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ABSTRACT

Large Language Models (LLMs) vary widely in their capabilities, with larger
models often having better performance but higher cost: choosing an LLM model
often involves trading off performance and cost. The LLM Cascade is a paradigm
that defers difficult queries from weak/cheap to strong/expensive models. This
approach is nonadaptive: the deferral decision rule is trained or derived by al-
gorithms offline. When confronted with similar or repeated queries, the LLM
Cascade may then repeatedly consult the expensive model and incur higher cost.
To improve the cascading efficiency, we propose Inter-Cascade, an online and
interactive LLM Cascade that extends the role of strong model from a backup
helper to a long-term teacher. In our system, when a strong model resolves a
difficult query, it also distills its solution into a generalized, reusable problem-
solving strategy that boosts the weak model on subsequent queries. Adding strate-
gies to queries enables the weak model to dynamically improve its performance
over time, avoiding computationally and time-intensive fine-tuning. Empirically,
compared with standard LLM Cascade baselines across multiple benchmarks, the
Inter-Cascade significantly improves the accuracy of the weak model (by up to
33.06 absolute percentage points) and the overall system (by up to 5.53 absolute
percentage points), while reducing the calls to strong models (by up to 48.05%
relative reduction) and saving the corresponding fees (by up to 49.63% relative
reduction). Inter-Cascade demonstrates the effective in-context knowledge trans-
fer between LLMs, and provides a general, scalable framework applicable to both
open-source and API-based LLMs.

1 INTRODUCTION

Large Language Models (LLMs) demonstrate remarkable performance across a wide range of gen-
eration and reasoning tasks. LLMs with stronger performance are generally larger in size, and
the converse holds as well (Kaplan et al., 2020). Larger models often achieve better performance
on more challenging tasks but are correspondingly more expensive. Depending on their expected
workload, cost-sensitive users may wish to use weaker (and cheaper) models that suffice for sim-
ple queries and reserve the use of stronger (and expensive) models for more complex queries. In a
prototypical example, a weaker model may run on a mobile device such as a phone while a stronger
model may run in a cloud-based server owned by another service: the cost of the stronger model
can include latency, monetary charges, or both. Since accuracy alone is not the only performance
metric of interest, practical deployment scenarios require balancing multiple objectives including
efficiency, latency, reliability, and network resource usage (Zhou et al., 2024; Khatun & Brown,
2024; Gundla & Atthuluri, 2025; Yan & Ding, 2025; Zhou et al., 2024).

The LLM Cascade has emerged as a widespread LLM paradigm in which weaker models handle
routine queries and defer uncertain cases to stronger models in a sequential order (Chen et al.,
2024). Deferral depends on a deferral function, typically estimates a confidence score that decides
when to send queries to the strong model. The current approach focuses on improving this deferral
decision by training or adjusting the threshold for the confidence score to decide when to defer (Shen
et al., 2024; Rayan & Tewari, 2025; Ong et al., 2025; Zellinger et al., 2025; Zellinger & Thomson,
2025; Xia et al., 2024; Nie et al., 2024; Jung et al., 2025). The strong model, weak model, and
deferral function are optimized prior to deployment. After training, the system follows the same
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pipeline for any incoming query, which means processing is not adaptive to the workflow during
inference/deployment. A static LLM Cascade pipeline would result in a substantial waste of tokens.

NVIDIA’s recent position paper (Belcak et al., 2025) shows that many LLM applications repeatedly
perform a small set of specialized tasks with only modest variations. There are various of scenarios
that contain inherently similarities. For instance, datasets like GSM-Plus (Li et al., 2024), an ex-
tension of a math problem dataset GSM8K (Cobbe et al., 2021b), contains eight variants for each
problem. Identical questions are repeatedly asked: e.g., “Which is larger, 9.9 or 9.11?” Users were
once eager to keep asking this question to any newly released LLM (Korzhov, 2023; Schnabel, 2024;
Junco, 2025). However, current LLM Cascade methods do not take this “similarity phenomenon”
into consideration. As a result, a large amount of tokens are wasted because of repeated or similar
queries. If a weak models consistently fails on similar or recurring problems, the system must re-
peatedly consult the strong model each time, which is wasteful/costly. The non-interactive nature
of traditional LLM cascades, where weak models can only offload, prevents them from leveraging
feedback from stronger models’ capabilities during generation/inference. Furthermore, fine-tuning
weaker models to overcome such failures is expensive and sometimes impractical: fine-tuning re-
quires substantial memory (e.g., finetune Qwen3-235B requires 130 GB VRAM for LoRA or 2560
GB for full-parameter fine-tuning (Yang et al., 2025)) and must re-train again when distributions
shift. For API-based models, fine-tuning may not even be available.

