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ABSTRACT

Generating time series data is a challenging task due to the complex temporal
properties of this type of data. Such temporal properties typically include local
correlations as well as global dependencies. Most existing generative models have
failed to effectively learn both the local and global properties of time series data.
To address this open problem, we propose a novel time series generative model
consisting of an adversarial autoencoder (AAE) and a newly designed architec-
ture named ‘Time-Transformer’ within the decoder. We call this generative model
‘Time-Transformer AAE’. The Time-Transformer first simultaneously learns lo-
cal and global features in a layer-wise parallel design, combining the abilities of
Temporal Convolutional Networks (TCNs) and Transformer in extracting local
features and global dependencies respectively. Second, a bidirectional cross at-
tention is proposed to provide complementary guidance across the two branches
and achieve proper fusion between local and global features. Experimental re-
sults demonstrate that our model can outperform existing state-of-the-art models
in most cases, especially when the data contains both global and local properties.
We also show our model’s ability to perform a downstream task: data augmenta-
tion to support the solution of imbalanced classification problems.

1 INTRODUCTION

Automatically generating realistic synthetic data assists in solving real-world problems when there
is limited access to real data and manual generation is cumbersome and/or impractical. Deep gen-
erative models have shown considerable success in domains such as computer vision and natural
language processing in the last decade. Numerous models have been introduced to produce syn-
thetic images or text to address downstream tasks such as image in-painting (Pathak et al., 2016),
text to image translation (Zhang et al., 2016), and automated captioning (Guo et al., 2017).

Although data generation is similarly important in the time series domain, there exist relatively few
works that address this problem. This is due to the fact that the generated data is required to share
a similar global distribution with the original time series data and also preserve its unique temporal
properties. As such, generative models for time series data, especially those universally applicable
to different types of time series data are relatively rare. Many existing works utilize Generative Ad-
versarial Networks (GANs) (Goodfellow et al., 2014) for time series generation and most of these
address the temporal challenges using Recurrent Neural Networks (RNNs) such as Long Short Term
Memory (LSTM) (Esteban et al., 2017; Yoon et al., 2019; Pei et al., 2021). There are also approaches
that use Variational Autoencoder (VAE) (Kingma & Welling, 2013) as the basic framework to gen-
erate time series data (Fabius & van Amersfoort, 2014; Desai et al., 2021). However, none of these
works have succeeded in efficiently learning both local correlation and global interaction, which is
crucial for time series processing.

Recently, Transformer based models have been successful in learning global features for different
types of data including time series (Raffel et al., 2019; Dosovitskiy et al., 2020; Zerveas et al.,
2021; Chen et al., 2021; 2022). On the other hand, models based on Convolutional Neural Net-
works (CNNs) have been shown to be better at extracting local patterns with their filters (Howard
et al., 2017; Yamashita et al., 2018; Liu et al., 2019). Temporal Convolutional Networks (TCNs),
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consisting of dilated convolutional layers Oord et al. (2016a), preserve the original local processing
capability of CNNs, but also have an enhanced ability to learn temporal dependencies in sequential
data (Lea et al., 2016; Bai et al., 2018). This makes them appropriate for time series modeling.
Therefore, it is natural to combine Transformer and TCN together to learn better time series fea-
tures. For example, some previous works use sequential combinations for time series tasks (Lin
et al., 2019; Cao et al., 2021). However, such sequential designs do not consider the interaction
between local and global features inherent in these datasets.

Motivated by the above observations and analysis, we propose a novel time series generative model
named ‘Time-Transformer AAE’. Specifically, we first select the Adversarial Autoencoder (AAE)
Makhzani et al. (2015) as the generative framework due to its success at learning different types of
tasks. The Time-Transformer is designed as part of the decoder to effectively learn and integrate
both local and global features. In each Time-Transformer block, the temporal properties are learnt
by both a TCN layer and a Transformer block. They are then connected through a bidirectional
cross attention block to fuse local and global features. This layer-wise parallel structure along with
bidirectional interaction, combines the advantages of the TCN and Transformer models: the ability
of the TCN to efficiency extract local features, as well as the Transformer’s ability in building global
dependency. We evaluate our proposed Time-Transformer AAE on different types of time series data
including artificial and real-world datasets. Experiments show that the proposed model surpasses the
existing state-of-the-art (SOTA) models in addressing the time series generation task. Furthermore,
we also show our model’s effectiveness on a downstream task - imbalanced classification - using
several real-world datasets. To summarize, our contributions are as follows:

• We propose a new time series generative model called Time-Transformer AAE, which
effectively combines the advantages of TCN and Transformer in extracting local and global
patterns respectively.

• We introduce the Time-Transformer module that simultaneously learns local and global
features in a layer-wise parallel design and facilitates interaction between these two types
of features by performing feature fusion in a bidirectional manner.

• We show empirically that the proposed Time-Transformer AAE can generate better syn-
thetic time series data, with respect to different benchmarks, compared to SOTA methods.

2 RELATED WORKS

2.1 TIME SERIES GENERATION

Deep generative models (DGMs) have gained increasing attention since their introduction. Kingma
& Welling (2013) propose a Variational autoencoder (VAE) that uses Bayesian method to learn latent
representations and turn the classic autoencoder into a generative model. Goodfellow et al. (2014)
introduce an adversarial approach to shape the output distribution and propose the Generative ad-
versarial networks (GANs). Makhzani et al. (2015) combine the previous two models together in
Adversarial autoencoders (AAE). They use the adversarial training procedure to perform variational
inference in the VAE. Numerous models have been designed based on these basic generative frame-
works and shown superior performance in image and text processing (Oord et al., 2016c;b; Pathak
et al., 2016; Zhang et al., 2016; Karras et al., 2017; Arjovsky et al., 2017; Guo et al., 2017; Kadurin
et al., 2017; He et al., 2019; Ahamad, 2019).

