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ABSTRACT

In neuroscience, identifying distinct patterns linked to neurological disorders,
such as Alzheimer’s and Autism, is critical for early diagnosis and effective in-
tervention. Graph Neural Networks (GNNs) have shown promising in analyzing
brain networks, but there are two major challenges in using GNNs: (1) distribution
shifts in multi-site brain network data, leading to poor Out-of-Distribution (OOD)
generalization, and (2) limited interpretability in identifying key brain regions crit-
ical to neurological disorders. Existing graph OOD methods, while effective in
other domains, struggle with the unique characteristics of brain networks. To
bridge these gaps, we introduce BrainOOD, a novel framework tailored for brain
networks that enhances GNNs’ OOD generalization and interpretability. Brain-
OOD framework consists of a feature selector and a structure extractor, which
incorporates various auxiliary losses including an improved Graph Information
Bottleneck (GIB) objective to recover causal subgraphs. By aligning structure
selection across brain networks and filtering noisy features, BrainOOD offers reli-
able interpretations of critical brain regions. Our approach outperforms 16 existing
methods and improves generalization to OOD subjects by up to 8.5%. Case stud-
ies highlight the scientific validity of the patterns extracted, which aligns with the
findings in known neuroscience literature. We also propose the first OOD brain
network benchmark, which provides a foundation for future research in this field.

1 INTRODUCTION

In neuroscience, a major goal is to identify distinct patterns linked to neurological dis-
orders, such as Alzheimer’s and Autism, by examining brain data of both healthy indi-
viduals and patients with these disorders (Poldrack et al., 2009). Among the neuroimag-
ing techniques, resting-state functional magnetic resonance imaging (fMRI) is widely used
to capture the functional connectivity between different brain regions (Worsley et al., 2002).
fMRI can be modeled as brain networks, where each node represents a brain region, re-
ferred to as a region of interest (ROI), and each edge denotes the pairwise correlation be-
tween the blood-oxygen-level-dependent (BOLD) signals of two ROIs (Smith et al., 2011).

Figure 1: Same substructure
in different brain regions may
reflect distinct functional im-
plications.

These connections provide insights into how different brain regions
co-activate or show correlated activities, offering a framework to
study neurological systems through graph-based methods (Kawa-
hara et al., 2017; Lanciano et al., 2020; Wang et al., 2023).

The most prevalent brain network analysis model is based on Graph
Neural Networks (GNNs), which have recently shown promising
results (Li et al., 2019; 2021; Xu et al., 2024a). However, the appli-
cation of GNN-based methods in brain network analysis poses two
significant challenges. First, brain network data are often collected
from different sites, leading to distribution shifts, which severely
degrade the performance of GNNs when generalizing to Out-of-
Distribution (OOD) data during testing (Chen et al., 2022b; Xu
et al., 2024b). Second, brain network analysis aims to uncover pat-
terns that can facilitate early diagnosis and interventions for neu-
rological disorders. This requires GNN models to possess strong
interpretability, allowing them to identify key brain regions relevant to the concerned conditions.
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Several interpretable GNN methods (Wu et al., 2022; Miao et al., 2022; Chen et al., 2024) have
been proposed to address the OOD generalization problem. These methods assume that a causal
subgraph contains the essential information for predictions, thus improving the robustness to dis-
tribution shifts. While this is effective in domains like molecular and social networks, such an
approach struggles with brain network analysis. Unlike other graph-structured data, brain networks
exhibit noise in both their structures and features. Existing methods primarily focus on extracting
causal substructures, often overlooking the selection of critical node features, which limits their
applicability to brain networks. Additionally, invariant subgraphs identified by these methods may
not effectively interpret brain networks. As shown in Figure 1, invariant substructures involving
different ROIs can reflect distinct functional implications, highlighting the need for a specialized
approach. This leads to a key research question:

How can one build an interpretable and OOD generalizable brain GNN?

To tackle the aforementioned challenges, we propose the first benchmark dataset for evaluating OOD
generalization performance in brain network analysis. Specifically, we go beyond the conventional
usage of brain network datasets by creating a specific OOD benchmark scenario that simulates real-
world conditions where models encounter data from unseen sites during testing. Building on this
benchmark, we develop BrainOOD, which is a novel framework that enhances GNNs’ represen-
tation power and enables the recovery of causal subgraphs using an improved Graph Information
Bottleneck (GIB) objective (Wu et al., 2020). BrainOOD includes a feature selector and a struc-
ture extractor. The feature selector introduces a learnable masking process to selectively filter out
noisy node features. A high-pass GNN with a reconstruction objective is incorporated to recover
informative node features and learns high-quality representations to reveal causally interpretable
brain regions. Additionally, we adopt a discrete sampling strategy for structure extraction. This en-
sures the identification of critical connections and enforces alignment across samples for consistent
structure selection. Our contributions are summarized as follows:

• We introduce the first benchmark for evaluating OOD performance in brain network anal-
ysis. Our proposed benchmark is the first to systematically evaluate OOD generalization
on brain network datasets with a focus on addressing site-specific variability, which is a
critical challenge in clinical applications.