To take advantage of this phenomenon, in this paper we improve current “static” LLM Cascade by
developing a new online adaptation method to assist the weaker model in dynamically balancing
cost and accuracy. Our key insight is to exploit input similarity so the strong model can help the
weaker one adapt and handle similar queries locally. The essence of the approach is to let the weaker
model learn from the stronger model online: the weaker model can build a “crib sheet” using prior
queries to do prompt engineering at the input that will guide the weaker model to the correct solution
locally.

Our approach is influenced by in-context learning (ICL) (Dong et al., 2024) or few-shot prompt-
ing (Parnami & Lee, 2022), which can partially alleviate this limitation. In those approaches,
by carefully selecting demonstrations or instructions one can enhance the reasoning capacity of
weaker models without retraining. However, existing ICL and few-shot methods often rely on
manual prompt design or retrieval from either fixed or manually updated database, making them
inflexible as query distributions evolve. Our approach is related to Retrieval-Augmented Genera-
tion(RAG) (Lewis et al., 2020), in which a database is used for assisting the generation of answer.
However, the databases in RAG studies are either built with engagement of human (Edge et al.,
2025; Chen et al., 2025a; Shi et al., 2024) or updated from single LLM dialogue history for person-
alization usage (Zhang et al., 2025; Mo et al., 2025), while in our approach, the knowledge corpus
are extracted from an extra stronger LLM without any human intervention. The goal in this work
is to develop a framework the enables cascaded LLMs to interact adaptively: the weak model can
benefit from in situ reasoning generated by the strong model to improve its own performance during
real-world query streams. As a metaphor, the weak model uses the strong model for “on the job”
training to improve longer-term performance. We further discuss this paradigm’s relationship to
extensive related works with details in the Appendix B.

Primary contributions. We improve on existing LLM Cascade approaches. (1) We propose a
new framework, Inter-Cascade, for online and interactive LLM Cascades in which the strong model
serves as both a backup helper and longer-term teacher. The strong model can both answer difficult
queries and provide feedback that can be reused by the weak model to generalize problem-solving
for future queries. These strategies are stored in a local database which the weak model uses as an
auxiliary input: its performance is improved on similar future queries by leveraging the strategies
generated from the strong model. In this way the strong LLM “teaches” the the weak LLM how
to resolve these queries on its own. We think of this approach as a kind of in-context knowledge
distillation approach to LLM Cascade using similarity-based memory. (2) We propose a theoretical
model and show that without changing the deferral rule, adding strategies helps the weak LLM’s
confidence score better approximate its probability of correctness. This shows that using strategies
can provably guarantee the higher accuracy of the overall system. (3) We compare to the LLM
Cascade (Jung et al., 2025) and show that Inter-Cascade improves the overall system accuracy by up
to 33.06 absolute percentage points and the overall system by up to 5.53 absolute percentage points,
while reducing the usage of strong models by up to 48.05% relative reduction, This can reduce the
corresponding fees by up to 49.63% relative reduction with the same guarantee of risk tolerance

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and error level over all benchmarks. Crucially, our framework is general and modular: it applies to
both API-only models and open-source models, and can be combined with any deferral function or
any number of LLMs in cascade. We make the full implementation of Inter-Cascade under an open
source license.

2 IMPROVING THE LLM CASCADE
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Figure 1: (a) Pipeline of standard LLM Cascade systems. (b) Pipeline of Inter-Cascade. The unique compo-
nents in Inter-Cascade are painted in orange. For the sake of clarity and readability, we only present the case of
two LLMs Inter-Cascade system and the scalable parts beyond two LLMs are rendered in a lighter color.

We first describe the standard LLM Cascade (Chen et al., 2024) and revisit the accuracy bound and
calibration method for the deferral threshold proposed by Jung et al. (2025). We then introduce our
proposed method Inter-Cascade and provide a theoretical framework to show when a weak model
will be improved by a strong model’s strategies.

