

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NOT ONLY A HELPER, BUT ALSO A TEACHER: INTERACTIVE LLM CASCADE

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) vary widely in their capabilities, with larger models often having better performance but higher cost: choosing an LLM model often involves trading off performance and cost. The *LLM Cascade* is a paradigm that *defers* difficult queries from weak/cheap to strong/expensive models. This approach is nonadaptive: the deferral decision rule is trained or derived by algorithms offline. When confronted with similar or repeated queries, the LLM Cascade may then repeatedly consult the expensive model and incur higher cost. To improve the cascading efficiency, we propose *Inter-Cascade*, an online and interactive LLM Cascade that extends the role of strong model from a backup helper to a long-term teacher. In our system, when a strong model resolves a difficult query, it also distills its solution into a generalized, reusable problem-solving strategy that boosts the weak model on subsequent queries. Adding strategies to queries enables the weak model to dynamically improve its performance over time, avoiding computationally and time-intensive fine-tuning. Empirically, compared with standard LLM Cascade baselines across multiple benchmarks, the Inter-Cascade significantly improves the accuracy of the weak model (by up to 33.06 absolute percentage points) and the overall system (by up to 5.53 absolute percentage points), while reducing the calls to strong models (by up to 48.05% relative reduction) and saving the corresponding fees (by up to 49.63% relative reduction). Inter-Cascade demonstrates the effective in-context knowledge transfer between LLMs, and provides a general, scalable framework applicable to both open-source and API-based LLMs.

1 INTRODUCTION

Large Language Models (LLMs) demonstrate remarkable performance across a wide range of generation and reasoning tasks. LLMs with stronger performance are generally larger in size, and the converse holds as well (Kaplan et al., 2020). Larger models often achieve better performance on more challenging tasks but are correspondingly more expensive. Depending on their expected workload, cost-sensitive users may wish to use *weaker* (and cheaper) models that suffice for simple queries and reserve the use of *stronger* (and expensive) models for more complex queries. In a prototypical example, a weaker model may run on a mobile device such as a phone while a stronger model may run in a cloud-based server owned by another service: the cost of the stronger model can include latency, monetary charges, or both. Since accuracy alone is not the only performance metric of interest, practical deployment scenarios require balancing multiple objectives including efficiency, latency, reliability, and network resource usage (Zhou et al., 2024; Khatun & Brown, 2024; Gundla & Athuluri, 2025; Yan & Ding, 2025; Zhou et al., 2024).

The *LLM Cascade* has emerged as a widespread LLM paradigm in which weaker models handle routine queries and *defer* uncertain cases to stronger models in a sequential order (Chen et al., 2024). Deferral depends on a *deferral function*, typically estimates a confidence score that decides when to send queries to the strong model. The current approach focuses on improving this deferral decision by training or adjusting the threshold for the confidence score to decide when to defer (Shen et al., 2024; Rayan & Tewari, 2025; Ong et al., 2025; Zellinger et al., 2025; Zellinger & Thomson, 2025; Xia et al., 2024; Nie et al., 2024; Jung et al., 2025). The strong model, weak model, and deferral function are optimized prior to deployment. After training, the system follows the same

054 pipeline for any incoming query, which means processing is not adaptive to the workflow during
 055 inference/deployment. A static LLM Cascade pipeline would result in a substantial waste of tokens.
 056

057 NVIDIA’s recent position paper (Belcak et al., 2025) shows that many LLM applications repeatedly
 058 perform a small set of specialized tasks with only modest variations. There are various of scenarios
 059 that contain inherently similarities. For instance, datasets like GSM-Plus (Li et al., 2024), an ex-
 060 tension of a math problem dataset GSM8K (Cobbe et al., 2021b), contains eight variants for each
 061 problem. Identical questions are repeatedly asked: e.g., “Which is larger, 9.9 or 9.11?” Users were
 062 once eager to keep asking this question to any newly released LLM (Korzhov, 2023; Schnabel, 2024;
 063 Junco, 2025). However, current LLM Cascade methods do not take this “similarity phenomenon”
 064 into consideration. As a result, a large amount of tokens are wasted because of repeated or similar
 065 queries. If a weak models consistently fails on similar or recurring problems, the system must re-
 066 peatedly consult the strong model each time, which is wasteful/costly. The non-interactive nature
 067 of traditional LLM cascades, where weak models can only offload, prevents them from leveraging
 068 feedback from stronger models’ capabilities during generation/inference. Furthermore, fine-tuning
 069 weaker models to overcome such failures is expensive and sometimes impractical: fine-tuning re-
 070 quires substantial memory (e.g., finetune Qwen3-235B requires 130 GB VRAM for LoRA or 2560
 071 GB for full-parameter fine-tuning (Yang et al., 2025)) and must re-train again when distributions
 shift. For API-based models, fine-tuning may not even be available.

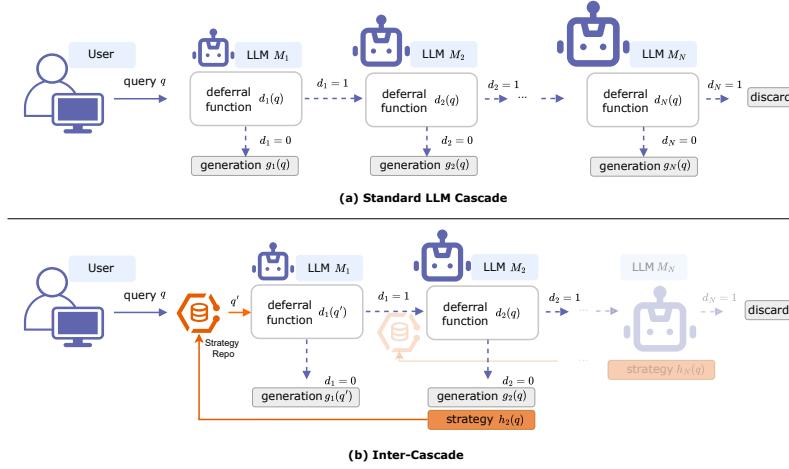
072 To take advantage of this phenomenon, in this paper we improve current “static” LLM Cascade by
 073 developing a new online adaptation method to assist the weaker model in dynamically balancing
 074 cost and accuracy. Our key insight is to exploit input similarity so the strong model can help the
 075 weaker one adapt and handle similar queries locally. The essence of the approach is to let the weaker
 076 model learn from the stronger model online: the weaker model can build a “crib sheet” using prior
 077 queries to do prompt engineering at the input that will guide the weaker model to the correct solution
 locally.

078 Our approach is influenced by in-context learning (ICL) (Dong et al., 2024) or few-shot prompting
 079 (Parnami & Lee, 2022), which can partially alleviate this limitation. In those approaches,
 080 by carefully selecting demonstrations or instructions one can enhance the reasoning capacity of
 081 weaker models without retraining. However, existing ICL and few-shot methods often rely on
 082 manual prompt design or retrieval from either fixed or manually updated database, making them
 083 inflexible as query distributions evolve. Our approach is related to Retrieval-Augmented Genera-
 084 tion(RAG) (Lewis et al., 2020), in which a database is used for assisting the generation of answer.
 085 However, the databases in RAG studies are either built with engagement of human (Edge et al.,
 086 2025; Chen et al., 2025a; Shi et al., 2024) or updated from single LLM dialogue history for person-
 087 alization usage (Zhang et al., 2025; Mo et al., 2025), while in our approach, the knowledge corpus
 088 are extracted from an extra stronger LLM without any human intervention. The goal in this work
 089 is to develop a framework the enables cascaded LLMs to interact adaptively: the weak model can
 090 benefit from *in situ* reasoning generated by the strong model to improve its own performance during
 091 real-world query streams. As a metaphor, the weak model uses the strong model for “on the job”
 092 training to improve longer-term performance. We further discuss this paradigm’s relationship to
 093 extensive related works with details in the Appendix B.

094 **Primary contributions.** We improve on existing LLM Cascade approaches. **(1)** We propose a
 095 new framework, *Inter-Cascade*, for online and interactive LLM Cascades in which the strong model
 096 serves as both a backup helper and longer-term teacher. The strong model can both answer difficult
 097 queries and provide feedback that can be reused by the weak model to generalize problem-solving
 098 for future queries. These strategies are stored in a local database which the weak model uses as an
 099 auxiliary input: its performance is improved on similar future queries by leveraging the strategies
 100 generated from the strong model. In this way the strong LLM “teaches” the the weak LLM how
 101 to resolve these queries on its own. We think of this approach as a kind of *in-context knowledge*
 102 *distillation* approach to LLM Cascade using similarity-based memory. **(2)** We propose a theoretical
 103 model and show that without changing the deferral rule, adding strategies helps the weak LLM’s
 104 confidence score better approximate its probability of correctness. This shows that using strategies
 105 can provably guarantee the higher accuracy of the overall system. **(3)** We compare to the LLM
 106 Cascade (Jung et al., 2025) and show that Inter-Cascade improves the overall system accuracy by up
 107 to 33.06 absolute percentage points and the overall system by up to 5.53 absolute percentage points,
 while reducing the usage of strong models by up to 48.05% relative reduction, This can reduce the
 corresponding fees by up to 49.63% relative reduction with the same guarantee of risk tolerance

108 and error level over all benchmarks. Crucially, our framework is general and modular: it applies to
 109 both API-only models and open-source models, and can be combined with any deferral function or
 110 any number of LLMs in cascade. We make the full implementation of Inter-Cascade under an open
 111 source license.

2 IMPROVING THE LLM CASCADE



132 Figure 1: (a) Pipeline of standard LLM Cascade systems. (b) Pipeline of Inter-Cascade. The unique components
 133 in Inter-Cascade are painted in orange. For the sake of clarity and readability, we only present the case of
 134 two LLMs Inter-Cascade system and the scalable parts beyond two LLMs are rendered in a lighter color.

135 We first describe the standard LLM Cascade (Chen et al., 2024) and revisit the accuracy bound and
 136 calibration method for the deferral threshold proposed by Jung et al. (2025). We then introduce our
 137 proposed method Inter-Cascade and provide a theoretical framework to show when a weak model
 138 will be improved by a strong model’s strategies.

2.1 STANDARD LLM CASCADE

142 Figure 1(a) shows the general N -LLM Cascade system (Chen et al., 2024). Each LLM $M_i : i \in [N]$ contains two key components. One is the *generation function* $g_i : \mathcal{Q} \rightarrow \mathcal{A}$, where \mathcal{Q} is the
 143 space of queries and \mathcal{A} is the space of answers. The other is *deferral function* $d_i : \mathcal{Q} \rightarrow \{0, 1\}$,
 144 which determines whether the i -th LLM will answer the query by itself ($d_i(q) = 0$) or defer it to
 145 the $(i+1)$ -th LLM ($d_i(q) = 1$). Processing by the LLMs proceeds sequentially from M_1 to M_N .
 146 We define a partial order \preceq_{wbc} (“weaker but cheaper”) to compare models (see Appendix C) and
 147 assume that in the cascade, $M_1 \preceq_{\text{wbc}} M_2 \preceq_{\text{wbc}} \dots \preceq_{\text{wbc}} M_N$. For each query $q \in \mathcal{Q}$, the first LLM
 148 M_1 takes the query q and gives a final answer $g_1(q)$ if deferral function $d_1(q) = 0$, otherwise M_1
 149 defers this query to the next LLM M_2 if $d_1(q) = 1$. If M_2 takes the query from M_1 , it repeats the
 150 same process and so do the other LLMs except the last model M_N . As M_N doesn’t have another
 151 LLM to offload the query, M_N discards this query if $d_N(q) = 1$. Recent studies propose different
 152 deferral functions d_i to meet the demands in different scenarios. We focus on the two-LLM case in
 153 the rest of this paper, as shown in Figure 1(b). We call M_1 the *Weak LLM* and M_2 the *Strong LLM*.
 154 One common choice of deferral function is:

$$d_i(q) = \begin{cases} 0, & \text{if } c(q) \geq \lambda, \\ 1, & \text{otherwise,} \end{cases} \quad (1)$$

155 where $c : \mathcal{Q} \rightarrow [0, 1]$ is a pre-defined or pre-trained “confidence” metric (usually defined in terms
 156 of the probability of output tokens) and λ is a confidence threshold, which is a hyperparameter that
 157 controls the trade-off between the system performance and cost.

158 **Accuracy Guaranteed LLM Cascade.** It is well known that LLMs suffer from systematic bias
 159 (Wang et al., 2024b; Thakur et al., 2025) and over-confidence (Xiong et al., 2024). To address this,

162 [Jung et al. \(2025\)](#) propose a post-hoc calibration algorithm, which provably guarantees that with the
 163 derived λ ,

$$P(g_i(q) = a_{\text{true}} \mid c(q) \geq \lambda) \geq 1 - \alpha \quad (2)$$

165 with probability at least $1 - \delta$, as proved in Theorem 1 of their work, where a_{true} is the ground-truth
 166 answer to query q . The risk tolerance α and error level δ are hyperparameters corresponding to
 167 the applications and users' demands. To instantiate this guarantee, a fixed-sequence testing ([Bauer, 1991](#))
 168 procedure is first conducted, which selects the largest threshold λ from a calibration set, such
 169 that $P(g_i(q) = a_{\text{true}} \mid c(q) \geq \lambda)$ is exactly and tightly bounded. The procedure is summarized in
 170 [Algorithm 1](#). They also extend the single-model guarantees to the full cascade; see Section 2 and
 171 Appendix A.2 in [Jung et al. \(2025\)](#)'s paper for details.

173 **Algorithm 1** Calibrating Deferral Threshold λ ([Jung et al., 2025](#))

174 **Input:** Calibration set $(q, a) \in D_{\text{cal}}$, confidence metric $c(\cdot)$, risk tolerance α , error level δ

175 **Output:** Threshold λ

- 176 1: Initialize $\Lambda = \{0.999, 0.998, \dots\}$ in decreasing order
- 177 2: **for** $\lambda \in \Lambda$ **do**
- 178 3: $n(\lambda) \leftarrow \sum_{(q, a) \in D_{\text{cal}}} \mathbf{1}\{c(q) \geq \lambda\}$
- 179 4: $\hat{R}(\lambda) \leftarrow \frac{1}{n(\lambda)} \sum_{(q, a) \in D_{\text{cal}}} \mathbf{1}\{g_i(q) \neq a_{\text{true}} \wedge c(q) \geq \lambda\}$
- 180 5: $\hat{R}^+(\lambda) \leftarrow \sup\{R : \Pr[\text{Bin}(n(\lambda), R) \leq n(\lambda)\hat{R}(\lambda)] \geq \delta\}$
- 181 6: **if** $\hat{R}^+(\lambda) \leq \alpha$ **then return** λ

184 The general pipeline of LLM Cascade is shown in Figure 1(a). By using this LLM cascade diagram,
 185 the deferral function can keep "confident" queries on Weak LLMs and only send "uncertain" queries
 186 to Strong LLMs, dramatically reducing at most 82.5% usage of the strongest LLM as shown by
 187 [Jung et al. \(2025\)](#) while ensuring the error rate is bounded by α with probability at least $1 - \delta$.

188 **2.2 INTERACTIVE LLM CASCADE**

191 LLM Cascade methods can be efficient and reliable although they still incur some waste in terms of
 192 tokens and latency as noted in Section 1. In particular, for workloads in which the Weak LLM is
 193 fed a similar or repeated queries for which it chooses to defer, the Strong LLM is called repeatedly
 194 to generate the same tokens. To address this issue, we propose *Inter-Cascade*. In Inter-Cascade,
 195 for both Weak LLM and Strong LLM, besides deferral function and generation function, we add
 196 the following components: *strategy generator* and *strategy repository*. In Strong LLM, we set up a
 197 *strategy generator* $h: \mathcal{Q} \rightarrow \mathcal{S}$, where \mathcal{S} is the space of strategies. The strategy $s \in \mathcal{S}$ is defined
 198 as a sequence of tokens that contains the query and the answer of Strong LLM, together with a
 199 generalized ideas or tips to solve logically similar problems. To store those strategies, we construct
 200 a Strategy Repository called *Repo*. The *Repo* is accompanied by a *strategy matching function*
 201 $f: \mathcal{Q} \times \mathcal{Q}^N \rightarrow \mathcal{S}^k$, where N is the size of current *Repo* and k is a predefined hyperparameter
 202 that determines the number of strategies retrieved. The detailed description of strategy repository is
 203 depicted below:

204 **Strategy Repository.** The Strategy Repository *Repo* is formally defined as a collection of query-
 205 strategy pairs: $\text{Repo} = (q_j, s_j)_{j=1}^N$ where $q_j \in \mathcal{Q}$ are previously solved queries and $s_j \in \mathcal{S}$ are
 206 their corresponding strategies generated by Strong LLM. The strategy matching f operates through
 207 multiple stages. The repository is initialized as an empty set and dynamically updated: when the
 208 Strong LLM generates a strategy $s = h(q)$ for a new query q , the pair (q, s) is added to *Repo*,
 209 enabling future reuse through the matching function f .

