
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSITY DISTRIBUTION MATTERS: REACT FOR AC-
CELERATING LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient inference for large language models (LLMs) is critical for real-world
deployment, yet it requires substantial computational and memory resources. For-
tunately, activation sparsity alleviates these demands by enabling the skipping of
low-magnitude activations, which reduces both arithmetic operations and mem-
ory access. However, existing methods primarily focus on maximizing the over-
all sparsity, but they overlook the impact of sparsity distribution in the inference
network. Our empirical study with current methods reveals that sparsity distri-
bution is more critical than the overall sparsity ratio for acceleration. Therefore,
we propose REACT, a training-free sparsification method that optimizes sparsity
distribution within the Multi-Layer Perceptron (MLP) module, improving infer-
ence speed without sacrificing model performance. Specifically, we empirically
select the best location for sparsification in an MLP and develop an optimized
sparsity-aware GPU kernel for inference, which reduces memory access overhead
and improves computational efficiency. Our experiments on LLaMA2-7B and
Mistral-7B demonstrate that REACT achieves speedups of 1.26× and 1.33×, re-
spectively, while maintaining nearly the same model accuracy as their baselines.
These results highlight the importance of rethinking sparsity distribution for effi-
cient LLM inference.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across various nat-
ural language processing (NLP) tasks, enabling significant advancements in machine translation
(Achiam et al., 2023), text generation (Touvron et al., 2023), and code synthesis (Roziere et al.,
2023). However, their inference cost remains a major bottleneck (Pope et al., 2023; Weng, 2023),
particularly during auto-regressive decoding, where each token generation step involves passing the
input through billions of parameters. As a result, optimizing LLM decoding efficiency has become
a critical research direction, especially for latency-sensitive applications.

A promising direction for improving inference efficiency is activation sparsity (Liu et al., 2023),
which leverages the observation that many activation values in Multi-Layer Perceptrons (MLPs)
contribute little to the final output and can be safely pruned. Activation sparsity has been widely
leveraged in ReLU-based LLMs (Mirzadeh et al., 2023), where the activation function itself enforces
sparsity. However, in modern SiLU-based (Shazeer, 2020) architectures, activations are inherently
dense, limiting the effectiveness of post-activation sparsity methods such as CATS (Lee et al., 2024),
which applies pruning only to SiLU outputs and thus overlooks potential sparsity in other hidden
states. This raises a critical question: Can we identify better sparsification targets within the MLP
module to achieve higher sparsity while maintaining model performance?

To answer this question, we systematically investigate the sparsity properties of different hidden
states within the MLP module. We find that applying sparsity after the up transformation in the MLP
computation yields significantly better performance trade-offs. Compared to CATS, our method
sparsifies a more effective location, achieving higher sparsity while maintaining comparable model
accuracy. Moreover, while TEAL (Liu et al., 2024) sparsifies all MLP weight matrices uniformly,
our findings indicate that the distribution of sparsity across MLP submodules is more important for
acceleration than overall sparsity. TEAL achieves higher overall sparsity but results in suboptimal
speedup due to inefficient sparsity distribution.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we propose REACT (REthinking ACTivation Sparsity for Faster LLM Decoding),
a training-free method that extends activation sparsity to modern SiLU-based LLMs. Our method
carefully selects sparsification targets within the MLP module, achieving higher sparsity than CATS
while maintaining comparable model accuracy. Furthermore, our analysis demonstrates that sparsity
distribution plays a critical role in acceleration, enabling REACT to translate MLP sparsity into ac-
tual speedup more effectively than TEAL. To efficiently exploit this sparsity, we develop a sparsity-
aware custom GPU kernel, achieving up to 1.26x and 1.33× wall-clock speedup in LLaMA2-7B and
Mistral-7B decoding, respectively.

The remainder of this paper is organized as follows: Section 2 reviews related work on activation
sparsity and efficient LLM inference. Section 3 and 4 introduces the proposed REACT method.
Section 5 presents extensive experiments validating our approach. Finally, Section 6 concludes with
future directions.