Successes in the fields of graphs and text have led to the application of DGMs in the time series
domain. Most of them are derived from the GAN framework with additional modifications to incor-
porate temporal properties. The first of these, called C-RNN-GAN (Mogren, 2016), directly uses
the GAN structure with LSTM to generate music data. Esteban et al. (2017) propose a Recurrent
Conditional GAN (RCGAN) which uses a basic RNN as generator and discriminator and auxiliary
label information as condition to generate medical time series. Since then, a number of works have
utilized similar designs to generate time series data in various fields including finance, medicine
and the internet (Zhou et al., 2018; Hartmann et al., 2018; Chen & Jiang, 2018; Koochali et al.,
2019; Wiese et al., 2020; Smith & Smith, 2020; Lin et al., 2020). TimeGAN Yoon et al. (2019)
introduces embedding function and supervised loss to the original GAN framework to generate uni-
versal time series. Pei et al. (2021) proposes RTSGAN based on WGAN (Arjovsky et al., 2017)
and autoencoder. It focuses on real-world data generation and achieves good performance. Jeha
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et al. (2022) utilizes the progressively growing architecture introduced by Karras et al. (2017) to
generate long time series. In addition, VAE has also been used for time series generation. Fabius
& van Amersfoort (2014) designed a recurrent VAE to synthesize time series data. The recently in-
troduced TimeVAE Desai et al. (2021) implements an intepretable temporal structure together with
VAE, and achieves state-of-the-art results on universal time series generation. Jarrett et al. (2021)
uses contrastive learning framework in stead of traditional DGMs to generate universal time series
and achieves good results.

In contrast to sampling from a learnt distribution, another line of works focus on step-wise gener-
ation. They borrow the idea from the variational inference of VAE Kingma & Welling (2013) and
build generative models to model the sequential data at each time step so that the future steps can be
inferred based on the previous ones and the ground truth data. Some early works modify the basic
RNN using the variational inference and get good results with regard to log-likelihood Chung et al.
(2015); Fraccaro et al. (2016). Some recent works combine this idea with TCN to produce the latest
state of the art models in this area Lai et al. (2018); Aksan & Hilliges (2019). Though different to
our work, these works provide an interesting direction for future time series generation.

2.2 TEMPORAL CONVOLUTIONAL NETWORKS AND TRANSFORMER

Temporal Convolutional Networks (TCNs) (Lea et al., 2016; Bai et al., 2018) use dilated causal
convolutions in WaveNet Oord et al. (2016a) to encode temporal patterns and avoid any information
leakage from future to past. TCN based models have since been used for sequential data such as
time series and show the ability to successfully extract local features (Sen et al., 2019; Zhao et al.,
2019; Hewage et al., 2020; Deldari et al., 2021). Transformer Vaswani et al. (2017) implements a
self-attention mechanism on the entire data to learn global interactions between each point, which
enhances the models’ ability to learn long range dependence and improves its performance on ma-
chine translation tasks. Its variants also achieve great success on language processing, computer
vision and time series tasks (Raffel et al., 2019; Zhang et al., 2019; Dosovitskiy et al., 2020; Zerveas
et al., 2021; Chen et al., 2022). Some works combine these two types of models to take advantage
of both their capabilities Lin et al. (2019); Cao et al. (2021). They link the two models sequentially,
which assumes dependencies exist between the models. However, if the models are required to learn
different levels of features separately to preserve their independence, a sequential combination is no
longer suitable and instead, a parallel structure like our work is needed.

3 METHODS

In this section, we first describe the problem. Then, we introduce the proposed Time-Transformer
AAE architecture. Afterwards, we discuss details of the model using one Time-Transformer block.

3.1 PROBLEM FORMULATION

Generally, multivariate time series generation via deep generative models like GANs involves train-
ing a model to learn how to map an arbitrary prior distribution p to the real data distribution pd,
so that the model can produce realistic synthetic data x′ ∼ pd based on any samples s drawn
from p. For time series data, we assume each time series x = {t1, t2, . . . , tn}T ∈ Rn×C , where
ti = {t(1)i , . . . , t

(C)
i } is the C observations at time i (C is also called ‘channel’ in the rest of the

paper), contains both local features and global dependencies. Thus, the map from p to pd here has to
represent both types of features in order to generate realistic data. The goal of our work is to design
a model to learn such a map that can represent both local processing and global interaction, in order
to generate realistic and useful synthetic time series data that can be used in downstream machine
learning problems.

3.2 TIME-TRANSFORMER AAE

3.2.1 OVERVIEW

We choose Adversarial Autoencoder (AAE) as our generation framework due to the potential of
extending it to supervised and semi-supervised learning settings (details of AAE can be found in
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Appendix A). To modify the original AAE for time series generation, we first use Convolutional
Neural Networks (CNNs) as the basis of the AAE, and then insert the Time-Transformer (see Figure
1b) into the decoder of the AAE. The overall structure is shown in Figure 1a. Here, we choose

(a) Overview of Time-Transformer AAE

(b) Time-Transformer Structure

Figure 1: Time-Transformer AAE

Gaussian as the prior distribution p(z) = N (0, 1) and insert the Time-Transformer after a De-
Convolutional block. With this design, we expect the De-Convolutional block to first reconstruct a
prototype of the time series, and then the Time-Transformer to learn the detailed local/global features
and generate realistic data.

Within the Time-Transformer, we use a layer-wise parallelization to combine the Temporal Convo-
lutional Networks (TCNs) and the Transformer. The learnt prototype from the De-Convolutional
block is passed into a TCN layer and a Transformer block simultaneously. The TCN learns the local
features of the time series, and the Transformer finds the global patterns of the data. The learnt
results then go through a cross-attention block to fuse with each other bidirectionally. At the end of
this parallel structure we concatenate the outputs from both sides, and use a full-connected layer to
map them into the expected dimension (L × C where L and C are length and number of channels
of the time series respectively) and reshape into the original time series dimensions.