210 For a query $q \in \mathcal{Q}$ that is sent to the Weak LLM, let $\text{sim}: \mathcal{Q} \times \mathcal{Q} \rightarrow [0, 1]$ be a ranking function.
 211 Let the Top- k indices (sorted by decreasing similarity) be

$$\text{TopIndex}(q) \triangleq (t_1, t_2, \dots, t_k),$$

212 where each $t_i \in \{1, \dots, N\}$ indexes an item in *Repo* and $\text{sim}(q, q_{t_1}) \geq \dots \geq \text{sim}(q, q_{t_k}) \geq$
 213 $\text{sim}(q, q_{\text{else}})$. After ranking, these strategies with Top- k indexes are chosen to help the Weak LLM.
 214 Then the output of strategy matching function is $f(q, \text{Repo}) \triangleq \{s^{t_i} \mid t_i \in \text{TopIndex}(q)\}$.

216 *Remark 2.1.* Compared with finetuning or paying for Strong LLM, the cost of maintaining a Repo
 217 and running similarity-based matching algorithms are negligible. According to the estimate formula
 218 suggested by [Johnson et al. \(2021\)](#), conducting retrieval and Top-2 ranking on 1 million query
 219 embeddings, which are 384 dimensional vectors (the same size we used in experiments), only
 220 requires 0.2–0.8 ms with 70–80 MB GPU VRAM and 80–100 MB RAM for long term storage.
 221 The demand can be easily fulfill on any PC or even phone, and imperceptible to human users.

222 **Inter-Cascade Pipeline.** The overall pipeline of Inter-Cascade is presented in [Algorithm 2](#) and in
 223 Figure 1(b). For each query q , the Weak LLM first uses the strategy matching function $f(q, \text{Repo})$
 224 to find the most related strategies. The query and these strategies are then sent to deferral function.
 225 The augmented input is the prompt concatenation of query and strategies: $q' = [q, s_i^{t_1}, s_i^{t_2}, \dots, s_i^{t_k}]$.
 226 If the Weak LLM’s deferral function $d_1(q') = 0$, then final answer a for current query is $g_1(q')$. If
 227 $d_1(q') = 1$, the query q' is deferred to Strong LLM. Each time the query is sent to the Strong LLM,
 228 the deferral function in Strong LLM is called. If $d_2(q) = 0$, this query is discarded (since Strong
 229 LLM is the last model in two LLMs Cascade), otherwise $g_2(q)$ produces the answer and further,
 230 a new strategy is produced by $h(q)$. Then, the strategy will be stored into Repo . Given α and
 231 δ , we can derive the λ from [Algorithm 1](#) and determine deferral function d_1 and d_2 as defined
 232 by [\(1\)](#). Our algorithm can be extended to multi-LLM cases, the corresponding [Algorithm 3](#) is shown
 233 in [Appendix D](#).

Algorithm 2 Inter-Cascade Inference Pipeline

235 **Input:** Test set $\mathcal{T} = \{q_1, \dots, q_I\} \subseteq \mathcal{Q}$; Weak LLM with deferral function d_1 , generation function
 236 g_1 , strategy repository $\text{Repo} = \emptyset$; strategy matching function f ; Strong LLM with deferral
 237 function d_2 , generator g_2 , and strategy generator h .

238 **Deferral convention:** 0 = handle locally, 1 = defer/forward.

239
 240 1: **for** $i \leftarrow 1$ **to** I **do** ▷ Top- k strategies matching from Repo
 241 2: $[s_i^{t_1}, s_i^{t_2}, \dots, s_i^{t_k}] \leftarrow f(q_i, \text{Repo})$ ▷ concatenate query and strategies
 242 3: $q'_i \leftarrow [q_i, s_i^{t_1}, s_i^{t_2}, \dots, s_i^{t_k}]$ ▷ Weak LLM decision
 243 4: **if** $d_1(q'_i) = 0$ **then** ▷ Answer locally at Weak LLM
 244 5: generate answer $a_i \leftarrow g_1(q'_i)$
 245 6: **else** ▷ Defer to Strong LLM
 246 7: **if** $d_2(q_i) = 0$ **then** ▷ Strong LLM synthesizes a new strategy
 247 8: $s_{\text{new}} \leftarrow h(q_i)$ ▷ Send back strategy to Weak LLM and store
 248 9: $\text{Repo} \leftarrow \text{Repo} \cup \{(q_i, s_{\text{new}})\}$ ▷ Answer at Strong LLM
 249 10: generate answer $a_i \leftarrow g_2(q_i)$
 250 11: **else** ▷ None of LLMs are confident to answer the query
 251 12: Discard current query q_i

252
 253 **Strategies Provide Improved Calibration.** The Repo we build during the usage of the combination
 254 of LLMs collects the strategies of the Strong LLM and provides strategies to help the Weak
 255 LLM answer queries. With the help of strategies, the Weak LLM is able to solve the more challenging
 256 problems that appear frequently and be more aware of its correctness of answering the queries,
 257 leading better confidence. However, it is not clear that how this increment in the accuracy and the
 258 quality of confidence could be preserved in the queries after the filtration. After all, all the queries,
 259 even to which the Weak LLM answers correctly would be deferred if the Weak LLM’s confidence
 260 can not pass the threshold. Therefore, we present the following theories to estimate such an increment
 261 that would remain in the filtered queries.

262 To be specific, we first assume that, after adding strategies, under the same confidence threshold
 263 λ , the number of queries that pass the confidence threshold increases from $n(\lambda)$ to $bn := n'(\lambda)$,
 264 $b \in [1, \infty)$, where $n(\lambda)$ is first defined in [Algorithm 1](#). The number of wrongly answered queries
 265 before and after the help of strategies are denoted by x and ϵx , respectively, where $\epsilon \in (0, 1)$.
 266 We want to understand the potential benefit in terms of the reduction in risk α under the same
 267 error level δ . We do not change the threshold λ , which is the case when the strategy repository
 268 is enlarged during the running process of the Inter-Cascade. [Theorem 2.2](#) states our main result.
 269 For the convenience of the statement, we define $\alpha(\epsilon, b)$ as the value of risk tolerance α when total
 270 number of queries that pass threshold is bn and incorrectly answered queries is ϵx .

270 **Theorem 2.2.** Suppose that $\widehat{R}^+(\lambda)$ is a monotonic decreasing function of λ . Fix $\delta \in (0, 1)$
 271 and an integer $n \geq 1$. For $x \in \{0, 1, \dots, n\}$, $\epsilon \in (0, 1]$, and $b \in [1, \infty)$. Suppose that
 272 $\min\{\epsilon x + 1, n - \epsilon x\}$ is moderately large and $1 - \delta$ is not an extreme tail, then:
 273

274 (a) **Decrease in value.** $\alpha(\epsilon, b) \leq \alpha(1, 1)$ when $\epsilon \in (0, 1]$ and $b \in [1, \infty)$.

275 (b) **Normal approximation for the amount of decrease.** Let $z := \Phi^{-1}(1 - \delta)$, where Φ is the
 276 Normal cumulative distribution function, when n is large enough, the decrease of the risk under
 277 same level of tolerance is given by,
 278

$$279 \quad 280 \quad 281 \quad \alpha(1, 1) - \alpha(\epsilon, b) \approx \left(\frac{x+1}{n+1} - \frac{\epsilon x + 1}{bn+1} \right) + z \left[\sqrt{\frac{(x+1)(n-x)}{(n+1)^2(n+2)}} - \sqrt{\frac{(\epsilon x + 1)(bn - \epsilon x)}{(bn+1)^2(bn+2)}} \right].$$

282 The proof of this theorem is in Appendix F. Theorem 2.2 states that, when the δ and confidence
 283 threshold λ do not change, if more queries can pass the threshold, after combining with strategies
 284 and under certain conditions, we can ensure a smaller risk tolerance α in the guarantee of this
 285 inequality (2). That is, Inter-Cascade yields a higher success rate for Weak LLM.

286 Other than the case that λ remains unchanged, which is analyzed above, another case may be that
 287 when the users want the same number of queries to be covered by the Weak LLM during two rounds
 288 of queries (before and after adding strategies). This case considers the influence of a better Weak
 289 LLM on our pipeline. In this case, we instead assume that $n(\lambda) = n(\lambda')$, which ensures the
 290 same coverage of Weak LLM. We also show that we can ensure a smaller risk tolerance α when
 291 threshold becomes λ' while δ and number of queries that pass threshold remain unchanged. And
 292 the reduction in tolerance level $\alpha(1, 1) - \alpha(\epsilon, 1)$ is approximately linear to $1 - \epsilon$. The full statement
 293 of Theorem G.1 and the proof are shown in Appendix G.

295 3 EXPERIMENTS

297 3.1 BENCHMARKS

298 In our experiments, we use two categories of datasets. The first category consists of reasoning-
 299 focused scientific benchmarks, including *GSM-Symbolic* (Mirzadeh et al., 2025), *GSM-Plus* (Li
 300 et al., 2024), and *MetaMath* (Yu et al., 2024), selected to evaluate performance on tasks requiring
 301 logical reasoning. The second category includes factual benchmark, represented by *NASA-History-
 302 MCQ* (Fleith, 2025), chosen to assess performance on tasks with lower reasoning demands. Using
 303 both categories allows for a more comprehensive assessment across tasks of different difficulty levels
 304 and types. The detailed descriptions of selected benchmarks are in Appendix I. The prompt template
 305 and an example problem for each benchmark are provided in Appendix L.

307 3.2 EXPERIMENTAL SETTINGS

309 **Inter-Cascade.** On all benchmarks, *Gemini-2.0-flash* consistently outperforms *GPT-3.5-turbo* (see
 310 ITable 1), and is therefore designated as the Strong LLM in our two-LLM Inter-Cascade, with
 311 *GPT-3.5-turbo* as the Weak LLM. We extract the normalized token probability from the LLM’s
 312 output as confidence score $c(q)$ in following experiments. In preparation phase, with given risk
 313 tolerance α and error level δ , we derive desired confidence threshold λ from calibration set by
 314 following Algo. 1. Then deploy corresponding deferral functions d_i according to equation (1).

315 Our similarity-based strategy matching process on Repo works as follows. Given a new query, it
 316 is encoded into a vector and used to retrieve the top- k semantically similar queries from Repo.
 317 We employ the *all-MiniLM-L6-v2* transformer (Reimers & Gurevych, 2019) to produce 384-
 318 dimensional sentence embeddings and use the FAISS library (Douze et al., 2025) for efficient ap-
 319 proximate nearest-neighbor search. FAISS returns the top- k vectors that minimize cosine distance,
 320 providing the Inter-Cascade with prior Strong LLM responses, including queries, answers and strate-
 321 gies, which can inform the Weak LLM’s responses.

322 **Inter-Cascade with Random Strategies.** To evaluate the impact of similarity-based retrieval on
 323 Repo, we randomly select the same number of strategies for each query, instead of choosing the
 324 top- k most similar queries.

324
325
326 Table 1: Accuracies of the base LLMs on four benchmarks
327
328
329
330
331

Dataset	LLM	Accuracy	Dataset	LLM	Accuracy
GSM-Symbolic	gpt-3.5-turbo	13.36%	MetaMath	gpt-3.5-turbo	37.30%
	gemini-2.0-flash	69.36%		gemini-2.0-flash	79.70%
GSM-Plus	gpt-3.5-turbo	23.00%	NASA-History	gpt-3.5-turbo	65.30%
	gemini-2.0-flash	73.57%		gemini-2.0-flash	78.80%

332 **Jung Proposed LLM Cascade.** To evaluate the performance and effectiveness of the Inter-Cascade,
333 we choose [Jung et al. \(2025\)](#)’s *Cascaded Selective Evaluation* as the baseline model. Its method for
334 deriving confidence scores and thresholds provides a provable lower bound on the error risk and
335 achieves state-of-the-art performance compared with other confidence-based LLM cascades.

336 3.3 EVALUATION METRICS

337 We first define the notations used in our evaluation. Let T and U denote the total number of
338 queries and the number of uncovered queries in a benchmark, respectively. Let N_w and N_s be the
339 number of times the Weak and Strong LLMs are invoked, and let C_w and C_s denote the number of
340 queries correctly answered by these models that also pass the confidence threshold. C_w^{total} denotes
341 the total number of queries answered correctly by the Weak LLM. Let Tok_J and Tok_O be the
342 tokens consumed by Jung’s method and our proposed Inter-Cascade pipeline, and Cost_J and Cost_O
343 denote their corresponding costs. The evaluation metrics are summarized in Table 2.

344
345 Table 2: Evaluation Metrics
346

Metric	Formula	Metric	Formula
Pipeline Accuracy	$(C_w + C_s)/(T - U)$	Strong LLM Call Rate	N_s/T
Weak LLM Accuracy	$C_w^{\text{total}}/(T - U)$	Weak Correct Accepted	$C_w/(T - U)$
Coverage Rate	$(T - U)/T$	Token Reduction	$(\text{Tok}_J - \text{Tok}_O)/\text{Tok}_J$
Cost Reduction	$(\text{Cost}_J - \text{Cost}_O)/\text{Cost}_J$		

353 3.4 PERFORMANCE AND COST ANALYSIS

354 **Inter-Cascade vs. Jung’s LLM Cascade.** We evaluate our *Inter-Cascade* pipeline and Jung’s
355 method, as shown in Table 3. Our method outperforms Jung’s, with a 4.33% – 6.35% increase
356 in Pipeline Accuracy on reasoning benchmarks and a 0.76% increase on the non-reasoning factual
357 NASA-History benchmark. The Strong LLM Call Rate is reduced on all benchmarks, with
358 reductions ranging from 4.41% to 28.53%. These results indicate that *Inter-Cascade* pipeline is
359 beneficial across different categories of tasks and particularly effective for reasoning-intensive tasks.
360 Experiment results on extensive and diverse benchmarks are attached in Appendix J.

361 **Effectiveness of Similarity-Based Retrieval.** To isolate the effect of strategy selection, we include
362 a control variant in which *Inter-Cascade* selects strategies at random. Across datasets, its performance
363 generally falls between the *Inter-Cascade* and Jung’s pipeline (see Table 3), demonstrating the
364 benefit of similarity-based retrieval. Although outside the scope of this work, one possible future
365 direction is to further refine the selection of strategies, which would involve verifying whether all of
366 the top- k retrieved strategies are relevant to the given queries. The accuracy of the *Inter-Cascade*
367 (random strategies) differs from Jung’s by -2.43% to +1.93%, and its Strong LLM Call Rate
368 shows only a modest reduction, ranging from 1.59% to 5.17%.

369 **Impact of Inter-Cascade on Weak LLM.** Having examined the overall pipeline improvements,
370 including Pipeline Accuracy and Strong LLM Call Rate reduction, we now investigate how our
371 proposed *Inter-Cascade* affects the Weak LLM. As shown in Table 4, our Weak LLM outperforms
372 the Weak LLM in the other pipeline across all benchmarks. The improvements are particularly
373 pronounced on reasoning benchmarks, with gains of 23.21%, 16.2%, and 33.06% on MetaMath,
374 GSM-Plus, and GSM-Symbolic, respectively, while still achieving an improvement of 0.48% on
375 the non-reasoning NASA-History benchmark. Importantly, improvements in the Weak LLM’s accu-
376 racy contribute to the pipeline’s performance only when the correctly answered queries exceed
377 the confidence threshold. This is captured by the *Weak Correct Accepted* metric in Table 4, which

378 Table 3: Results across datasets using different pipelines. “Jung” denotes Jung’s LLM-Cascade and “Our
 379 (Retrieval)” denotes the Inter-Cascade with similarity-based retrieval. The number of strategies is fixed at
 380 $k = 2$ for both Inter-Cascade settings. Metrics reported are Pipeline Accuracy (Pipeline Acc.), Strong LLM
 381 Call Rate (Strong Call), and Coverage Rate (Cov.). (a) GSM-Symbolic: For the Strong LLM, $\alpha_s = 0.2$, $\delta_s =$
 382 0.8 , $\lambda_s = 0.47$. For the Weak LLM, $\alpha_w = 0.6$, $\delta_w = 0.6$, $\lambda_w = 0.45$. (b) GSM-Plus: For the Strong LLM,
 383 $\alpha_s = 0.2$, $\delta_s = 0.8$, $\lambda_s = 0.51$. For the Weak LLM, $\alpha_w = 0.6$, $\delta_w = 0.6$, $\lambda_w = 0.48$. (c) MetaMath: No
 384 threshold is applied for the Strong LLM. For the Weak LLM, $\alpha_w = 0.4$, $\delta_w = 0.6$, $\lambda_w = 0.61$. (d) NASA-
 385 History: No threshold is applied for the Strong LLM. For the Weak LLM, $\alpha_w = 0.2$, $\delta_w = 0.7$, $\lambda_w = 0.87$.