2.1 STANDARD LLM CASCADE

Figure 1(a) shows the general N -LLM Cascade system (Chen et al., 2024). Each LLM Mi : i ∈
[N ] contains two key components. One is the generation function gi : Q → A , where Q is the
space of queries and A is the space of answers. The other is deferral function di : Q → {0, 1} ,
which determines whether the i -th LLM will answer the query by itself (di(q) = 0 ) or defer it to
the (i+1) -th LLM (di(q) = 1 ). Processing by the LLMs proceeds sequentially from M1 to MN .
We define a partial order ≼wbc ( “weaker but cheaper”) to compare models (see Appendix C) and
assume that in the cascade, M1 ≼wbc M2 ≼wbc ... ≼wbc MN . For each query q ∈ Q , the first LLM
M1 takes the query q and gives a final answer g1(q) if deferral function d1(q) = 0 , otherwise M1

defers this query to the next LLM M2 if d1(q) = 1 . If M2 takes the query from M1 , it repeats the
same process and so do the other LLMs except the last model MN . As MN doesn’t have another
LLM to offload the query, MN discards this query if dN (q) = 1 . Recent studies propose different
deferral functions di to meet the demands in different scenarios. We focus on the two-LLM case in
the rest of this paper, as shown in Figure 1(b). We call M1 the Weak LLM and M2 the Strong LLM.
One common choice of deferral function is:

di(q) =

{
0, if c(q) ≥ λ,
1, otherwise, (1)

where c : Q → [0, 1] is a pre-defined or pre-trained “confidence” metric (usually defined in terms
of the probability of output tokens) and λ is a confidence threshold, which is a hyperparameter that
controls the trade-off between the system performance and cost.

Accuracy Guaranteed LLM Cascade. It is well known that LLMs suffer from systematic bias
(Wang et al., 2024b; Thakur et al., 2025) and over-confidence (Xiong et al., 2024). To address this,
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Jung et al. (2025) propose a post-hoc calibration algorithm, which provably guarantees that with the
derived λ ,

P (gi(q) = atrue | c(q) ≥ λ) ≥ 1− α (2)
with probability at least 1−δ , as proved in Theorem 1 of their work, where atrue is the ground-truth
answer to query q . The risk tolerance α and error level δ are hyperparameters corresponding to
the applications and users’ demands. To instantiate this guarantee, a fixed-sequence testing (Bauer,
1991) procedure is first conducted, which selects the largest threshold λ from a calibration set, such
that P (gi(q) = atrue | c(q) ≥ λ) is exactly and tightly bounded. The procedure is summarized in
Algorithm 1. They also extend the single-model guarantees to the full cascade; see Section 2 and
Appendix A.2 in Jung et al. (2025)’s paper for details.

Algorithm 1 Calibrating Deferral Threshold λ (Jung et al., 2025)

Input: Calibration set (q, a) ∈ Dcal , confidence metric c(·) , risk tolerance α , error level δ
Output: Threshold λ

1: Initialize Λ = {0.999, 0.998, . . .} in decreasing order
2: for λ ∈ Λ do
3: n(λ)←

∑
(q,a)∈Dcal

1{c(q) ≥ λ}
4: R̂(λ)← 1

n(λ)

∑
(q,a)∈Dcal

1{gi(q) ̸= atrue ∧ c(q) ≥ λ}
5: R̂+(λ)← sup{R : Pr[Bin(n(λ), R) ≤ n(λ)R̂(λ)] ≥ δ}
6: if R̂+(λ) ≤ α then return λ

The general pipeline of LLM Cascade is shown in Figure 1(a). By using this LLM cascade diagram,
the deferral function can keep "confident" queries on Weak LLMs and only send "uncertain" queries
to Strong LLMs, dramatically reducing at most 82.5% usage of the strongest LLM as shown by
Jung et al. (2025) while ensuring the error rate is bounded by α with probability at least 1− δ .

