Client 84) 50.0 37.5 46.2 25.0 28.6 0.0 34.4 72.7 47.7
Centralized 64.3±4.8 37.5±0.9 69.2±6.1 50.0±2.2 42.9±3.8 28.6±0.4 51.6±3.0 79.9±4.7 57.8±5.7

FEDAGENT 80.0±4.2 75.0±1.7 53.8±4.3 37.5±1.3 83.3±4.7 50.0±1.0 64.1±2.8 83.2±4.5 61.7±1.8

Qwen2.5-3B-Instruct
Local (Client 21) 41.5 12.5 34.9 51.0 18.9 21.2 31.3 59.8 55.0
Local (Client 42) 46.5 37.5 24.4 15.0 33.7 33.3 28.2 61.3 59.3
Local (Client 84) 22.8 27.5 39.1 46.3 48.3 36.5 29.9 77.6 58.6
Centralized 94.1±0.9 80.0±2.5 64.3±1.4 42.9±2.6 50.0±2.7 22.2±5.2 62.5±4.2 70.0±1.5 53.9±2.8

FEDAGENT 95.5±4.3 62.5±3.0 49.7±1.7 47.5±2.4 85.3±3.6 45.1±2.1 65.2±3.9 85.5±3.4 63.1±3.1

Qwen2.5-7B-Instruct
Local (Client 21) 35.5 25.0 61.0 25.9 35.8 45.2 38.4 70.9 49.2
Local (Client 42) 29.0 45.0 18.8 25.6 15.9 38.0 42.1 78.2 33.6
Local (Client 84) 34.7 47.5 44.4 51.3 40.1 21.8 35.7 60.6 39.3
Centralized 93.7±4.5 82.5±2.1 71.5±3.3 47.9±3.7 63.2±3.8 31.9±1.0 73.3±4.0 78.8±2.8 64.7±1.6

FEDAGENT 94.5±2.3 85.0±4.1 56.0±0.8 62.5±1.2 86.7±2.9 42.8±3.4 75.5±2.9 89.0±4.1 68.9±3.8

Llama-3.2-3B-Instruct
Local (Client 21) 39.8 50.0 17.9 40.0 20.7 34.0 38.1 65.3 50.5
Local (Client 42) 18.2 55.0 41.9 34.3 41.0 25.0 35.0 67.0 51.0
Local (Client 84) 29.9 32.5 39.0 18.9 18.8 37.6 29.7 70.2 55.7
Centralized 72.4±4.6 62.5±4.5 59.3±3.1 45.2±0.5 53.7±2.2 27.9±3.0 54.9±2.9 72.3±3.7 56.2±1.6

FEDAGENT 83.7±1.7 57.5±6.0 60.6±3.4 55.9±0.9 65.3±2.8 24.9±3.1 61.2±3.3 74.4±4.9 57.8±3.2

Table 1: Performance Comparison on ALFWorld and WebShop. We report the averaged performance and the corresponding
standard deviation for Centralized Training and FEDAGENT over three random seeds. For ALFWorld, the Success Rate (%) is
reported for each subtask as well as for the overall dataset. For WebShop, both the Task Score (%) and the Success Rate (%) are
reported.

(a) WebShop (b) ALFWorld

Figure 2: Training Dynamics of FEDAGENT and Centralized Training. Circle marks with different colors indicate the model
performance after training on specific selected clients each round. The red line refers to the performance of the aggregated
models on server throughout the training process.

ultimately converging to success rates around 0.5. This
further illustrates that FEDAGENT can achieve comparable
performance with centralized training.

Impact of Different Decentralized Settings
Experiment Setup. In this section, we aim to study the
impact of different decentralized settings on FEDAGENT in
FEDAGENTGYM by systematically varying three key hy-

perparameters across two different datasets (WebShop and
ALFWorld). We adopt Qwen2.5-1.5B-Instruct for all con-
figurations. The experimental setup examines: (1) samples
per client. We test 100, 500, and 1, 000 tasks per client to un-
derstand how task sampling scope affects FEDAGENT learn-
ing dynamics; (2) clients selected per round. We compare
1, 2, and 4 participating clients each round to analyze the
effect of federation scale on performance; and (3) epochs

(a) Samples per client, WebShop (b) Samples per client, ALFWorld

(c) Clients selected per round, WebShop (d) Clients selected per round, ALFWorld

(e) Epochs per client per round, WebShop (f) Epochs per client per round, ALFWorld

Figure 3: Training Dynamics of FEDAGENT in Different Decentralized Settings.

per client per round. We evaluate 1, 3, and 5 local training
epochs to determine the optimal number of local computa-
tions before aggregation. Since we keep the total number
of epochs the same at 210 for all configurations, 1, 3, and
5 local training epochs correspond to 210, 70, and 42 total
rounds, respectively.