• We propose BrainOOD, a novel architecture that enhances OOD generalization in brain
networks by selectively extracting node features and graph structures, while exploiting the
inherent node alignment in brain networks.

• We evaluate BrainOOD against 16 existing methods and demonstrate its superior perfor-
mance, improving generalization to OOD subjects by up to 8.5%.

• We present a case study to showcase the highly interpretable and scientifically meaningful
patterns identified by BrainOOD, which align with the findings in neuroscience literature.

2 PRELIMINARIES

2.1 BRAIN NETWORKS CLASSIFICATION

We use the brain networks released by Xu et al. (2023). All preprocessed fMRI are parcellated by
Schaefer atlas with 100 ROIs (Schaefer et al., 2018). For each subject, a brain network was con-
structed in the form of a connectivity matrix, S, where the nodes represent ROIs, and the edges
encode Pearson’s correlation between the region-averaged BOLD signals of each pair of ROIs. Es-
sentially, S captures the functional relationships between different brain regions. To represent the
brain network as a graph G = (X,A), we define the feature matrix X = S, and the adjacency
matrix A as a sparsified version of S, retaining the top 20% of connections with the highest correla-
tions. Notably, by using a consistent parcellation method, all brain networks share the same number
of nodes n = 100, corresponding to the fixed set of ROIs.

Brain network classification aims to predict a subject’s condition (e.g., autism diagnosis) based on
his/her brain network. Given a dataset D = (G,Y) = {(G, yG)}, where G → G represents a
brain network and yG is its corresponding class label, the task is to learn a predictive function f :
G ↑ Y that maps brain networks to their respective labels. In this work, our objective of brain
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network classification is not only to accurately classify the networks in the training dataset but also
to ensure that the learned function f generalizes well to unseen or OOD brain networks, which may
come from different sites with different feature distributions. In addition to the OOD generalizable
predictions, we also aim to provide meaningful interpretations for the predictions by identifying a
subgraph GC of the input brain network, offering insights into the functionalities of different ROIs.
We summarize the notations used throughout the paper in Appendix A.

2.2 GRAPH NEURAL NETWORKS (GNNS)

GNNs have emerged as powerful tools for brain network analysis due to their ability to incorporate
both node attributes and topological structures. Consider an input graph G = (X,A), where A is
the adjacency matrix, which encodes connectivity information, and X is the feature matrix contain-
ing attribute information for each node. The node set of G is denoted as VG and |VG| = n. The l-th
layer of a GNN in the message-passing scheme (Xu et al., 2018) can be written as:

H
(l)
v =AGG

(l→1)

(
H

(l→1)
v ,MSG

(l→1)

({
H

(l→1)
u

}

↑u↓N (v)

))
, (1)

where H
(l)
v → Rd denotes the node representation at the l-th layer, where each node is represented

by a d-dimensional vector. AGG(·) and MSG(·) are arbitrary differentiable aggregate and message
functions (e.g., a multilayer perceptron (MLP) can be used as AGG(·) and a summation function as
MSG(·)). N (v) represents the neighbor node set of node v → VG, and H

(0)
v = Xv representing the

raw features of node v.

In contrast to conventional message-passing GNNs, where information is aggregated from a node’s
neighbors, a high-pass graph neural network (HPGNN) emphasizes the differences between a node’s
features and the aggregated features of its neighbors. This approach is especially useful for capturing
local variations in brain networks. The update rule for an HPGNN layer is:

H
(l)
v = H

(l→1)
v →AGG

(l→1)

(
MSG

(l→1)

({
H

(l→1)
u

}

↑u↓N (v)

))
. (2)

This operation enables the model to focus on deviations from local patterns, which may be critical
in detecting abnormal or OOD graph substructures.

3 OUT-OF-DISTRIBUTION BENCHMARK IN BRAIN NETWORK ANALYSIS

3.1 DISTRIBUTION SHIFTS IN BRAIN NETWORK ANALYSIS

One of the primary goals in analyzing neurological disorders is to uncover disease-specific patterns
that remain consistent across diverse populations. However, brain network datasets often exhibit
distribution shifts (Xu et al., 2024b), where features common to specific sub-populations are mistak-
enly identified as disease-related, despite being unrelated to the disorder. This can result in models
learning spurious connections that do not generalize across the broader population. For instance,
large-scale brain network datasets like the Autism Brain Imaging Data Exchange (ABIDE) (Crad-
dock et al., 2013) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Dadi et al., 2019)
are collected from multiple sites, such as various clinics or universities. Subjects from these different
sites may introduce site-specific variability, such as differences in MRI scanner properties, or sub-
ject inclusion/exclusion criteria (Chan et al., 2022). Such factors contribute to site-specific biases,
where models inadvertently focus on site-related patterns rather than capturing population-invariant
information about the disorders. The presence of this type of noise poses a significant challenge for
model generalization, particularly in real-world medical applications, where deployment environ-
ments are rarely identical to training settings. Understanding and addressing these distribution shifts
is crucial for improving the robustness and generalizability of brain network analysis models.