2.2 INTERACTIVE LLM CASCADE

LLM Cascade methods can be efficient and reliable although they still incur some waste in terms of
tokens and latency as noted in Section 1. In particular, for workloads in which the Weak LLM is
fed a similar or repeated queries for which it chooses to defer, the Strong LLM is called repeatedly
to generate the same tokens. To address this issue, we propose Inter-Cascade. In Inter-Cascade,
for both Weak LLM and Strong LLM, besides deferral function and generation function, we add
the following components: strategy generator and strategy repository. In Strong LLM, we set up a
strategy generator h : Q → S , where S is the space of strategies. The strategy s ∈ S is defined
as a sequence of tokens that contains the query and the answer of Strong LLM, together with a
generalized ideas or tips to solve logically similar problems. To store those strategies, we construct
a Strategy Repository called Repo . The Repo is accompanied by a strategy matching function
f : Q × QN → Sk , where N is the size of current Repo and k is a predefined hyperparameter
that determines the number of strategies retrieved. The detailed description of strategy repository is
depicted below:

Strategy Repository. The Strategy Repository Repo is formally defined as a collection of query-
strategy pairs: Repo = (qj , sj)

N
j=1 where qj ∈ Q are previously solved queries and sj ∈ S are

their corresponding strategies generated by Strong LLM. The strategy matching f operates through
multiple stages. The repository is initialized as an empty set and dynamically updated: when the
Strong LLM generates a strategy s = h(q) for a new query q , the pair (q, s) is added to Repo ,
enabling future reuse through the matching function f .

For a query q ∈ Q that is sent to the Weak LLM, let sim: Q×Q → [0, 1] be a ranking function.
Let the Top-k indices (sorted by decreasing similarity) be

TopIndex(q) ≜ (t1, t2, . . . , tk),

where each ti ∈ {1, . . . , N} indexes an item in Repo and sim(q, qt1) ≥ · · · ≥ sim(q, qtk) ≥
sim(q, qelse) . After ranking, these strategies with Top-k indexes are chosen to help the Weak LLM.
Then the output of strategy matching function is f(q,Repo) ≜ {sti

∣∣ ti ∈ TopIndex(q) } .

4
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Remark 2.1. Compared with finetuning or paying for Strong LLM, the cost of maintaining a Repo
and running similarity-based matching algorithms are negligible. According to the estimate formula
suggested by Johnson et al. (2021), conducting retrieval and Top- 2 ranking on 1 million query
embeddings, which are 384 dimensional vectors (the same size we used in experiments), only
requires 0.2– 0.8 ms with 70 – 80 MB GPU VRAM and 80 – 100 MB RAM for long term storage.
The demand can be easily fulfill on any PC or even phone, and imperceptible to human users.

Inter-Cascade Pipeline. The overall pipeline of Inter-Cascade is presented in Algorithm 2 and in
Figure 1(b). For each query q , the Weak LLM first uses the strategy matching function f(q,Repo)
to find the most related strategies. The query and these strategies are then sent to deferral function.
The augmented input is the prompt concatenation of query and strategies: q′ = [q, st1 , st2 , ..., stk ] .
If the Weak LLM’s deferral function d1(q

′) = 0 , then final answer a for current query is g1(q
′) . If

d1(q
′) = 1 , the query q′ is deferred to Strong LLM. Each time the query is sent to the Strong LLM,

the deferral function in Strong LLM is called. If d2(q) = 0 , this query is discarded (since Strong
LLM is the last model in two LLMs Cascade), otherwise g2(q) produces the answer and further,
a new strategy is produced by h(q) . Then, the strategy will be stored into Repo . Given α and
δ , we can derive the λ from Algorithm 1 and determine deferral function d1 and d2 as defined
by (1). Our algorithm can be extended to multi-LLM cases, the corresponding Algorithm 3 is shown
in Appendix D.

Algorithm 2 Inter-Cascade Inference Pipeline

Input: Test set T = {q1, . . . , qI} ⊆ Q ; Weak LLM with deferral function d1 , generation function
g1 , strategy repository Repo = ∅ ; strategy matching function f ; Strong LLM with deferral
d2 , generator g2 , and strategy generator h .
Deferral convention: 0 = handle locally , 1 = defer/forward .