Result Analysis. The results in Figure 3 demonstrate that
FEDAGENT exhibits distinct sensitivity patterns towards
decentralized settings, depending on the specific hyperpa-
rameter and dataset. First, it shows notable sensitivity to
the number of epochs per client per round. Moving from 1
to 5 epochs per round leads to significant performance gains,
especially after around 100 training epochs, highlighting that
shallow local updates are insufficient to unlock the full po-
tential of FEDAGENT. On ALFWorld, FEDAGENT is also
sensitive to the number of clients selected per round, with
2 clients per round outperforming 1 or 4, suggesting that
too few or too many clients could hinder convergence. By
contrast, FEDAGENT appears insensitive to the number of
samples per client, as performance curves largely overlap
across 100, 500, and 1, 000 samples per round, suggesting
that the task sampling scope for one client beyond a certain
threshold may not be the limiting factor. Our studies offer

valuable insights on the practical deployment of FEDAGENT
and also suggest that optimal federated agent learning con-
figurations are environment-dependent.

Impact of Heterogeneity Challenges
Experiment Setup. In this section, we aim to study the
impact of different heterogeneity challenges on FEDAGENT
in FEDAGENTGYM. As shown in Appendix, we can leverage
our proposed client partitioning strategies PREFERENCEPAR-
TITION, COVERAGEPARTITION, and HARDNESSPARTITION
to precisely control the extent of one form of heterogeneity
(Preference, Coverage, or Hardness Heterogeneity) across
clients with a hyperparameter ω, ξ, or ξ′. We keep the number
of total epochs as 210 and the number of all clients as 100,
which are consistent with the main experiments. We adopt
Qwen2.5-1.5B-Instruct in the experiments.

Result Analysis. As shown in Figure 4, FEDAGENT shows
high robustness against the three heterogeneity challenges.
Across all scenarios, preference heterogeneity (panels a,b),
coverage heterogeneity (panels c,d), and hardness hetero-
geneity (panels e,f), even when comparing low heterogeneity
settings (ω = 0.1, ξ = 256, ξ′ = 256) against high het-
erogeneity settings (ω = 0.9, ξ = 1, ξ′ = 1), FEDAGENT

(c) Coverage Heterogeneity, WebShop (d) Coverage Heterogeneity, ALFWorld

(e) Hardness Heterogeneity, WebShop (f) Hardness Heterogeneity, ALFWorld

(b) Preference Heterogeneity, ALFWorld(a) Preference Heterogeneity, WebShop

Figure 4: Training Dynamics of FEDAGENT in Different Heterogeneity Challenges.

consistently achieves strong success rates that steadily im-
prove throughout training, The learning curves show that
FEDAGENT maintains stable convergence behavior in both
WebShop and ALFWorld environments regardless of het-
erogeneity intensity, with success rates generally reaching
0.5-0.6 by the end of training. Crucially, the performance
degradation is minimal even under extreme heterogeneity
conditions, indicating that FEDAGENT has great potential
to handle real-world scenarios across the full spectrum of
heterogeneity challenges.

Related Work
RL has been instrumental in empowering LLM agents to
function effectively in dynamic and open-ended environ-
ments. Initial studies leveraged traditional RL approaches
like DQN (Mnih et al. 2015) for training LLM agents in
text-based gaming environments (Narasimhan, Kulkarni, and
Barzilay 2015). Subsequent research began incorporating
value-based techniques across broader agent applications
such as Android device manipulation (Rawles et al. 2023)
and embodied environments like ALFWorld (Shridhar et al.
2020). Contemporary methods have expanded RL training to
encompass sophisticated web-based and application-specific
tasks (Zhou et al. 2024; Putta et al. 2024). In previous works,

real-world task queries and trajectories have been essential
for training AI agents in practical applications. However, they
are becoming increasingly difficult to acquire due to privacy
concerns. Our work makes an initial effort to explore training
AI agents without compromising user data privacy.

Conclusion
In this work, we explored FEDAGENT (Federated Agent Re-
inforcement Learning), a new collaborative paradigm to train
AI agent, particularly LLMs, across distributed clients, and
built FEDAGENTGYM, the first decentralized agent learn-
ing environment. Extensive theoretical and empirical studies
demonstrate that FEDAGENT can achieve performance on par
with centralized training and maintain strong robustness to
heterogeneities. Our work validates the feasibility of training
AI agents while protecting user data privacy and charts new
research directions in agent learning.

Ethics Statement
This research on federated agent reinforcement learning aims
to address the critical privacy concerns in AI agent training
by developing decentralized paradigms that eliminate central-
ized data collection, ensuring all user data remains distributed
across local clients throughout the training process.