2 RELATED WORK

To enhance the efficiency of large language model (LLM) inference, researchers have explored vari-
ous sparse computation techniques (Hoefler et al., 2021). These methods can be broadly categorized
into weight sparsity (pruning directly on weights) and activation sparsity (pruning on activations).

Weight pruning removes unimportant parameters from neural networks to reduce storage and com-
putational cost while maintaining accuracy. Given the large scale of LLMs, pruning methods gen-
erally focus on post-training pruning to avoid the costly retraining process. These methods leverage
gradient information (Ma et al., 2023) or weight magnitudes (Sun et al., 2023) to identify and prune
redundant weights, enabling efficient training-free sparsification. However, to effectively translate
weight pruning into wall-clock speedup, the resulting sparsity pattern must align with hardware-
friendly structures (e.g., Nvidia’s 2:4 sparsity pattern (Mishra et al., 2021)). This requirement im-
poses constraints on pruning patterns, limiting the flexibility of weight sparsity approaches. As a
result, pruning the weights cannot fully exploit the acceleration potential of sparsity in LLM infer-
ence.

Activation sparsity (Mirzadeh et al., 2023; Song et al., 2024; Zhang et al., 2024) provides an al-
ternative approach by selectively pruning activations rather than weights, reducing memory access
and computational overhead. Since activation values determine which parts of the weight matrix are
used, eliminating redundant activations directly minimizes weight matrix accesses, making it partic-
ularly effective in memory-bound inference scenarios like auto-regressive LLM decoding. Unlike
weight sparsity, activation sparsity does not require structured pruning patterns, allowing for greater
flexibility in optimizing execution efficiency.

Deja Vu (Liu et al., 2023) is an early work that utilized activation sparsity in ReLU-based LLMs.
It introduced a predictor mechanism to estimate which activations could be set to zero at inference
time to reduce computational cost. However, Deja Vu is restricted to ReLU-based models, as ReLU
naturally enforces activation sparsity. Since modern LLMs predominantly use SiLU (Shazeer, 2020)
activations, alternative methods that directly enable activation sparsity in SiLU-based models are
necessary.

To extend activation sparsity to SiLU-based LLMs, researchers proposed methods like ReLUfica-
tion Mirzadeh et al. (2023) and ProSparse (Song et al., 2024). These methods replace SiLU or
GeLU activations with ReLU, leveraging ReLU’s intrinsic sparsity, followed by finetuning to re-
cover model accuracy. These methods require significant computational resources and fine-tuning
expertise, making them less practical for large-scale LLMs.

CATS Lee et al. (2024) introduced magnitude-based thresholding to prune SiLU activations, achiev-
ing sparsity without retraining. But CATS only exploded the sparsity in the SiLU activations, lim-
iting its sparsity potential. Beyond 50% sparsity, the model performance begins to degrade signifi-
cantly, restricting its effectiveness. TEAL (Liu et al., 2024) extended activation sparsity by applying
thresholding to multiple hidden states in attention and MLP module, achieving about 40% model-
wide sparsity. However, TEAL enforces sparsity across all matrices, but not all matrices must be
sparsified for optimal acceleration. We identify a better sparsification target, achieving the best
trade-off between sparsity and model performance . We also demonstrate that sparsity distribution

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

is more critical than overall sparsity, allowing REACT to leverage MLP sparsity more efficiently
than TEAL, leading to greater actual speedup.

Existing activation sparsity methods either rely on finetuning (ReLUfication, ProSparse) or sub-
optimal sparsification strategies (CATS, TEAL). Our method, REACT, improves upon these prior
works by introducing a better sparsification target, demonstrating that sparsity distribution plays a
more critical role than absolute sparsity levels, and designing a custom GPU kernel to fully leverage
the discovered sparsity. These advancements enable higher speedup with less accuracy degradation,
making activation sparsity a more practical solution for SiLU-based LLM inference.