Data	Pipeline	Pipeline Acc. (%) \uparrow	Strong Call (%) \downarrow	Cov. (%)
GSM-Symb.	Jung	66.04	59.37	86.31
	Our (Retrieval)	70.37	30.84	90.35
GSM-Plus	Jung	52.78	46.29	93.57
	Our (Retrieval)	58.31	32.44	94.79
MetaMath(20K)	Jung	65.21	49.26	100.00
	Our (Retrieval)	71.56	23.68	100.00
NASA-Hist.	Jung	71.88	26.68	100.00
	Our (Retrieval)	72.64	22.54	100.00

395 Table 4: Results on Weak LLM across datasets. Reported metrics are Weak LLM Accuracy (Weak Acc.) and
 396 Weak Correct Accepted (Weak Corr. Acct.). Parameter settings are the same as in Table 3.
 397

Data	Pipeline	Weak Acc. (%) \uparrow	Weak Corr. Acct. (%) \uparrow
GSM-Symb.	Jung	15.04	12.34
	Our (Retrieval)	48.10	46.09
GSM-Plus	Jung	22.46	19.13
	Our (Retrieval)	38.66	35.73
MetaMath(20K)	Jung	34.95	28.54
	Our (Retrieval)	58.16	54.07
NASA-Hist.	Jung	66.22	55.37
	Our (Retrieval)	66.70	58.40

408 represents the proportion of correctly answered queries that surpass the Weak LLM’s threshold. The
 409 observed increase in Weak Correct Accepted shows that Inter-Cascade enhances not only the Weak
 410 LLM’s accuracy but also its confidence on correct predictions, a crucial factor in converting local
 411 improvements into overall pipeline gains.
 412

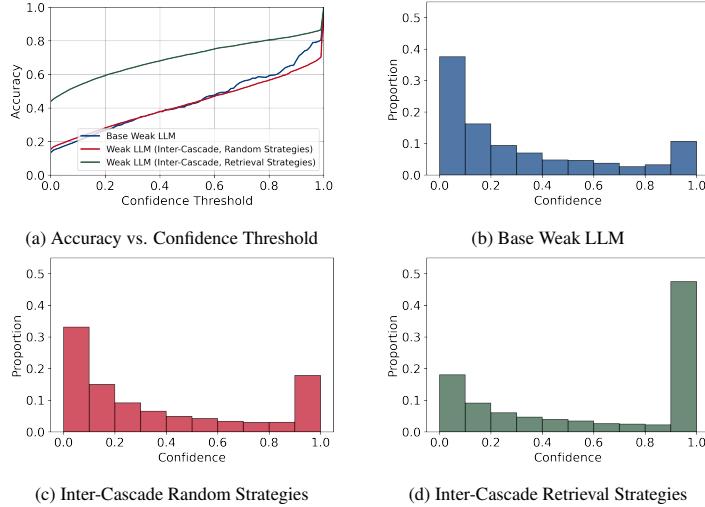
413 Table 5: Token and API cost changes across datasets for Inter-Cascade compared with Jung’s pipeline.
 414

Benchmark	Weak LLM Tokens			Strong LLM Tokens			Token Price
	Total	Input	Output	Total	Input	Output	
GSM-Symb.	+147.66%	+148.80%	-17.10%	-47.80%	-45.80%	-51.32%	-49.63%
GSM-Plus	+145.96%	+147.11%	-3.56%	-29.95%	-29.51%	-30.90%	-30.41%
Meta.(20K)	+127.90%	+128.66%	-1.38%	-52.18%	-52.20%	-52.12%	-52.15%
NASA-Hist.	+132.58%	+133.40%	0.99%	-15.47%	-15.22%	-16.07%	-15.75%

420 **Effect of Strategies on Accuracy and Confidence Calibration.** As mentioned earlier, one notable
 421 observation from our experiments is that providing strategies enhances the Weak LLM’s ability to
 422 assess its own accuracy. To further investigate this observation, we present Figure 2 for the GSM-
 423 Symbolic dataset. Analyses for the other three datasets, which exhibit similar patterns, are provided
 424 in Appendix H. Figure 2a depicts the accuracy of the Weak LLM as a function of the confidence
 425 threshold. For each threshold, only queries with confidence equal to or above the threshold are
 426 considered, and accuracy is calculated as the proportion of correct predictions. The figure further
 427 demonstrates that our pipeline consistently improves the accuracy of queries that pass the threshold.
 428 Figures 2b, 2c, and 2d illustrate the distribution of query confidence. The histogram offers insight
 429 into prediction coverage across different confidence thresholds and shows that our method outper-
 430 forms the baselines in terms of coverage. Together, these figures indicate that our method not only
 431 helps the Weak LLM produce correct answers, but also enables it to better calibrate its confidence
 432 by being more confident when the answer is correct and less confident when it is incorrect.

432 Table 6: Processing Latency and Strategy Repository Size across different datasets. Retrieval refers to the time
 433 spent on strategies matching and ranking. Generation refers to time spent on generating answer via API.

Benchmark	Tested Samples	Our			Jung Total	Repository Size
		Total	Retrieval	Generation		
GSM-Symb.	11250	2.19s	0.10s	2.09s	1.83s	15.4 MB
GSM-Plus	9504	1.72s	0.06s	1.66s	1.66s	12.9 MB
MetaMath(20K)	20000	1.60s	0.06s	1.54s	1.54s	19.6 MB
NASA-Hist.	6469	1.28s	0.07s	1.21s	1.30s	8.8 MB



457 Figure 2: GSM-Symbolic dataset: (a) Accuracy as a function of the confidence threshold for the base Weak
 458 LLM, Inter-Cascade with random strategies, and Inter-Cascade with retrieval strategies, and (b) - (d) their
 459 corresponding confidence histograms. Our Inter-Cascade (Retrieval) consistently concentrates probability mass
 460 near high confidence (0.9 – 1.0), while the weak and random variants place more mass at low confidence,
 461 which explains the accuracy gains observed in (a).

463 **Token and API Cost Savings.** Our pipeline not only improves accuracy but also reduces the number
 464 of Strong LLM calls, resulting in substantially lower token consumption on Strong LLM. Table 5
 465 shows the percentage changes in token usage and corresponding API costs compared with Jung’s
 466 pipeline. Table 6 shows the average processing time per query (including the call of Strong LLM)
 467 and the final size of strategies repository across datasets. The results imply that the time difference
 468 is between -0.02s and +0.36s, which won’t impact the user experience. The size of repository is at
 469 level of 10MB+ when the number of queries is at 10K+ level, which can be easily maintained in
 470 resource limited settings like mobile or edge device. More promisingly, accumulated queries and
 471 responses can serve as training data for periodic offline fine-tuning the Weak LLM (for example as
 472 part of a software update), enabling a self-improving pipeline that dynamically adapts to new data.

473 **Ablation Study on Strategy Selection** In order to evaluate the impact of each part when we add
 474 strategies to the input of Weak LLM, we conduct ablation experiments for different settings: only
 475 adding similar questions and answers (No strategy), adding randomly selected strategies (Random),
 476 and our standard Inter-Cascade pipeline (Retrieval). The results in Table 7 and Table 8, show that the
 477 performance of Random Strategy method is between our standard pipeline and Jung’s method, while
 478 No Strategy is not an acceptable option. Although in benchmarks like NASA-History, the overall
 479 accuracy is 2.00% higher than our standard pipeline, the cost is significant: the Strong Call Rate
 480 increase by 42.58%, which means only add similar question and answer to the input of Weak LLM
 481 would use 2.89x of the Strong LLM. Moreover, the Weak LLM’s accuracy would be dramatically
 482 undermined by adding non-strategy information to the input of Weak LLM compared to the accuracy
 483 for single Weak LLM in Table 1. Only adding retrieved question and answers without instructive and
 484 generalized problem solving strategy to Weak LLM input is harmful: not only lower the accuracy of
 485 Weak LLM, but also call more Strong LLM, which is more expensive. Extensive Ablation studies
 on cold start of the strategy repository, effect of the size of strategies and different selection of LLM
 pairs are attached in Appendix K.

486 Table 7: Pipeline Accuracy and Strong LLM Call Rate in the ablation study on strategy selection : Our (No
 487 strategy) vs. Our (Random) vs. Our (Retrieval). Parameter settings are the same as Table 3.

Data	Pipeline	Pipeline Acc. (%) \uparrow	Strong Call (%) \downarrow	Cov. (%)
GSM-Symb.	Our (No strategy)	67.55	65.15	83.14
	Our (Random)	63.61	54.20	87.90
	Our (Retrieval)	70.37	30.84	90.35
GSM-Plus	Our (No strategy)	58.12	54.81	93.83
	Our (Random)	53.63	43.64	94.10
	Our (Retrieval)	58.31	32.44	94.79
MetaMath(20K)	Our (No strategy)	74.48	57.32	100.00
	Our (Random)	67.85	45.99	100.00
	Our (Retrieval)	71.56	23.68	100.00
NASA-Hist.	Our (No strategy)	74.64	65.12	100.00
	Our (Random)	71.32	25.09	100.00
	Our (Retrieval)	72.64	22.54	100.00

500 Table 8: Weak LLM performance in the ablation study on strategy selection: Our (No strategy) vs. Our
 501 (Random) vs. Our (Retrieval). Parameter settings are the same as Table 3.

Data	Pipeline	Weak Acc. (%) \uparrow	Weak Corr. Accept. (%) \uparrow
GSM-Symb.	Our (No strategy)	10.23	17.08
	Our (Random)	17.40	15.27
	Our (Retrieval)	48.10	46.09
GSM-Plus	Our (No strategy)	20.20	17.08
	Our (Random)	25.51	22.38
	Our (Retrieval)	38.66	35.73
MetaMath(20K)	Our (No strategy)	33.40	28.38
	Our (Random)	38.64	32.66
	Our (Retrieval)	58.16	54.07
NASA-Hist.	Our (No strategy)	28.21	22.88
	Our (Random)	65.22	55.56
	Our (Retrieval)	66.70	58.40

515 **Inter-Cascade Robustness under Automatic Strategies.** All strategies and their corresponding
 516 answers are generated by the Strong LLM in a streaming manner, and any strategy whose confidence
 517 exceeds the threshold λ_s is automatically accepted. This differentiates *Inter-Cascade* from other
 518 LLM augmentation methods such as manually selected in-context learning, few-shot prompting, or
 519 static retrieval-augmented generation. Consequently, the strategy repository may contain incorrect
 520 strategies. Nonetheless, the results in Table 3 and Table 4 demonstrate the effectiveness of λ_s and
 521 the robustness of the *Inter-Cascade* pipeline.

4 CONCLUSION

524 We propose *Inter-Cascade*, an online and interactive *LLM Cascade* framework that enables Weak
 525 LLM to learn online from Strong LLM’s prior experience without fine-tuning. *Inter-Cascade* im-
 526 proves both the accuracy of Weak LLM and the overall system, while reducing the reliance on Strong
 527 LLM, saving computation, monetary cost, and latency (when Strong LLM is deployed on remote
 528 server), compared with current LLM Cascade.

529 *Inter-Cascade* provides a general and scalable framework for multi-LLM systems, which can be
 530 implemented with different LLMs and cascade layers. Despite the promising performance of *Inter-
 531 Cascade*, further improvements can still be achieved by proposing better methods of generating
 532 strategy, better algorithms to evaluate similarity and mechanisms to prevent mismatch in future work.
 533 *Inter-Cascade* is also naturally well-suited for distributed systems, where local Weak LLM owners
 534 can teach and boost their model in a tailored way by sending customized queries to Strong LLM.
 535 Another future work direction arises from *Inter-Cascade*’s potential to bridge online and offline
 536 learning. While augmenting the system performance by incorporating queries with related strategies
 537 during online operation, the generated strategy repository can be exported as local training set for
 538 periodic finetuning, permanently improving the capability of Weak LLM. We hope *Inter-Cascade*
 539 inspires future research on building more interactive LLM Cascades or other multi-LLM systems.

540 REFERENCES
541

542 Yu Bai, Yukai Miao, Li Chen, Dawei Wang, Dan Li, Yanyu Ren, Hongtao Xie, Ce Yang, and Xuhui
543 Cai. Pistis-rag: Enhancing retrieval-augmented generation with human feedback. *arXiv preprint*
544 *arXiv:2407.00072*, 2024.

545 Peter Bauer. Multiple testing in clinical trials. *Statistics in medicine*, 10(6):871–890, 1991.

546 Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
547 Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic
548 ai. *arXiv preprint arXiv:2506.02153*, 2025.

549 Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while
550 reducing cost and improving performance. *Transactions on Machine Learning Research*, 2024.
551 ISSN 2835-8856. URL <https://openreview.net/forum?id=cSimKw5p6R>.

552 Qinwen Chen, Wenbiao Tao, Zhiwei Zhu, Mingfan Xi, Liangzhong Guo, Yuan Wang, Wei Wang,
553 and Yunshi Lan. Comrag: Retrieval-augmented generation with dynamic vector stores for real-
554 time community question answering in industry. *arXiv preprint arXiv:2506.21098*, 2025a.

555 Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao,
556 Ming Li, Likang Xiao, Dingqi Yang, et al. Harnessing multiple large language models: A survey
557 on llm ensemble. *arXiv preprint arXiv:2502.18036*, 2025b.

558 C Chow. On optimum recognition error and reject tradeoff. *IEEE Transactions on information
559 theory*, 16(1):41–46, 1970.

560 C. K. Chow. An optimum character recognition system using decision functions. *IRE Transactions
561 on Electronic Computers*, EC-6(4):247–254, December 1957. ISSN 0367-9950. URL <https://doi.org/10.1109/TEC.1957.5222035>.

562 Yu-Neng Chuang, Helen Zhou, Prathusha Kameswara Sarma, Parikshit Gopalan, John Boccio, Sara
563 Bolouki, and Xia Hu. Learning to Route LLMs with Confidence Tokens. In *Proceedings of the
564 Forty-Second International Conference on Machine Learning*. PMLR, 2025.

565 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
566 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
567 Schulman. Training Verifiers to Solve Math Word Problems. Technical Report 2110.14168, arXiv,
568 November 2021a. URL <https://doi.org/10.48550/arXiv.2110.14168>.

569 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
570 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
571 Schulman. Training Verifiers to Solve Math Word Problems. Technical Report 2110.14168, arXiv,
572 November 2021b. URL <https://doi.org/10.48550/arXiv.2110.14168>.

573 Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with Rejection. In Ronald Ortner,
574 Hans Ulrich Simon, and Sandra Zilles (eds.), *Algorithmic Learning Theory*, volume 9925, pp.
575 67–82. Springer International Publishing, Cham, 2016. ISBN 978-3-319-46378-0 978-3-319-
576 46379-7. URL https://doi.org/10.1007/978-3-319-46379-7_5.

577 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
578 Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning. In
579 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference
580 on Empirical Methods in Natural Language Processing*, pp. 1107–1128, Miami, Florida, USA,
581 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
582 64. URL <https://aclanthology.org/2024.emnlp-main.64/>.

583 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-
584 Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The Faiss library. Technical
585 Report 2401.08281, arXiv, 2025. URL <https://arxiv.org/abs/2401.08281>.

586 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
587 tuality and reasoning in language models through multiagent debate. In *Forty-first International
588 Conference on Machine Learning*, 2023.

594 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
 595 Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From Local to Global: A
 596 Graph RAG Approach to Query-Focused Summarization. Technical report, arXiv, February 2025.
 597 URL <https://doi.org/10.48550/arXiv.2404.16130>.

598 Andrew Estornell and Yang Liu. Multi-LLM Debate: Framework, Principals, and Interventions.
 599 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, November
 600 2024.

602 Patrick Fleith. NASA-history-MCQ. Dataset, Hugging Face, 2025. URL <https://huggingface.co/datasets/patrickfleith/NASA-History-MCQ>.

605 Naresh Kumar Gundla and Sri Harsha Attuluri. Multi-node inference architectures for low-
 606 latency LLM serving. In *2025 International Conference on Advanced Computing Technologies*
 607 (*ICoACT*), pp. 01–06. IEEE, 2025.

608 Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
 609 Non-parametric continual learning for large language models. *arXiv preprint arXiv:2502.14802*,
 610 2025.

612 Siwei Han, Peng Xia, Ruiyi Zhang, Tong Sun, Yun Li, Hongtu Zhu, and Huaxiu Yao. Mdoca-
 613 gent: A multi-modal multi-agent framework for document understanding. *arXiv preprint*
 614 *arXiv:2503.13964*, 2025.

615 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 616 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 617 2021.

619 Radu Herbei and Marten H. Wegkamp. Classification with Reject Option. *The Canadian Journal of*
 620 *Statistics / La Revue Canadienne de Statistique*, 34(4):709–721, 2006. ISSN 0319-5724.

621 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network.
 622 Technical Report 1503.02531, arXiv, March 2015. URL <https://doi.org/10.48550/arXiv.1503.02531>.

625 Geoffrey Irving, Paul Christiano, and Dario Amodei. AI safety via debate. Technical Report
 626 1805.00899, arXiv, October 2018. URL <https://doi.org/10.48550/arXiv.1805.00899>.