References
Bhandari, J.; and Russo, D. 2024. Global optimality guar-
antees for policy gradient methods. Operations Research,
72(5): 1906–1927.
Cochran, W. G. 1977. Sampling Techniques. New York: John
Wiley & Sons, 3rd edition. ISBN 0-471-16240-X. See § 2.6.
DeepSeek-AI; Guo, D.; Yang, D.; Zhang, H.; Song, J.; Zhang,
R.; Xu, R.; Zhu, Q.; Ma, S.; Wang, P.; Bi, X.; Zhang, X.; Yu,
X.; Wu, Y.; Wu, Z. F.; Gou, Z.; Shao, Z.; Li, Z.; Gao, Z.; Liu,
A.; Xue, B.; Wang, B.; Wu, B.; Feng, B.; Lu, C.; Zhao, C.;
Deng, C.; Zhang, C.; Ruan, C.; Dai, D.; Chen, D.; Ji, D.; Li,
E.; Lin, F.; Dai, F.; Luo, F.; Hao, G.; Chen, G.; Li, G.; Zhang,
H.; Bao, H.; Xu, H.; Wang, H.; Ding, H.; Xin, H.; Gao, H.;
Qu, H.; Li, H.; Guo, J.; Li, J.; Wang, J.; Chen, J.; Yuan, J.;
Qiu, J.; Li, J.; Cai, J. L.; Ni, J.; Liang, J.; Chen, J.; Dong,
K.; Hu, K.; Gao, K.; Guan, K.; Huang, K.; Yu, K.; Wang, L.;
Zhang, L.; Zhao, L.; Wang, L.; Zhang, L.; Xu, L.; Xia, L.;
Zhang, M.; Zhang, M.; Tang, M.; Li, M.; Wang, M.; Li, M.;
Tian, N.; Huang, P.; Zhang, P.; Wang, Q.; Chen, Q.; Du, Q.;
Ge, R.; Zhang, R.; Pan, R.; Wang, R.; Chen, R. J.; Jin, R. L.;
Chen, R.; Lu, S.; Zhou, S.; Chen, S.; Ye, S.; Wang, S.; Yu,
S.; Zhou, S.; Pan, S.; Li, S. S.; Zhou, S.; Wu, S.; Ye, S.; Yun,
T.; Pei, T.; Sun, T.; Wang, T.; Zeng, W.; Zhao, W.; Liu, W.;
Liang, W.; Gao, W.; Yu, W.; Zhang, W.; Xiao, W. L.; An, W.;
Liu, X.; Wang, X.; Chen, X.; Nie, X.; Cheng, X.; Liu, X.;
Xie, X.; Liu, X.; Yang, X.; Li, X.; Su, X.; Lin, X.; Li, X. Q.;
Jin, X.; Shen, X.; Chen, X.; Sun, X.; Wang, X.; Song, X.;
Zhou, X.; Wang, X.; Shan, X.; Li, Y. K.; Wang, Y. Q.; Wei,
Y. X.; Zhang, Y.; Xu, Y.; Li, Y.; Zhao, Y.; Sun, Y.; Wang,
Y.; Yu, Y.; Zhang, Y.; Shi, Y.; Xiong, Y.; He, Y.; Piao, Y.;
Wang, Y.; Tan, Y.; Ma, Y.; Liu, Y.; Guo, Y.; Ou, Y.; Wang, Y.;
Gong, Y.; Zou, Y.; He, Y.; Xiong, Y.; Luo, Y.; You, Y.; Liu,
Y.; Zhou, Y.; Zhu, Y. X.; Xu, Y.; Huang, Y.; Li, Y.; Zheng, Y.;
Zhu, Y.; Ma, Y.; Tang, Y.; Zha, Y.; Yan, Y.; Ren, Z. Z.; Ren,
Z.; Sha, Z.; Fu, Z.; Xu, Z.; Xie, Z.; Zhang, Z.; Hao, Z.; Ma,
Z.; Yan, Z.; Wu, Z.; Gu, Z.; Zhu, Z.; Liu, Z.; Li, Z.; Xie, Z.;
Song, Z.; Pan, Z.; Huang, Z.; Xu, Z.; Zhang, Z.; and Zhang,
Z. 2025. DeepSeek-R1: Incentivizing Reasoning Capability
in LLMs via Reinforcement Learning. arXiv preprint arXiv:
2501.12948.
Fan, F. X.; Tan, C.; Ong, Y.-S.; Wattenhofer, R.; and Ooi, W.-
T. 2025. FedRLHF: A Convergence-Guaranteed Federated
Framework for Privacy-Preserving and Personalized RLHF.
In Proceedings of the 24th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS’25, 713–
721. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 9798400714269.
Feng, L.; Xue, Z.; Liu, T.; and An, B. 2025. Group-in-group
policy optimization for llm agent training. arXiv preprint
arXiv:2505.10978.
Gao, D.; Yao, X.; and Yang, Q. 2022. A survey on heteroge-
neous federated learning. arXiv preprint arXiv:2210.04505.
Gao, H.-a.; Geng, J.; Hua, W.; Hu, M.; Juan, X.; Liu, H.;
Liu, S.; Qiu, J.; Qi, X.; Wu, Y.; et al. 2025. A survey of
self-evolving agents: On path to artificial super intelligence.
arXiv preprint arXiv:2507.21046.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;