1: for i← 1 to I do
2: [st1i , st2i , ..., stki ]← f(qi,Repo) ▷ Top-k strategies matching from Repo

3: q′i ← [qi, s
t1
i , st2i , ..., stki ] ▷ concatenate query and strategies

4: if d1(q
′
i) = 0 then ▷ Weak LLM decision

5: generate answer ai ← g1(q
′
i) ▷ Answer locally at Weak LLM

6: else
7: if d2(qi) = 0 then ▷ Defer to Strong LLM
8: snew ← h(qi) ▷ Strong LLM synthesizes a new strategy
9: Repo← Repo∪{(qi, snew)} ▷ Send back strategy to Weak LLM and store

10: generate answer ai ← g2(xi) ▷ Answer at Strong LLM
11: else
12: Discard current query qi ▷ None of LLMs are confident to answer the query

Strategies Provide Improved Calibration. The Repo we build during the usage of the combi-
nation of LLMs collects the strategies of the Strong LLM and provides strategies to help the Weak
LLM answer queries. With the help of strategies, the Weak LLM is able to solve the more challeng-
ing problems that appear frequently and be more aware of its correctness of answering the queries,
leading better confidence. However, it is not clear that how this increment in the accuracy and the
quality of confidence could be preserved in the queries after the filtration. After all, all the queries,
even to which the Weak LLM answers correctly would be deferred if the Weak LLM’s confidence
can not pass the threshold. Therefore, we present the following theories to estimate such an incre-
ment that would remain in the filtered queries.

To be specific, we first assume that, after adding strategies, under the same confidence threshold
λ , the number of queries that pass the confidence threshold increases from n(λ) to bn := n′(λ) ,
b ∈ [1,∞) , where n(λ) is first defined in Algorithm 1. The number of wrongly answered queries
before and after the help of strategies are denoted by x and ϵx , respectively, where ϵ ∈ (0, 1) .
We want to understand the potential benefit in terms of the reduction in risk α under the same
error level δ . We do not change the threshold λ , which is the case when the strategy repository
is enlarged during the running process of the Inter-Cascade. Theorem 2.2 states our main result.
For the convenience of the statement, we define α(ϵ, b) as the value of risk tolerance α when total
number of queries that pass threshold is bn and incorrectly answered queries is ϵx .
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Theorem 2.2. Suppose that R̂+(λ) is a monotonic decreasing function of λ . Fix δ ∈ (0, 1)
and an integer n ≥ 1 . For x ∈ {0, 1, . . . , n} , ϵ ∈ (0, 1] , and b ∈ [1,∞) . Suppose that
min{ϵx+ 1, n− ϵx} is moderately large and 1− δ is not an extreme tail, then:

(a) Decrease in value. α(ϵ, b) ≤ α(1, 1) when ϵ ∈ (0, 1] and b ∈ [1,∞) .

(b) Normal approximation for the amount of decrease. Let z := Φ−1(1 − δ) , where Φ is the
Normal cumulative distribution function, when n is large enough, the decrease of the risk under
same level of tolerance is given by,

α(1, 1)− α(ϵ, b) ≈
(
x+ 1

n+ 1
− ϵx+ 1

bn+ 1

)
+ z

[√
(x+ 1)(n− x)

(n+ 1)2(n+ 2)
−

√
(ϵx+ 1)(bn− ϵx)

(bn+ 1)2(bn+ 2)

]
.

The proof of this theorem is in Appendix F. Theorem 2.2 states that, when the δ and confidence
threshold λ do not change, if more queries can pass the threshold, after combining with strategies
and under certain conditions, we can ensure a smaller risk tolerance α in the guarantee of this
inequality (2). That is, Inter-Cascade yields a higher success rate for Weak LLM.

Other than the case that λ remains unchanged, which is analyzed above, another case may be that
when the users want the same number of queries to be covered by the Weak LLM during two rounds
of queries (before and after adding strategies). This case considers the influence of a better Weak
LLM on our pipeline. In this case, we instead assume that n(λ) = n(λ′) , which ensures the
same coverage of Weak LLM. We also show that we can ensure a smaller risk tolerance α when
threshold becomes λ′ while δ and number of queries that pass threshold remain unchanged. And
the reduction in tolerance level α(1, 1)−α(ϵ, 1) is approximately linear to 1−ϵ . The full statement
of Theorem G.1 and the proof are shown in Appendix G.

3 EXPERIMENTS

3.1 BENCHMARKS

In our experiments, we use two categories of datasets. The first category consists of reasoning-
focused scientific benchmarks, including GSM-Symbolic (Mirzadeh et al., 2025), GSM-Plus (Li
et al., 2024), and MetaMath (Yu et al., 2024), selected to evaluate performance on tasks requiring
logical reasoning. The second category includes factual benchmark, represented by NASA-History-
MCQ (Fleith, 2025), chosen to assess performance on tasks with lower reasoning demands. Using
both categories allows for a more comprehensive assessment across tasks of different difficulty levels
and types. The detailed descriptions of selected benchmarks are in Appendix I. The prompt template
and an example problem for each benchmark are provided in Appendix L.