628 Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li, and James Kwok.
 629 Forward-backward reasoning in large language models for mathematical verification. In Lun-
 630 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Compu-
 631 tational Linguistics: ACL 2024*, pp. 6647–6661, Bangkok, Thailand, August 2024. Associa-
 632 tion for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.397. URL <https://aclanthology.org/2024.findings-acl.397/>.

634 Wittawat Jitkrittum, Neha Gupta, Aditya K. Menon, Harikrishna Narasimhan, Ankit Rawat, and
 635 Sanjiv Kumar. When Does Confidence-Based Cascade Deferral Suffice? *Advances in Neural*
 636 *Information Processing Systems*, 36:9891–9906, December 2023.

638 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
 639 *IEEE Transactions on Big Data*, 7(3):535–547, 2021. URL <https://doi.org/10.1109/TB DATA.2019.2921572>.

641 Chaitanya K. Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan-Sheng Foo. On Representation
 642 Knowledge Distillation for Graph Neural Networks. *IEEE Transactions on Neural Networks*
 643 and *Learning Systems*, 35(4):4656–4667, April 2024. ISSN 2162-237X, 2162-2388. URL
 644 <https://doi.org/10.1109/TNNLS.2022.3223018>.

646 Raul Junco. Every repeated LLM call is money on fire, June 2025.
 647 URL <https://newsletter.systemdesignclassroom.com/p/every-repeated-llm-call-is-money-on-fire>.

648 Jaehun Jung, Faeze Brahman, and Yejin Choi. Trust or escalate: Llm judges with prov-
 649 able guarantees for human agreement. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
 650 (eds.), *International Conference on Representation Learning*, volume 2025, pp. 3101–3125,
 651 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/08dabd5345b37fffcbe335bd578b15a0-Paper-Conference.pdf.

652

653 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 654 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language mod-
 655 els. Technical Report 2001.08361, arXiv, 2020. URL <https://arxiv.org/abs/2001.08361>.

656

657 Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Ed-
 658 ward Grefenstette, Samuel R. Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
 659 persuasive llms leads to more truthful answers. In *Proceedings of the 41st International Confer-
 660 ence on Machine Learning*, ICML’24. JMLR.org, 2024.

661

662 Aisha Khatun and Daniel G. Brown. Trutheval: A dataset to evaluate llm truthfulness and reli-
 663 ability. Technical Report 2406.01855, arXiv, 2024. URL <https://arxiv.org/abs/2406.01855>.

664

665 Dmitry Korzhov. Stop calling out your LMM for every sim-
 666 ilar question!, July 2023. URL <https://uxplanet.org/stop-calling-out-your-lmm-for-every-similar-question-50940c64b3df>.

667

668 Hyoje Lee, Yeachan Park, Hyun Seo, and Myungjoo Kang. Self-knowledge distillation via dropout.
 669 *Comput. Vis. Image Underst.*, 233(C), August 2023. ISSN 1077-3142. doi: 10.1016/j.cviu.2023.
 670 103720. URL <https://doi.org/10.1016/j.cviu.2023.103720>.

671

672 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 673 decoding. In *Proceedings of the 40th International Conference on Machine Learning*, ICML’23.
 674 JMLR.org, 2023.

675

676 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 677 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 678 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 679 9459–9474, 2020.

680

681 Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. GSM-plus: A com-
 682 prehensive benchmark for evaluating the robustness of LLMs as mathematical problem solvers. In
 683 Lun-Wei Ku, Andre Martins, and Vivek Srikanth (eds.), *Proceedings of the 62nd Annual Meet-
 684 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2961–2984,
 685 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 2024.acl-long.163. URL <https://aclanthology.org/2024.acl-long.163/>.

686

687 Yangning Li, Weizhi Zhang, Yuyao Yang, Wei-Chieh Huang, Yaizu Wu, Junyu Luo, Yuanchen Bei,
 688 Henry Peng Zou, Xiao Luo, Yusheng Zhao, et al. Towards agentic rag with deep reasoning: A
 689 survey of rag-reasoning systems in llms. *arXiv preprint arXiv:2507.09477*, 2025.

690

691 Chengyuan Liu, Fubang Zhao, Kun Kuang, Yangyang Kang, Zhuoren Jiang, Changlong Sun, and Fei
 692 Wu. Evolving knowledge distillation with large language models and active learning. In Nicoletta
 693 Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue
 694 (eds.), *Proceedings of the 2024 Joint International Conference on Computational Linguistics,
 695 Language Resources and Evaluation (LREC-COLING 2024)*, pp. 6717–6731, Torino, Italia, May
 2024. ELRA and ICCL. URL <https://aclanthology.org/2024.lrec-main.593/>.

696

697 Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, and Jun Ma. Hm-rag:
 698 Hierarchical multi-agent multimodal retrieval augmented generation. In *Proceedings of the 33rd
 699 ACM International Conference on Multimedia*, pp. 2781–2790, 2025.

700

701 Chang Han Low, Ziyue Wang, Tianyi Zhang, Zhitao Zeng, Zhu Zhuo, Evangelos B Mazomenos,
 702 and Yueming Jin. Surgraw: Multi-agent workflow with chain-of-thought reasoning for surgical
 703 intelligence. *arXiv preprint arXiv:2503.10265*, 2025.

702 David Madras, Toniann Pitassi, and Richard Zemel. Predict responsibly: improving fairness and
 703 accuracy by learning to defer. In *Proceedings of the 32nd International Conference on Neural*
 704 *Information Processing Systems*, NIPS’18, pp. 6150–6160, Red Hook, NY, USA, 2018. Curran
 705 Associates Inc.

706 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Principled Approaches for Learning to Defer with
 707 Multiple Experts. In Reneta P. Barneva, Valentin E. Brimkov, Claudio Gentile, and Aldo Pac-
 708 chiano (eds.), *Artificial Intelligence and Image Analysis*, volume 14494, pp. 107–135. Springer
 709 Nature Switzerland, Cham, 2024a. ISBN 978-3-031-63734-6 978-3-031-63735-3. URL https://doi.org/10.1007/978-3-031-63735-3_7.

710 Anqi Mao, Mehryar Mohri, and Yutao Zhong. Theoretically Grounded Loss Functions and Algo-
 711 rithms for Score-Based Multi-Class Abstention. In *Proceedings of The 27th International Con-*
 712 *ference on Artificial Intelligence and Statistics*, pp. 4753–4761. PMLR, April 2024b.

713 Katerina Margatina, Timo Schick, Nikolaos Aletras, and Jane Dwivedi-Yu. Active learning prin-
 714 ciples for in-context learning with large language models. In *Findings of the Association for*
 715 *Computational Linguistics: EMNLP 2023*, pp. 5011–5034, December 2023. URL <https://aclanthology.org/2023.findings-emnlp.334/>.

716 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
 717 Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
 718 large language models. In *The Thirteenth International Conference on Learning Representations*,
 719 2025. URL <https://openreview.net/forum?id=AjXkRZIvjb>.

720 Fengran Mo, Chuan Meng, Mohammad Aliannejadi, and Jian-Yun Nie. Conversational search:
 721 From fundamentals to frontiers in the llm era. In *Proceedings of the 48th International ACM*
 722 *SIGIR Conference on Research and Development in Information Retrieval*, pp. 4094–4097, 2025.

723 Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an ex-
 724 pert. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Con-*
 725 *ference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp.
 726 7076–7087. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/mozannar20b.html>.

727 Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
 728 Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. In
 729 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=vo9t20wsmd>.

730 Cuong C Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Probabilistic learning to defer: Handling
 731 missing expert annotations and controlling workload distribution. In *The Thirteenth Interna-
 732 tional Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=z10HLZOJC9>.

733 Thang Nguyen, Peter Chin, and Yu-Wing Tai. Ma-rag: Multi-agent retrieval-augmented generation
 734 via collaborative chain-of-thought reasoning. *arXiv preprint arXiv:2505.20096*, 2025b.

735 Lunyu Nie, Zhimin Ding, Erdong Hu, Christopher Jermaine, and Swarat Chaudhuri. Online cascade
 736 learning for efficient inference over streams. In *Proceedings of the 41st International Conference*
 737 *on Machine Learning*, ICML’24. JMLR.org, 2024.

738 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
 739 M Waleed Kadous, and Ion Stoica. RouteLLM: Learning to route LLMs from preference
 740 data. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 741 <https://openreview.net/forum?id=8sSqNntaMr>.

742 Aitor Ormazabal, Mikel Artetxe, and Eneko Agirre. CombLM: Adapting black-box language
 743 models through small fine-tuned models. In Houda Bouamor, Juan Pino, and Kalika Bali
 744 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
 745 cessing*, pp. 2961–2974, Singapore, December 2023. Association for Computational Linguis-
 746 tics. doi: 10.18653/v1/2023.emnlp-main.180. URL <https://aclanthology.org/2023.emnlp-main.180/>.

756 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
 757 multi-subject multi-choice dataset for medical domain question answering. In Gerardo Flores,
 758 George H Chen, Tom Pollard, Joyce C Ho, and Tristan Naumann (eds.), *Proceedings of the Con-
 759 ference on Health, Inference, and Learning*, volume 174 of *Proceedings of Machine Learning Re-
 760 search*, pp. 248–260. PMLR, 07–08 Apr 2022. URL <https://proceedings.mlr.press/v174/pal22a.html>.

762 Archit Parnami and Minwoo Lee. Learning from few examples: A summary of approaches to few-
 763 shot learning, 2022. URL <https://arxiv.org/abs/2203.04291>.

765 Cuong Pham, Van-Anh Nguyen, Trung Le, Dinh Phung, Gustavo Carneiro, and Thanh-Toan Do.
 766 Frequency attention for knowledge distillation. In *2024 IEEE/CVF Winter Conference on Appli-
 767 cations of Computer Vision (WACV)*, pp. 2266–2275, 2024.

768 Sahana Rayan and Ambuj Tewari. Learning to Partially Defer for Sequences. Technical Report
 769 2502.01459, arXiv, February 2025. URL <https://doi.org/10.48550/arXiv.2502.01459>.

772 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
 773 networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of
 774 the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-
 775 national Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 3982–3992,
 776 November 2019. URL <https://aclanthology.org/D19-1410/>.

777 Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
 778 Yoshua Bengio. FitNets: Hints for Thin Deep Nets. Technical Report 1412.6550, arXiv, March
 779 2015. URL <https://doi.org/10.48550/arXiv.1412.6550>.

781 Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
 782 learning. In *Proceedings of the 2022 Conference of the North American Chapter of the Associa-
 783 tion for Computational Linguistics: Human Language Technologies*, pp. 2655–2671, July 2022.
 784 URL <https://aclanthology.org/2022.naacl-main.191/>.

785 Tobias Schnabel. Stop Wasting LLM Tokens, August 2024. URL <https://towardsdatascience.com/stop-wasting-lm-tokens-a5b581fb3e6e/>.

788 Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, and David Sontag. Learning to decode col-
 789 laboratively with multiple language models. In *Proceedings of the 62nd Annual Meeting of the
 790 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12974–12990, August
 791 2024. URL <https://aclanthology.org/2024.acl-long.701/>.

792 Yunxiao Shi, Xing Zi, Zijing Shi, Haimin Zhang, Qiang Wu, and Min Xu. Eragent: Enhancing
 793 retrieval-augmented language models with improved accuracy, efficiency, and personalization.
 794 *arXiv preprint arXiv:2405.06683*, 2024.

796 Robik Shrestha, Yang Zou, Qiuyu Chen, Zhiheng Li, Yusheng Xie, and Siqi Deng. Fairrag: Fair
 797 human generation via fair retrieval augmentation. In *Proceedings of the IEEE/CVF Conference
 798 on Computer Vision and Pattern Recognition*, pp. 11996–12005, 2024.

799 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 800 Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
 801 Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Ko-
 802 curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
 803 Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Johan
 804 Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew
 805 La, Andrew Kyle Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
 806 Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum,
 807 Arul Menezes, Arun Kirubarajan, Asher Mollokandov, Ashish Sabharwal, Austin Herrick, Avia
 808 Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej
 809 Bojanowski, Batuhan Öz-yurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno
 Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron

810 Dour, Catherine Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles Rathkopf, Chen-
 811 lin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites, Christian Voigt,
 812 Christopher D Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro,
 813 Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks,
 814 Dan Kilman, Dan Roth, C. Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí
 815 González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa,
 816 David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin,
 817 Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar
 818 Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova,
 819 Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, El-
 820 lie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang,
 821 Ethan A Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozh-
 822 skii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chol-
 823 let, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germàn Kruszewski,
 824 Giambattista Parascandolo, Giorgio Mariani, Gloria Xinyue Wang, Gonzalo Jaimovich-Lopez,
 825 Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Ha-
 826 jishirzi, Harsh Mehta, Hayden Bogar, Henry Francis Anthony Shevlin, Hinrich Schuetze, Hi-
 827 romu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
 828 Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B Si-
 829 mon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield,
 830 Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski,
 831 Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Je-
 832 sujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller,
 833 John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-
 834 Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule,
 835 Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina
 836 Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel, Kevin Omondi, Kory Wallace Math-
 837 ewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson,
 838 Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-
 839 Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis
 840 Oliveros-Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten Sap, Maartje Ter Ho-
 841 eve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco
 842 Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin
 843 Potthast, Matthew L Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova,
 844 Melody Arnaud, Melvin McElrath, Michael Andrew Yee, Michael Cohen, Michael Gu, Michael
 845 Ivanitskiy, Michael Starritt, Michael Strube, Michał Śwędrowski, Michele Bevilacqua, Michi-
 846 hiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Ti-
 847 wari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun
 848 Peng, Nathan Andrew Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas
 849 Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Ni-
 850 tish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
 851 Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
 852 Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
 853 Liang, Peter W Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush
 854 Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
 855 Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm
 856 Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan
 857 Sikand, Roman Novak, Roman Sitelew, Ronan Le Bras, Rosanne Liu, Rowan Jacobs, Rui Zhang,
 858 Russ Salakhutdinov, Ryan Andrew Chi, Seungjae Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan
 859 Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wise-
 860 man, Samuel Gruetter, Samuel R. Bowman, Samuel Stern Schoenholz, Sanghyun Han, Sanjeev
 861 Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebas-
 862 tian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank
 863 Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar,
 Shubham Toshniwal, Shyam Upadhyay, Shyamolima Shammie Debnath, Siamak Shakeri, Simon
 Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene,
 Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie
 Lin, Stephen Prasad, Steven Piantadosi, Stuart Shieber, Summer Misherghi, Svetlana Kiritchenko,
 Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsunori Hashimoto, Te-Lin

864 Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo
 865 Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj,
 866 Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas
 867 Raunak, Vinay Venkatesh Ramasesh, vinay udai prabhu, Vishakh Padmakumar, Vivek Sriku-
 868 mar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong,
 869 Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,
 870 Yasaman Bahri, Yejin Choi, Yichi Yang, Sophie Hao, Yifu Chen, Yonatan Belinkov, Yu Hou,
 871 Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang,
 872 and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of lan-
 873 guage models. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL
 874 <https://openreview.net/forum?id=uyTL5Bvosj>. Featured Certification.

875 Joshua Strong, Qianhui Men, and J. Alison Noble. Trustworthy and practical ai for healthcare: a
 876 guided deferral system with large language models. In *Proceedings of the Thirty-Ninth AAAI
 877 Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications
 878 of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial In-
 879 telligence, AAAI'25/IAAI'25/EAAI'25*. AAAI Press, 2025a. ISBN 978-1-57735-897-8. doi:
 880 10.1609/aaai.v39i27.35063. URL <https://doi.org/10.1609/aaai.v39i27.35063>.

881 Joshua Strong, Pramit Saha, Yasin Ibrahim, Cheng Ouyang, and Alison Noble. Expert-agnostic
 882 learning to defer, 2025b. URL <https://arxiv.org/abs/2502.10533>.

883 Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 884 Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
 885 bench tasks and whether chain-of-thought can solve them. In *Annual Meeting of the Associa-
 886 tion for Computational Linguistics*, 2022. URL <https://api.semanticscholar.org/CorpusID:252917648>.

887 Dharmesh Tailor, Aditya Patra, Rajeev Verma, Putra Manggala, and Eric Nalisnick. Learning to
 888 Defer to a Population: A Meta-Learning Approach. In *Proceedings of The 27th International
 889 Conference on Artificial Intelligence and Statistics*, pp. 3475–3483. PMLR, April 2024.

890 Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
 891 via early exiting from deep neural networks. In *2016 23rd International Conference on Pattern
 892 Recognition (ICPR)*, pp. 2464–2469. IEEE, 2016.

893 Aman Singh Thakur, Kartik Choudhary, Venkat Srinik Ramayapally, Sankaran Vaidyanathan, and
 894 Dieuwke Hupkes. Judging the judges: Evaluating alignment and vulnerabilities in LLMs-as-
 895 judges. In *Proceedings of the Fourth Workshop on Generation, Evaluation and Metrics (GEM²)*,
 896 pp. 404–430, July 2025. URL <https://aclanthology.org/2025.gem-1.33>.

897 Rajeev Verma and Eric Nalisnick. Calibrated Learning to Defer with One-vs-All Classifiers. In *Pro-
 898 ceedings of the 39th International Conference on Machine Learning*, pp. 22184–22202. PMLR,
 899 June 2022.