3.2.2 TIME-TRANSFORMER BLOCK

The Time-Transformer consists of several Time-Transformer blocks, which have two key differences
to the standard TCN layers and Transformer blocks: (1) the layer-wise parallel design to combine
local-window self-attention and depth-wise convolution and (2) the bidirectional cross attention over
the two branches. Figure 2 shows the details of the Time-Transformer block.

Layer-wise Parallelization: In Mobile-Former (Chen et al., 2021), the authors show the advantage
of using a parallel structure. They combine MobileNets (a light-weight CNN) and Transformer in
parallel, and achieve better performance than sequentially combined models on image classification
and object detection tasks. Inspired by this design, we also combine TCN and Transformer in a
parallel manner for time series generation. However, instead of simply combining the entire TCN
and Transformer, we only use one layer from the TCN and one block from the Transformer in each
Time-Transformer block.
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Figure 2: Detailed design of the Time-Transformer block

As shown in Figure 2, each Time-Transformer block has two streams parallel to each other, the TCN
stream and the Transformer stream. Inside the TCN stream we have a dilated convolutional layer
followed by a post layer normalization, which make up one hidden layer of the TCN model. The
inputs and outputs of each block (TCN-in and TCN-in’ respectively in Figure 2) are time series data
containing local features including those learnt directly from the last/current TCN layer (TCN-out
in Figure 2) and the fusion of the local and global features. On the other side, the Transformer
block has the default design in accordance with (Vaswani et al., 2017): a Multi-head Self Attention
layer and a Feed-forward Network, both with post layer normalization. Similarly, the inputs/outputs
(Trans-in and Trans-in’ respectively in Figure 2) of this side are global features from last/current
Transformer block together with a feature fusion.

Bidirectional Cross Attention: The bidirectional cross attention block aims to build interaction be-
tween the two parallel branches, and thus fuse local and global features. As illustrated on the right
hand side of Figure 2, the output of the TCN layer x̃i ∈ RL×C and the output of the Transformer
block ỹi ∈ RL×C interact in a mutual manner within the cross attention block, where it bidirection-
ally fuses the local feature map x̃i and the global feature map ỹi. Specifically, the TCN features are
updated through a residual connection with the attention matrix to obtain xi+1:

xi+1 = x̃i +Aỹi→x̃i
· yiWev (1)

where Wev is the learnable parameter for the value embedding layer, and Aỹi→x̃i
is the affinity ma-

trix from Trans to TCN which can be calculated with matrix multiplication and a softmax function:

Aỹi→x̃i
= softmax(

x̃iWeq · (ỹiWek)
T

√
C

) (2)

where Weq and Wek are learnable parameters of two linear projection layers. Similarly, the updated
Trans feature map yi+1 is defined as:

yi+1 =ỹi +Ax̃i→ỹi
· xiWdv

Ax̃i→ỹi
=softmax(

ỹiWdq · (x̃iWdk)
T

√
C

)
(3)

where Wdq , Wdk, and Wdv are learnable parameters of three linear projection layers. Ax̃i→ỹi
is the

affinity matrix from TCN to Trans.
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4 EXPERIMENTS

4.1 DATASETS

We use six datasets to evaluate our model. The first three datasets have been used in several pre-
vious works (Yoon et al., 2019; Pei et al., 2021; Desai et al., 2021). Hence, they are referred to as
preliminary datasets:

• Sine Sim: A dataset containing 5000 samples of multivariate sinusoidal sequences with
different frequencies f , amplitudes α, and phases φ. In each dimension d ∈ {1, . . . , 5},
the time series x

(d)
t is generated using x

(d)
t = αsin(2πft + φ) where α ∼ U [1, 3], f ∼

U [0.1, 0.15] and φ ∼ U [0, 2π].
• Stock: 3686 samples of stock-price sequences from historical Google daily stocks. Each

sample has 6 features correlated with each other, including volume and high, low, opening,
closing, and adjusted closing prices. Hence, this time series data is 6-dimensional.

• Energy: The UCI Appliances energy prediction dataset contains time series data with high
dimensionality (28) and correlated features. There are totally 19735 continuous measure-
ments in this dataset.

The next three datasets contain time series with both local and global patterns. They are used to
evaluate the model’s ability to learn both types of features, and are termed local-global datasets:

• Sine Cpx: Another 5000 samples of 5-dimensional sinusoidal sequences, which are more
complex than the previous ones. They are simulated using sum of standard sinusoidal
waves x

(d)
t = α1sin(2πf1t + φ1) + α2sin(2πf2t + φ2) + α3sin(2πf3t + φ3) where

αi ∼ U [1, 3], fi ∼ U [0.1, 0.15], φi ∼ U [0, 2π], i = 1, 2, 3 and αi ̸= αj , fi ̸= fj , φi ̸= φj ,
when i ̸= j. Thus, in each dimension, the sequence is a sine wave globally, and also
contains local patterns within each wave.

• Music: A waveform audio file (WAV) of the classical music ‘Canon in D’ (converted from
an MP3 file). The file is sampled at 8000Hz frequency and double channels, which results
in a 2845466-step, 2-dimensional time series. The music data also contains local patterns
and seasonality globally. We select a 10000-step segment of the original time series, which
corresponds to the original music from 2’05” to 2’06”.

• ECochG: A medical dataset of historical patient data from cochlear implant surgeries.
Each instance contains a univariate time series that represents a patient’s inner ear response
during the surgery. In general, each time series is a stochastic trend globally, with some
local drops. The detailed background of this dataset can be found in Appendix.

4.2 BASELINE MODELS

We select four previous models to compare with. The inclusion criteria are: relevance of the work,
accessibility of the code, executability of the code, and performance of the model. TimeVAE and
RTSGAN (Desai et al., 2021; Pei et al., 2021) are the two most recent models that have achieved
state-of-the-art (SOTA) performance. TimeGAN and RCGAN (Yoon et al., 2019; Esteban et al.,
2017) are two earlier methods that have gained much attention, both having achieved SOTA per-
formance up to their introduction and have been used as a basis of comparison for many methods.
All these works provide public access to their code, together with detailed instructions. We use the
settings of the original designs as they have already been optimised by their authors. Details of
our model’s settings (hyper-parameters and data pre-processing) can be found in Appendix C. For
reproducibility, we provide source code and corresponding instructions in supplementary files.

4.3 BENCHMARKS

To evaluate these generative models, we use a range of metrics and consider several desiderata for
the generated time series: (1) They should be distributed close to the original data and different
from each other, (2) They should be indistinguishable from the original data, and (3) They should
preserve the temporal properties of the original data so that they can be used for downstream tasks.
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• Visualisation is an indicator of (1) above as it shows the distributions over the original
and generated data. We flatten the temporal dimension and use t-SNE (van der Maaten &
Hinton, 2008) plots to embed them into 2-dimensional space for viualisation.

• Fréchet Inception Distance (FID) evaluates the quality of generated data for GAN type
models. Following the ideas from (Hartmann et al., 2018; Smith & Smith, 2020; Jeha et al.,
2022), we replace the Inception model of the original FID with a recently proposed state-
of-the-art time series representation learning method called TS2Vec (Yue et al., 2021). We
pre-train the TS2Vec on each dataset and use it to get the FID score of the model. The FID
score provides a quantitative assessment of (1).

• Discriminative Score quantitatively measures the indistinguishability of the generated
data. We follow the protocol from Yoon et al. (2019) when defining this and the next
benchmarks. We first train a post-hoc sequential classifier (a 2-layer LSTM) to distin-
guish original and generated data. Then we get the test accuracy accte from a held-out
test set. Good generated time series data should be indistinguishable to the real data (accu-
racy close to 0.5). Thus, we use |accte − 0.5| as the Discriminative Score to measure the
indistinguishability (2).

• Predictive Score reflects how well the generated data inherit the predictive properties of the
original data. We train a post-hoc sequential predictor (a 2-layer LSTM) to do one-more-
step prediction, and calculate the mean absolute error (MAE). Here, we use the ‘Train
on Synthetic, Test on Real’ (TSTR) technique introduced by Esteban et al. (2017). Good
synthetic data should preserve the temporal properties of the original data, and thus the
predictor should be able to learn from the generation and return good predictions of the
real data. The Predictive Score provides a quantitative assessment of (3).

4.4 EXPERIMENTAL RESULTS

In this section, we first report the performance of the models with respect to the aforementioned
benchmarks. For the three scores, we execute the experiment several times to get the averages and
confidence intervals (95% confidence). Afterwards, we conduct some further studies using several
real-world datasets.

Figure 3: t-SNE visualisations of models (columns) on 3 datasets (rows). The blue dots represent
original data and the red dots represent synthetic data. Heavier overlaps represent better synthesis

Visualisation: Figure 3 shows visualization results of three local-global datasets (results of pre-
liminary datasets can be found in Appendix E.1). Each row contains plots of one dataset and each
column represents a model. The blue and red dots represent original data points and generations re-
spectively. It is obvious that our proposed Time-Transformer AAE (denoted as Time-Transformer
hereafter) consistently produces synthetic data closely distributed to the original data. TimeVAE and
RTSGAN also have good distributions for most datasets.

FID Score: Table 1 shows the FID scores of each model on each dataset. These scores are mostly
consistent with the observations from Figure 3: For example, our proposed Time-Transformer ob-
tains the best scores for all the datasets except ‘Stock’ where RTSGAN is slightly better. TimeVAE
also generates well distributed data for this dataset, but as shown in the figure, the data points tend
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Table 1: FID score: lower scores are better

Models Time-Transformer TimeVAE RTSGAN TimeGAN RCGAN

Sine Sim 0.283±0.023 0.766±0.027 3.175±0.142 4.572±0.153 9.705±0.417
Stock 0.273±0.035 0.303±0.037 0.254±0.031 0.645±0.081 22.673±0.975

Energy 0.983±0.039 1.598±0.067 6.292±0.265 2.821±0.117 20.475±0.732
Music 0.395±0.013 13.415±0.937 0.957±0.095 1.894±0.121 3.541±0.263

Sine Cpx 1.502±0.062 7.696±0.251 3.486±0.170 14.255±0.491 18.922±0.736
ECochG 0.348±0.024 5.197±0.237 0.527±0.062 0.674±0.098 12.652±0.617

to fall on/around a line. This causes its FID score to be worse than the former two models. For those
datasets where the models show similar visualisation results (e.g. Time-Transformer and TimeVAE
on ‘Sine Sim’) the FID scores provide a way to distinguish the quality of the generation.

Discriminative Score: As shown in Table 2, our model performs best in all datasets except ‘Stock’
where RTSGAN takes the leading position. The Time-Transformer dominates the performances
within the local-global datasets where the generations from other models are highly distinguishable
while those from our model show much better indistinguishability.

Table 2: Discriminative score: |accte − 0.5|, lower scores are better

Models Time-Transformer TimeVAE RTSGAN TimeGAN RCGAN

Sine Sim 0.131±0.021 0.217±0.015 0.489±0.007 0.485±0.008 0.500±0.000
Stock 0.463±0.023 0.476±0.050 0.374±0.022 0.486±0.030 0.500±0.000

Energy 0.496±0.005 0.499±0.002 0.499±0.001 0.500±0.000 0.500±0.000
Music 0.160±0.054 0.495±0.008 0.489±0.009 0.494±0.006 0.497±0.009

Sine Cpx 0.168±0.041 0.471±0.016 0.489±0.031 0.500±0.000 0.499±0.001
ECochG 0.103±0.012 0.474±0.016 0.405±0.004 0.424±0.015 0.496±0.003

Predictive Score: To avoid long decimal numbers while highlighting significant differences, we
report ten times MAE in Table 3. An additional column ‘Oracle’ shows results from the ‘Train
on Real, Test on Real’, which represent the theoretical best performances. As shown in the table,
our model performs best in all datasets except ‘Stock’ and ‘Energy’ where RTSGAN and TimeVAE
show better performance. Note that our model’s scores in local-global datasets are close to the
original ones, which indicates that it has learnt most of the predictive properties of these data.

Table 3: Predictive score: 10×MAE, lower scores are better

Model Oracle Time-Transformer TimeVAE RTSGAN TimeGAN RCGAN

Sine Sim 0.038±0.012 0.051±0.015 0.108±0.031 0.789±0.069 0.465±0.055 1.135±0.324
Stock 0.015±0.003 0.048±0.004 0.080±0.003 0.036±0.003 0.094±0.007 1.310±0.051

Energy 0.044±0.004 0.077±0.007 0.072±0.006 0.228±0.022 0.197±0.007 0.733±0.021
Music 0.014±0.008 0.017±0.009 0.077±0.051 0.021±0.009 0.027±0.007 0.179±0.016

Sine Cpx 0.029±0.008 0.032±0.006 0.055±0.015 0.070±0.006 0.527±0.025 1.785±0.075
ECochG 0.011±0.009 0.013±0.006 0.087±0.008 0.176±0.021 0.042±0.006 0.402±0.170

Ablation Study: Using the ‘Music’ dataset, we investigate how each component of the model con-
tributes to the final result. Specifically, we (1) use only a De-convolutional block, (2) add only a TCN
block after (1), (3) add only a Transformer block after (1), (4) add a sequential combination of TCN
and Transformer after (1), and (5) use our proposed Time-Transformer. The results of this study are
shown in Table 4 (results of the other two local-global datasets can be found in the Appendix E.2).
From the FID column we can see a clear improvement when adding either a TCN or a Transformer.
The sequential combination also slightly improves the performance. However, with our proposed
parallel structure, the Time-Transformer achieves an approximate 40% improvement compared to
the sequential one. The other two columns also reflect similar situations. All these phenomena
indicate the strong ability of the proposed Time-Transformer AAE to generate time series.
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Table 4: Ablation study

Components FID Discriminator Predictor

De-Convolution 2.298±0.284 0.490±0.006 0.037±0.002
TCN 0.672±0.097 0.471±0.013 0.026±0.007

Transformer 0.815±0.039 0.479±0.009 0.027±0.006
TCN+Trans (Sequential) 0.627±0.031 0.455±0.021 0.022±0.008
Time-Transformer AAE 0.395±0.013 0.160±0.054 0.017±0.009

Model Application: We briefly evaluate the utility of our model on imbalanced classification using
the ECochG dataset and three real-world datasets from the UCR archive (Dau et al., 2018): Wafer,
Herring, and SwedishLeaf. The details of these datasets can be found in Appendix F. Previous
studies argued normal oversampling approaches (augmenting data via replication or simple modifi-
cations like jittering) can cause overfitting or create out-of-distribution synthesis (Yap et al., 2014;
Yan et al., 2019). Our proposed model is expected to address these issues. Table 5 lists the classifi-
cation results on the ECochG dataset using an off-the-shelf Multi-layer Perceptron (MLP) with (1)
no augmentations, (2) augmentations from repeating minority class (3) augmentations from jittering
method which augments data by adding noises, (4) augmentation from RTSGAN, (5) augmentation
from TimeVAE, and (6) augmentation from our model (We do not list TimeGAN and RCGAN be-
cause training data here are mostly not enough to train their models). The results on the other three
datasets can be found in Appendix E.3. We can observe from the table that one crucial problem

Table 5: Data augmentation evaluation (higher scores are better)

Datasets Components Accuracy Recall Precision AUC ROC AUC PRC

ECochG

No Aug 0.9751 0.7062 0.8706 0.9824 0.8521
Replication 0.9719 0.9552 0.7072 0.9824 0.8636

Jittering 0.9757 0.7074 0.8864 0.9866 0.8870
RTSGAN 0.9702 0.6791 0.8235 0.9767 0.7352
TimeVAE 0.9738 0.7388 0.8319 0.9807 0.7906

Time-Transformer 0.9802 0.8178 0.9163 0.9945 0.9345

of imbalanced classification is low recall rates, which is caused by an under-represented positive
class in the training set. The model tends to predict data as negative since it has seen much more
negatives than positives. Repeating the minority class can improve the recall at the cost of precision,
which reflects the aforementioned overfitting problem. However, augmenting the training set with
synthetic data from our model shows better results with respect to all metrics suggesting that it can
aid in solving imbalanced classification problems.

Additional Experiments: We further investigate our model’s performance with respect to: different
training sizes, local & global feature extraction, different encoder types, longer time series data, and
different evaluation model. Due to space limitations, we provide the details of these experiments in
Appendix E.4 to E.8 respectively.

5 CONCLUSION

In this paper we introduce a novel time series generative model called Time-Transformer AAE,
which contains an adversarial autoencoder (AAE) and a key component named Time-Transformer
in the decoder. Via a layer-wise parallelization and a bidirectional cross attention, Time-Transformer
exploits the learning ability of Temporal Convolutional Networks and Transformer in extracting lo-
cal features and building global interaction respectively. Through multiple experiments, we show the
effectiveness of our proposed Time-Transformer AAE on time series generation tasks. Additionally,
by training on different sizes of data, we show the proposed model can achieve competitive per-
formance to state-of-the-art methods even with less training data. Furthermore, we see the model’s
utility in augmenting data for imbalanced classification problems. Possible future directions of our
work can be: (1) altering the model setting with conditional generation in order to produce user-
defined synthetic data and (2) extending the model to work with partial time series.
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A ADVERSARIAL AUTOENCODER

The data generation in our model is based on a framework called Adversarial Autoencoder (AAE)
(Makhzani et al., 2015) which is shown in Figure 4. It uses the adversarial training procedure from
GANs to perform variational inference, and hence turns the decoder into a deep generative model.

Let us assume x is the input data and z is the corresponding latent code produced by a deep encoder
E(·). Let p(z) be an arbitrary prior distribution, q(z|x) be the encoding distribution, and pd(x) be
the data distribution. Then, we can define an aggregated posterior distribution q(z) on the latent
code vector:

q(z) =

∫
x

q(z|x)pd(x)dx (4)

The AAE attaches an adversarial network (a discriminator that distinguishes positive samples s ∼
p(z) from negative samples z ∼ q(z)) on top of the latent code vector which guides the aggregated
posterior q(z) to match the prior distribution p(z) (see Figure 4).

Figure 4: Adversarial Autoencoder

The objective function of the AAE consists of two parts: reconstruction loss and adversarial loss.
The reconstruction loss lrec ensures that generator (decoder) G(·) can reconstruct the original data
from the latent codes produced by the encoder E(·). Normally, it is measured using similarity sim(·)
between the original and reconstructed data:

lrec = Ex∼pd(x)sim(x,G(z)) (5)

The adversarial loss ladv provides a solution for a min-max adversarial game between a generative
model G(·) and a discriminative model D(·):

ladv = min
G

max
D

Ex∼pd(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (6)

B ECOCHG DATASET

Intra-operative electrocochleography (ECochG) is used to monitor the response of the cochlea to
sound during a Cochlear Implant surgery. This surgery is a cost-effective solution for hearing im-
pairment which, however, has been received by only a few patients due to the high probability of
losing their natural hearing due to trauma caused during the surgery. Previous studies show that
the changes of some ECochG components can reflect such trauma (Campbell et al., 2016; Dalbert
et al., 2016). Specifically, Campbell et al. (2016) demonstrate that a 30% drop in amplitude of the
‘Cochlear Microphonic’ (CM - one component of the ECochG signal) leads to poorer natural hear-
ing preservation, and thus can be used to predict trauma. This has motivated researchers to develop
machine learning models to automatically detect these drops and assist the surgeon in preventing
trauma during the surgery (Wijewickrema et al., 2022).

C EXPERIMENTAL SETUP

C.1 DATA PRE-PROCESSING

For the preliminary datasets, we follow the settings in previous work (Yoon et al., 2019; Desai et al.,
2021). We use a sliding window of 24 window size to sample the data resulting in time series of
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length 24, and re-scale all data to [0, 1] using the min-max normalization formula:

x′ =
x−min(x)

max(x)−min(x)

where x is the original data, min(x),max(x) are minimum and maximum of the data respectively.

We choose a longer length (128) for time series in local-global datasets, to preserve more local
and global patterns, and to evaluate the model’s ability to process longer data. We use min-max
normalization to re-scale all the data to [0, 1] as mentioned previously.

C.2 MODEL SETTINGS

We search the hyper-parameters of the autoencoder based on the average reconstruction perfor-
mances on the preliminary datasets. We divide the datasets into training and validation sets, and
search the hyper-parameters including layer number, filter number, kernel size, stride number, head
number, head size, and dilation rate using the training set. The value range of each parameter is
shown in Table 6. As a result, the encoder is a 3-layer 1-dimensional CNN with 64, 128, and 256 fil-

Table 6: Value range of Hyper-parameters

Hyper-parameters Value range

layer number 2,3
filter number 64,128,256,512
kernel size 4,6,8

stride number 1,2
head number 2,3,4

head size 64,128,256
dilation rate 1,2,4,16

ters and ‘relu’ activation. All filters have kernels of size 4, and move 2 unit-step each time (stride of
2). After this convolutional process, the results are flattened and go through a fully connected layer
which maps them into the latent code with pre-defined dimensions. Here we use 8-dimensional
latent code for preliminary datasets (original: 24-step) and 16-dimensional vectors for local-global
datasets (original: 128-step).

In the decoder, the de-convolutional part has 2 transposed convolutional layers with 128 and 64
filters. All filters have kernels of size 4 and strides of 2 units. Then, the outputs are reshaped and
mapped into the original data dimensions (length L and channels C) via reshape and fully connected
layers, which results in prototypes of the time series. The following Time-Transformer has two
blocks, which represents a TCN that has two hidden dilated convolutional layers. The hidden layers
have C filters with kernel size of 4 and dilation rate of 1 and 4 respectively. The Transformer blocks
combined with each dilated convolutional layer consist of a 3-head self-attention layer with head
size of 64 and a feed-forward convolutional layer. The cross attention is also a 3-head attention
module with a head size of 64. It takes inputs from different sides which makes it different from
the self-attention module ahead. The discriminator, that accomplishes the adversarial process, is a
2-layer fully connected layer with 32 hidden units in both layers and ‘relu’ activation.

We follow the original AAE training procedure to train the model: We first update the encoder and
decoder using the reconstruction loss (Mean Squared Error). Then, the encoder and discriminator
are updated with respect to the adversarial loss consisting of a discriminative loss and a generative
loss (both are cross-entropy). We use the Adam optimiser to update all the losses. The learning rate
for reconstruction loss is 0.005 initially, and reduces to 0.0001 via a polynomial decay function (we
directly implemented it using the tensorflow platform, the power of the polynomial is 0.5). Both
the discriminative loss and generative loss have initial learning rates of 0.001, which also reduces
to 0.0001 via a polynomial decay function (same as previous). The default training epoch is set to
1000.
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D GENERATION EXAMPLES

We show some generated samples (together with the original data) of local-global datasets in Figure
5.

Figure 5: Generation examples
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E ADDITIONAL EXPERIMENTAL RESULTS

We provide more results from the experiments on visualization, training size, ablation study and
model application as mentioned in the paper.

E.1 VISUALIZATION

t-SNE plots of the preliminary datasets are shown in Figure 6.

Figure 6: t-SNE visualizations on preliminary datasets

E.2 ADDITIONAL ABLATION STUDY

Table 7 shows the results of the ablation study with respect to ‘Sine Cpx’ and ‘ECochG’ datasets.
Both show performance improvements when we add each part.

Table 7: Extra Ablation Study

Dataset Components FID Discriminator Predictor

Sine Cpx

De-Conv 6.976±0.157 0.490±0.021 1.832±0.526
TCN 2.570±0.067 0.417±0.270 0.529±0.057

Transformer 2.472±0.079 0.397±0.253 0.484±0.025
TCN+Trans (Sequential) 1.721±0.055 0.193±0.181 0.037±0.013

Time-Transformer 1.502±0.062 0.168±0.041 0.032±0.006

ECochG

De-Conv 0.781±0.099 0.461±0.048 0.092±0.011
TCN 0.502±0.041 0.288±0.192 0.027±0.013

Transformer 0.513±0.045 0.256±0.164 0.027±0.007
TCN+Trans (Sequential) 0.402±0.031 0.162±0.059 0.017±0.005

Time-Transformer 0.348±0.024 0.104±0.012 0.013±0.006

E.3 IMBALANCED CLASSIFICATION

Table 8 lists imbalanced classification results on UCR datasets: Wafer, Herring, and SwedishLeaf.

E.4 TRAINING SIZE COMPARISON

We study how Time-Transformer performs with different sizes of training data. We train the model
with 100%, 50%, and 20% of the data. The results are shown in Figure 7, including the mean scores
(red dots) and corresponding intervals. Additionally, the best results from competitors are shown
via a blue area, with the mean scores represented by the lines in the middle. Note that these results
are from the models trained on full size datasets (100%). Generally, a smaller training size leads
to worse performance both in terms of quality and stability. The fact that our model is competitive
with other models even when trained on 50% of the data highlights its accuracy and stability.
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Table 8: Data Augmentation Evaluation on UCR datasets

Datasets Components Accuracy Recall Precision AUC ROC AUC PRC

Wafer

No Aug 0.9919 0.9639 0.9610 0.9981 0.9826
Replication 0.9924 0.9835 0.9478 0.9979 0.9855

Jittering 0.9933 0.9774 0.9643 0.9985 0.9892
RTSGAN 0.9940 0.9759 0.9686 0.9973 0.9847
TimeVAE 0.9932 0.9789 0.9587 0.9978 0.9868

Time-Transformer 0.9945 0.9849 0.9618 0.9992 0.9928

Herring

No Aug 0.5469 0.3461 0.5625 0.6549 0.5762
Replication 0.6563 0.4615 0.6000 0.7287 0.6429

Jittering 0.6250 0.3846 0.5556 0.6781 0.5455
RTSGAN 0.6563 0.4231 0.6111 0.7146 0.6307
TimeVAE 0.6406 0.3846 0.5882 0.6817 0.5891

Time-Transformer 0.6875 0.4615 0.6667 0.7712 0.6455

SwedishLeaf

No Aug 0.9264 0.0000 0.0000 0.9383 0.4296
Replication 0.8848 0.8043 0.3700 0.9487 0.5337

Jittering 0.9279 0.3043 0.5185 0.9426 0.5230
RTSGAN 0.9232 0.1956 0.4500 0.9418 0.4656
TimeVAE 0.9360 0.6304 0.5577 0.9439 0.5433

Time-Transformer 0.9408 0.8478 0.5652 0.9536 0.6341

(a) Music

(b) Sine Cpx

(c) ECochG

Figure 7: Results of training size experiments on ‘Music’, ‘Sine Cpx’, and ‘ECochG’ datasets

E.5 CASE STUDY FOR LOCAL & GLOBAL FEATURE LEARNING

We first define the local and global features: Assume we have a time series x = {t1, . . . , tn} and
a function F that maps a segment of x into some feature space. Global features are defined by
applying the function F to the whole time series: i.e. F ({t1, . . . , tn}). Local features are defined
with reference to a sub-part of the whole series: i.e F ({ti, . . . , ti+m}) where, m < n.
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Then, we use three simple datasets to show different performance of the models when encountering
time series containing both global and local features. Figure 8 shows the underlying idea. The green
series and the orange series each represent local and global features respectively. They are generated
with high (50Hz) and low (5Hz) frequencies with respect to the Fast Fourier Transform. By adding
them together we get the blue series which, hence, contains both global and local features, we name
it ‘mixture’ (the global features would be the total trend of the low frequency wave and this needs
to be learnt using the entire series, and local features would be the time span and the amplitude
of a single oscillation of the high frequency wave, which would be learnt via sub-parts of the time
series). To be specific, the formulae to generate local, global and mixture time series are:

• Local: αsin(2π50t)
• Global: αsin(2π5t)
• Mixture: αsin(2π5t) + αsin(2π50t)

where α ∼ U [1, 3]. For each of the three cases, we generate 2500 time series, each consisting of
128-step time steps (we use 128 time steps to ensure global features are non-trivial). We thus obtain
three different datasets, each containing 2500 time series.

Figure 8: Global & local feature example

We train the different generation models on these datasets and compare their performance. First,
we show some generated examples in Figure 9. Comparing these generated examples, we can see:
when the time series contain only global features or only local features, all the models can generate
comparatively good time series (see Figure 9a and 9b). However, when it comes to the mixture of
the two, baseline models fail to generate as effectively. RTSGAN can capture the global trends but
fails to extract local properties. TimeGAN and RCGAN seem to be able to learn the local patterns
to some extent, but they fail to capture the global features. TimeVAE performs better than others but
is less effective than our model (see Figure 9c).

Table 9 lists the quantitative evaluations results of each model, which also shows the effectiveness
of our model in extracting both global and local features simultaneously, as it gets the best scores
with respect to all metrics for the mixture dataset.

E.6 CHOICE OF ENCODER

Table 10 lists different performance outcomes from our model with two different encoders, namely,
CNN and Time-Transformer. The first is the simple design which we used in our proposed model,
and the second is the one with a Time-Transformer module inserted in the encoder. We test their per-
formance on the Sine Sim dataset to briefly investigate how much improvement a complex encoder
can bring to the model. As shown in the table, using a Time-Transformer encoder does improve
the results a little, but it requires much more time to train. This indicates that a simple encoder can
generate relatively good synthetic data with high efficiency.

E.7 LONGER TIME SERIES DATA

Most existing related works Yoon et al. (2019); Desai et al. (2021); Pei et al. (2021); Jarrett et al.
(2021) for synthetic time series generation have used 24-length time series as their experimental
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(a) Local feature series

(b) Global feature series

(c) Mixture series

Figure 9: Generation examples

Table 9: Evaluation results for global & local features learning (lower scores are better)

Model Benchmark Local Global Mixture
RCGAN

FID

8.879±0.467 4.817±0.592 10.217±0.762
TimeGAN 4.736±0.224 1.597±0.294 5.195±0.316
TimeVAE 0.271±0.074 0.241±0.037 1.081±0.068
RTSGAN 0.299±0.068 0.163±0.055 1.788±0.091

Time-Transformer 0.317±0.071 0.229±0.019 0.474±0.014
RCGAN

Discriminative

0.455±0.026 0.395±0.011 0.497±0.005
TimeGAN 0.178±0.062 0.048±0.007 0.485±0.011
TimeVAE 0.015±0.026 0.018±0.009 0.177±0.073
RTSGAN 0.022±0.019 0.012±0.004 0.294±0.078

Time-Transformer 0.029±0.027 0.017±0.015 0.061±0.060
Oracle

Predictive

0.009±0.002 0.014±0.008 0.024±0.003
RCGAN 0.196±0.052 0.285±0.057 0.216±0.079

TimeGAN 0.077±0.018 0.052±0.013 0.103±0.043
TimeVAE 0.013±0.006 0.031±0.005 0.052±0.011
RTSGAN 0.013±0.006 0.027±0.012 0.073±0.015

Time-Transformer 0.014±0.005 0.030±0.009 0.031±0.007

datasets. A recent work (PSA-GAN Jeha et al. (2022)) has claimed to generate long time series
and the longest time series used in their work are 256-length. They apply a sampling method from
LSTnet Lai et al. (2017) to the electricity datasets, to produce these 256-length time series. Hence,
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Table 10: Comparison between different encoders (lower results are better)

Encoder Training Time (s) FID Discriminative Predictive
CNN 530.24 0.283±0.023 0.131±0.021 0.051±0.015

Time-Transformer 1651.33 0.256±0.014 0.120±0.011 0.036±0.010

we use this dataset, with the same sampling method as Lai et al. (2017), to further evaluate our
model. The results are shown in Table 11 below. We can see our model still performs well with this
longer (256-length) time series data, as it has the best performance against the baselines (we only
use RTSGAN and TimeVAE).

Table 11: Long time series evaluation (lower is better for all metrics)

Model FID Discriminative Predictive
Oracle N/A 0.010±0.004

TimeVAE 1.655±0.621 0.415±0.037 0.034±0.005
RTSGAN 0.896±0.147 0.397±0.007 0.021±0.007

Time-Transformer 0.338±0.058 0.057±0.027 0.014±0.006

E.8 EVALUATION WITH TRANSFORMER

We replace the LSTM with Transformer and perform the quantitative experiments again, in order
to investigate if a stronger sequential model can obtain different results. We re-do the experiments
on the local-global datasets and use only the two most recent models (RTSGAN, TimeVAE) as our
baselines. The results are shown in Table 12. We can see the transformer is more effective at iden-

Table 12: Two scores with Transformer based model (lower numbers are better)

Model Benchmark Music Sine Cpx ECochG
TimeVAE

Discriminative
0.500±0.000 0.487±0.015 0.495±0.003

RTSGAN 0.498±0.001 0.499±0.001 0.472±0.014
TimesFormer 0.384±0.026 0.425±0.034 0.366±0.041

Oracle

Predictive

0.030±0.001 0.040±0.001 0.007±0.004
TimeVAE 0.135±0.019 0.051±0.002 0.033±0.008
RTSGAN 0.046±0.002 0.079±0.002 0.016±0.006

TimesFormer 0.041±0.002 0.042±0.001 0.009±0.002

tifying differences between real data and synthetic ones, as the discriminative scores become worse
than those from the LSTM model. However, our model still out-performs the baselines. Regarding
the predictive score, our model still has the most effective forecasting performance (closest to using
the original data).

F DETAILS OF IMBALANCED DATASETS

The original ECochG dataset contains data from 77 patients. When sampled and pre-processed as
previously mentioned, this results in 13982 time series including two classes. However, this dataset
is extremely imbalanced: only 874 instances are positive, which makes it hard to train a machine
learning model. One possible solution is augmenting the minority class to make it balanced. As
to the UCR datasets, the first two are imbalanced binary datasets while the last one contains 15
classes, we create an imbalanced situation by assigning class 1 as the positive class and all remaining
classes as negative (labeled as 0). Here, we provide statistical details of the datasets used in Model
Application of Section 4.4. Table 13 shows this information including: number of training data
(#Train), number of testing data (#Test), length of each time series (Len), positive rate of training set
(Pos Rate, equals to #Positive/#Train), and number of training data for generative model training
(#Generative Training).
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Table 13: Details of Imbalanced Datasets

Dataset # Train # Test Len Pos Rate # Generative Training

ECochG 9787 4195 128 0.063 874
Wafer 1000 6164 152 0.097 97

Herring 64 64 512 0.391 25
SwedishLeaf 500 625 128 0.058 29
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