3.2 EXPERIMENTAL SETTINGS

Inter-Cascade. On all benchmarks, Gemini-2.0-flash consistently outperforms GPT-3.5-turbo (see
ICTable 1), and is therefore designated as the Strong LLM in our two-LLM Inter-Cascade, with
GPT-3.5-turbo as the Weak LLM. We extract the normalized token probability from the LLM’s
output as confidence score c(q) in following experiments. In preparation phase, with given risk
tolerance α and error level δ , we derive desired confidence threshold λ from calibration set by
following Algo. 1. Then deploy corresponding deferral functions di according to equation (1).

Our similarity-based strategy matching process on Repo works as follows. Given a new query, it
is encoded into a vector and used to retrieve the top-k semantically similar queries from Repo .
We employ the all-MiniLM-L6-v2 transformer (Reimers & Gurevych, 2019) to produce 384 -
dimensional sentence embeddings and use the FAISS library (Douze et al., 2025) for efficient ap-
proximate nearest-neighbor search. FAISS returns the top-k vectors that minimize cosine distance,
providing the Inter-Cascade with prior Strong LLM responses, including queries, answers and strate-
gies, which can inform the Weak LLM’s responses.

Inter-Cascade with Random Strategies. To evaluate the impact of similarity-based retrieval on
Repo , we randomly select the same number of strategies for each query, instead of choosing the
top-k most similar queries.
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Table 1: Accuracies of the base LLMs on four benchmarks

Dataset LLM Accuracy Dataset LLM Accuracy

GSM-Symbolic gpt-3.5-turbo 13.36% MetaMath gpt-3.5-turbo 37.30%
gemini-2.0-flash 69.36% gemini-2.0-flash 79.70%

GSM-Plus gpt-3.5-turbo 23.00% NASA-History gpt-3.5-turbo 65.30%
gemini-2.0-flash 73.57% gemini-2.0-flash 78.80%

Jung Proposed LLM Cascade. To evaluate the performance and effectiveness of the Inter-Cascade,
we choose Jung et al. (2025)’s Cascaded Selective Evaluation as the baseline model. Its method for
deriving confidence scores and thresholds provides a provable lower bound on the error risk and
achieves state-of-the-art performance compared with other confidence-based LLM cascades.

3.3 EVALUATION METRICS

We first define the notations used in our evaluation. Let T and U denote the total number of
queries and the number of uncovered queries in a benchmark, respectively. Let Nw and Ns be the
number of times the Weak and Strong LLMs are invoked, and let Cw and Cs denote the number of
queries correctly answered by these models that also pass the confidence threshold. Ctotal

w denotes
the total number of queries answered correctly by the Weak LLM. Let TokJ and TokO be the
tokens consumed by Jung’s method and our proposed Inter-Cascade pipeline, and CostJ and CostO
denote their corresponding costs. The evaluation metrics are summarized in Table 2.

Table 2: Evaluation Metrics

Metric Formula Metric Formula
Pipeline Accuracy (Cw + Cs)/(T − U) Strong LLM Call Rate Ns/T
Weak LLM Accuracy Ctotal

w /(T − U) Weak Correct Accepted Cw/(T − U)
Coverage Rate (T − U)/T Token Reduction (TokJ − TokO)/TokJ

Cost Reduction (CostJ − CostO)/CostJ

3.4 PERFORMANCE AND COST ANALYSIS

Inter-Cascade vs. Jung’s LLM Cascade. We evaluate our Inter-Cascade pipeline and Jung’s
method, as shown in Table 3. Our method outperforms Jung’s, with a 4.33% − 6.35% increase
in Pipeline Accuracy on reasoning benchmarks and a 0.76% increase on the non-reasoning fac-
tual NASA-History benchmark. The Strong LLM Call Rate is reduced on all benchmarks, with
reductions ranging from 4.41% to 28.53% . These results indicate that Inter-Cascade pipeline is
beneficial across different categories of tasks and particularly effective for reasoning-intensive tasks.
Experiment results on extensive and diverse benchmarks are attached in Appendix J.