900 Rajeev Verma, Daniel Barrejon, and Eric Nalisnick. Learning to Defer to Multiple Experts: Consis-
 901 tent Surrogate Losses, Confidence Calibration, and Conformal Ensembles. In *Proceedings of The
 902 26th International Conference on Artificial Intelligence and Statistics*, pp. 11415–11434. PMLR,
 903 April 2023.

904 Futing Wang, Jianhao Yan, Yue Zhang, and Tao Lin. ELICIT: LLM augmentation via external
 905 in-context capability. In *The Thirteenth International Conference on Learning Representations*,
 906 2025a. URL <https://openreview.net/forum?id=CI4sCBMXjP>.

907 Haorui Wang, Rongzhi Zhang, Yinghao Li, Lingkai Kong, Yuchen Zhuang, Xiusi Chen, and Chao
 908 Zhang. TPD: Enhancing student language model reasoning via principle discovery and guid-
 909 ance. In *First Conference on Language Modeling*, 2024a. URL <https://openreview.net/forum?id=sJvhwDtFhQ>.

910 Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
 911 Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. In *Pro-
 912 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*, pp. 9440–
 913 9450, August 2024b. URL <https://aclanthology.org/2024.acl-long.511>.

918 Ruotong Wang, Xinyi Zhou, Lin Qiu, Joseph Chee Chang, Jonathan Bragg, and Amy X Zhang.
 919 Social-rag: Retrieving from group interactions to socially ground ai generation. In *Proceedings*
 920 *of the 2025 CHI Conference on Human Factors in Computing Systems*, pp. 1–25, 2025b.

921

922 Zheng Wang, Shu Teo, Jieer Ouyang, Yongjun Xu, and Wei Shi. M-rag: Reinforcing large language
 923 model performance through retrieval-augmented generation with multiple partitions. In *Proceed-
 924 ings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
 925 Long Papers)*, pp. 1966–1978, 2024c.

926

927 Yu Wu and Anand Sarwate. Learning to help: Training models to assist legacy devices. Technical
 928 Report 2409.16253, arXiv, 2024.

929

930 Yu Wu, Yansong Li, Zeyu Dong, Nitya Sathyavageeswaran, and Anand D. Sarwate. Learning to help
 931 in multi-class settings. In *The Thirteenth International Conference on Learning Representations*,
 932 2025. URL <https://openreview.net/forum?id=NCgTbt2j1F>.

933

934 Yu Xia, Fang Kong, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, and Shuai Li. Which llm to
 935 play? convergence-aware online model selection with time-increasing bandits. In *Proceedings of
 936 the ACM Web Conference 2024*, WWW '24, pp. 4059–4070, 2024. URL <https://doi.org/10.1145/3589334.3645420>.

937

938 Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can
 939 LLMs express their uncertainty? an empirical evaluation of confidence elicitation in LLMs.
 940 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=gjeQKFxFpZ>.

941

942 Zhichao Xu, Minheng Wang, Yawei Wang, Wenqian Ye, Yuntao Du, Yunpu Ma, and Yijun Tian.
 943 Recon: Reasoning with condensation for efficient retrieval-augmented generation. *arXiv preprint
 944 arXiv:2510.10448*, 2025.

945

946 Xiao Yan and Yi Ding. Are we there yet? A measurement study of efficiency for LLM applications
 947 on mobile devices. In *Proceedings of the 2nd International Workshop on Foundation Models for
 948 Cyber-Physical Systems & Internet of Things*, pp. 19–24, 2025.

949

950 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 951 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 952 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 953 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 954 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 955 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 956 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 957 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 958 Qiu. Qwen3 technical report. Technical Report 2505.09388, arXiv, 2025.

959

960 Diji Yang, Jinmeng Rao, Kezhen Chen, Xiaoyuan Guo, Yawen Zhang, Jie Yang, and Yi Zhang.
 961 Im-rag: Multi-round retrieval-augmented generation through learning inner monologues. In *Pro-
 962 ceedings of the 47th International ACM SIGIR Conference on Research and Development in In-
 963 formation Retrieval*, pp. 730–740, 2024.

964

965 Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
 966 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 967 for large language models. In *The Twelfth International Conference on Learning Representations*,
 968 2024. URL <https://openreview.net/forum?id=N8N0hgNDrt>.

969

970 Michael J. Zellinger and Matt Thomson. Rational tuning of LLM cascades via probabilistic model-
 971 ing. *Transactions on Machine Learning Research*, 2025. URL <https://openreview.net/forum?id=YCBVcGSZeR>.

972

973 Michael J. Zellinger, Rex Liu, and Matt Thomson. Cost-Saving LLM Cascades with Early Abstention.
 974 Technical Report 2502.09054, arXiv, February 2025. URL <https://doi.org/10.48550/arXiv.2502.09054>.

972 Feiyuan Zhang, Dezhi Zhu, James Ming, Yilun Jin, Di Chai, Liu Yang, Han Tian, Zhaoxin Fan, and
973 Kai Chen. Dh-rag: A dynamic historical context-powered retrieval-augmented generation method
974 for multi-turn dialogue. *arXiv preprint arXiv:2502.13847*, 2025.

975 Lucia Zheng, Neel Guha, Javokhir Arifov, Sarah Zhang, Michal Skreta, Christopher D. Manning,
976 Peter Henderson, and Daniel E. Ho. A reasoning-focused legal retrieval benchmark. In *Pro-
977 ceedings of the 2025 Symposium on Computer Science and Law*, CSLAW '25, pp. 169–193,
978 New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400714214. doi:
979 10.1145/3709025.3712219. URL <https://doi.org/10.1145/3709025.3712219>.

980 Hao Zhou, Chengming Hu, Ye Yuan, Yufei Cui, Yili Jin, Can Chen, Haolun Wu, Dun Yuan, Li Jiang,
981 Di Wu, et al. Large language model (llm) for telecommunications: A comprehensive survey on
982 principles, key techniques, and opportunities. *IEEE Communications Surveys & Tutorials*, 2024.

983 Xiaofeng Zhou, Heyan Huang, and Lizi Liao. Debate, reflect, and distill: Multi-agent feedback with
984 tree-structured preference optimization for efficient language model enhancement. In *Findings
985 of the Association for Computational Linguistics: ACL 2025*, pp. 9122–9137, July 2025. URL
986 <https://aclanthology.org/2025.findings-acl.475/>.

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026 A CLARIFICATION: USE OF LLMs ON AIDING OR POLISHING WRITING
10271028 We used ChatGPT and Gemini solely as writing assistants to correct the typos and grammars, help
1029 polish the language, improve clarity, and refine the presentation of this manuscript. The LLMs did
1030 not contribute to the conception of ideas, design of experiments, execution of analyses, or interpre-
1031 tation of results.
10321033 B EXTENDED RELATED WORK
10341035 **LLM Cascade** There are many LLM paradigms that contain collaboration between multiples LLMs
1036 in a system (Chen et al., 2025b): a)Ensemble before inference, where router choose one LLM from
1037 candidates for inference; b)Ensemble during inference, where LLMs work in parallel; c) Ensem-
1038 ble after inference, where LLMs work in sequence and LLM Cascade belongs to this filed. LLM
1039 Cascade is firstly proposed by Chen et al. (2024) to balance the LLM performance and cost by allo-
1040 cating queries to a weak model or a strong model according to the confidence estimate of the queried
1041 question. Shen et al. (2024) propose a latent variable model to let the weak model learn the deferral
1042 function at the token-level. Rayan & Tewari (2025) also extend the Learning to Defer (Madras et al.,
1043 2018) setting to LLM by training a post-hoc deferral function for each token of the sequence. Ong
1044 et al. (2025) train a separate router such that deferral decision can be made before sending the query
1045 to weak LLM, saving more tokens. Zellinger et al. (2025) provide extra option to early discard the
1046 unsolvable queries in weak model. Xia et al. (2024); Nie et al. (2024) formulate LLM Cascade
1047 as online problem to dynamically adjust its deferral policy over time. Zellinger & Thomson (2025)
1048 propose a rational tuning pipeline for LLM Cascade via probabilistic modeling. Since the deferral
1049 result relies on the confidence score of weak model, there are are literatures focusing on boosting
1050 the the measure of confidence of weak model's output (Jitkrittum et al., 2023; Chuang et al., 2025).
1051 Together with experimental verification, Jung et al. (2025) conduct fixed sequence testing to prov-
1052 ably guarantee the lower bound of accuracy. Therefore, we choose Cascaded Selective Evaluation
1053 by Jung et al. (2025) as the baseline of our work. Beside deferring to strong model, Beyond standard
1054 LLM Cascade, Strong et al. (2025a) propose a deferral system that weak model also sends its gen-
1055 erated intelligent guidance to strong model once deferred, boosting the performance of next level
1056 model. However, current LLM Cascades cannot adapt to the query streaming once trained and de-
1057 ployed. And the weak model cannot learn from the previous deferrals and corresponding strategies
1058 generated by the strong model, causing the waste of computation, tokens, money and sometimes
1059 communication.
10601061 **Learning With Reject Option** The general framework that allows a machine learning model to
1062 abstain from making decision was originally propose by Chow (1957; 1970) in the 1950s. After
1063 decades, the Learning with reject option was continuously explored in different periods by Herbei
1064 & Wegkamp (2006) and Cortes et al. (2016). The more recent works extend the framework to a
1065 multi models system where the local model can learn to defer its task to one expert (human or
1066 existing model) (Madras et al., 2018; Mozannar & Sontag, 2020; Verma & Nalisnick, 2022; Mao
1067 et al., 2024b), multiple experts (Verma et al., 2023; Mao et al., 2024a) or unknown experts (Nguyen
1068 et al., 2025a; Strong et al., 2025b; Tailor et al., 2024). There are literature that also explore the
1069 case when expert can learn to adaptively help the local model (Wu & Sarwate, 2024; Wu et al.,
1070 2025). Adding reject option at the network layer level is another branch of works called early
1071 exiting (Teerapittayanon et al., 2016). However, most of the learning with reject option works focus
1072 on classical prediction tasks, few of them address the NLP tasks that rely on generative-based model
1073 while this work focus on the collaboration between LLMs.
10741075 **Knowledge Distillation** Knowledge distillation (KD) is a machine learning technique for training
1076 smaller "student" models by transferring "knowledge" from larger, more powerful "teacher" models.
1077 Classical knowledge distillation use soft-labels (Hinton et al., 2015) to let the student model learn
1078 the distribution of teacher model. The concept of KD is expanded to more levels: besides mimicking
1079 the output of teacher model, the student model can also learn from intermediate features (Romero
et al., 2015; Pham et al., 2024), relationships (Joshi et al., 2024), actively chosen sample (Liu et al.,
2024), principle discovery (Wang et al., 2024a) and itself (Lee et al., 2023). Our Inter-Cascade also
helps the knowledge transfer from the Strong LLM to Weak LLM. However, current knowledge
distillation relies on the training or finetuning of the student model and can not continue learning
process during inference phase while our method doesn't require the updating of the LLM param-
1080

1080 eters and continually improves during the inference phase via dynamically matching stored Strong
 1081 LLM’s strategy.

1082 **Retrieval-Augmented Generation(RAG)**RAG (Lewis et al., 2020) is an approach that combines
 1083 pre-trained parametric and non-parametric memory for language generation. Given the focus of our
 1084 work, we group RAG-style approaches into three categories: static RAG, history-aware RAG, and
 1085 agentic RAG.

1086 *Static RAG.* Classical RAG assumes a fixed, pre-constructed external corpus and focuses on how to
 1087 retrieve, re-rank, and fuse evidence to support generation. Works in this line focus on design dense
 1088 retrieval and re-ranking pipelines over a static collection (Lewis et al., 2020; Edge et al., 2025;
 1089 Wang et al., 2025a; Rubin et al., 2022; Margatina et al., 2023).In all these methods, the source of
 1090 knowledge is an offline, human-curated dataset, and the system’s adaptivity lies purely in how it
 1091 accesses this corpus, not what the corpus contains. By contrast, Inter-Cascade does not assume any
 1092 pre-existing database: the “corpus” is constructed online as the strong LLM generates strategies and
 1093 reasoning traces that are stored for future reuse by the weak LLM. Thus, our system is closer to an
 1094 online, LLM-driven knowledge construction mechanism than to classical static RAG.

1095 *History-Aware RAG.* A second line of work augments RAG with dialogue history and user feedback,
 1096 dynamically updating a memory store based on past interactions. Conversational RAG frameworks
 1097 like DH-RAG (Zhang et al., 2025), CHIQ (Mo et al., 2025) maintain short-term and long-term
 1098 memories of successful dialogue turns, using them to improve future retrieval and personalization.
 1099 Other methods such as ComRAG (Chen et al., 2025a), ERAgent (Shi et al., 2024), Pistis-RAG (Bai
 1100 et al., 2024), and Social-RAG (Wang et al., 2025b) update user profiles or QA memories when
 1101 users provide explicit positive feedback or when high-quality answers are validated by the social
 1102 community. Despite their dynamism, these systems either take history information for self usage or
 1103 treat the human user (or user community) as the source of new content. The resulting models are
 1104 primarily personalized assistants. In Inter-Cascade, the update loop is fundamentally different: the
 1105 weak LLM decides when to update, and the strong LLM decides what to write, without any human
 1106 in the loop. The stored content is not user utterances or QA pairs, but LLM-generated strategies
 1107 and reasoning structures distilled from a stronger model. Rather than personalizing to a single user,
 1108 Inter-Cascade uses interaction between two models to build a reusable strategic knowledge base for
 1109 many users and tasks.

1110 *Agentic RAG* A third, increasingly prominent direction combines RAG with multi-agent or agentic
 1111 architectures (Li et al., 2025). In these systems, different agents are assigned distinct roles,
 1112 e.g., planner, retriever, answer generator, or verifier. Those agents collaborate via tool calls and
 1113 message passing. For centralized systems like MA-RAG (Nguyen et al., 2025b), HM-RAG (Liu
 1114 et al., 2025), and SurgRaw (Low et al., 2025), the focus is on managing the workflow, such as
 1115 deciding when to use the retriever to access the existing database. Decentralized methods like M-
 1116 RAG (Wang et al., 2024c) and MDocAgent (Han et al., 2025) consider retrieval from partitioned
 1117 databases. There are also works like RECOND (end-to-end generation) (Xu et al., 2025)Hippo
 1118 (knowledge-graph) (Gutiérrez et al., 2025), IM-RAG (multi step refinement) (Yang et al., 2024)
 1119 and FAIR-RAG (fair retrieval) (Shrestha et al., 2024) propose algorithms to refine answers from
 1120 RAG database. However, in all such designs, the RAG component itself remains an external, fixed
 1121 resource: agents coordinate how to use RAG, but no agent is responsible for constructing a new
 1122 corpus of knowledge for others. Inter-Cascade differs from these agentic RAG systems in two key
 1123 aspects. First, there are only two “agents”: a weak LLM and a strong LLM, but their interaction
 1124 is explicitly teacher–student and online knowledge distillation, rather than mere division of labor.
 1125 Second, the strong LLM actively produces the knowledge store that the weak LLM later retrieves,
 1126 making the RAG-like database a product of model interaction rather than a static tool.

1127 Across all three categories, existing RAG approaches either (i) operate over a fixed, human-curated
 1128 external corpus, (ii) update a memory store using human dialogue and feedback, or (iii) update a
 1129 memory using self history for personalization without knowledge transfer. To our knowledge, Inter-
 1130 Cascade is the first framework where a weak LLM and a strong LLM jointly and autonomously build
 1131 a RAG-like corpus under the framework of LLM Cascade, with the weak model deciding when to
 1132 consult and update it, and the strong model providing the organized knowledge. This yields a new
 1133 form of online, interaction-driven distillation, particularly suitable for small models without access
 to large external knowledge bases or the Internet.

1134 **Other related topics** There are also a weak model and strong model in *Speculative decoding*
1135 (Leviathan et al., 2023; Narasimhan et al., 2025). In speculative decoding, the weak model
1136 works as a answer draft while the strong model work as a verifier to speed up the generation com-
1137 pared to only using strong model. However, in Inter-Cascade, Strong LLM is called only when the
1138 Weak LLM is unable to handle current query. *CombLM* (Ormazabal et al., 2023) and *LLM De-
1139 bate* (Irving et al., 2018; Du et al., 2023; Estornell & Liu, 2024; Khan et al., 2024; Zhou et al., 2025)
1140 are other branches of works that also involve interaction between LLMs. CombLM integrates the
1141 logit distribution of two LLMs while LLM Debate requires different LLMs to argue and refine their
1142 initial answers and eventually reach consensus through multiple rounds of interaction. The key dif-
1143 ference between Inter-Cascade and them is that Inter-Cascade let the Strong LLM and Weak LLM
1144 work in a sequential order can conduct early stop to save tokens.