3 BACKGROUND

3.1 ACTIVATION SPARSITY AND NOTATIONS

In LLMs, activation sparsity can be further categorized into input sparsity and output sparsity (Song
et al., 2024). For a sparse matrix-vector multiplication y = xWT , where x ∈ Rh,W ∈ Rh×d,y ∈
Rd, input sparsity occurs when certain elements in the input vector x are zero, allowing the corre-
sponding columns of the weight matrix W to be skipped during computation. On the other hand,
output sparsity arises when elements in the output vector y are known to be zero, meaning that the
corresponding rows of the weight matrix W do not need to be loaded. By leveraging activation spar-
sity in either form, models can significantly reduce memory traffic and computational cost, leading
to faster inference.

Additionally, for clarity in the following discussion, we assign specific names to hidden states based
on their locations within the MLP computation. For example, we use Wup out to donate the output
of the matrix-vector multiplication of x and Wup, and SiLU out to represent the output of the SiLU
activation function.

Prior work (Liu et al., 2023) has shown that LLM decoding is memory-bound, with much of the
latency stemming from frequent weight matrix transfers rather than computation. This issue is par-
ticularly severe for the MLP module, which contains nearly two-thirds of the model parameters, yet
remains far less optimized than self-attention. To address this gap, our work focuses on leveraging
MLP sparsity for efficient inference.

4 REACT: RETHINKING ACTIVATION SPARSITY FOR FASTER LLM
DECODING

We propose REACT, a training-free method which extends activation sparsity to modern SiLU-
based LLMs. Our goal is to maximize the overall sparsity of the MLP module while ensuring that
model accuracy remains above a specified threshold P%. Unlike prior works that only sparsify the
activation, REACT explores sparsity in the entire MLP module, allowing sparsification at different
hidden stages.

4.1 MLP COMPUTATION AND SPARSITY FORMULATION

Given an input x, the standard MLP computation in modern LLMs is expressed as:

MLP(x)=(SiLU(xWgate)⊙(xWup))Wdown (1)

where Wgate,Wup,Wdown are the MLP parameters, SiLU(·) denotes the SiLU activation function,
and ⊙ represents element-wise multiplication.

Within this structure, we identify four possible sparsification positions, as shown in Figure 1a:

h1 = xWgate,

h2 = SiLU(h1),

h3 = xWup,

h4 = h2 ⊙ h3

(2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MLP

h1

𝑊up

𝑊down

𝑊gate

SiLU

h3h2

h4

𝑊gate_𝑜𝑢𝑡

𝑊up_𝑜𝑢𝑡𝑆𝑖𝐿𝑈_𝑜𝑢𝑡

𝑊down_𝑖𝑛

(a)

20 25 30 35 40 45
MLP Module Sparsity (%)

60

62

64

66

68

70

Av
er

ag
e

0-
sh

ot
 A

cc
ur

ac
y

Wup_out (REACT selection)
Wgate_out
SiLU_out (CATS selection)
Wdown_in
Llama2-7B Dense

100%
99%
98%

96%

93%

88%

Re
la

tiv
e

Pe
rfo

rm
an

ce
 (%

)

(b)

Figure 1: Left: Illustration of the MLP module structure and sparsification positions in REACT. The
four potential sparsification locations are highlighted: Wgate out (h1), SiLU out (h2), Wup out (
h3), and Wdown in (h4). REACT applies activation sparsity at the most effective position, Wup out

(h3), achieving a better trade-off between model accuracy and inference speed. Right: Comparison
of different sparsification positions in the MLP module of LLaMA2-7B. The x-axis represents MLP
module sparsity, while the left y-axis denotes the average zero-shot accuracy across multiple NLP
tasks. The right y-axis shows the relative performance as a percentage of the dense model. The
dashed line represents the dense model performance for reference.

The choice of which hidden state hs to sparsify directly impacts both computation cost and model
accuracy.