Effectiveness of Similarity-Based Retrieval. To isolate the effect of strategy selection, we include
a control variant in which Inter-Cascade selects strategies at random. Across datasets, its perfor-
mance generally falls between the Inter-Cascade and Jung’s pipeline (see Table 3), demonstrating
the benefit of similarity-based retrieval. Although outside the scope of this work, one possible future
direction is to further refine the selection of strategies, which would involve verifying whether all of
the top-k retrieved strategies are relevant to the given queries. The accuracy of the Inter-Cascade
(random strategies) differs from Jung’s by −2.43% to +1.93% , and its Strong LLM Call Rate
shows only a modest reduction, ranging from 1.59% to 5.17% .

Impact of Inter-Cascade on Weak LLM. Having examined the overall pipeline improvements,
including Pipeline Accuracy and Strong LLM Call Rate reduction, we now investigate how our
proposed Inter-Cascade affects the Weak LLM. As shown in Table 4, our Weak LLM outperforms
the Weak LLM in the other pipeline across all benchmarks. The improvements are particularly
pronounced on reasoning benchmarks, with gains of 23.21% , 16.2% , and 33.06% on MetaMath,
GSM-Plus, and GSM-Symbolic, respectively, while still achieving an improvement of 0.48% on
the non-reasoning NASA-History benchmark. Importantly, improvements in the Weak LLM’s ac-
curacy contribute to the pipeline’s performance only when the correctly answered queries exceed
the confidence threshold. This is captured by the Weak Correct Accepted metric in Table 4, which
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Table 3: Results across datasets using different pipelines. “Jung” denotes Jung’s LLM-Cascade and “Our
(Retrieval)” denotes the Inter-Cascade with similarity-based retrieval. The number of strategies is fixed at
k = 2 for both Inter-Cascade settings. Metrics reported are Pipeline Accuracy (Pipeline Acc.), Strong LLM
Call Rate (Strong Call), and Coverage Rate (Cov.). (a) GSM-Symbolic: For the Strong LLM, αs = 0.2, δs =
0.8, λs = 0.47 . For the Weak LLM, αw = 0.6, δw = 0.6, λw = 0.45 . (b) GSM-Plus: For the Strong LLM,
αs = 0.2, δs = 0.8, λs = 0.51 . For the Weak LLM, αw = 0.6, δw = 0.6, λw = 0.48 . (c) MetaMath: No
threshold is applied for the Strong LLM. For the Weak LLM, αw = 0.4, δw = 0.6, λw = 0.61 . (d) NASA-
History: No threshold is applied for the Strong LLM. For the Weak LLM, αw = 0.2, δw = 0.7, λw = 0.87 .

Data Pipeline Pipeline Acc. (%)↑ Strong Call (%)↓ Cov. (%)

GSM-Symb. Jung 66.04 59.37 86.31
Our (Retrieval) 70.37 30.84 90.35

GSM-Plus Jung 52.78 46.29 93.57
Our (Retrieval) 58.31 32.44 94.79

MetaMath(20K) Jung 65.21 49.26 100.00
Our (Retrieval) 71.56 23.68 100.00

NASA-Hist. Jung 71.88 26.68 100.00
Our (Retrieval) 72.64 22.54 100.00

Table 4: Results on Weak LLM across datasets. Reported metrics are Weak LLM Accuracy (Weak Acc.) and
Weak Correct Accepted (Weak Corr. Accpt.). Parameter settings are the same as in Table 3.

Data Pipeline Weak Acc. (%)↑ Weak Corr. Accpt. (%)↑

GSM-Symb. Jung 15.04 12.34
Our (Retrieval) 48.10 46.09

GSM-Plus Jung 22.46 19.13
Our (Retrieval) 38.66 35.73

MetaMath(20K) Jung 34.95 28.54
Our (Retrieval) 58.16 54.07

NASA-Hist. Jung 66.22 55.37
Our (Retrieval) 66.70 58.40

represents the proportion of correctly answered queries that surpass the Weak LLM’s threshold. The
observed increase in Weak Correct Accepted shows that Inter-Cascade enhances not only the Weak
LLM’s accuracy but also its confidence on correct predictions, a crucial factor in converting local
improvements into overall pipeline gains.

Table 5: Token and API cost changes across datasets for Inter-Cascade compared with Jung’s pipeline.