Algorithm 3 Inter-Cascade Inference Pipeline

```

1147 Input: Test set  $\mathcal{T} = \{q_1, \dots, q_I\} \subseteq \mathcal{Q}$ ; LLM  $M_n$  with deferral function  $d_n$ , generation function
1148  $g_n$ , strategy repository  $\text{Repo}_n$  and strategy generator  $h_n$ .
1149 Deferral convention: 0 = handle locally, 1 = defer/forward.
1150 1:  $\text{Repo} = \emptyset$ 
1151 2: for  $n \leftarrow 1$  to  $N$  do
1152 3:   for  $i \leftarrow 1$  to  $I$  do
1153 4:     if  $n < N$  then
1154 5:       (Strategy matching)
1155 6:          $[s_i^{t_1}, s_i^{t_2}, \dots, s_i^{t_k}] \leftarrow f_n(q_i, \text{Repo}_n)$      $\triangleright$  Find most relevant top-  $k$  strategies to  $q_i$ 
1156 7:          $q'_i \leftarrow [q_i, s_i^{t_1}, s_i^{t_2}, \dots, s_i^{t_k}]$      $\triangleright$  concatenate query and strategies
1157 8:     else
1158 9:        $q'_i = q_i$      $\triangleright$  Last LLM doesn't maintain  $\text{Repo}$ 
1159 10:    (Deferral Decision)
1160 11:    if  $d_n(q'_i) = 0$  then
1161 12:      generate answer  $a_i \leftarrow g_1(q'_i)$      $\triangleright$  Answer locally at Weaker LLM
1162 13:       $s_{\text{new}} \leftarrow h(q_i)$ 
1163 14:       $\text{Repo}_{<n} \leftarrow \text{Repo}_{<n} \cup \{s_{\text{new}}\}$      $\triangleright$  Add strategy to all the weaker LLMs
1164 15:    else
1165 16:      if  $n < N$  then
1166 17:        Pass     $\triangleright$  Defer to next level
1167 18:      else
1168 19:        Discard current query  $q_i$      $\triangleright$  None of LLMs are confident to answer the query

```

C ORDER OF LLMS

To distinguish two LLMs into strong model M_s and weak model M_w , we make following definitions. For a task distribution \mathcal{D} , we denote the performance of a model M by $\text{Perf}(M)$, which can be instantiated by measures such as the expected accuracy or negative loss on \mathcal{D} . Similarly, we let $\text{Cost}(M)$ represent the expected cost of using M on \mathcal{D} , such as the price, latency, or required computation resource. Note that Cost also depends on the task distribution \mathcal{D} , for simplicity, we only use the notation $\text{Cost}(M)$. We say that M_w is weaker than M_s if $\text{Perf}(m_w) \leq \text{Perf}(m_s)$, and that it is cheaper if $\text{Cost}(m_w) \leq \text{Cost}(m_s)$. To simplify notation, we introduce the shorthand relation

$$M_w \preccurlyeq_{\text{whc}} M_s$$

if and only if

$$\text{Perf}(M_w) < \text{Perf}(M_s) \quad \text{and} \quad \text{Cost}(M_w) < \text{Cost}(M_s),$$

1186 where the term “wbc” represents “weaker but cheaper”. Consider a multi-LLM inference/generation
 1187 system, which contains N LLM models, $\mathcal{M} = \{M_1, M_2, \dots, M_N\}$, with different capacities and
 use costs to a query. WLOG, we assume that $M_1 \preccurlyeq_{\text{wbc}} M_2 \preccurlyeq_{\text{wbc}} \dots \preccurlyeq_{\text{wbc}} M_N$.

1188 D ALGORITHM FOR GENERAL INTER-CASCADE
11891190 Since Inter-Cascade is scalable to any number of layers for LLM, the general Inter-Cascade pipeline
1191 for N -LLM cascade system is shown in Algo. 3.
11921193 E PROOF: CLOPPER-PERSON UPPER BOUND AS A BETA QUANTILE
11941195 In the lemma below, we apply the Clopper-Pearson upper bound to rewrite $R^+(\lambda)$, yielding a clearer
1196 form that facilitates computation. This helps the proof of Theorem 2.2 and Theorem G.1.
11971198 **Lemma E.1** (Clopper-Pearson upper bound as a Beta quantile). *Let $n(\lambda) \in \mathbb{N}$ be the number of
1199 evaluated items at threshold λ , let $R(\lambda) \in [0, 1]$ denote the unknown risk, and suppose*

1200
$$X \sim \text{Bin}(n(\lambda), R(\lambda)),$$

1201

1202 and $x \in \{0, 1, \dots, n(\lambda)\}$ is the number of error observed. Write $\hat{R}(\lambda) = x/n(\lambda)$. For a fixed
1203 $\delta \in (0, 1)$, define the one-sided $(1 - \delta)$ upper confidence limit by

1204
$$\hat{R}^+(\lambda) := \sup \left\{ p \in [0, 1] : \Pr_p(\text{Bin}(n(\lambda), p) \leq x) \geq \delta \right\}.$$

1205

1206 Then

1207
$$\hat{R}^+(\lambda) = \text{Beta}^{-1}(1 - \delta; x + 1, n(\lambda) - x)$$

1208

1209 with the usual edge conventions $\text{Beta}^{-1}(1 - \delta; 1, n) = 1 - \delta^{1/n}$ when $x = 0$ and $\hat{R}^+(\lambda) = 1$
1210 when $x = n(\lambda)$.1211 *Proof.* For fixed $x < n(\lambda)$ the map $p \mapsto F(p) := \Pr(\text{Bin}(n(\lambda), p) \leq x)$ is strictly decreasing in
1212 p , so the set in the definition of $\hat{R}^+(\lambda)$ is an interval $[0, p^*]$ and the supremum p^* uniquely solves

1213
$$F(p^*) = P(\text{Bin}(n(\lambda), p^*) \leq x) = \delta. \quad (3)$$

1214

1215 Using the standard identity linking the binomial tail to the regularized incomplete beta function, for
1216 integers $0 \leq x \leq n(\lambda) - 1$,

1217
$$P(X \leq x) = \sum_{k=0}^x \binom{n(\lambda)}{k} p^k (1-p)^{n(\lambda)-k} = 1 - I_p(x+1, n(\lambda) - x),$$

1218

1219 where $I_p(a, b)$ is the CDF of $\text{Beta}(a, b)$ at p . Plugging this into equation 3 gives

1220
$$I_{p^*}(x+1, n(\lambda) - x) = 1 - \delta,$$

1221

1222 so p^* is the $(1 - \delta)$ quantile of the $\text{Beta}(x+1, n(\lambda) - x)$ distribution:

1223
$$p^* = \text{Beta}^{-1}(1 - \delta; x+1, n(\lambda) - x).$$

1224

1225 This equals $\hat{R}^+(\lambda)$ by definition. The stated edge cases follow from $F(p) = (1-p)^{n(\lambda)}$ when
1226 $x = 0$ and from monotonicity when $x = n(\lambda)$. \square
12271228 F PROOF: UNCHANGED THRESHOLD
12291230 **Theorem F.1.** *Suppose that $\hat{R}^+(\lambda)$ is a monotonic decreasing function of λ . Fix $\delta \in (0, 1)$
1231 and an integer $n \geq 1$. For $x \in \{0, 1, \dots, n\}$, $\epsilon \in (0, 1]$, and $b \in [1, \infty)$. Suppose that
1232 $\min\{\epsilon x + 1, n - \epsilon x\}$ is moderately large and $1 - \delta$ is not an extreme tail, then:*1233 **(a) Decrease in value.** $\alpha(\epsilon, b) \leq \alpha(1, 1)$ when $\epsilon \in (0, 1]$ and $b \in [1, \infty)$.
12341235 **(b) Normal approximation for the amount of decrease.** Let $z := \Phi^{-1}(1 - \delta)$, where Φ is the
1236 Normal cumulative distribution function, when n is large enough, the decrease of the risk under
1237 same level of tolerance is given by,
1238

1239
$$\alpha(1, 1) - \alpha(\epsilon, b) \approx \left(\frac{x+1}{n+1} - \frac{\epsilon x + 1}{bn+1} \right) + z \left[\sqrt{\frac{(x+1)(n-x)}{(n+1)^2(n+2)}} - \sqrt{\frac{(\epsilon x + 1)(bn - \epsilon x)}{(bn+1)^2(bn+2)}} \right].$$

1240

1242 *Proof.* We use a Beta function to represent the variable $\widehat{R}^+(\lambda)$, which is equivalent to the risk
 1243 α , when $\widehat{R}^+(\lambda)$ is a monotonic decreasing function of λ . We then use the approximation to
 1244 Beta function to evaluate the decrease of α by definition. For the convenience of statement of our
 1245 theories, we define that $\alpha(\epsilon, b)$ as the the value of risk bound α when the obtained λ satisfies
 1246 $n(\lambda) = bn$ and incorrectly answered queries among $n(\lambda)$ is $x(\lambda) = \epsilon x$, given the δ fixed. (a)
 1247 Notice that we assume that $\widehat{R}^+(\lambda)$ is a monotonic decreasing function of λ . Let us suppose that
 1248 λ_0 satisfies that $n(\lambda_0) = bn$ and $x(\lambda_0) = \epsilon x$. By Algorithm 1, this shows that $\widehat{R}^+(\lambda_0) = \alpha(\epsilon, b)$.
 1249

1250 From Lemma E.1, we know that

$$1251 \quad \alpha(\epsilon, b) := \text{Beta}^{-1}(1 - \delta; \epsilon x + 1, bn - \epsilon x).$$

1253 Let $p_1 = \text{Beta}^{-1}(1 - \delta; \epsilon x + 1, bn - \epsilon x)$. Then, by the property of Beta distribution, $P(\text{Bin}(n, p_1) \leq
 1254 x) = \delta$. It follows that,

$$1255 \quad P(\text{Bin}(bn, p_1) \leq \epsilon x) \leq P(\text{Bin}(n, p_1) \leq x) = \delta,$$

1257 because lowering the threshold ($\epsilon x \leq bx$) and increasing trials ($bn \geq n$) makes the left tail event
 1258 rarer. Let us assume that $p_2 = \text{Beta}^{-1}(1 - \delta; \epsilon x + 1, bn - \epsilon x)$. From the proof of Lemma E.1,
 1259 it is equivalent to that $P(\text{Bin}(bn, p_2) \leq \epsilon x) = \delta$. It follows that $P(\text{Bin}(bn, p_2) \leq \epsilon x) = \delta \geq
 1260 P(\text{Bin}(bn, p_1) \leq \epsilon x)$, which implies that $p_2 \leq p_1$. Hence the new upper bound $p_2 = \text{Beta}^{-1}(1 -
 1261 \delta; \epsilon x + 1, bn - \epsilon x)$ satisfies $p_2 \leq p_1$. This shows the statement (a).

1262 (b) Write

$$1264 \quad \mu_{\epsilon, b} := \frac{\epsilon x + 1}{bn + 1}, \quad \sigma_{\epsilon, b} := \sqrt{\frac{(\epsilon x + 1)(bn - \epsilon x)}{(bn + 1)^2(bn + 2)}}.$$

1266 In the large-sample, interior regime, e.g., $\min\{\epsilon x + 1, bn - \epsilon x\} \gg 1$ and x/n bounded away from
 1267 0 and 1,

$$1268 \quad \text{Beta}^{-1}(1 - \delta; \epsilon x + 1, bn - \epsilon x) = \mu_{\epsilon, b} + z \sigma_{\epsilon, b} + O\left(\frac{1}{n}\right).$$

1270 This is by the approximation to Beta distribution by normal distribution. Calculate $\alpha(1, 1) - \alpha(\epsilon, b)$
 1271 demonstrate the result of theorem. \square

1273 G PROOF: UNCHANGED USED QUERIES

1275 Other than the case that the threshold remains unchanged, which is analyzed above, another case
 1276 may be that when the user want the same number of queries to be covered by the Weak LLM during
 1277 two rounds of queries (before and after adding strategies), one of which has a better Weak LLM.
 1278 Such a case controls the cost. This case considers the influence of a better Weak LLM to our pipeline.
 1279 In this case, we instead assume that $n(\lambda) = n(\lambda')$, and abbreviate them as n for simplicity, which
 1280 ensures the same coverage of Weak LLM. The number of wrongly answered queries before and after
 1281 getting a better Weak LLM are denoted by x and ϵx , and we still estimate the decrease of α under
 1282 the same level of tolerance δ . We give an approximation on the change rate of the risk bound with
 1283 respect to the proportion of decrease of errors. We denote by $\alpha(\epsilon)$ the $\alpha(\epsilon, b = 1)$ for simplicity,
 1284 and present the analysis in Theorem G.1.

1285 **Theorem G.1.** Suppose that $\widehat{R}^+(\lambda)$ is a monotonic decreasing function of λ . Fix $\delta \in (0, 1)$ and
 1286 an integer $n \geq 1$. For $x \in \{0, 1, \dots, n\}$ and $\epsilon \in (0, 1]$. Suppose that $\min\{\epsilon x + 1, bn - \epsilon x\}$ is
 1287 moderately large and $1 - \delta$ is not an extreme tail, then:

1289 (a) **Exact monotonicity.** $\alpha(\epsilon)$ is strictly increasing in ϵ . In particular, for any $\epsilon \in (0, 1)$,

$$1290 \quad \alpha(\epsilon) < \alpha(1).$$

1292 (b) **Normal approximation for the amount of decrease.** Let $z := \Phi^{-1}(1 - \delta)$, for ϵ near 1,

$$1294 \quad \alpha(1) - \alpha(\epsilon) \approx (1 - \epsilon) \left[\frac{x}{n + 1} + \frac{z}{2(n + 1)\sqrt{n + 2}} \frac{x(n - 1 - 2x)}{\sqrt{(x + 1)(n - x)}} \right].$$

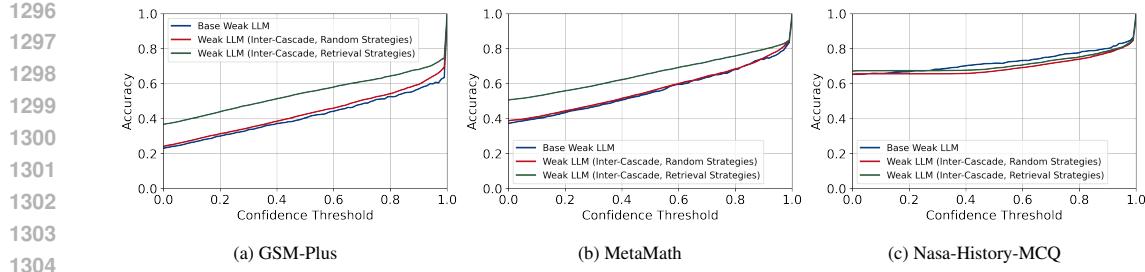


Figure 3: Accuracy as a function of the confidence threshold for the base Weak LLM and for the Weak LLM within the Inter-Cascade using random and retrieval strategies across three benchmarks.

Hence the decrease is approximately linear in $(1 - \epsilon)$ with the coefficient in brackets; in particular, when $x \leq n/2$ the variance term is nonnegative and the decrease is at least $(1 - \epsilon)x/(n + 1)$ to first order.

Proof. (a) Similar to the proof of the statement (a) of Theorem 2.2, increasing x moves mass to the right in the Binomial, so the lower-tail CDF in p decreases and its $(1 - \delta)$ quantile increases; with n fixed this is equivalent to $\alpha(\epsilon)$ being strictly increasing in ϵ .

(b) Similar to the proof of the statement (a) of Theorem 2.2, notice that

$$\alpha(\epsilon, 1) := \text{Beta}^{-1}(1 - \delta; \epsilon x + 1, n - \epsilon x).$$

For $i = \epsilon x + 1$, $j = n - \epsilon x$, the Beta(i, j) mean and variance are $\mu_\epsilon = i/(i + j)$ and $\sigma_\epsilon^2 = ij/[(i + j)^2(i + j + 1)]$. Approximating the $(1 - \delta)$ quantile by the Normal formula gives $\alpha(\epsilon) = \mu_\epsilon + z\sigma_\epsilon + O(1/n)$. Differentiate at $\epsilon = 1$ to obtain the first-order change:

$$\frac{d\mu_\epsilon}{d\epsilon} \Big|_{\epsilon=1} = \frac{x}{n + 1}, \quad \frac{d\sigma_\epsilon}{d\epsilon} \Big|_{\epsilon=1} = \frac{1}{2(n + 1)\sqrt{n + 2}} \cdot \frac{(n - 1 - 2x)x}{\sqrt{(x + 1)(n - x)}}.$$

A first-order Taylor expansion around $\epsilon = 1$ yields the displayed approximation. \square

H CONFIDENCE DISTRIBUTION

Figures 3 and 4 present results for the GSM-Plus, MetaMath, and Nasa-History-MCQ datasets, complementing the GSM-Symbolic analyses in the main text.