4.2 MLP SPARSIFICATION OPERATOR

We define a sparsification operator S(hs, p), which applies magnitude-based pruning to the selected
hidden state hs, preserving only the top (1− p)% largest magnitude elements:

h′
s = S(hs, p), s ∈ {1, 2, 3, 4}. (3)

Here, p denotes the pruning ratio, constrained as 0 < p < 100. In practice, following prior work
(Liu et al., 2024), we employ an offline calibration strategy to determine a pruning threshold tp
corresponding to a given sparsity ratio p, using a calibration dataset such as WikiText (Merity et al.,
2016). Empirically, this method introduces negligible accuracy degradation, making it a practical
choice for activation sparsity implementation.

Applying this operator, the sparsified MLP computation is:

MLPsparse(x, s, p) = F(S(hs, p)) (4)

where F(·) represents the MLP forward computation, which adapts based on the sparsified hidden
state:

F(h′
s)=


(SiLU(h′

s)⊙h3)Wdown, s=1, 2

(SiLU(h1)⊙h′
s)Wdown, s=3

(SiLU(h1)⊙h3)W
′
down, s=4

(5)

Here, W′
down accounts for cases where sparsification is applied to its input.

We define the global sparsity of the MLP module as the average sparsity of its three weight matrices:
Wgate,Wup, and Wdown. The sparsity of a weight matrix is measured as the fraction of its elements
that are zero.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: Sparse MLP Fused Kernel
Input: Wgate,Wup,Wdown, x, t

1 x← Load(x),Wup ← Load(Wup)
2 h3 ← xWup

3 mask1 ← (|h3| ≥ t)
4 W ′

gate ← Load(Wgate,mask = mask1)

5 h4 ← SiLU(xW ′
gate) ∗ h3

6 mask2 ← (h4 ̸= 0)
7 W ′

down ← Load(Wdown,mask = mask2)
8 y ← Store(h4W

′
down)

4.3 OPTIMIZATION OBJECTIVE

REACT aims to maximize the overall sparsity of the MLP module while maintaining model accuracy
above P% as follows:

max
s,p

SMLP, subject to Asparse ≥ P%. (6)

where Asparse represents the mean performance across multiple downstream NLP tasks. Typically,
we set P ≥ 96% to ensure no significant degradation in model performance.

Since s remains a free variable in our method, we empirically evaluate different sparsification loca-
tions, i.e., h1,h2,h3,h4,, corresponding to the four candidate hidden states within the MLP module.
Through extensive experiments, we determine the optimal choice s∗ that maximizes MLP sparsity
without compromising model accuracy. This selection is not predefined but emerges from empirical
evaluation, allowing REACT to be adaptable across different LLM architectures.

4.4 SPARSITY-AWARE CUSTOM GPU KERNELS

To achieve wall-clock speedup in LLM decoding, we develop a highly efficient GPU kernel that
fully exploits activation sparsity. Given that LLM decoding is a memory-bound process, our design
prioritizes minimizing unnecessary memory accesses, particularly avoiding redundant loads and
stores of intermediate states by keeping them in registers or shared memory. Additionally, we ensure
coalesced memory access, which significantly improves global memory bandwidth utilization.

Based on these design principles, we propose a sparse MLP fused kernel, outlined in Algorithm 1,
which provides a memory-centric perspective on the computation. Importantly, our design remains
generalizable: regardless of the sparsification position s, the kernel structure remains largely similar.
Therefore, for clarity, we present the case where s = 3 as a representative example. In Alg. 1, all
memory load and store operations are explicitly highlighted.

Compared to previous approaches, our kernel eliminates all redundant loads and stores of interme-
diate states, ensuring minimal memory access overhead. To achieve this, we implement the entire
sparse MLP computation within a single fused kernel, preventing unnecessary global memory op-
erations. A natural consequence of this design is the reduction in kernel launch overhead, further
improving efficiency.

Additionally, we introduce a strided row-major storage format to improve weight matrix access
efficiency. Unlike TEAL, which stored weights in column-major format, we store all three weight
matrices in a row-major format, but with Wdown transposed, and stored in a contiguous memory
layout to unify access strides across all matrices. This design improves data locality and ensures
coalesced memory access, significantly enhancing memory throughput.

5 EXPERIMENTS

In this section, we comprehensively evaluate REACT through a series of experiments designed to
analyze its effectiveness in LLM decoding. We first determine the optimal sparsification position in
LLaMA2-7B and validate this choice across other models, including the LLaMA family and Mis-
tral. Next, we investigate how different sparsity distributions affect speedup by benchmarking single

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dense Wup out Wgate out SiLU out

Perplexity 4.95 5.47 5.72 5.82

Table 1: Perplexity results on the WikiText dataset at 40% sparsity across different sparsification
positions.

MLP module inference times. We further conduct micro-benchmarks to quantify the contribution of
each kernel-level optimization. Finally, we integrate REACT into LLMs and measure end-to-end de-
coding latency to demonstrate it’s wall-clock speedup for LLM decoding. To ensure reproducibility,
we provide the code in the supplementary materials.

5.1 OPTIMAL SPARSIFICATION POSITION SELECTION

To determine the optimal sparsification position within the MLP module, we first conduct evalua-
tions on LLaMA2-7B Touvron et al. (2023) and validate our findings across different models in the
next section. We follow prior work and utilize Eleuther AI’s LM Evaluation Harness (Gao et al.,
2024) to assess model performance via average zero-shot accuracy across a diverse set of NLP
tasks. These tasks encompass three main categories: commonsense reasoning (ARC-Easy, ARC-
Challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al.,
2018), Winogrande (Sakaguchi et al., 2021)), reading comprehension (BoolQ (Clark et al., 2019),
SciQ (Welbl et al., 2017)), and language modeling (LAMBADA) (Paperno et al., 2016). Addition-
ally, we evaluate language modeling performance using perplexity on the WikiText (Merity et al.,
2016) validation set, with a context size of 2048 and an evaluation window of 512.

For consistency, all sparsity levels in the following refer to MLP module-level sparsity, i.e., the
average sparsity across the three MLP weight matrices.

Results. Figure 1b presents the model’s performance across different MLP sparsity levels for all
eight evaluation tasks. At approximately 27% sparsity, all positions except Wdown in maintain at
least 98% of the original model’s accuracy. The weaker performance of Wdown in stems from
its limited impact on overall MLP sparsity. Since this position only sparsifies Wdown, achieving
27% overall MLP sparsity translates to an extreme 80% sparsity in Wdown alone. In contrast, other
positions distribute sparsity across two matrices, maintaining a more moderate 40% sparsity per
matrix, which helps preserve model performance.

As sparsity increases to 40%, only Wup out retains over 96% accuracy, while SiLU out, the po-
sition used in CATS, drops to about 93%, leading to a significant degradation in model perfor-
mance. Beyond 47% sparsity, all positions exhibit substantial accuracy loss, surpassing our prede-
fined threshold of P ≥ 96% in the section 4.

Table 1 further confirms this trend by reporting perplexity results on the WikiText dataset at 40%
sparsity across different sparsification positions. Here, Wup out achieves the lowest perplexity,
outperforming SiLU out, further justifying our choice.

These findings indicate that Wup out is the most effective sparsification position, as it maintains
high accuracy and achieves the lowest perplexity under increasing sparsity constraints. In the next
section, we extend our evaluation to a broader range of models to verify the generalizability of this
choice.

5.2 GENERALIZATION ACROSS DIFFERENT LLMS

To verify that Wup out remains the optimal sparsification position, we extend our evaluation to
multiple models, including LLaMA2-7B, LLaMA2-13B, LLaMA3-8B (Dubey et al., 2024), and
Mistral-7B (Jiang et al., 2023). Across different models and sparsity levels, we demonstrate that
REACT consistently outperforms CATS in preserving model accuracy.

We evaluate all methods at sparsity levels of 20%, 30%, and 40%. In REACT, we further test only
three positions: Wup out,Wgate out, and SiLU out, as Wdown in provides limited sparsity (max
33%) and was shown in the previous experiment to degrade model performance. Notably, SiLU out
corresponds to the setting used in CATS. For a fair comparison, we evaluate TEAL using its uniform

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Average zero-shot accuracy across different models and sparsity levels.

Method Sparse Position LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-7B

Dense Model - 70.21 72.78 73.99 74.19

CATS 20% SiLU out 69.58 72.56 73.31 73.68
REACT 20% Wgate out 69.79 72.58 73.31 73.58
REACT 20% Wup out 69.71 72.70 73.37 73.93

CATS 30% SiLU out 68.46 71.69 71.20 72.60
REACT 30% Wgate out 68.85 71.68 70.90 72.68
REACT 30% Wup out 69.00 72.38 72.23 73.96

CATS 40% SiLU out 65.48 69.46 65.09 68.14
REACT 40% Wgate out 66.43 70.04 65.21 70.46
REACT 40% Wup out 67.41 71.13 68.31 72.27

TEAL 55% x,Wdown in 66.94 71.30 69.38 72.27

10 20 30 40 50 60
100

150

200

250

300

350

400

Nvidia L20

TEAL
REACT
Optimal
Dense
TEAL 53%

10 20 30 40 50 60
100

150

200

250

300

350
Nvidia 4090

Sparsity (%)

M
LP

 L
at

en
cy

 (µ
s)

Figure 2: MLP latency of different sparsity levels on Nvidia L20 and RTX 4090 GPUs. The x-axis
represents the overall sparsity of the MLP module, while the y-axis denotes the measured latency
(µs). The dashed black line indicates TEAL’s latency at 53% sparsity, corresponding to the model’s
96% accuracy constraint.

sparsification variant, applying sparsity only to the MLP module while keeping the attention layers
dense.

Results. Table 2 presents the average zero-shot accuracy across eight evaluation tasks for different
models. At 40% sparsity, REACT maintains over 96% of the original model’s accuracy in LLaMA2-
7B, LLaMA2-13B, and Mistral-8B. Notably, in Mistral-8B, REACT outperforms CATS by 5.57%,
achieving 97.41% of the dense model’s accuracy, indicating that Mistral exhibits the highest sparsity
tolerance, potentially due to its larger MLP capacity.

However, we observe slightly higher accuracy degradation in LLaMA3-8B, aligning with similar
findings in TEAL (Liu et al., 2024). A possible explanation is differences in activation distributions
or pretraining regularization strategies, which may affect sparsity retention. While a more detailed
investigation is beyond the scope of this paper, we leave this as an open direction for future study.

For TEAL, we report its sparsity at 96% accuracy retention, which reaches near 55% MLP sparsity.
While TEAL achieves slightly higher sparsity than REACT at the same accuracy target, this does
not necessarily imply greater speedup. In the next section, we demonstrate that the distribution of
sparsity across MLP sub-components plays a critical role in inference acceleration.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Nvidia L20 Nvidia 4090
Tested GPU Models

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

du
p

ov
er

 T
EA

L
(%

)

REACT Speedup Over TEAL on Different GPUs
REACT (basic)
REACT (fused)
REACT (fused + strided)

(a)

256 512 1024 2048
0

10

20

30

40

50
LLaMA2-7B

Dense
REACT

256 512 1024 2048
0

10

20

30

40

50
Mistral-7B

Generation length (tokens)

Ge
ne

ra
tio

n
Th

ro
ug

hp
ut

 (t
ok

en
/s

)

(b)

Figure 3: Left: Speedup of REACT over TEAL on different GPUs. The y-axis shows the percentage
latency reduction of three REACT kernel variants compared to TEAL. Right: Generation throughput
of different generation length on LLaMA2-7B and Mistral-7B models. The x-axis represents differ-
ent generation lengths, while the y-axis denotes the generation throughput measured in token/s.