Cummings, R.; et al. 2021. Advances and open problems
in federated learning. Foundations and trends® in machine
learning, 14(1–2): 1–210.
Karimi, H.; Nutini, J.; and Schmidt, M. 2016. Linear conver-
gence of gradient and proximal-gradient methods under the
polyak-łojasiewicz condition. In Joint European conference
on machine learning and knowledge discovery in databases,
795–811. Springer.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich,
S.; and Suresh, A. T. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In International conference
on machine learning, 5132–5143. PMLR.
Khaled, A.; Mishchenko, K.; and Richtárik, P. 2020. Tighter
theory for local SGD on identical and heterogeneous data. In
International conference on artificial intelligence and statis-
tics, 4519–4529. PMLR.
Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2020. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems, 2:
429–450.
Liu, B.; Li, X.; Zhang, J.; Wang, J.; He, T.; Hong, S.; Liu,
H.; Zhang, S.; Song, K.; Zhu, K.; et al. 2025. Advances
and challenges in foundation agents: From brain-inspired
intelligence to evolutionary, collaborative, and safe systems.
arXiv preprint arXiv:2504.01990.
Liu, B.; Lv, N.; Guo, Y.; and Li, Y. 2024. Recent advances
on federated learning: A systematic survey. Neurocomputing,
597: 128019.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control through
deep reinforcement learning. nature, 518(7540): 529–533.
Narasimhan, K.; Kulkarni, T.; and Barzilay, R. 2015. Lan-
guage understanding for text-based games using deep rein-
forcement learning. arXiv preprint arXiv:1506.08941.
Putta, P.; Mills, E.; Garg, N.; Motwani, S.; Finn, C.; Garg,
D.; and Rafailov, R. 2024. Agent q: Advanced reason-
ing and learning for autonomous ai agents. arXiv preprint
arXiv:2408.07199.
Qi, J.; Zhou, Q.; Lei, L.; and Zheng, K. 2021. Federated
reinforcement learning: Techniques, applications, and open
challenges. arXiv preprint arXiv:2108.11887.
Rawles, C.; Li, A.; Rodriguez, D.; Riva, O.; and Lillicrap, T.
2023. Androidinthewild: A large-scale dataset for android
device control. Advances in Neural Information Processing
Systems, 36: 59708–59728.
Shao, Z.; Wang, P.; Zhu, Q.; Xu, R.; Song, J.; Bi, X.; Zhang,
H.; Zhang, M.; Li, Y.; Wu, Y.; et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open lan-
guage models. arXiv preprint arXiv:2402.03300.
Shridhar, M.; Yuan, X.; Côté, M.-A.; Bisk, Y.; Trischler, A.;
and Hausknecht, M. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv preprint
arXiv:2010.03768.
Stich, S. U. 2018. Local SGD converges fast and communi-
cates little. arXiv preprint arXiv:1805.09767.

Woodworth, B. E.; Patel, K. K.; and Srebro, N. 2020. Mini-
batch vs local sgd for heterogeneous distributed learning. Ad-
vances in Neural Information Processing Systems, 33: 6281–
6292.
Yao, S.; Chen, H.; Yang, J.; and Narasimhan, K. 2022.
Webshop: Towards scalable real-world web interaction with
grounded language agents. Advances in Neural Information
Processing Systems, 35: 20744–20757.
Ye, M.; Fang, X.; Du, B.; Yuen, P. C.; and Tao, D. 2023. Het-
erogeneous federated learning: State-of-the-art and research
challenges. ACM Computing Surveys, 56(3): 1–44.
Yuan, R.; Gower, R. M.; and Lazaric, A. 2022. A general
sample complexity analysis of vanilla policy gradient. In
International Conference on Artificial Intelligence and Statis-
tics, 3332–3380. PMLR.
Zhang, G.; Geng, H.; Yu, X.; Yin, Z.; Zhang, Z.; Tan, Z.;
Zhou, H.; Li, Z.; Xue, X.; Li, Y.; et al. 2025. The Landscape
of Agentic Reinforcement Learning for LLMs: A Survey.
arXiv preprint arXiv:2509.02547.
Zhou, Y.; Zanette, A.; Pan, J.; Levine, S.; and Kumar, A.
2024. Archer: Training language model agents via hierarchi-
cal multi-turn rl. arXiv preprint arXiv:2402.19446.

Content of Appendix
More Details of Heterogeneity Challenges

Pseudo Code for Client Partitioning Strategies

Algorithm 2 PREFERENCEPARTITION

Require: Category pools {Ic}Cc=1 with sizes nc; total clients K; per-client set size L; jitter ω
Ensure: Client datasets X1, . . . , XK with |Xk| = L

1: pc ← nc/
∑C

j=1 nj ; ℓc ← log pc

1−pc
▷ global mix + logit anchors

2: for k = 1 to K do
3: zc ∼ N (ℓc, ω

2) for c = 1 . . . C; qc ← exp(zc)/
∑

j exp(zj) ▷ larger ω⇒ higher variance
4: (a1, . . . , aC) ∼ Multinomial(L; q1, . . . , qC) ▷ category counts for client k
5: if any ac > nc then set ac ← min(ac, nc) and redistribute leftover by q to classes with spare capacity ▷ capacity fix

within a set
6: Xk ←

⋃C
c=1 SAMPLEWITHOUTREPLACEMENT(Ic, ac)

7: end for
8: return {Xk}Kk=1

Algorithm 3 COVERAGEPARTITION

Require: total items N (indexed 1:N); total clients K; per-client bounds (Lmin, Lavg, Lmax) with Lmin ≤ Lavg ≤ Lmax;
dispersion ξ; desired average replicas per item r

Ensure: Client datasets X1, . . . , XK

1: T ← ⌊rN⌉ ▷ total assignments (sum of all |Xk|); keeps global overlap fixed
2: assert KLmin ≤ T ≤ KLmax ▷ feasibility under per-client bounds
3: µ← (Lavg − Lmin)/(Lmax − Lmin); α← µξ, β ← (1− µ)ξ ▷ Beta params with mean fixed at Lavg
4: Sample xk ∼ Beta(α, β) for k = 1 . . .K ▷ larger ξ⇒ lower variance (sizes closer to Lavg)