Figure 3 shows accuracy as a function of the confidence threshold for the base Weak LLM and for the Weak LLM within the Inter-Cascade using random and retrieval strategies. For each threshold, only queries with confidence equal to or above the threshold are considered, and accuracy is calculated as the proportion of correct predictions. Across the reasoning datasets (GSM-Plus and MetaMath), the Inter-Cascade with retrieval strategies consistently improves accuracy over the baseline and random-strategy variants. For the factual non-reasoning dataset (Nasa-History-MCQ), the Inter-Cascade achieves comparable performance.

Figure 4 depicts the distribution of query confidence for the three benchmarks. Across all datasets, the Inter-Cascade with retrieval strategies concentrates probability mass near high confidence (0.9–1.0), whereas the base and random-strategy variants place more mass at lower confidence levels. These results further confirm that providing strategies helps the Weak LLM not only produce more accurate predictions but also better calibrate its confidence.

I FULL DESCRIPTION OF BENCHMARKS

GSM-Symbolic. The GSM-Symbolic benchmark, released by Apple’s team (Mirzadeh et al., 2025), is a structured variant of GSM8K (Cobbe et al., 2021b). Unlike traditional benchmarks such as GSM8K, which present problems in a plain context, GSM-Symbolic reformulates problems into a

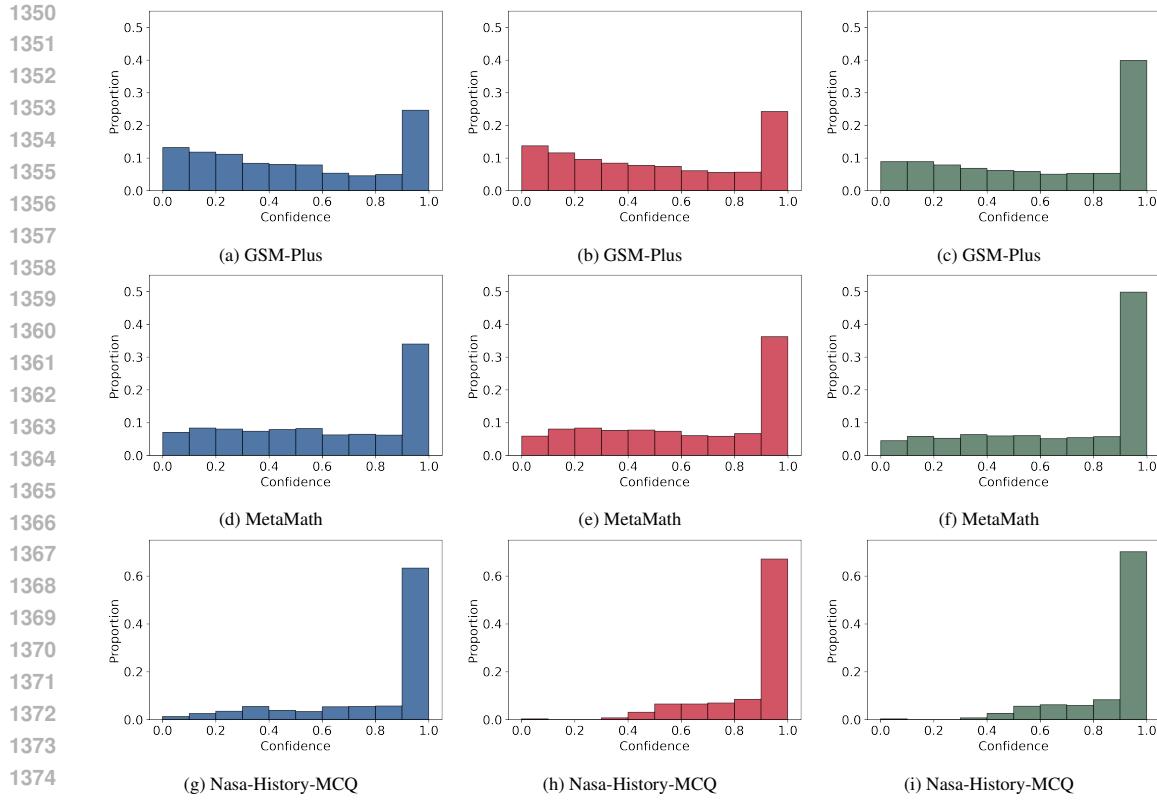


Figure 4: Confidence histograms for three benchmarks. Columns correspond to (a)(d)(g) the base Weak LLM, (b)(e)(h) the Weak LLM within the Inter-Cascade using random strategies, and (c)(f)(i) the Weak LLM within the Inter-Cascade using retrieval strategies. Across all datasets, the Inter-Cascade with retrieval strategies concentrates probability mass near high confidence (0.9–1.0), while the base and random-strategy variants place more mass at lower confidence levels.

more structured and abstract format following a symbolic template, providing a more reliable measure of models’ reasoning capabilities. The dataset contains 12,500 grade-school math problems. We randomly sample 1,250 problems as the calibration set for threshold computation and use the remaining 11,250 problems as the test set. The prompt template and an example problem are provided in Appendix L.

GSM-Plus. GSM-Plus (Li et al., 2024) is derived from the 1,319 test questions in GSM8K by introducing eight types of question variations: numerical substitution, digit expansion, integer-decimal-fraction conversion, adding operation, reversing operation, problem understanding, distractor insertion, and critical thinking. GSM-Plus thus comprises a total of 10,552 question variations. We randomly sample 1,048 problems as the calibration set for threshold computation and use the remaining 9,504 problems as the test set. The prompt template and an example problem are provided in Appendix L.

MetaMath. MetaMath (Yu et al., 2024) is a dataset generated by bootstrapping the mathematical benchmarks GSM8K (Cobbe et al., 2021b) and MATH (Hendrycks et al., 2021). The augmentation is performed in both forward and backward directions. In the forward direction, MetaMath contains the original and LLM-rephrased questions, while in the backward direction, it includes self-verification questions and FOBAR questions (Jiang et al., 2024), resulting in a total of 395K diverse problems. For our experiments, we randomly select 1,000 problems as the calibration set for threshold computation and use 20,000 additional problems as the test set. The prompt template and an example problem are provided in Appendix L.

NASA-History-MCQ. NASA-History-MCQ (Fleith, 2025) is a multiple-choice question benchmark on the history of NASA. It contains 7.47K questions, and each question provides four answer choices. We randomly sample 1,000 problems as the calibration set for threshold computation and

use the remaining 6,469 problems as the test set. The prompt template and an example problem are provided in Appendix L.

BarExamQA. BarExamQA (Zheng et al., 2025) is a legal reasoning benchmark constructed from real U.S. bar examination questions. Each question is posed in a multiple-choice format and requires multi-step legal reasoning over complex legal fact patterns. BarexamQA contains a total of 954 problems, we randomly sample 95 problems as the calibration set for threshold computation and remaining 859 as the test set.

BigBench Hard. BIG-Bench Hard (Suzgun et al., 2022) is a subset of 23 particularly challenging BIG-Bench tasks for which no prior result from (Srivastava et al., 2022) has outperformed the average human-rater score. It is a diverse benchmark designed to test capabilities of language models on a diverse set of crowd-sourced tasks. The benchmark aims to focus on the problems that beyond the capabilities of existing LLMs. We use 5412 problems as test set and 599 problems as calibration set for threshold computation. The calibration set are selected from each tasks with the same proportion.

GSM8K. GSM8K (Cobbe et al., 2021b) is a widely used grade-school math word problem benchmark designed to evaluate multi-step numerical reasoning. The dataset contains 7473 training questions and 1719 test questions, with each problem requiring several arithmetic operations and logical reasoning steps to reach the final answer. Following standard practice, we use problems in calibration set for threshold computation and use the remaining problems as the test set.

MedMCQA. MedMCQA (Pal et al., 2022) is a large-scale multiple-choice question benchmark in the medical domain. It covers high-quality AIIMS and NEET PG entrance exam MCQs covering 2400 healthcare topics and 21 medical subjects. It contains over 194,000 questions, each with four answer choices and a single correct answer. We randomly sample 2,000 problems as the calibration set for threshold computation and use 8000 additional problems as the test set.

J EXTENSIVE EXPERIMENT ON MORE BENCHMARKS

Although the Inter-Cascade diagram is motivated by the real-world scenarios that contain similar or repeated tasks, we also provide the result of our Inter-Cascade on extensive benchmarks that are more diverse and do not contain explicit sample variants: GSM8K (Cobbe et al., 2021a), BigBench Hard (Suzgun et al., 2022), BarExamQA (Zheng et al., 2025) and MedMCQA (Pal et al., 2022). The full description of those benchmarks are in Appendix I. We firstly test the accuracy of each single LLM on those benchmarks and the result is in Table 9.

Inter-Cascade vs. Jung’s LLM Cascade. We evaluate our *Inter-Cascade* pipeline and Jung’s method, as shown in Table 10. Our method outperforms Jung’s, with a 0.18% – 3.96% increase in Pipeline Accuracy. The Strong LLM Call Rate is reduced on all benchmarks, with reductions ranging from 1.52% to 16.14%. Compared with the results on GSM-Symbolic, GSM-Plus and Meta-Math benchmarks, the accuracy improvement is not that large, but the more important part is that our Inter-Cascade can still reach a better trade-off between accuracy and cost since our method still remarkably reduce the usage of Strong LLM. These results indicate that *Inter-Cascade* pipeline is also beneficial across different categories of tasks on diverse benchmarks.

Impact of Inter-Cascade on Weak LLM. Having examined the overall pipeline improvements, including Pipeline Accuracy and Strong LLM Call Rate reduction, we now investigate how our proposed *Inter-Cascade* affects the Weak LLM. As shown in Table 11, our Weak LLM still outperforms the Weak LLM in the other pipeline across all benchmarks. The improvements on *Weak Accuracy* are between 0.91% and 9.56% and the improvements on *Weak Correct Accepted* are between 2.24% and 15.56%. The results implies that even though we test our Inter-Cascade on diverse benchmarks, retrieving most similar problems and solution strategies can still help boosting the performance and confidence of Weak LLM.

According to experiment results for extensive benchmarks, it shows that Inter-Cascade not only work for tasks that contain constructive similarity, but also help in more general and diverse cases, since explicit or implicit similarity occurs everywhere and the pipeline in our Inter-Cascade take the advantage of the similarity nature of daily tasks.

1458
 1459 **Token and API Cost Savings.** The results of analysis on cost and latency for extensive benchmarks
 1460 are attached in Table 12 and Table 13. The tendency is similar: integrating with strategies, the
 1461 token usages on Weak LLM increase between 115.89% and 216.37%, but since the *Strong Call*
 1462 decrease on all benchmark, the token usages on Strong LLM decrease between 1.28% and 83.17%
 1463 and therefore, we can save 2.33% - 83.94% money on API price. On the other hand, the average
 1464 latency change on each query is between 0.005 s and 0.374 s on different benchmarks, which is
 acceptable to the user experience.

1465
 1466 Table 9: Accuracies of the base LLMs on extensive benchmarks

Dataset	LLM	Accuracy	Dataset	LLM	Accuracy
GSM8K	gpt-3.5-turbo	31.46%	BigBench	gpt-3.5-turbo	49.75%
	gemini-2.0-flash	74.83%		gemini-2.0-flash	78.80%
BarExamQA	gpt-3.5-turbo	48.42%	MedMCQA	gpt-3.5-turbo	62.80%
	gemini-2.0-flash	78.95%		gemini-2.0-flash	83.05%

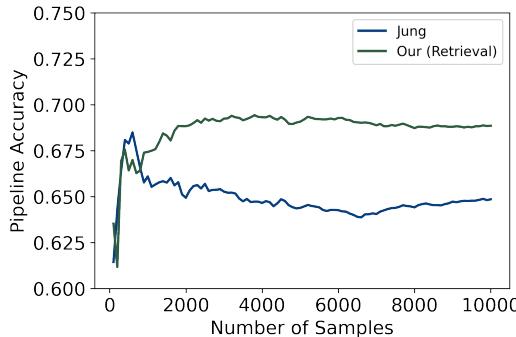
1472
 1473 K EXTRA ABLATION STUDY
 14741475
 1476 To better evaluate the performance and generalization capacity of Inter-Cascade, we set up extra
 1477 ablation studies in this section.1478
 1479 K.1 COLD START1480
 1481 To evaluate the effect of cold start of our strategy repository, we measure the dynamic pipeline ac-
 1482 curacy for both Jung’s method and our standard Inter-Cascade on GSM-Symbolic. The result in
 1483 Figure 5 shows that at early stage, the pipeline accuracy for our Inter-Cascade is much close to
 1484 baseline method: Jung (Jung et al., 2025). However, as the size of stored strategies increase, the per-
 1485 formance of Inter-Cascade increase and gradually exceed Jung’s method and eventually converges.
 14861498
 1499 Figure 5: The dynamic of pipeline accuracy for both Jung’s method and our standard Inter-Cascade on GSM-
 1500 Symbolic.1501
 1502 K.2 EFFECT OF STRATEGIES NUMBER
 15031504
 1505 To evaluate the effect the number of strategies we matched for each queries, we test the pipeline
 1506 accuracy with different number of strategies that used for integrating with the input of Weak LLM.
 1507 The result in Figure 6 shows that the trend of pipeline accuracy is increasing first, reaching peak
 1508 and then decreasing along with the number of strategies. The result makes sense because too few
 1509 strategies might not retrieve the best strategy in repository, while too many strategies might distract
 1510 the answer from certain query question, furthermore, there is a chance that the longer contexts
 1511 may exceed the the maximum limit of the input context window. Both factors might undermine
 the performance of the pipeline accuracy. In our experiment on GSM-Symbolic benchmark, the
 empirical best number of strategies k is 2.

Table 10: Results across extensive datasets using different pipelines. “Jung” denotes Jung’s LLM-Cascade and “Our (Retrieval)” denotes the Inter-Cascade with similarity-based retrieval. The number of strategies is fixed at $k = 2$ for both Inter-Cascade settings. Metrics reported are Pipeline Accuracy (Pipeline Acc.), Strong LLM Call Rate (Strong Call), and Coverage Rate (Cov.). (a) GSM8K: For the Strong LLM, $\alpha_s = 0.2, \delta_s = 0.8, \lambda_s = 0.44$. For the Weak LLM, $\alpha_w = 0.5, \delta_w = 0.5, \lambda_w = 0.49$. (b) BigBench: No threshold is applied for the Strong LLM. For the Weak LLM, $\alpha_w = 0.4, \delta_w = 0.6, \lambda_w = 0.61$. (c) BarExamQA: No threshold is applied for the Strong LLM. For the Weak LLM, $\alpha_w = 0.5, \delta_w = 0.5, \lambda_w = 0.51$. (d) MedMCQA: No threshold is applied for the Strong LLM. For the Weak LLM, $\alpha_w = 0.3, \delta_w = 0.8, \lambda_w = 0.69$.

Data	Pipeline	Pipeline Acc. (%) \uparrow	Strong Call (%) \downarrow	Cov. (%)
GSM8K	Jung	59.02	37.03	95.95
	Our (Retrieval)	60.62	35.46	96.05
BigBench	Jung	64.14	33.04	100.00
	Our (Retrieval)	64.32	23.84	100.00
BarExamQA	Jung	57.39	23.17	100.00
	Our (Retrieval)	58.67	21.65	100.00
MedMCQA	Jung	71.69	18.74	100.00
	Our (Retrieval)	75.65	2.60	100.00

Table 11: Results on Weak LLM across extensive datasets. Reported metrics are Weak LLM Accuracy (Weak Acc.) and Weak Correct Accepted (Weak Corr. Acct.). Parameter settings are the same as in Table 10.

Data	Pipeline	Weak Acc. (%) \uparrow	Weak Corr. Acct. (%) \uparrow
GSM8K	Jung	37.06	33.38
	Our (Retrieval)	39.30	35.62
BigBench	Jung	49.02	39.34
	Our (Retrieval)	49.93	46.60
BarExamQA	Jung	47.50	39.81
	Our (Retrieval)	51.22	43.31
MedMCQA	Jung	64.95	58.16
	Our (Retrieval)	74.51	73.72

K.3 RESULTS ON NEW LLM PAIRS

To show that our Inter-Cascade is a framework that work general multiple LLM collaboration systems, we also test the result on different choice of Weak LLM and Strong LLM. We switch our Weak LLM to Gemini-2.0-flash and switch our Strong LLM to Gemini-2.5-flash. The results on single LLM are in Table 14. We also analyze the performance on those metrics: Pipeline Accuracy, Strong Call Rate, Weak Accuracy and Weak Correct Accept in Table 15 and Table 16. The results shows that although we test on different pairs of Weak LLM and Strong LLM, the trend doesn’t change: Inter-Cascade would help improve the accuracy of Weak LLM, pipeline accuracy, reduce the the usage of Strong LLM, reaching a better trade-off between the Accuracy and Cost in LLM Cascade systems.

Table 12: Token and API cost changes across extensive datasets for Inter-Cascade compared with Jung’s pipeline.