5.3 IMPACT OF SPARSITY DISTRIBUTION ON INFERENCE EFFICIENCY

We conduct all experiments on NVIDIA L20 and RTX 4090 GPUs, with memory bandwidths of
768GB/s and 1008GB/s, respectively. These GPUs are selected to ensure a broader evaluation of
our sparsity-aware optimizations across different memory bandwidth GPUs. We use PyTorch v2.4.0,
CUDA v12.2, and HuggingFace Transformers v4.44.2 to implement dense LLM inference. All
models and micro-benchmarks run in FP16 to fit within the 24GB memory limit for sub-8B models.
Our sparsity-aware custom GPU kernels are implemented using Triton v3.0.0. To ensure robust
timing measurements, we report latency as the geometric mean over multiple runs.

We evaluate the MLP module latency in a single decoder layer of LLaMA2-7B, comparing differ-
ent sparsity distributions at the same overall MLP sparsity level. For a fair comparison, REACT
adopts the same optimizations as TEAL and does not include additional enhancements introduced
in Section 4.4.

Results. As shown in Figure 2, kernel runtime decreases approximately linearly as sparsity in-
creases, but beyond 50% sparsity, we observe diminishing returns due to kernel launch overheads
and other fixed computational costs.

Another clear trend is that at the same overall sparsity, REACT consistently achieves lower MLP
module latency than TEAL. This is because the speedup obtained from sparsity is not solely deter-
mined by the overall sparsity ratio but also by how sparsity is distributed across weight matrices.
REACT’s sparsity pattern (Wup: 0%, Wgate: 75%, Wdown: 75%) outperforms TEAL’s uniform
sparsity distribution in reducing latency. Additionally, we evaluated TEAL’s greedy search algo-
rithm with various sparsity distributions on Nvidia 4090 and found that in all cases, the resulting
latency remained similar to TEAL’s uniformly sparsity allocation.

Finally, we address the question raised in the previous section: while TEAL achieves slightly larger
overall sparsity at the same model accuracy, how does this impact inference speedup? In Figure 2,
we compare the sparsity levels of REACT and TEAL at the same MLP module latency.

We observe two key facts: (1) At the latency where TEAL reaches 53% sparsity, which corresponds
to the threshold at which TEAL maintains 96% of the original LLaMA2-7B model’s accuracy, RE-
ACT achieves the same speed with only 35% overall sparsity on both GPUs. (2) REACT’s module
latency continues to decrease as sparsity increases.

These observations lead to a critical conclusion: since REACT at 35% sparsity already matches
TEAL’s latency at 53% sparsity, and REACT at 40% sparsity achieves even lower latency, it follows
that REACT attains a higher speedup than TEAL under the same model accuracy constraints. This
highlights that sparsity distribution plays a more crucial role in acceleration than overall sparsity
percentage alone.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 KERNEL MICRO-BENCHMARK

In this section, we evaluate the two key contributions of our sparsity-aware custom GPU kernel
introduced in section 4.4. We conduct experiments on L20 and RTX 4090 GPUs, using the same
MLP module setup as in the previous section. To ensure a fair comparison, we measure the latency
of both methods while maintaining 96% of the original model’s accuracy. Under this constraint,
TEAL achieves 53% sparsity, whereas REACT requires only 40% sparsity.

We report the percentage reduction in latency relative to TEAL for three versions of our GPU kernel,
as shown in Figure 3a. Although REACT’s overall MLP sparsity is slightly lower than TEAL (40%
vs. 53%), its better sparsity distribution enables significantly lower latency. This further validates
our hypothesis that the distribution of sparsity across MLP submodules has a greater impact on
inference speed than the overall sparsity ratio.

For our two kernel optimizations, we observe the following improvements: (1) The fused kernel
reduces latency by approximately 7% compared to the basic kernel, primarily by eliminating redun-
dant memory load/store operations and reducing kernel launch overhead. (2) Adopting our strided
row-major storage format improves data locality and ensures coalesced memory access, leading to
an additional 1.4% latency reduction over the fused kernel.

Overall, our sparsity-aware custom GPU kernel achieves up to 13.4% lower latency than TEAL,
while maintaining the same model accuracy. In the next section, we evaluate end-to-end LLM
decoding performance using REACT.

5.5 END-TO-END LLM DECODING PERFORMANCE

In this section, we integrate our custom GPU kernel into LLaMA2-7B and Mistral-7B and evaluate
their decoding throughput at different generation lengths. To ensure no significant degradation in
model performance (P ≥ 96%), we set MLP sparsity to 40% for LLaMA2-7B and 41% for Mistral-
7B, reflecting Mistral’s higher sparsity tolerance observed in previous experiments. We measure
throughput in tokens per second (TPS), computed as output length divided by total decoding latency.

As shown in Figure 3b, REACT consistently accelerates LLM decoding across different generation
lengths, achieving 1.26× and 1.33× speedup for LLaMA2-7B and Mistral-7B, respectively. This
improvement demonstrates that our sparsity-aware kernel effectively translates MLP sparsity into
actual inference speedup, even without modifying attention layers.

While TEAL achieves higher throughput by sparsifying both attention and MLP layers, REACT
demonstrates superior speedup at the same model accuracy, achieving a 13.4% latency reduction
over TEAL in MLP module as shown in section 5.4 due to its better sparsity allocation and optimized
kernel design.

6 CONCLUSION

We propose REACT, a training-free activation sparsity method that accelerates LLM inference by
leveraging activation sparsity within the MLP module, while optimizing its distribution to further
enhance efficiency. Through systematic experiments, we validate that a well-balanced sparsity dis-
tribution achieves higher speedup with the same model performance. On LLaMA2-7B and Mistral-
7B, REACT delivers 1.26× and 1.33× speedup, respectively, with minimal accuracy loss. These
improvements make REACT particularly valuable for deploying LLMs on resource-constrained en-
vironments, where efficient decoding is critical for real-time applications.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Je-Yong Lee, Donghyun Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. Cats:
Contextually-aware thresholding for sparsity in large language models. arXiv preprint
arXiv:2404.08763, 2024.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models. arXiv preprint arXiv:2408.14690, 2024.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C Del Mundo, Oncel Tuzel, Golnoosh
Samei, Mohammad Rastegari, and Mehrdad Farajtabar. Relu strikes back: Exploiting activation
sparsity in large language models. arXiv preprint arXiv:2310.04564, 2023.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

10

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan
Liu, Guangli Li, Tao Yang, et al. Prosparse: Introducing and enhancing intrinsic activation spar-
sity within large language models. arXiv preprint arXiv:2402.13516, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Lilian Weng. Large transformer model inference optimization. Lil’Log, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han, Yankai Lin, Chaojun Xiao, Chenyang Song,
Zhiyuan Liu, Zeyu Mi, and Maosong Sun. Relu 2 wins: Discovering efficient activation functions
for sparse llms. arXiv preprint arXiv:2402.03804, 2024.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only use AI tools like ChatGPT to polish the written text.

11

	Introduction
	Related Work
	Background
	Activation Sparsity and Notations

	REACT: Rethinking Activation Sparsity for Faster LLM Decoding
	MLP Computation and Sparsity Formulation
	MLP Sparsification Operator
	Optimization Objective
	Sparsity-aware custom GPU kernels

	Experiments
	Optimal Sparsification Position Selection
	Generalization Across Different LLMs
	Impact of Sparsity Distribution on Inference Efficiency
	Kernel Micro-benchmark
	End-to-End LLM Decoding Performance

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)