5: uk ← Lmin + xk(Lmax − Lmin); uk ← uk ·
T∑
j uj

▷ shape then renormalize to sum T

6: nk ← ROUNDTOSUM(u, T, [Lmin, Lmax]) ▷ largest remainder with clipping to [Lmin, Lmax]
7: m← ⌊r⌋, M ← ⌈r⌉, H ← T −mN
8: Set qi ←M for any H items; qi ← m otherwise
9: Initialize Xk ← ∅, remk ← nk for all k

10: for i = 1 to N do ▷ weighted, no-replacement placement across clients
11: A ← {k : remk > 0}; choose qi distinct k ∈ A with Pr(k) ∝ remk

12: Add item i to each chosen Xk and decrement the corresponding remk

13: end for
14: return {Xk}Kk=1

Algorithm 4 HARDNESSPARTITION

Require: total items N (indexed 1:N); disjoint index sets S (successful) and U (unsuccessful) with S ∪ U = {1:N}; total
clients K; per-client set size L; Hyperparameters for COVERAGEPARTITION: bounds (ℓ, c, h) with h ≤ L, dispersion ξ′,
overlap r

Ensure: client datasets X1, . . . , XK with |Xk| = L
1: {Yk}Kk=1 ← COVERAGEPARTITION

(
|S|,K, (ℓ, c, h), ξ′, r

)
▷ larger ξ′⇒ lower variance

2: for k = 1 to K do
3: mk ← L− |Yk|; Fk ← SAMPLEWITHOUTREPLACEMENT(U ,mk)
4: Xk ← Yk ∪ Fk

5: end for
6: return {Xk}Kk=1

Client Distributions under Partitioning Strategies
Preference Heterogeneity

0 10 20 30 40 50 60 70 80 90 99
Client ID

0

20

40

60

80

100

N
um

be
r

of
 S

am
pl

es

beauty
electronics
fashion
garden
grocery

Figure 5: Client Distribution under Preference Heterogeneity (WebShop, ω = 0.1).

0 10 20 30 40 50 60 70 80 90 99
Client ID

0

20

40

60

80

100

N
um

be
r

of
 S

am
pl

es

beauty
electronics
fashion
garden
grocery

Figure 6: Client Distribution under Preference Heterogeneity (WebShop, ω = 0.9).

0 10 20 30 40 50 60 70 80 90 99
Client ID

0

20

40

60

80

100

N
um

be
r

of
 S

am
pl

es

look_at_obj_in_light
pick_and_place_simple
pick_clean_then_place_in_recep
pick_cool_then_place_in_recep
pick_heat_then_place_in_recep
pick_two_obj_and_place

Figure 7: Client Distribution under Preference Heterogeneity (ALFWorld, ω = 0.1).

0 10 20 30 40 50 60 70 80 90 99
Client ID

0

20

40

60

80

100

N
um

be
r

of
 S

am
pl

es

look_at_obj_in_light
pick_and_place_simple
pick_clean_then_place_in_recep
pick_cool_then_place_in_recep
pick_heat_then_place_in_recep
pick_two_obj_and_place

Figure 8: Client Distribution under Preference Heterogeneity (ALFWorld, ω = 0.9).

Coverage Heterogeneity

0 20 40 60 80 100
client id

0

200

400

600

800

1000

sa
m

pl
es

Figure 9: Client Distribution under Coverage Heterogeneity (WebShop, ξ = 1).

0 20 40 60 80 100
client id

0

200

400

600

800

1000
sa

m
pl

es

Figure 10: Client Distribution under Coverage Heterogeneity (WebShop, ξ = 256).

0 20 40 60 80 100
client id

0

200

400

600

800

1000

sa
m

pl
es

Figure 11: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ = 1).

0 20 40 60 80 100
client id

0

200

400

600

800

1000

sa
m

pl
es

Figure 12: Client Distribution under Coverage Heterogeneity (ALFWorld, ξ = 256).

Hardness Heterogeneity

0 20 40 60 80 100
client id

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Figure 13: Client Distribution under Hardness Heterogeneity (WebShop, ξ′ = 1).

0 20 40 60 80 100
client id

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s

Ra
te

Figure 14: Client Distribution under Hardness Heterogeneity (WebShop, ξ′ = 256).

0 20 40 60 80 100
client id

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s

Ra
te

Figure 15: Client Distribution under Hardness Heterogeneity (ALFWorld, ξ′ = 1).

0 20 40 60 80 100
client id

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s

Ra
te

Figure 16: Client Distribution under Hardness Heterogeneity (ALFWorld, ξ′ = 256).

Proof of the Convergence
Assumption 1 (L-smooth gradients). For all θ, θ′ ∈ Rd and k ∈ [K], the client objectives have L-Lipschitz gradients:

∥∇Jk(θ)−∇Jk(θ′)∥ ≤ L∥θ − θ′∥.

Assumption 2 (G-bounded gradients). For all θ ∈ Rd and k ∈ [K], the full gradients are bounded:

∥∇Jk(θ)∥ ≤ G.

Assumption 3 (σ-bounded variance). For all θ ∈ Rd and k ∈ [K], the stochastic gradient estimator has bounded variance:

E
[
∥∇Jk(θ;B)−∇Jk(θ)∥2

]
≤ σ2,

where ∇Jk(θ;B) denotes the mini-batch gradient.

Assumption 4 (Polyak–Łojasiewicz (PL) condition). The global objective satisfies, for some µ > 0 and θ⋆ = argmaxθ J(θ),

2µ
(
J(θ⋆)− J(θ)

)
≤ ∥∇J(θ)∥2, ∀ θ ∈ Rd.

Assumption 5 (Bounded client heterogeneity). There exists ζ2 such that for all θ,

1

K

K−1∑
k=0

∥∥∇Jk(θ)−∇J(θ)∥∥2 ≤ ζ2, where ∇J(θ) = 1

K

K−1∑
k=0

∇Jk(θ).

Remark. Assumptions 1-3 are standard in stochastic optimization literature. As for Assumption 4 (the PL condition), in
practice, policy-gradient methods that constrain update size, such as trust-region approaches or proximal policy methods, yield
smoother policy updates, making the PL assumption more tenable. Recent works have likewise employed PL-type conditions to
obtain convergence guarantees for non-convex reinforcement learning objectives (Bhandari and Russo 2024; Karimi, Nutini,
and Schmidt 2016; Yuan, Gower, and Lazaric 2022), supporting our adoption of this assumption. Assumption 5 is a common
“bounded heterogeneity” condition used to control client drift in federated learning analyses (Li et al. 2020; Karimireddy et al.
2020; Stich 2018; Khaled, Mishchenko, and Richtárik 2020; Woodworth, Patel, and Srebro 2020).

Theorem 1 (Convergence of FEDAGENT). Under Assumptions 1–5, suppose that at each communication round t the server
uniformly samples without replacement a subset St ⊂ [K] of size M ≤ K and aggregates only those clients’ updates:
θt+1 = θt +

1
M

∑
k∈St

∆θk,t, with the same local inner loop and notation as in alg:fedagent. Let each selected client perform τ

local steps with stepsize η. Choose the stepsize η = 1
Lτ and let θ̃ be a uniform random iterate drawn from {θt}T−1

t=0 . Then

E
[
J(θ⋆)− J(θ̃)

]
≤ L

µT

(
J(θ⋆)− J(θ0)

)
+

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.

In particular, the convergence rate remains O(1/T). The “noise floor” comprises: (i) an O(1/M) local stochastic term, (ii) an
O
(

K−M
M(K−1)

)
heterogeneity term due to client sampling, and (iii) an O

((τ−1)2

τ2

)
local-drift term that vanishes when τ = 1.

Proof Sketch
Proof sketch. Our proof generally follows the proof of Theorem 4.1 in (Fan et al. 2025), with key modifications on second-
moment bound for the aggregated update and local-drift term.

Let uk,t :=
∑τ−1

i=0 gk,t,i be client k’s aggregate local stochastic gradients in round t, and ḡk,t :=
1
τ

∑τ−1
i=0 gk,t,i. Define the

round-average ḡt :=
1
M

∑
k∈St

ḡk,t, so the server update is ∆t = θt+1 − θt = ητ ḡt.
(1) One-step descent. By L-smoothness of J ,

E[J(θt+1) | θt] ≥ J(θt) + ητ
(
1− Lητ

2

)
∥∇J(θt)∥2 −

L

2
η2τ2 E∥ḡt −∇J(θt)∥2 (5)

(2) Variance–bias decomposition with Finite-Population Correction (FPC). Decompose

ḡt −∇J(θt) =
(

1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
)

︸ ︷︷ ︸
client sampling

+ 1
M

∑
k∈St

(
ḡk,t − Eḡk,t

)
︸ ︷︷ ︸

local stochastic noise

+ 1
M

∑
k∈St

bk,t︸ ︷︷ ︸
local drift

,

where bk,t := E[ḡk,t | θt]−∇Jk(θt). The three terms are bounded as follows:

E
∥∥∥ 1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
∥∥∥2 =

(K −M)

M(K − 1)
· 1
K

K∑
k=1

∥∥∇Jk(θt)−∇J(θt)∥∥2
≤ 2(K −M)

M(K − 1)
ζ2, (FPC)

E
∥∥∥ 1
M

∑
k∈St

(
ḡk,t − Eḡk,t

)∥∥∥2 ≤ G2 + σ2

M
, (local noise)

bk,t =
1

τ

τ−1∑
i=0

(
∇Jk(θk,i)−∇Jk(θt)

)
, E∥bk,t∥2 ≤

L2η2(τ − 1)2

2
(G2 + σ2),

⇒ E
∥∥∥ 1
M

∑
k∈St

bk,t

∥∥∥2 ≤ L2η2(τ − 1)2

2
(G2 + σ2). (local drift)

Combining,

E
∥∥ḡt −∇J(θt)∥∥2 ≤ G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

L2η2(τ − 1)2

2
(G2 + σ2). (6)

(3) PL and averaging. Let δt := E[J(θ⋆)− J(θt)]. Applying the PL condition ∥∇J(θt)∥2 ≥ 2µ δt in Equation (5) yields the
linear recursion

δt+1 ≤
(
1− 2µητ

(
1− Lητ

2

))
δt +

L

2
η2τ2

(G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

L2η2(τ − 1)2

2
(G2 + σ2)

)
,

where, in forming Equation (6), we control the sampling-drift mixed term via Young’s inequality 2⟨X,Y ⟩ ≤ ∥X∥2 + ∥Y ∥2
(thus inflating the sampling and drift pieces by a factor of 2). With η = 1

Lτ the contraction becomes 1 − µ/L, and the drift

contribution simplifies to (τ−1)2

2τ2 (G2 + σ2). Unrolling the recursion and averaging the gaps gives

1

T

T−1∑
t=0

δt ≤
L

µT
δ0 +

1

2µ

(G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

)
.

Finally, let θ̃ be drawn uniformly at random from {θt}T−1
t=0 ; then E

[
J(θ⋆)− J(θ̃)

]
= 1

T

∑T−1
t=0 δt, which yields the stated

bound.

A More Detailed Proof
Proof. We give a more detailed proof as follows. Our proof generally follows the proof of Theorem 4.1 in (Fan et al. 2025).
Throughout, write Et[·] := E[· | θt]. Let each selected client k ∈ St perform τ local stochastic policy-gradient steps with per-step
gradients gk,t,i, i = 0, . . . , τ − 1,

θk,t,0 = θt, θk,t,i+1 = θk,t,i + η gk,t,i, E[gk,t,i | θk,t,i] = ∇Jk(θk,t,i), E∥gk,t,i∥2 ≤ G2 + σ2.

Define the client’s round aggregates uk,t :=
∑τ−1

i=0 gk,t,i and ḡk,t :=
1
τ uk,t, and the server’s round average

ḡt :=
1

M

∑
k∈St

ḡk,t, ∆t := θt+1 − θt = ητ ḡt.

We analyze J(θt+1) by Assumption 1 L-smoothness of J :

J(θt+1) ≥ J(θt) +
〈
∇J(θt),∆t

〉
− L

2
∥∆t∥2 (7)

A. One-step progress. Let g⋆t := ∇J(θt) and et := ḡt − g⋆t . With η = 1
Lτ we have ∆t =

1
L (g

⋆
t + et) and thus

⟨g⋆t ,∆t⟩ −
L

2
∥∆t∥2 =

1

L

(
∥g⋆t ∥2 + ⟨g⋆t , et⟩

)
− 1

2L
∥g⋆t + et∥2

=
1

L

(
∥g⋆t ∥2 + ⟨g⋆t , et⟩

)
− 1

2L

(
∥g⋆t ∥2 + 2⟨g⋆t , et⟩+ ∥et∥2

)
=

1

2L
∥g⋆t ∥2 −

1

2L
∥et∥2. (8)

Plugging equation 8 into equation 7 and taking Et[·],

Et[J(θt+1)] ≥ J(θt) +
1

2L
∥g⋆t ∥2 −

1

2L
Et∥et∥2 (9)

Thus the entire task reduces to bounding Et∥et∥2.

B. Variance–bias decomposition of Et∥et∥2. We decompose et into three parts:

et =
(

1
M

∑
k∈St

∇Jk(θt)−∇J(θt)
)

︸ ︷︷ ︸
client sampling

+ 1
M

∑
k∈St

(
ḡk,t − Etḡk,t

)
︸ ︷︷ ︸

local stochastic noise

+ 1
M

∑
k∈St

bk,t︸ ︷︷ ︸
local drift

,where bk,t := Et[ḡk,t]−∇Jk(θt). (10)

We now bound the mean-squared norm of each contribution. (All bounds hold component-wise and hence for the Euclidean
norm.)

Lemma 1 (FPC: client-sampling variance). Let x1, . . . , xK ∈ Rd, x̄ = 1
K

∑
k xk, and S be a uniform size-M sample without

replacement with |S| = M where 1 ≤M ≤ K. Then

E
∥∥∥ 1

M

∑
k∈S

xk − x̄
∥∥∥2 =

K −M

M(K − 1)
· 1
K

K−1∑
k=0

∥xk − x̄∥2.

Proof. Let Σ := 1
K

∑K−1
k=0 (xk − x̄)(xk − x̄)⊤. This is the standard finite-population correction (Cochran 1977):

Cov
(

1
M

∑
k∈S xk

)
= K−M

M(K−1) Σ. Taking trace on both sides yields the claim since E∥Z − EZ∥2 = trCov(Z).

Applying Lemma 1 with xk = ∇Jk(θt) and using ∇J(θt) = 1
K

∑K−1
k=0 ∇Jk(θt), we obtain

Et

∥∥∥ 1

M

∑
k∈St

∇Jk(θt)−∇J(θt)
∥∥∥2 ≤ K −M

M(K − 1)
ζ2. (11)

Lemma 2 (Local stochastic noise). With the standing bounded-second-moment assumption, for each client k and round t,
Et∥ḡk,t − Etḡk,t∥2 ≤ G2 + σ2. Moreover, conditioned on θt and St, the per-client noises are independent across k ∈ St.
Consequently,

Et

∥∥∥ 1

M

∑
k∈St

(
ḡk,t − Etḡk,t

)∥∥∥2 ≤ G2 + σ2

M
. (12)

Proof. Since ḡk,t =
1
τ

∑τ−1
i=0 gk,t,i and E∥gk,t,i∥2 ≤ G2 + σ2, we have Et∥ḡk,t∥2 ≤ G2 + σ2, hence Et∥ḡk,t − Etḡk,t∥2 ≤

Et∥ḡk,t∥2 ≤ G2 + σ2. Independence across clients (conditional on θt, St) implies that variances add, yielding equation 12.

Lemma 3 (Local drift/bias bound). Let

bk,t := Et[ḡk,t]−∇Jk(θt), ḡk,t =
1

τ

τ−1∑
i=0

gk,t,i,

where the local iterates satisfy θk,t,0 = θt, θk,t,i+1 = θk,t,i+η gk,t,i, E[gk,t,i | θk,t,i] = ∇Jk(θk,t,i), and E∥gk,t,i∥2 ≤ G2+σ2.
If Jk is L-smooth, then

Et∥bk,t∥2 ≤
L2η2(τ − 1)2

4
(G2 + σ2). (13)

Moreover, for any sampled set St of size M ,

Et

∥∥∥ 1

M

∑
k∈St

bk,t

∥∥∥2 ≤ 1

M

∑
k∈St

Et∥bk,t∥2 ≤
L2η2(τ − 1)2

4
(G2 + σ2). (14)

Proof. By definition and L-smoothness of Jk,

bk,t =
1

τ

τ−1∑
i=0

(
∇Jk(θk,t,i)−∇Jk(θt)

)
=

1

τ

τ−1∑
i=1

Hk,t,i (θk,t,i − θt),

where each Hk,t,i is a (mean-value) linear map with operator norm ∥Hk,t,i∥ ≤ L. Using the local recursion θk,t,i − θt =

η
∑i−1

j=0 gk,t,j and swapping sums gives

bk,t =
η

τ

τ−2∑
j=0

(τ−1∑
i=j+1

Hk,t,i

)
gk,t,j =:

η

τ

τ−2∑
j=0

Ak,t,j gk,t,j ,

with Ak,t,j :=
∑τ−1

i=j+1 Hk,t,i and hence ∥Ak,t,j∥ ≤
∑τ−1

i=j+1 ∥Hk,t,i∥ ≤ L(τ − 1− j).
Applying the weighted Cauchy-Schwarz inequality,∥∥∥∑

j

Ak,t,jgk,t,j

∥∥∥2 ≤ (∑
j

∥Ak,t,j∥
)(∑

j

∥Ak,t,jgk,t,j∥2

∥Ak,t,j∥

)
≤

(∑
j

∥Ak,t,j∥
)(∑

j

∥Ak,t,j∥ ∥gk,t,j∥2
)
,

and taking Et together with E∥gk,t,j∥2 ≤ G2 + σ2 yields

Et∥bk,t∥2 ≤
η2

τ2

(τ−2∑
j=0

∥Ak,t,j∥
)2

(G2 + σ2) ≤ η2

τ2

(
L

τ−2∑
j=0

(τ − 1− j)
)2

(G2 + σ2).

Since
∑τ−2

j=0 (τ − 1− j) =
∑τ−1

m=1 m = τ(τ−1)
2 , we obtain

Et∥bk,t∥2 ≤ L2η2
(τ − 1)2

4
(G2 + σ2),

which is equation 13. For the client average, convexity of the squared norm (or Jensen) gives

Et

∥∥∥ 1

M

∑
k∈St

bk,t

∥∥∥2 ≤ 1

M

∑
k∈St

Et∥bk,t∥2,

and the second inequality in equation 14 follows by applying equation 13 to each k ∈ St.

With Lemma 3 in place, combining equation 11, equation 12, equation 14, equation 10, and Young’s inequality 2⟨X,Y ⟩ ≤
∥X∥2 + ∥Y ∥2 gives the (assumption-free) second-moment control

Et∥et∥2 ≤
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

L2η2(τ − 1)2

2
(G2 + σ2). (15)

C. Closing the one-step inequality. Insert equation 15 into equation 9 and use η = 1
Lτ to get

Et[J(θt+1)] ≥ J(θt) +
1

2L
∥∇J(θt)∥2 −

1

2L

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
(16)

D. PL inequality, recursion, and averaging. Let δt := E
[
J(θ⋆)− J(θt)

]
. By the PL condition, ∥∇J(θt)∥2 ≥ 2µ δt. Taking

total expectation of equation 16 and using η = 1
Lτ together with the variance-bias bound that includes the mixed-term control

(i.e., 2⟨S,D⟩ ≤ ∥S∥2 + ∥D∥2), we obtain

δt+1 ≤
(
1− µ

L

)
δt +

1

2L

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
. (17)

Summing equation 17 over t = 0, . . . , T − 1 and dividing by T , and noting that
∑T−1

t=0 (δt+1 − δt) = δT − δ0 ≤ δ0, yields

1

T

T−1∑
t=0

δt ≤
L

µT
δ0 +

1

2µ

[
G2 + σ2

M
+

2(K −M)

M(K − 1)
ζ2 +

(τ − 1)2

2τ2
(G2 + σ2)

]
.

Finally, let θ̃ be drawn uniformly from {θt}T−1
t=0 . Then E[J(θ⋆)− J(θ̃)] = 1

T

∑T−1
t=0 δt, which gives the claimed bound.