Benchmark	Weak LLM Tokens			Strong LLM Tokens			Token Price
	Total	Input	Output	Total	Input	Output	
GSM8K	+115.89%	+116.56%	-2.27%	-3.25%	-4.10%	-1.28%	-2.33%
BigBench	+134.53%	+135.32%	-5.47%	-26.37%	-30.90%	-19.67%	-22.70%
BarExamQA	+216.37%	+216.90%	+0.12%	-5.70%	-5.39%	-6.28%	-5.98%
MedMCQA	+129.64%	+130.70%	-0.16%	-84.74%	-85.58%	-83.17%	-83.94%

1566 Table 13: Processing Latency and Strategy Repository Size across extensive datasets. Retrieval refers to the
 1567 time spent on strategies matching and ranking. Generation refers to time spent on generating answer via API.

1568

Benchmark	Tested Samples	Our		Jung		Repository Size
		Total	Retrieval	Generation	Total	
GSM8K	7473	1.344s	0.005s	1.339s	1.216s	6.3MB
BigBench	5412	1.456s	0.004s	1.452s	1.227s	3.4MB
BarExamQA	859	1.686s	0.254s	1.432s	1.312s	1.1MB
MedMCQA	8000	0.975s	0.004s	0.971s	0.970s	6.3MB

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

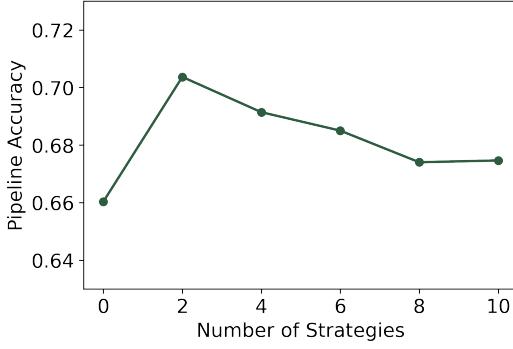
1585

1586

1587

1588

Figure 6: Effect of number of Strategies on pipeline accuracy for GSM-Symbolic Benchmark



L PROMPT TEMPLATES AND EXAMPLES

Table 17 and Table 18 present the strategy-free prompt templates for the four datasets, along with one example question per dataset. Table 19 - Table 22 show the strategy-based prompt templates and example inputs for each dataset. In our experiments, the number of strategies is set to $k = 2$; these strategies and their corresponding answers are generated by the Strong LLM. Since the pipeline operates without human intervention, all strategies that exceed the Strong LLM confidence threshold λ_s are accepted. Consequently, the Repo may contain incorrect strategies or answers. Nonetheless, the results in Table 3 and Table 4 demonstrate the effectiveness of λ_s and the robustness of our proposed Inter-Cascade pipeline.

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620
1621
1622
1623
1624
1625

1626 Table 14: Accuracies of new pair of base LLMs on GSM-Symbolic Benchmark

Dataset	LLM	Accuracy
GSM-Symbolic	gemini-2.0-flash	69.36%
	gemini-2.5-flash	89.28%

1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
16411642 Table 15: New LLM Pairs (Weak LLM: Gemini-2.0-flash; Strong LLM: Gemini-2.5-flash) Results on GSM-
1643 Symbolic dataset using different pipelines. “Jung” denotes Jung’s LLM-Cascade and “Our (Retrieval)” denotes
1644 the Inter-Cascade with similarity-based retrieval. The number of strategies is fixed at $k = 2$ for both Inter-
1645 Cascade settings. Metrics reported are Pipeline Accuracy (Pipeline Acc.), Strong LLM Call Rate (Strong Call),
1646 and Coverage Rate (Cov.). GSM-Symbolic: No threshold is applied for the Strong LLM. For the Weak LLM,
 $\alpha_w = 0.2$, $\delta_w = 0.8$, $\lambda_w = 0.47$.

Data	Pipeline	Pipeline Acc. (%) \uparrow	Strong Call (%) \downarrow	Cov. (%)
GSM-Symbolic	Jung	79.10	19.10	100.00
	Our (Retrieval)	85.50	9.90	100.00

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
16611662 Table 16: New LLM Pairs (Weak LLM: Gemini-2.0-flash; Strong LLM: Gemini-2.5-flash) Results on Weak
1663 LLM across GSM-Symbolic dataset. Reported metrics are Weak LLM Accuracy (Weak Acc.) and Weak
1664 Correct Accepted (Weak Corr. Acpt.). Parameter settings are the same as in Table 15.

Data	Pipeline	Weak Acc. (%) \uparrow	Weak Corr. Acpt. (%) \uparrow
GSM-Symbolic	Jung	64.20	63.40
	Our (Retrieval)	77.00	76.80

1669
1670
1671
1672
1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685 Table 17: Strategy-free prompt template with example questions from GSM-Symbolic, GSM-Plus, and Meta-
 1686 Math
 1687

Prompt Template:

Based on the question below, please strictly follow this format when answering:

1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes, feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead of 20%); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Example:

[Question]: $x + y = 10, y = 4$, what is x ?

[Strategy]: To solve for x , isolate x by subtracting y from both sides of the equation.
 $x = 10 - y = 10 - 4 = 6$.

[Answer]: 6

Now answer this question:

[Question]: {question}

[Strategy]:

[Answer]:

GSM-Symbolic Example Question:

[Question]: A fog bank rolls in from the ocean to cover a city. It takes 495 minutes to cover every 95 miles of the city. If the city is 95 miles across from the oceanfront to the opposite inland edge, how many minutes will it take for the fog bank to cover the whole city?

GSM-Plus Example Question:

[Question]: A clothing store has 60 white shirts and 70 floral shirts. Two-thirds of the white shirts have collars, and 30 of the floral shirts have buttons. How many more floral shirts with no buttons are there than white shirts with no collars?

MetaMath Example Question:

[Question]: Lara bought 52 stems of flowers at the flower shop. She gave 15 flowers to her mom and gave x more flowers than she gave to her mom to her grandma. She put the rest in a vase. How many stems of flowers did Lara put in the vase? If we know the answer to the above question is 16, what is the value of unknown variable x ?

1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740

1741 Table 18: Strategy-free prompt template with example question from NASA-History-MCQ
 17421743 **Prompt Template:**

1744 Based on the question below, please strictly follow this format when answering:

1745 1. Start with [Strategy] section explaining the general approach for solving similar problems;
 1746 2. End with [Answer] section containing ONLY the single capital letter of the correct option (exactly
 1747 one of: A, B, C, D). Do NOT include the option text or any explanation.

1748 Example:

1749 [Question]: Which of the following was a direct result of the Treaty of Versailles (1919)?

1750 A. The outbreak of World War II
 1751 B. The United States declaring war on Germany and entering World War I
 1752 C. The establishment of the Fascist regime in Italy
 1753 D. The creation of the League of Nations1754 [Strategy]: Recall that the treaty ended World War I and included peacekeeping measures. Compare
 1755 options with the treaty: only the League of Nations was directly established by it.

1756 [Answer]: D

1757 Now answer this question:

1758 [Question]: {question}

1759 [Strategy]:

1760 [Answer]:

1761 **Nasa-History-MCQ Example Question:**

1762 [Question]: What three distinct stages comprise current psychological support protocols for US astronauts?

1763 A. Individual, group, family
 1764 B. Training, mission, debriefing
 1765 C. Cognitive, emotional, behavioral
 1766 D. Preflight, in-flight, postflight

1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782
1783
1784
1785
1786
1787

Table 19: Strategy-based prompt template with example input from GSM-Symbolic

1788
1789
1790
1791
1792

Prompt Template:

Using the following problem examples:
{strategy}

1793
1794
1795
1796
1797

Based on the question below, please strictly follow this format when answering:

1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes, feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead of 20%); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

1798
1799
1800
1801

Now answer this question:

[Question]: {question}
[Strategy]:
[Answer]:

1802

GSM-Symbolic Example Input:

Using the following problem examples:

1803
1804
1805
1806
1807
1808
1809
1810

1. [Question]: A fog bank rolls in from the ocean to cover a city. It takes 93 minutes to cover every 2 miles of the city. If the city is 24 miles across from the oceanfront to the opposite inland edge, how many minutes will it take for the fog bank to cover the whole city?

[Strategy]: First, determine how many 2-mile segments are in the 24-mile city. Divide the total distance of the city by the length of each segment. Then, multiply the number of segments by the time it takes to cover each segment to find the total time.

[Answer]: 1116

1811
1812
1813
1814
1815
1816
1817
1818
1819

2. [Question]: A fog bank rolls in from the ocean to cover a city. It takes 114 minutes to cover every 3 miles of the city. If the city is 99 miles across from the oceanfront to the opposite inland edge, how many minutes will it take for the fog bank to cover the whole city?

[Strategy]: First, determine the rate at which the fog bank covers the city in miles per minute. Then, multiply this rate by the total distance of the city to find the total time it takes to cover the city. The rate is 3 miles / 114 minutes = 1/38 miles per minute. The total time is (1/38 miles/minute) * 99 miles = 99/38 minutes. Simplify the fraction 99/38 = 2.60526315789. Multiply 114 by 99/3 to get the answer 114 * (99/3) = 114 * 33 = 3762.

[Answer]: 3762

1820
1821
1822
1823
1824

Based on the question below, please strictly follow this format when answering:

1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes, feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead of 20%); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

1825
1826
1827
1828
1829
1830

Now answer this question:

[Question]: A fog bank rolls in from the ocean to cover a city. It takes 495 minutes to cover every 95 miles of the city. If the city is 95 miles across from the oceanfront to the opposite inland edge, how many minutes will it take for the fog bank to cover the whole city?

[Strategy]:

[Answer]:

1831
1832
1833
1834
1835

1836
1837
1838
1839
1840
1841

Table 20: Strategy-based prompt template with example input from GSM-Plus

1842
1843
1844
1845

Prompt Template:

Using the following problem examples:
{strategy}

1846
1847
1848
1849
1850

Based on the question below, please strictly follow this format when answering:

1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes, feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead of 20%); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

1851
1852
1853
1854

Now answer this question:

[Question]: {question}
[Strategy]:
[Answer]:

1855
1856

GSM-Plus Example Input:

Using the following problem examples:

1858
1859
1860
1861
1862
1863
1864
1865
1866
1867

1. [Question]: A clothing store has some white shirts and 50 floral shirts. Half of the white shirts have collars, and 20 of the floral shirts have buttons. How many more floral shirts with no buttons are there than white shirts with no collars?

[Strategy]: Let W be the number of white shirts. The number of white shirts with collars is $W/2$, so the number of white shirts without collars is $W - W/2 = W/2$. The number of floral shirts is 50. The number of floral shirts with buttons is 20, so the number of floral shirts without buttons is $50 - 20 = 30$. We want to find the difference between the number of floral shirts without buttons and the number of white shirts without collars, which is $30 - W/2$. However, we are not given the number of white shirts, W . Therefore, we cannot determine the exact numerical value of the difference.

[Answer]: None

1868
1869
1870
1871
1872
1873

2. [Question]: A clothing store has 40 white shirts and 50 floral shirts. Half of the white shirts have collars, and some of the floral shirts have buttons. There are 10 more floral shirts with no buttons than white shirts with no collars. How many floral shirts have buttons?

[Strategy]: 1. Calculate the number of white shirts with collars: $40/2 = 20$. 2. Calculate the number of white shirts without collars: $40 - 20 = 20$. 3. Calculate the number of floral shirts without buttons: $20 + 10 = 30$. 4. Calculate the number of floral shirts with buttons: $50 - 30 = 20$.

[Answer]: 20

1874
1875
1876
1877
1878
1879

Based on the question below, please strictly follow this format when answering:

1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes, feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead of 20%); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

1880
1881
1882
1883
1884

Now answer this question:

[Question]: A clothing store has 60 white shirts and 70 floral shirts. Two-thirds of the white shirts have collars, and 30 of the floral shirts have buttons. How many more floral shirts with no buttons are there than white shirts with no collars?

[Strategy]:

1885
1886
1887
1888
1889

[Answer]:

1890

1891

1892

1893

1894

1895

Table 21: Strategy-based prompt template with example input from MetaMath

Prompt Template:

Using the following problem examples:
 {strategy}

Based on the question below, please strictly follow this format when answering:

1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes, feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead of 20%); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Now answer this question:

[Question]: {question}
 [Strategy]:
 [Answer]:

MetaMath Example Input:

Using the following problem examples:

1. [Question]: Martha has x crayons. She lost half of them, so she bought a new set of 20 crayons. Martha has 29 crayons in total after the purchase. What is the value of unknown variable x ?

[Strategy]: Let x be the number of crayons Martha initially had. She lost half of them, so she had $x/2$ crayons left. Then she bought 20 new crayons, so she had $x/2 + 20$ crayons. We are given that she has 29 crayons in total, so $x/2 + 20 = 29$. Subtracting 20 from both sides gives $x/2 = 9$. Multiplying both sides by 2 gives $x = 18$.

[Answer]: 18

2. [Question]: Justin and Sabrina at Pine Grove Elementary have 50 pencils combined. Justin has x more than twice as many pencils as Sabrina. Sabrina has 14 pencils. What is the value of unknown variable x ?

[Strategy]: Let J be the number of pencils Justin has and S be the number of pencils Sabrina has. We are given that $J + S = 50$ and $S = 14$. We are also given that Justin has x more than twice as many pencils as Sabrina, which can be written as $J = 2S + x$. We can substitute $S = 14$ into the first equation to find J : $J + 14 = 50$, so $J = 50 - 14 = 36$. Now we can substitute $J = 36$ and $S = 14$ into the second equation: $36 = 2(14) + x$, so $36 = 28 + x$. Solving for x , we get $x = 36 - 28 = 8$.

[Answer]: 8

Based on the question below, please strictly follow this format when answering:

1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes, feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead of 20%); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Now answer this question:

[Question]: Lara bought 52 stems of flowers at the flower shop. She gave 15 flowers to her mom and gave x more flowers than she gave to her mom to her grandma. She put the rest in a vase. How many stems of flowers did Lara put in the vase? If we know the answer to the above question is 16, what is the value of unknown variable x ?

[Strategy]:

[Answer]:

1939

1940

1941

1942

1943

Table 22: Strategy-based prompt template with example input from NASA-History-MCQ

1944	
1945	
1946	Prompt Template:
1947	Using the following problem examples:
1948	{strategy}
1949	
1950	Based on the question below, please strictly follow this format when answering:
1951	1. Start with [Strategy] section explaining the general approach for solving similar problems;
1952	2. End with [Answer] section containing ONLY the single capital letter of the correct option (exactly one of: A, B, C, D). Do NOT include the option text or any explanation.
1953	
1954	Now answer this question:
1955	[Question]: {question}
1956	[Strategy]:
1957	[Answer]:
1958	
1959	Nasa-History-MCQ Example Input:
1960	Using the following problem examples:
1961	1. [Question]: Beyond communication and care packages, what specific types of hardware or software aid psychological well-being during long-duration spaceflights?
1962	A. Specialized dietary supplements to combat isolation
1963	B. Automated exercise routines tailored to reduce stress
1964	C. Psychological support hardware and software
1965	D. Advanced life support systems with mood stabilizers
1966	[Strategy]: The question asks about specific hardware or software that aids psychological well-being during long-duration spaceflights, beyond communication and care packages. We need to evaluate each option to see if it fits this description. Option A focuses on dietary supplements, which are not hardware or software. Option B describes automated exercise routines, which could involve software and hardware. Option C is too general, simply restating the question. Option D focuses on life support systems with mood stabilizers, which are not necessarily hardware or software designed specifically for psychological well-being. Therefore, option B is the most specific and relevant answer.
1967	[Answer]: B
1968	
1969	2. [Question]: What is the anticipated effect of constraints inherent in lunar and Martian missions on psychological support approaches?
1970	A. Greater emphasis on real-time communication with Earth-based support teams
1971	B. Increased reliance on virtual reality and AI companionship to mitigate isolation
1972	C. A shift towards highly individualized psychological profiles and tailored interventions
1973	D. A return to the mindset and strategies of earlier explorers and their families
1974	[Strategy]: The question asks about the impact of constraints in lunar and Martian missions on psychological support. These constraints include isolation, limited resources, communication delays, and the need for self-sufficiency. Considering these limitations, the most likely effect would be a greater reliance on technologies that can provide support in the absence of immediate Earth-based assistance and a need for personalized approaches due to the unique challenges faced by each astronaut. Options A and D are less likely because of communication delays and the differences between modern space missions and earlier explorations. Option B is plausible, but option C is more comprehensive as it addresses the need for personalized support, which is crucial given the constraints.
1975	[Answer]: C
1976	
1977	Based on the question below, please strictly follow this format when answering:
1978	1. Start with [Strategy] section explaining the general approach for solving similar problems;
1979	2. End with [Answer] section containing ONLY the single capital letter of the correct option (exactly one of: A, B, C, D). Do NOT include the option text or any explanation.
1980	
1981	Now answer this question:
1982	[Question]: What three distinct stages comprise current psychological support protocols for US astronauts?
1983	A. Individual, group, family
1984	B. Training, mission, debriefing
1985	C. Cognitive, emotional, behavioral
1986	D. Preflight, in-flight, postflight
1987	[Strategy]:
1988	[Answer]: