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Abstract

The development of a microstructure generation framework tailored to user-specific
needs is crucial for understanding materials behavior through distinct processing-
structure-property relationships. Recent advancements in generative modeling,
particularly with Latent Diffusion Models (LDM), have significantly enhanced our
ability to create high-quality images that fulfill specific user requirements. In this
paper, we present a scalable framework that employs LDM to generate 3D mi-
crostructures (128x128x64) with over a million voxels, customized to user-defined
statistical and topological features. This framework can also predict manufacturing
conditions that produce these microstructures experimentally, solving the reacha-
bility issue. Our work focuses on organic photovoltaics (OPV), but the architecture
allows for potential extensions into other fields of materials science by adjusting
the training dataset.

1 Introduction

In materials science, the mapping between structure and property is a foundational concept, with
microstructures often serving as the primary influencers of a material’s physical characteristics
and performance [1–4]. However, direct experimental observation and reconstruction of these
microstructures are frequently hindered by high costs and technical challenges, posing difficulties in
accurately evaluating and forecasting material properties [5–8]. A prevalent objective in this field is
to generate statistically representative sets of microstructural realizations to aid computational design
and performance analysis. Addressing this challenge, we present a 3D microstructure generation
framework using state of the art generative artifical intelligence (AI) tools. This framework enables
the customized creation of microstructures based on specific requirements, facilitating on-demand
microstructure generation to support various research and development activities.

Several statistical approaches have been developed for microstructure generation, such as Markov
Random Fields (MRFs) [9], Gaussian Random Fields (GRFs) [10], and descriptors based microstruc-
ture reconstruction [11, 12]. Bostanabad et al. [13] offer a detailed overview of current techniques
for microstructure reconstruction. While these methods have proven useful, they come with certain
limitations. Torquato’s book [14] provides foundation insights into characterization of random
heterogeneous materials and provides comprehensive overview of mathematical and computational
tools for microstructure modeling and generation. Statistical models are computationally intensive
and hence not scalable with respect to both the size and the number of microstructure generations.
These models are less flexible and often require specific assumptions about the statistical properties
of the microstructure, such as stationarity and isotropy. Consequently, they may not generalize
effectively across different types of materials or structures. Adapting these models to incorporate new
constraints or objectives can be challenging and may requires substantial changes to the model or the
optimization process.
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In recent years, advanced generative AI models have demonstrated their powerful capabilities in
capturing intricate features from training data distributions. These AI tools are versatile and have
applications in various fields [15, 16]. Prominent examples of such generative AI tools include
Variational Autoencoders (VAEs) [17], Generative Adversarial Networks (GANs) [18], and Diffusion
Models (DMs) [19]. While VAEs are known for their ability to learn efficient data encodings,
they often struggle to generate sharp images [20]. GANs have been successfully employed in
generating good quality 3D microstructures [21–23]; however, they do not allow users to control
the generated microstructures. Furthermore, GANs are known for their training instability [24] and
are computationally intensive, especially when generating 3D structures. DMs have been claimed
to produce higher-quality images than GANs, showcasing a potential advantage in terms of output
quality [25]. However, similar to GANs, DMs also require significant computational resources,
particularly during inference, due to their iterative nature of the generation process [25].

Considering the limitations of VAEs, DMs, and GANs, the LDMs have emerged as a state-of-the-art
solution, combining the strengths of VAEs and DMs [26, 27]. LDMs operate within a latent space, a
reduced dimensionality achieved by a VAE within the LDM framework, which is significantly less
computationally intensive than operating in pixel space. This architecture enables LDMs to generate
high-quality, diverse, and detailed samples, offering a computational efficiency that is several orders
of magnitude greater than that of traditional DMs [26]. LDMs enable a controlled generation process
by specifying attributes or conditions, crucial for creating customized microstructure designs [26, 27].
Unlike GANs, which may encounter training challenges and mode collapse, leading to a constrained
output variety, LDMs demonstrate enhanced stability during training and a more varied output. This
dependability and adaptability make LDMs a suitable choice across a broad spectrum of applications
in the field of generative AI [28–31]. Previously, 2D microstructures of organic solar cells (OSC)
were designed using LDM [32] and this approach provided no control over the sampling process.
In our work, we address the major challenges associated with 3D microstructure generation by
leveraging LDM. We introduce an efficient LDM-based framework for 3D microstructure generation
that not only facilitates the on-demand creation of microstructures tailored to user specifications but
also predicts relevant manufacturing parameters for the generated microstructures. In this study, we
limit the user specifications to volume fraction and tortuosity. In the context of OPVs, both the donor
volume fraction of the active layer and tortuosity are crucial[33, 34]. The volume fraction refers to
the ratio of donor to acceptor materials within the active layer, impacting the efficiency of charge
generation and transport. Tortuosity, on the other hand, describes the complexity of the pathways that
charges (electrons and holes) must navigate through within the active layer to reach the electrodes.
To quantify these parameters, we employ the method described in Wodo et al. [35].

Our specific contributions reflect these major challenges and are as follows:

• 3D diverse microstructure generation: We employ a latent diffusion model to generate
multiphase 3D microstructures with more than a million voxels, and illustrate for both
two-phase and three-phase designs.

• Enable conditional microstructure generation: We can generate microstructures with
desired volume fractions and tortuosities, ensuring alignment with user specifications.

• Provide manufacturing parameters: Our framework is also capable of providing man-
ufacturing parameters for the generated microstructures. This will facilitate the transition
from conceptualization to actual manufacturing.

2 Methodology

2.1 Training dataset

The dataset used in this project was synthesized from three-dimensional simulations of the Cahn-
Hilliard equation, solved using the Finite Element Method (FEM). It comprises a wide range of phase
separation scenarios, carefully captured through simulations under varying conditions defined by two
critical parameters: the initial volume fraction (ϕ) and the interaction parameter (χ).

The Cahn-Hilliad equation represents a microstructure by modeling the spatial variation of two or
three components. In our dataset, ϕ is varied systematically to explore a wide spectrum of initial
mixture compositions, capturing insights into how initial concentration heterogeneities influence the
dynamics of phase separation. The interaction parameter, χ, is another key variable in the dataset. It
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Figure 1: Overview of the proposed LDM-based framework’s three-step training process: VAE
training and latent representation dataset creation, training of the FP, training of DM in the latent
space

quantifies the degree of affinity or aversion between the mixture’s components. A higher χ value
signifies a strong tendency towards phase separation due to unfavorable interactions, while a lower
value suggests better miscibility. By altering χ, we probe different interaction regimes, from weak
to strong phase-separating tendencies. This variation allows for an in-depth examination of how
molecular interactions impact the macroscopic patterns formed during phase separation.

For each combination of ϕ and χ, the dataset captures over 400 time-stamped snapshots of a 3D
Cahn-Hilliard simulation at 128 × 128 resolution, providing a detailed temporal sequence of the
phase separation process. There are 67 such time series, resulting in a total of over 26,800 3D
microstructures. The dataset was divided into training and validation sets, with 80% of the data
allocated to training and 20% to validation. The detailed dataset preparation is provided in the
supplementary section.

2.2 Generative model architecture

The core of our generative framework is the LDM, which offers several advantages over traditional
DMs. LDMs are superior in computational efficiency, memory usage, generation speed, and scal-
ability [26, 30]. They excel in processing 3D data, operating in a lower-dimensional latent space
that significantly reduces the computational load. This approach not only accelerates generation
but also decreases memory requirements—crucial for handling complex 3D datasets. The reduced
computational and memory demands allow for quicker iterations, making LDMs ideal for applications
that require rapid prototyping or extensive simulations. Additionally, the scalability of LDMs enables
them to manage larger datasets and more complex microstructures without a proportional increase in
resource consumption, unlike traditional DMs. This combination of factors renders LDMs a more
efficient and practical choice for generating detailed 3D microstructures in a resource-conscious
manner. Our LDM framework comprises three components: a VAE, a Feature Predictor (FP), and a
DM, which are trained sequentially. The encoder and decoder of the VAE are trained simultaneously
to obtain the latent space, from which the FP is trained. Once the VAE and FP are trained, we train
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the DM using the latent space and the predicted features. The architecture of the training framework
is provided in Figure 1.

2.2.1 Variational Autoencoder

Contrary to classic Autoencoders that transform an input x directly into a latent representation z,
VAEs convert x into a probability distribution [17]. In VAEs, the encoder doesn’t predict a single
point but instead determines the mean and variance of this distribution. The latent variable z is then
derived from this distribution. This is done by initially sampling from a standard normal Gaussian
distribution, then scaling this sample with the predicted variance, and finally, adding the predicted
mean to this scaled value.

To generate a sample z from the latent space, the VAE uses a random sample ϵ drawn from a standard
normal distribution:

z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I) (1)

where ⊙ denotes element-wise multiplication.

The encoder maps the input x to two parameters in the latent space - the mean µ and the log-variance
(log-var):

qϕ(z|x) = N (z;µϕ(x), exp(log-varϕ(x))) (2)

The decoder maps the latent representation z back to the input space:

pθ(x|z) = N (x;µθ(z), exp(log-varθ(z))) (3)

The loss function in VAEs consists of two terms, the reconstruction loss and the KL divergence:

L(θ, ϕ;x) = −Eqϕ(z|x) [log pθ(x|z)] + KL(qϕ(z|x)||p(z)) (4)

This function balances the accuracy of reconstruction with the regularization of the latent space.

The VAE is the entry point for our architecture. The VAE employed in this work consists of an
encoder-decoder structure with residual blocks for feature extraction and reconstruction. The encoder
comprises five 3D convolutional layers, each followed by Instance Normalization and a residual block
to capture spatial dependencies in the input data. The latent space is parameterized by a mean (‘mu‘)
and log-variance (‘logvar‘), both of which are obtained through additional 3D convolutional layers.
The decoder mirrors the encoder’s structure, using transposed convolutions to upsample the latent
space back to the original input dimensions with residual blocks and Instance Normalization for stable
training. A final Sigmoid activation is applied to the output to generate the reconstructed data. Once
the VAE is trained, we employ its encoder to compress microstructures with over a million voxels
into a more compact encoded representation, sized at 1024 (4x8x8x4). This reduced-dimensional
latent space, distinguished by its efficiently learned data distribution, facilitates more efficient and
stable diffusion processes.

2.2.2 Feature predictor

The feature predictor is a fully connected neural network designed to predict specific microstructural
and manufacturing features based on encoded representations of 3D morphological data. The model
architecture includes an input layer, two hidden layers, and an output layer. The input layer receives a
flattened latent representation of size 1024, generated by a pretrained VAE. This representation is then
processed through two hidden layers, each reducing the data dimensionality while applying Instance
Normalization and Dropout (dropout=0.1) to prevent overfitting. The final output layer maps the
processed data to the desired number of features, which correspond to the predicted manufacturing
and morphological characteristics.

2.2.3 Diffusion model

DMs consist of two main stages: the forward diffusion and the backward diffusion. In the forward
diffusion stage, Gaussian noise is repeatedly added to a data sample drawn from a specific target
distribution. This process is performed multiple times, resulting in a series of samples that become
increasingly noisy compared to the original data. This process is described by the Markov chain:
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q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (5)

where x0 is the initial sample from the target distribution q(x), and the variance schedule is defined
as {βt ∈ (0, 1)}Tt=1. Conversely, the backward diffusion stage aims to iteratively eliminate the noise
introduced in the forward stage, represented as q(xt−1 | xt). Direct sampling from q(xt−1 | xt)
is not possible because that would require the complete knowledge of the distribution. Therefore,
the model uses a neural network Gθ(xt−1 | xt), parameterized by G and θ, to approximate these
conditional probabilities. The network, refined through gradient-based optimization, aims to replicate
the random Gaussian noise used in the forward diffusion process for transforming the original sample
into a noisy version xt at a particular timestep. The objective function is expressed as:

∥z −Gθ(xt, t)∥2 = ∥z −Gθ(
√
ᾱtx0 +

√
1− ᾱtz, t)∥2 (6)

Here, αt = 1− βt, ᾱt =
∏t

s=1 αs, and z ∼ N (0, I).

The neural network’s primary role in a DM is to learn the inverse of the noise addition process.
By systematically removing the noise added during the forward diffusion process, the network
reconstructs the original data from its noisier versions. This process enables the generation of new,
high-quality samples from completely random Gaussian noise.

In the context of enhancing the generative capabilities of DMs, incorporating a conditional vector
provides a strategic augmentation of the model’s architecture. By embedding conditional vector, c,
within both the embedding and decoder layers of the U-Net structure in the diffusion process, the
model gains an additional layer of contextual guidance. This integration is mathematically articulated
as ∥z − Gθ(xt, t, c)∥2 = ∥z − Gθ(

√
ᾱtx0 +

√
1− ᾱtz, t, c)∥2, where the conditional vector c is

seamlessly intertwined with the noise prediction and denoising functions of the generative model, Gθ.
Such an approach leverages the conditionality to steer the generative process, thereby imbuing the
model with enhanced directional specificity and adaptiveness in its generation capabilities, aligning
closely with the encoded conditions in c.

Our LDM model operates under a linear beta schedule, which dictates the noise addition and removal
process across the diffusion stages. This schedule is precomputed and stored as buffers, allowing
for consistent noise manipulation during both training and sampling phases. The diffusion process
involves progressively adding noise to the latent features and then denoising them through a series of
timesteps to generate the final microstructure.

To guide the diffusion process, the model employs two key embedding networks:

• Time Embedding: This network converts the current timestep into an embedding, providing
temporal guidance during the denoising phase.

• Context Embedding: The context embedding network incorporates manufacturing features
that condition the generation process, ensuring that the generated microstructures adhere to
specific manufacturing parameters.

During the forward pass, the input 3D data is first encoded through the VAE to extract latent features.
These features are then processed by a feature predictor model to obtain context features, specifically
the initial four manufacturing features (e.g., two volume fractions and two tortuosities). These
latent features are progressively diffused using the predefined beta schedule, with the U-Net model
performing denoising at each timestep. The denoising process is informed by both time and context
embeddings, enabling precise reconstruction of the microstructure. For new sample generation, the
diffusion process is reversed, starting from pure noise and progressively refining the latent space into
a structured representation conditioned on the context features.

2.3 Training and inference

As shown in figure Figure 1, the training process consists of three steps. First, the VAE is trained
on the original training dataset. Once the VAE is trained, we encode the entire training dataset to
obtain the latent representation, which becomes the training data for both the feature predictor and
the diffusion model. In the second step, we train the feature predictor. Once trained, the input to
the feature predictor is a latent representation of the microstructure, and the output is the features
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Figure 2: Overview of the inference framework for the proposed LDM-based model: Random noise
ZT is sampled in latent space, and the diffusion model gradually denoises it over T steps. User inputs
condition the denoising process. ZT is then passed through the VAE decoder and the feature predictor
to obtain the microstructure and its manufacturing parameters, respectively.

of interest, such as manufacturing parameters, tortuosity, volume fraction, etc. Finally, the LDM is
trained to denoise and recover the original data from noisy inputs, with the corresponding features of
interest used as conditioning. The detail of the training process is provided in the appendix.

The inference process begins with the pre-trained weights of the LDM, VAE decoder, and feature pre-
dictor. The VAE encoder is not required during inference. The process involves user input and random
noise sampled in the latent space. The random noise is iteratively refined by the LDM, conditioned
on the user inputs. After 1,000 iterations, the denoised latent representation of the microstructure
is obtained. This step is the most time-consuming during inference. However, despite this many
iterations, the process remains highly efficient because the denoising occurs in latent space rather
than pixel space, which has 1,000 times fewer dimensions. The inference pipeline is demonstrated
in the Figure 2. Once the denoised latent representation of the microstructure is obtained, it is
passed through both the feature predictor and the VAE decoder. The feature predictor provides the
manufacturing conditions, while the VAE decoder generates the final conditioned microstructure.
Using NVIDIA A100 80GB GPU cards, it takes 2 seconds to infer a single microstructure.

3 Results and Discussion

3.1 Sampling quality

Figure 3 displays samples of microstructures generated by our LDMs, which were trained separately
on two-phase and three-phase systems. In the two-phase system, blue represents polymer type A, and
red represents polymer type B, corresponding to the donor and acceptor in OPVs, respectively. For the
three-phase system, gray denotes the interface between the donor and acceptor. Each microstructure
spans a volume of 128× 128× 64 voxels, showcasing a broad range of complex features. The trained
models generate numerous unique microstructures resembling those in the training set. Traditional
generation using numerical solvers of 3D microstructures of this size can require hours or days on
substantial amount of computing resources [36–38]. In contrast, our LDM framework produces each
microstructure in 0.5 seconds on an NVIDIA A100 GPU, including data export time, highlighting its
computational efficiency and potential for GenAI applications.

The transition from two-phase to three-phase systems maintains the quality of the features, suggesting
that the framework could be extended to accommodate more than three phases. This result demon-
strates the LDM’s capability to generate a diverse array of multiphase 3D microstructures, addressing
our first contribution. Our model efficiently produces microstructures with over a million voxels
(128 × 128 × 64 = 1, 048, 576 voxels), offering sufficiently high resolution to capture complex
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two-phase and three-phase structures. For comparison, [39] designed structures with approximately
80× 80× 80 voxels, while [22] reported microstructure sizes of 96× 96× 96 voxels.

Our model is designed to be scalable and generalizabley. By simply retraining with a three-phase
dataset—without altering the framework—it successfully generated high-quality microstructures
featuring smaller domains and more intricate features in three-phase systems. This adaptability
suggests that the framework could potentially be extended to accommodate even more phases,
depending on the application.

(a) Two phase (b) Three phase

Figure 3: Samples from LDMs trained on (a) two phase and (b) three phase microstructures.

3.2 Conditional sampling

Conditioning in this context refers to a method where additional information, known as a conditioning
vector, is provided to the model to guide the generation of microstructures towards desired charac-
teristics. We implemented conditioning by integrating the conditioning vector into the embedding
layers of the U-Net[40] backbone within the LDMs. Details on the conditioning process are provided
in the supplementary section. Users can specify a list of desired parameter values for conditioning.
The LDMs presented here can accommodate volume fractions and tortuosities of both phase A
and phase mix as conditioning parameters. The framework can be extended to include additional
features, depending on the application (see supplementary results). Figure 4 showcases examples
of conditional microstructure generation, demonstrating how the system can create microstructures
customized to specific volume fractions and tortuosities based on user inputs. Given the challenge of
interpreting the internal structures of 3D microstructures, the images display both non-thresholded
versions for the total microstructure and thresholded versions for the phase A only, phase B only, and
mixed components.

To evaluate the performance of conditional sampling, we generated 3200 microstructures based on
various user-specified volume fractions and tortuosities. We then compared the features of these
generated microstructures with the corresponding user inputs, as illustrated in Figure 5. The figure
highlights the LDM’s effectiveness, showing a Pearson correlation coefficient (or R2) of 0.93 or
higher, underscoring our method’s precision in guiding microstructure generation. The high degree
of alignment between the desired and generated microstructures’ attributes, such as volume fractions
and tortuosities, demonstrates the model’s adherence to precise user-defined specifications. This
capability is critical for targeted material design and optimization, extending our framework beyond
other microstructure generation methods [22, 23].

3.3 Prediction of manufacturing parameters

We sampled 3200 distinct microstructures using the same user inputs: volume fractions of phase
A and phase mixed were set at 0.3 and 0.2, respectively, with tortuosity values for phases A and
B both specified as 0.3. Samples generated from this identical input, available in the Supporting
Information, demonstrate the LDM’s capability to produce diverse microstructures from consistent
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(a) Predominant phase A - more than 0.5 (b) Predominant phase mixed - more than 0.5

Figure 4: Conditional microstructure generation: Sample microstructures from user inputs - (a) Pre-
dominant phase A, and (b) Predominant phase mixed. First column shows the total microstructure.
Second, third and fourth columns show the thresholded versions of the phase A, phase B and mixed
components, respectively.

inputs. Figure 6a illustrates the distribution of features extracted from these generated microstructures,
where the vertical dotted black lines mark the user inputs. The close alignment between the feature
distribution and input values highlights the LDM’s precision and conditional consistency. Moreover,
Figure 6b presents a contour plot of the manufacturing parameters—χ and timesteps—required
to achieve the desired microstructures. This plot identifies two viable χ parameters for the given
input, suggesting that both a higher χwith fewer timesteps and a lower χ with more timesteps can
produce the targeted microstructures. Our approach predicts the manufacturing parameters (blend
ratio, interaction parameter, and annealing time) used by the physics simulator with good accuracy,
showcasing a critical integration of computational design with manufacturability. By incorporating
actual manufacturing parameters like polymer types, temperature, solvents, annealing time, and
pressure into the training dataset, the model could extend its applicability to predict manufacturing
conditions for other applications, such as additive manufacturing [41, 42].

(a) Phase A volume fraction (b) Phase B volume fraction
(c) Mixed Phase volume
fraction

(d) Tortuosity A (e) Tortuosity B

Figure 5: Statistical analysis of conditional microstructure generation: Correlations between all
features of interest, user inputs, and the corresponding features measured from generated microstruc-
tures.
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Figure 6: Variety of microstructures generated by the LDM given identical user inputs. The model
can also suggests the manufacturing conditions required to generate such microstructures.

4 Conclusions

Conditional microstructure generation can be useful across various fields, including materials science,
energy storage, biomedical engineering, and additive manufacturing, by enabling precise control over
microstructure attributes to optimize performance, durability, and functionality. In this work, we
presented a versatile, scalable framework for generating 3D microstructures using LDM. Our approach
efficiently produces diverse, high-resolution microstructures, such as those in organic photovoltaics,
and provides predictive manufacturing parameters to link computational models with experimental
synthesis. This capability has the potential to empowers researchers and engineers to design materials
with specific properties, advancing our understanding of processing-structure-property relationships.

However, there are a few limitations to consider. The training dataset is generated using physics simu-
lators rather than experimental microstructures. Firstly, our framework shows promising performance
on synthetic microstructures but may not achieve the same results on realistic microstructures. The
primary reason we did not validate our model with experimental data is the lack of 3D reconstructed
microstructure datasets. OPV’s complex nanoscale morphologies with interpenetrating polymer and
fullerene domains are challenging to capture in 3D. For instance, studies that presented [43, 44]
3D microstructures using tomographic reconstruction techniques have been explored; however, to
our knowledge, no published 3D microstructure dataset currently exists. Should 3D structures
become available in the future, even in limited quantities, they could serve as valuable resources
for fine-tuning our framework. Secondly, the sequential training process—first training the VAE,
followed by the feature predictor, and finally the latent diffusion model—could be more streamlined
for efficiency and optimization. Thirdly, during inference, users must exercise caution when selecting
conditional parameters. Unrealistic user specifications will produce microstructures that do not satisfy
the user specifications, which is easily checked using the feature predictor network. To address these
limitations, future work could focus on incorporating experimental microstructure data. Optimizing
the training pipeline to allow for parallel or integrated training of the VAE, feature predictor, and
LDM could significantly reduce the overall training time. Furthermore, developing a more intuitive
interface, implementing restrictions among user inputs to prevent unrealistic conditioning parameters,
or automating parameter selection could mitigate the risk of generating impractical microstructures,
thus making the framework robust and user-friendly for a broader audience.
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A Appendix

A.1 Training process details and hyperparameter tuning

All three components of the architecture—the VAE, feature predictor, and LDM—were trained for 500
epochs with a batch size of 32. We chose a smaller batch size to mitigate the risk of out-of-memory
errors, particularly given that we are working with 3D data. The Adam optimizer [45] was employed
for gradient-based optimization. The Adam optimizer was selected due to its widespread adoption,
stability, and efficiency. The learning rate was dynamically adjusted using a cosine annealing
scheduler, which effectively reduces the loss by gradually decreasing the learning rate [46, 47]. Each
model took 3-4 days to train, and training all three models sequentially took a total of 11 days.

The loss function for VAE combined a Mean Squared Error (MSE) loss for reconstruction and a
Kullback-Leibler Divergence (KLD) loss [48], with a weight of 1× 10−6 for regularizing the latent
space. The goal was to keep both the KLD and reconstruction losses in the same order of magnitude.
The feature predictor was trained using an MSE loss function to assess the accuracy of predictions by
measuring the difference between predicted and actual feature values. The encoder of the pretrained
VAE was kept frozen during feature predictor training phase. For both the VAE and the feature
predictor, the initial learning rate was set to 5× 10−5, with a minimum of 5× 10−7.

For the LDM, the diffusion process was divided into 1000 timesteps. The training objective was
to minimize the MSE between the predicted noise and the actual noise added during the diffusion
process. Initial and minimum learning rates are 1× 10−6 and 1× 10−7, respectively. The learning
rate was selected based on the pioneering work by [26], which demonstrated the effectiveness of
using this order of magnitude in similar architectures. Both VAE and feature predictor were kept
frozen during LDM training.

The training process for all models was conducted in a GPU-enabled environment, using an NVIDIA
A100 GPU with 80 GB of memory. The entire framework was implemented in PyTorch and managed
by PyTorch Lightning, which handled the training loop, logging, and checkpointing. Checkpoints
were automatically saved based on the validation loss, ensuring that only the best-performing models
were retained. Throughout the training, real-time progress and performance metrics were continuously
logged using the WandB logger, providing detailed experiment tracking and facilitating reproducibility
and scalability.

A.2 Training microstructure samples

Figure 7 shows snapshots from a single time series within the training dataset, which contains 67
such series. The snapshots represent the evolution of phase separation during the 3D simulation
of the Cahn-Hilliard equation, illustrating the dynamic changes in microstructures over time. The
time series highlights the temporal progression and formation of distinct microstructures as the
concentration field evolves. The Cahn-Hilliard model accounts for both thermodynamic forces and

t=5 t=10 t=15 t=20 t=30

t=40 t=50 t=100 t=200 t=400

Figure 7: A sequence of 10 snapshots from one time series out of 67 in the entire dataset, illustrating
the evolution of phase separation in a 3D simulation of the Cahn-Hilliard equation.
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kinetic processes driving phase separation, providing insights into how processing conditions, such
as annealing, influence the final morphology of the active layer. This understanding can aid to the
optimization of material processing to improve organic solar cell (OSC) performance [49, 50].

A.3 Inference microstructure samples

(a) Sampled microstructures with a predominant
phase B (volume fraction above 0.5).

(b) Microstructures generated from the same conditional
features: volume fraction of phase A and phase mix 0.3
and 0.2, respectively. Tortuosity of both phases is 0.3.

Figure 8: Three phase inference micsrostructure samples.
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