3.2 DATASET UNDER OOD SETTING

In medical applications, models are often trained on data collected from a limited number of sites
but are expected to perform well across different, unseen sites during deployment. This scenario
introduces OOD challenges, as variations between training and deployment sites can significantly

3
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degrade model performance. To investigate this OOD shift, we use two widely-studied, multi-site
brain network datasets: ABIDE (Craddock et al., 2013), focused on Autism Spectrum Disorder
(ASD), and ADNI (Dadi et al., 2019), centered around Alzheimer’s Disease (AD). The statistics
of these datasets are summarized in Table 1, and further detailed descriptions are provided in Ap-
pendix C.1. Both datasets were collected from multiple sites, with inherent inter-site variability in
acquisition and processing methods. This variability provides an ideal testbed for evaluating model
performance under OOD conditions. To simulate an OOD setting, we adopt a site-holdout strat-
egy: each dataset is split into training, validation, and test sets in an 8:1:1 ratio. Importantly, the
validation/test set is composed entirely of subjects from one specific site that were not present in
the training set, making them OOD samples relative to the training data. This setup simulates the
real-world scenario where a model trained on data from one set of sites is deployed in new, unseen
environments. A detailed description of data split is included in Appendix C.2. For model evalua-
tion, we use a consistent random seed across all experiments and perform 10-fold cross-validation.
The average accuracy across folds is reported to ensure robustness in the results, allowing us to fairly
compare models’ generalization performance under OOD conditions.

Table 1: Statistics of Brain Network Datasets.
Dataset Condition Subject# Site# Class# Class Name
ABIDE Autism Spectrum Disorder 1025 17 2 {TC, ASD}
ADNI Alzheimer’s Disease 1326 59 5 {CN, SMC, EMCI, LMCI, AD}

4 BRAINOOD

Brain networks differ from regular graph data in that the co-activity representations in brain net-
works can contain a lot of noise. Meanwhile, the interpretable biomarkers in brain network analysis
are usually similar for the same target disorder. Therefore, it brings additional challenges in data
modeling and objective design. In this section, we first demonstrate the failure of the existing GIB-
based method and then propose several strategies to tackle the challenges.

4.1 INTERPRETABLE AND GENERALIZABLE BRAIN NETWORK ANALYSIS

In this work, our objective is to propose a robust GNN framework that can accurately predict the
targets under distribution shifts. Meanwhile, we also aim to identify a subregion in brain networks
to explain the target analysis results such as AD, therefore, providing insights for future scientific
discoveries.

Specifically, we adopt the Graph Information Bottleneck (GIB) framework (Wu et al., 2020; Miao
et al., 2022; Chen et al., 2024), which can be formulated as follows:

maxGC I(GC ; yG)→ ωI(GC ;G), GC ↑ gω(G), (3)

where GC encapsulates the causal information in G that determines the target label yG, ω → [0, 1]
is a trade-off hyperparameter, gω : G ↑ G(G) is the subgraph extractor parameterized by ε, G(G)
refers to the space of subgraphs for G → G, and I(·; ·) is the mutual information. Chen et al.
(2022b); Miao et al. (2022); Chen et al. (2024) show that GIB can effectively solve for the desired
causal subgraph G

→
C in accordance with Eq. (3) under distribution shifts.

However, when applying GIB to brain networks, several new challenges arise: (a) low informative

features, as the node features and connections refer to the co-occurrence of brain activities in differ-
ent ROIs; and (b) unified interpretation, as the interpretable ROIs for all subjects under the same
condition should be similar.

Consequently, the expressiveness and the representational power of GNNs can be further limited
when used to seek interpretable ROIs under the aforementioned constraints. The limited represen-
tational power of GNNs will further lead to suboptimal generalization and interpretations. More
formally, we have the following theorem:
Theorem 4.1. For a subgraph extractor gω that encodes the input graph G into representation H to
extract the desired subgraph G

→
C , if gω is limited in representation power, i.e., I(G;H) < H(G→

C),
where H(·) is the entropy of the underlying causal subgraph G

→
C , then solving for GIB objective

(Eq. (3)) can not elicit G→
C .

4
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The proof is given in Appendix B.1. Theorem 4.1 implies that it is essential to enhance the rep-
resentation power of gω to effectively uncover the desired causal subgraph G

→
C . Consequently, we

propose a new framework aimed at maximizing I(G;H), while simultaneously incorporating an
interpretation consistency regularization that ensures the structure of GC remains consistent across
different samples.

The aforementioned gap motivates us to propose a novel graph OOD architecture, called BrainOOD,
designed to offer both faithful interpretability and robust OOD generalizability. As shown in Figure
2, BrainOOD is composed of three main components: a feature selector, a structure extractor, and
several auxiliary losses. These components work together to overcome the limitations of existing
methods, ensuring that the model effectively captures discriminative connections while maintaining
interpretability. The following sections provide a detailed description of each component and outline
how they contribute to the promising performance and interpretability of BrainOOD.

̂yG
Prediction 

Head

Feature 

Selector

GNN

X

A
Structure 

Extractor

X′ 

A′ 

GNN

H

HPGNN
Ĥ

Figure 2: The framework of BrainOOD.

4.2 FEATURE SELECTION VIA RECONSTRUCTION

Brain network data can contain noise in specific ROIs, where GNNs may even amplify the noise
due to the smoothing nature in message passing. This may further limit the extraction of useful
information for the GIB objective. To address this, we introduce a learnable masking mechanism
that filters out irrelevant connections and focuses on the most informative node features. This is
followed by a reconstruction loss to identify key distinguishing features.

Given an input brain network G = (X,A), the masked features are obtained as:

X
↔
= X ↓M , M = Dropout

(
ε(WmaskW

T
mask)

)
, (4)

where ↓ is the Hadamard product, Wmask → Rn↑d is the learnable mask embedding, and ϑ is
the sigmoid function. We employ an entropy loss as a sparsity constraint, to compel the model
to prioritize the most informative connections and prevent a smooth mask. The entropy loss is
formulated as follows:

Lentropy =
1

n

n∑

i=1

entropy (M(i, :)) , entropy(p) = →
n∑

j=1

pj log(pj). (5)

A GNN is subsequently employed to encode the brain network:
H = GNN(X

↔,A). (6)
It is well-known that GNN-based methods typically smooth node features across the graph, which
can amplify noise in specific ROIs. To address this issue, we introduce a high-pass GNN to re-
cover the input node features, guiding the model to learn the most informative features through a
reconstruction loss:

X̂ = Tanh(ĤĤT)↓M , Ĥ = HPGNN(H,A), (7)

Lrecon = MSE(X̂,X ↔
) =

1

n
↔X̂ →X

↔↔2F , (8)

where ↔ · ↔F denotes the Frobenius norm. Herein, Tanh(·) serves to scale the range of the recon-
structed features to align with the input connectivity matrix, while the self-multiplication operation
is designed to ensure the output exhibits the symmetry property inherent in the connectivity ma-
trix. This operation mimics the structure of the input data, making it easier for the model to capture
meaningful patterns during reconstruction. By minimizing the Mean Square Error (MSE) between
X̂ and X

↓, the feature selector is trained to extract the most informative features X ↓, ensuring the
reconstruction is faithful to the input and improving the overall representation quality.

5
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4.3 STRUCTURE EXTRACTION BY DISCRETE SAMPLING

Apart from node features, graph structure in brain networks also contains noise, which requires
the model to extract critical substructures. When implementing the subgraph extractor gω in our
improved GIB framework, we adopt the sampling strategy proposed by Chen et al. (2024). Specif-
ically, an edge scorer is first applied to each edge in the input adjacency matrix based on the output
of GNN encoder (Eq. (6)) as:

ϑv,u = scorer([Hv|Hu]), ↗(v, u),Av,u = 1, (9)

where [·|·] is the concatenation function and scorer(·) can be arbitrary attention functions such as a
simple MLP with Gumbel-softmax (Maddison et al., 2022). Thus the probability ϖv,u of edge (v, u)
for sampling is defined as:

ϖv,u = ε((ϑv,u +D)/ϱ), (10)
where ϱ is the temperature hyperparameter, ϑ(·) is the sigmoid function, and D = logU ↗ log(1↗
U), with U ↘ Uniform(0, 1). To sample the discrete subgraph, we sample from the Bernoulli
distributions on edges independently by A

↓
v,u ↘ Bern(ϖv,u).

Finally the generated desired causal subgraph G
→
C = (X ↓

,A
↓) is used to learn the node representa-

tion by H
↓ = GNN(X→

,A
↓). This sampling is done for k times to do the independent prediction

and obtain the logits ŷi. The final prediction is computed by the average of the k simulated predic-
tions: ŷG = 1

k

∑k
i=1 ŷi.

4.4 LOSS FUNCTIONS

For brain networks, identifying specific ROIs or connections that correlate with neurological condi-
tions is crucial for advancing our understanding of brain function and pathology. This task differs
from traditional graph OOD methods, such as those proposed by Wu et al. (2022), Miao et al.
(2022), and Chen et al. (2024), which focus on extracting invariant substructures across different
graphs. While such methods work well for general graph analysis, they fall short in brain network
analysis, where the same structural patterns involving distinct ROIs can reflect varying functional
roles in brain activities (as shown in Figure 1).

In BrainOOD, we aim to discover key discriminative connections, rather than merely identifying
invariant substructures. These connections may hold vital clues to understanding conditions like
Alzheimer’s and Autism by revealing the functional relationships between brain regions. To address
this, we propose an alignment loss that encourages the structure extractor to consistently select the
same connections across all brain networks within a batch:

Lalign =
1

n2

n∑

i=1

n∑

j=1

ς↔
i,j , (11)

where ς↓ is the standard deviation of all the A↓ in the batch. By applying this constraint, BrainOOD
identifies the most informative connections, promoting both generalizability and interpretability in
brain network analysis.

To incorporate domain knowledge and facilitate model convergence during optimization, we utilize 4
loss functions to guide the end-to-end training. Specifically, (1) a commonly-used cross-entropy loss
(Cox, 1958) Lcls = cross entropy(ŷG, yG) for graph classification; (2) an entropy loss Lentropy

(Eq. (5)) for mask sparsification; (3) a reconstruction loss Lrecon (Eq. (8)) to enforce the GNN to
encode the most discriminative information; (4) an alignment loss Lalign (Eq. (11)) to constrain
node-identity awareness. The total loss is computed by:

Ltotal = Lcls + φ1 ↘ Lentropy + φ2 ↘ Lrecon + φ3 ↘ Lalign, (12)

where φ1, φ2 and φ3 are trade-off hyperparameters.

5 EXPERIMENTAL RESULTS

5.1 BASELINE MODELS

We evaluate the proposed BrainOOD framework against a comprehensive set of baseline models,
including 5 General OOD Methods: ERM (Goyal, 2017), Deep Coral (Sun & Saenko, 2016),

6
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IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2019) and VREx (Krueger et al., 2021);
4 Graph OOD Methods: Mixup (Zhang et al., 2018), DIR (Wu et al., 2022), GSAT (Miao et al.,
2022) and GMT (Chen et al., 2024) (All these graph OOD methods and BrainOOD are incorporated
with GIN backbone for fair comparison); 2 conventional machine learning methods: Support
Vector Machine (SVM) and Logistic Regression (LR) Classifier from scikit-learn (Pedregosa et al.,
2011), where these ML methods take the flattened upper-triangle connectivity matrix as vector in-
put, instead of using the brain network; 3 General-Purpose GNNs: GCN (Kipf & Welling, 2016),
GIN (Xu et al., 2018) and GAT (Veličković et al., 2017); 4 Neural Networks Tailored for Brain

Networks: BrainNetCNN (Kawahara et al., 2017), BrainGNN (Li et al., 2021), ContrastPool (Xu
et al., 2024a) and Contrasformer (Xu et al., 2024b). The detailed baseline description and imple-
mentation of these experiments are provided in Appendices D.1 and D.2, respectively.

5.2 MAIN RESULTS

Table 2: Results over 10-fold-CV (Average Accuracy ± Standard Deviation). The best result is
highlighted in bold while the runner-up is highlighted in underline.

OOD Model ABIDE ADNI
ID OOD ID OOD

GCN 63.69 ± 3.20 56.45 ± 5.52 59.95 ± 8.20 55.32 ± 10.23
BrainNetCNN 65.50 ± 4.77 60.38 ± 7.07 62.08 ± 6.81 55.02 ± 11.10
ERM 59.17 ± 6.99 56.73 ± 5.99 60.86 ± 9.17 60.81 ± 13.47
Deep Coral 60.40 ± 5.34 56.95 ± 5.94 62.22 ± 8.25 60.39 ± 15.51
IRM 58.73 ± 7.07 57.34 ± 8.74 61.94 ± 9.13 60.89 ± 11.32
GroupDRO 58.74 ± 8.43 58.83 ± 8.54 61.86 ± 8.34 57.34 ± 15.27
VREx 50.82 ± 2.11 52.08 ± 5.29 61.12 ± 6.71 55.64 ± 13.66
Mixup 62.06 ± 7.07 54.90 ± 7.71 62.82 ± 8.25 59.50 ± 12.81
DIR 59.77 ± 4.28 58.52 ± 9.61 65.83 ± 9.49 57.99 ± 14.82
GSAT 61.32 ± 6.37 57.57 ± 5.67 62.02 ± 8.77 60.27 ± 15.04
GMT 61.11 ± 6.30 59.73 ± 6.95 62.81 ± 6.54 60.93 ± 13.27
BrainOOD 64.07 ± 4.58 64.81 ± 9.01 66.09 ± 6.30 62.26 ± 15.83

Table 3: Results of more evaluation metrics over 10-fold-CV on the overall test set of ABIDE and
ADNI datasets. The best result is highlighted in bold while the runner-up is highlighted in underline.
For multiclass dataset of ADNI, all other metrics are the same as accuracy.

Model ABIDE ADNI
Accuracy Precision Recall micro-F1 ROC-AUC Accuracy

SVM 61.56 ± 4.04 61.10 ± 3.57 63.02 ± 3.57 61.53 ± 7.28 60.89 ± 4.31 62.88 ± 4.75
LR 61.23 ± 3.93 63.16 ± 2.89 62.72 ± 6.45 62.77 ± 3.81 61.32 ± 2.93 61.58 ± 4.52

GCN 61.85 ± 4.39 60.13 ± 3.94 58.45 ± 10.67 58.88 ± 7.06 61.71 ± 4.59 61.92 ± 9.53
GIN 56.49 ± 3.40 62.78 ± 12.71 28.52 ± 10.69 37.46 ± 7.56 55.22 ± 3.23 58.78 ± 9.53
GAT 63.12 ± 4.72 61.50 ± 5.22 61.29 ± 6.75 61.20 ± 5.06 63.07 ± 4.67 60.94 ± 6.58

BrainNetCNN 63.80 ± 4.44 62.38 ± 6.11 63.34 ± 8.11 62.35 ± 4.63 63.79 ± 4.32 59.77 ± 8.69
BrainGNN 60.00 ± 3.96 58.94 ± 4.98 54.34 ± 7.30 56.23 ± 4.89 59.76 ± 3.93 62.08 ± 8.93

ContrastPool 62.00 ± 2.97 56.02 ± 3.92 68.46 ± 12.60 62.84 ± 5.69 62.57 ± 3.93 61.22 ± 1.87
Contrasformer 63.53 ± 3.03 60.73 ± 3.23 65.87 ± 6.30 63.01 ± 3.43 63.67 ± 3.02 63.52 ± 3.10

ERM 60.00 ± 3.35 57.84 ± 5.15 57.43 ± 4.78 56.88 ± 4.99 57.47 ± 4.67 60.69 ± 4.32
Deep Coral 59.71 ± 4.55 60.50 ± 5.08 59.46 ± 5.21 58.22 ± 5.54 58.97 ± 4.89 61.47 ± 3.42

IRM 60.15 ± 4.97 61.34 ± 5.23 59.84 ± 4.61 58.81 ± 5.01 59.89 ± 4.56 61.16 ± 4.69
GroupDRO 59.70 ± 2.89 60.91 ± 3.16 59.17 ± 3.59 58.24 ± 3.34 59.65 ± 3.13 59.84 ± 4.92

VREx 57.47 ± 4.64 59.36 ± 4.92 53.82 ± 9.28 54.15 ± 7.44 57.06 ± 4.81 58.76 ± 3.79
Mixup 60.30 ± 3.28 59.43 ± 5.00 58.16 ± 4.53 56.95 ± 3.98 58.23 ± 4.38 61.08 ± 3.27
DIR 59.27 ± 6.41 60.45 ± 6.76 59.48 ± 6.84 58.22 ± 6.78 59.35 ± 6.76 62.16 ± 4.82

GSAT 59.38 ± 3.54 59.73 ± 4.62 59.11 ± 4.28 58.15 ± 4.22 58.76 ± 4.01 60.92 ± 7.30
GMT 60.95 ± 3.50 60.32 ± 3.29 59.96 ± 3.59 59.41 ± 3.69 59.81 ± 3.52 61.61 ± 6.44

BrainOOD (ours) 63.95 ± 4.65 65.72 ± 5.24 63.37 ± 4.29 63.42 ± 4.86 63.52 ± 4.28 64.18 ± 5.48

We first compare BrainOOD with existing baselines in terms of in-domain (ID) and OOD classi-
fication accuracy. The results on 2 brain network datasets over 10-fold cross-validation (CV) are
reported in Table 2. Although non-OOD methods (GCN and BrainNetCNN) achieve good accuracy
on ID set, they failed to generalize to OOD data. Most OOD algorithms have comparable perfor-
mance with ERM, showing the difficulty of achieving invariant prediction in brain networks. While
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these graph OOD methods (Mixup, DIR, GSAT and GMT) apply well to graph topology, their fail-
ure to consider the unique characteristics of brain networks creates a performance bottleneck. On the
contrary, our proposed BrainOOD leads to non-trivial improvements on both ID and OOD sets for
all datasets. Especially, for the performance on OOD set, the improvement is up to 7.34% ((64.81%
- 60.38%) / 60.38% = 7.34% compared with BrainNetCNN). We further provide a deeper analysis
for the performance distribution of graph OOD methods on each fold in Appendix E.1. BrainOOD
consistently achieves top performance across multiple folds and maintains robustness in worst-case
scenarios, demonstrating strong generalization capabilities to unseen sites.

To further compare BrainOOD with other general-purpose GNNs and neural networks specifically
designed for brain networks, we report the results on the overall test sets in Table 3. Our proposed
BrainOOD emerges as clear winner across both datasets. Interestingly, all existing OOD methods
perform poorly, struggling even to surpass the simple GNN baselines. This suggests that current ap-
proaches to extracting invariant subgraphs are ineffective for brain networks and highlights the need
for OOD algorithms that account for the unique characteristics of brain data. Notably, compared
with the GIN backbone, incorporating our proposed OOD framework yields a significant 12.2% im-
provement, further verifying the effectiveness and necessity of BrainOOD in brain network analysis.

Figure 3: Edge score map visualization for ID/OOD checkpoints on ID/OOD test set of ABIDE
dataset. VIS = visual network; SMN = somatomotor network; DAN = dorsal attention network;
VAN = ventral attention network; LN = limbic network; FPCN = frontoparietal control network;
DMN = default mode network.

5.3 MODEL INTERPRETATION

In the domain of neurodegenerative disorder diagnosis, identifying significant ROIs and connections
associated with predictions is critical, as these serve as potential biomarkers for diseases. For this
study, we leverage edge scores from the structure extractor in BrainOOD to generate heat maps, pro-
viding interpretability of the model’s predictions. These score maps are visualized using the Nilearn
toolbox (Abraham et al., 2014). Figure 3 shows score maps for both ID and OOD checkpoints on
the respective test sets from the ABIDE dataset, where higher scores signify stronger classification
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potential for ASD. We assessed the connections highlighted by our model in relation to Yeo’s 7
networks (Yeo et al., 2011) that may be linked to the disorder. As shown in Figure 3, the score
maps for the same checkpoint are consistent across both the ID and OOD test sets, suggesting that
the model captures invariant patterns relevant to OOD subjects. Additionally, comparing different
checkpoints on the same test sets reveals that both ID and OOD checkpoints identify common con-
nections within key networks such as the somatomotor network (SMN), ventral attention network
(VAN), and limbic network (LN), which are often associated with ASD (Hong et al., 2019; Farrant
& Uddin, 2016). Interestingly, the score maps from the ID checkpoints tend to be sparser compared
to those from OOD checkpoints. Furthermore, some connections are uniquely highlighted at differ-
ent checkpoints, such as those within the visual network (VIS) for the ID checkpoint and within the
dorsal attention network (DAN) for the OOD checkpoint.

Figure 4: The visualization of the top
10 connections with the highest score
on ABIDE OOD set.

To pinpoint the connections most significant for the
causal subgraph, we selected the top 10 connections with
the highest scores. Figure 4 highlights connections be-
tween the posterior, temporal occipital parietal regions
in the ABIDE dataset, suggesting potential ASD-specific
neural mechanisms. These regions align with prior re-
search, which has identified them as critical areas in ASD
studies (Ciaramidaro et al., 2018). Notably, these find-
ings resonate with the discovery that adolescents with
ASD exhibit hypo-activation in key visuoperceptual re-
gions, particularly in the right hemisphere, as well as in
affective and motivational face-processing areas (Scherf
et al., 2015). A discussion of AD findings from the ADNI
dataset is provided in Appendix E.3.

5.4 ABLATION STUDY

To verify the effectiveness of our proposed components in BrainOOD, we test our design of the loss
functions by disabling them one by one. The results are reported in Table 4, where “feat” and “adj”
represent what we used as the feature matrix and adjacency matrix for the final prediction, respec-
tively. We can observe that all of the auxiliary losses and components are effective in boosting the
model performance. Besides, we find that the reconstruction loss and the alignment loss are impor-
tant to ensure the ability of BrainOOD to generalize to the OOD set. This observation indicates the
necessity of selecting information on both the feature and structure levels. We include the detailed
hyperparameter sensitivity analysis in Appendix E.4.

Table 4: Ablation study on important components in BrainOOD on ABIDE dataset.
feat adj Lentorpy Lrecon Lalign ID acc OOD acc overall acc
X

↓
A

↓ ↭ ↭ 63.92 ± 4.13 63.70 ± 4.53 63.12 ± 2.50
X

↓
A

↓ ↭ ↭ 62.82 ± 4.19 61.37 ± 7.13 61.85 ± 4.53
X

↓
A

↓ ↭ ↭ 63.26 ± 3.44 60.43 ± 5.45 61.85 ± 2.83
X A

↓ ↭ ↭ ↭ 63.56 ± 4.40 62.26 ± 5.68 62.69 ± 3.42
X

↓
A ↭ ↭ ↭ 63.71 ± 5.97 55.40 ± 8.95 60.10 ± 3.47

X
↓

A
↓ ↭ ↭ ↭ 64.07 ± 4.58 64.81 ± 9.01 63.95 ± 4.65

6 RELATED WORKS

6.1 GRAPH OUT-OF-DISTRIBUTION GENERALIZATION

OOD or distribution shift is a longstanding problem in machine learning (Goyal, 2017; Zhang et al.,
2018; Sagawa et al., 2019; Krueger et al., 2021). Most existing graph OOD methods aim to extract
invariant subgraphs across all samples to enhance model generalization under distribution shifts.
GIL (Li et al., 2022a) is a pioneering GNN-based model that identifies invariant subgraphs for
graph classification tasks. It explores invariant graph representation learning in mixed latent en-
vironments without requiring labeled environments. DIR (Wu et al., 2022) introduces a causal
inference approach to identify invariant causal parts through causal interventions. However, DIR
involves a complex iterative process of breaking and assembling subgraphs during training. A more
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straightforward approach is GSAT (Miao et al., 2022), which is based on the information bottle-
neck principle and learns invariant subgraphs by reducing attention stochasticity. RGCL (Li et al.,
2022b) combines invariant rationale discovery with contrastive learning to improve both general-
ization and interpretability. CIGA (Chen et al., 2022a) proposes an information-theoretic objective
to extract invariant subgraphs, offering a theoretical guarantee for handling distribution shifts under
different Structural Causal Models. Similarly, GMT (Chen et al., 2024) focuses on extracting in-
terpretable subgraphs by accurately approximating subgraph multilinear extensions, ensuring both
interpretability and generalization under OOD conditions. A common finding across these invariant
learning-based methods is the dependence on the diversity of environments. To address this, IGM
(Jia et al., 2024) introduces a co-mixup strategy that combines environment and invariant mixups to
generate diverse environments. These OOD methods that focus on extracting causal subgraphs work
well in molecular and social networks but face challenges in brain network analysis due to the unique
noise in both structures and features. These methods often overlook the selection of important node
features, reducing their effectiveness for brain networks. Additionally, invariant subgraphs identified
by these methods may not adequately capture the distinct functional implications of different brain
regions, underscoring the need for a specialized approach.

6.2 BRAIN NETWORK ANALYSIS WITH GNNS

In recent years, several GNN-based methods have been proposed for brain network analysis. Ktena
et al. (2017) leverages graph convolutional networks (GCNs) for learning similarities between each
pair of graphs (subjects). BrainNetCNN (Kawahara et al., 2017) proposes edge-to-edge, edge-to-
node and node-to-graph convolutional filters to leverage the topological information of brain net-
works in the neural network. PRGNN (Li et al., 2020) proposes a graph pooling method with group-
level regularization to guarantee group-level consistency. BrainGNN (Li et al., 2021) proposes an
ROI-selection pooling to highlight salient ROIs for each individual. MG2G (Xu et al., 2021) is a
two-stage approach. The first stage learns node representations through a self-supervised link pre-
diction task. The second stage employs the learned representations to train a classifier for predicting
Alzheimer’s disease progression. LG-GNN (Zhang et al., 2022) incorporates local ROI-GNN and
global subject-GNN guided by non-imaging data, such as gender, age, and acquisition site. Some
more recent works (Xu et al., 2024a;b) introduce a contrast graph to highlight the difference between
groups and thus improve the model’s generalization ability. Despite these advancements, addressing
the OOD challenge in brain network analysis remains largely unexplored. Furthermore, while data
harmonization methods (Guan et al., 2021; Wang et al., 2022) and domain adaptation methods (Lei
et al., 2023; Liu et al., 2023) have been widely applied in study generalizing brain network models
to other sites. However, these methods typically rely on learning a mapping from a source to a target
domain, assuming the availability of the target domain distribution during training. In contrast, our
study addresses the OOD generalization setting, where target domain data is entirely unseen during
training. This stricter constraint represents a more challenging and realistic scenario, particularly
in clinical applications where models must generalize to previously unseen sites without retraining.
As a result, domain adaptation methods may be less effective in this context. Our work, therefore,
pioneers the evaluation of brain network classification under an OOD generalization framework,
emphasizing the need for new OOD algorithms specifically designed for brain networks.

7 CONCLUSION

In this work, we introduced BrainOOD, a novel framework designed to tackle the dual challenges of
OOD generalization and interpretability in brain network analysis. BrainOOD improves the repre-
sentation power of GNNs through a feature selection process and a learnable masking mechanism,
addressing the unique characteristics of brain networks by focusing on identifying critical connec-
tions rather than invariant substructures. The model’s reconstruction loss further enhances its ability
to reveal causally interpretable brain regions. Our extensive evaluations across 16 existing meth-
ods demonstrate that BrainOOD significantly outperforms both general-purpose and brain-specific
GNNs, achieving up to an 8.5% improvement over existing graph OOD methods. Importantly, the
model not only enhances OOD generalization but also extracts scientifically meaningful patterns that
align with established knowledge in neuroscience. By presenting the first OOD benchmark dataset
for brain network analysis, we provide a valuable resource for future research in improving both the
generalizability and interpretability of models in this important domain of scientific research.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Rory Boyle, HM Klinger, Z Shirzadi, GT Coughlan, M Seto, MJ Properzi, Diana L Townsend,
Ziwen Yuan, C Scanlon, Roos J Jutten, et al. Left frontoparietal control network connectivity
moderates the effect of amyloid on cognitive decline in preclinical alzheimer’s disease: The a4
study. The Journal of Prevention of Alzheimer’s Disease, 11(4):881–888, 2024.

Yi Hao Chan, Wei Chee Yew, and Jagath C Rajapakse. Semi-supervised learning with data harmon-
isation for biomarker discovery from resting state fmri. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 441–451. Springer, 2022.

Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu,
Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution
generalization on graphs. Advances in Neural Information Processing Systems, 35:22131–22148,
2022a.

Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu,
Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution
generalization on graphs. In Advances in Neural Information Processing Systems, 2022b.

Yongqiang Chen, Yatao Bian, Bo Han, and James Cheng. How interpretable are interpretable graph
neural networks? In Forty-first International Conference on Machine Learning, 2024.

Angela Ciaramidaro, Sven Bölte, Sabine Schlitt, Daniela Hainz, Fritz Poustka, Bernhard Weber,
Christine Freitag, and Henrik Walter. Transdiagnostic deviant facial recognition for implicit nega-
tive emotion in autism and schizophrenia. European Neuropsychopharmacology, 28(2):264–275,
2018.

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society:
Series B (Methodological), 20(2):215–232, 1958.

Cameron Craddock, Yassine Benhajali, Carlton Chu, Francois Chouinard, Alan Evans, András
Jakab, Budhachandra Singh Khundrakpam, John David Lewis, Qingyang Li, Michael Milham,
et al. The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data
and derivatives. Frontiers in Neuroinformatics, 7:27, 2013.

Kamalaker Dadi, Mehdi Rahim, Alexandre Abraham, Darya Chyzhyk, Michael Milham, Bertrand
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