Benchmark Weak LLM Tokens Strong LLM Tokens Token
PriceTotal Input Output Total Input Output

GSM-Symb. +147.66% +148.80% -17.10% -47.80% -45.80% -51.32% -49.63%
GSM-Plus +145.96% +147.11% -3.56% -29.95% -29.51% -30.90% -30.41%
Meta.(20K) +127.90% +128.66% -1.38% -52.18% -52.20% -52.12% -52.15%
NASA-Hist. +132.58% +133.40% 0.99% -15.47% -15.22% -16.07% -15.75%

Effect of Strategies on Accuracy and Confidence Calibration. As mentioned earlier, one notable
observation from our experiments is that providing strategies enhances the Weak LLM’s ability to
assess its own accuracy. To further investigate this observation, we present Figure 2 for the GSM-
Symbolic dataset. Analyses for the other three datasets, which exhibit similar patterns, are provided
in Appendix H. Figure 2a depicts the accuracy of the Weak LLM as a function of the confidence
threshold. For each threshold, only queries with confidence equal to or above the threshold are
considered, and accuracy is calculated as the proportion of correct predictions. The figure further
demonstrates that our pipeline consistently improves the accuracy of queries that pass the threshold.
Figures 2b, 2c, and 2d illustrate the distribution of query confidence. The histogram offers insight
into prediction coverage across different confidence thresholds and shows that our method outper-
forms the baselines in terms of coverage. Together, these figures indicate that our method not only
helps the Weak LLM produce correct answers, but also enables it to better calibrate its confidence
by being more confident when the answer is correct and less confident when it is incorrect.
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Table 6: Processing Latency and Strategy Repository Size across different datasets. Retrieval refers to the time
spent on strategies matching and ranking. Generation refers to time spent on generating answer via API.

Benchmark Tested
Samples

Our Jung Repository
SizeTotal Retrieval Generation Total

GSM-Symb. 11250 2.19s 0.10s 2.09s 1.83s 15.4 MB
GSM-Plus 9504 1.72s 0.06s 1.66s 1.66s 12.9 MB
MetaMath(20K) 20000 1.60s 0.06s 1.54s 1.54s 19.6 MB
NASA-Hist. 6469 1.28s 0.07s 1.21s 1.30s 8.8 MB

(a) Accuracy vs. Confidence Threshold (b) Base Weak LLM

(c) Inter-Cascade Random Strategies (d) Inter-Cascade Retrieval Strategies

Figure 2: GSM-Symbolic dataset: (a) Accuracy as a function of the confidence threshold for the base Weak
LLM, Inter-Cascade with random strategies, and Inter-Cascade with retrieval strategies, and (b) - (d) their
corresponding confidence histograms. Our Inter-Cascade (Retrieval) consistently concentrates probability mass
near high confidence ( 0.9 – 1.0 ), while the weak and random variants place more mass at low confidence,
which explains the accuracy gains observed in (a).

Token and API Cost Savings. Our pipeline not only improves accuracy but also reduces the number
of Strong LLM calls, resulting in substantially lower token consumption on Strong LLM. Table 5
shows the percentage changes in token usage and corresponding API costs compared with Jung’s
pipeline. Table 6 shows the average processing time per query (including the call of Strong LLM)
and the final size of strategies repository across datasets. The results imply that the time difference
is between -0.02s and +0.36s, which won’t impact the user experience. The size of repository is at
level of 10MB+ when the number of queries is at 10K+ level, which can be easily maintained in
resource limited settings like mobile or edge device. More promisingly, accumulated queries and
responses can serve as training data for periodic offline fine-tuning the Weak LLM (for example as
part of a software update), enabling a self-improving pipeline that dynamically adapts to new data.

Ablation Study on Strategy Selection In order to evaluate the impact of each part when we add
strategies to the input of Weak LLM, we conduct ablation experiments for different settings: only
adding similar questions and answers (No strategy), adding randomly selected strategies (Random),
and our standard Inter-Cascade pipeline (Retrieval). The results in Table 7 and Table 8, show that the
performance of Random Strategy method is between our standard pipeline and Jung’s method, while
No Strategy is not an acceptable option. Although in benchmarks like NASA-History, the overall
accuracy is 2.00% higher than our standard pipeline, the cost is significant: the Strong Call Rate
increase by 42.58%, which means only add similar question and answer to the input of Weak LLM
would use 2.89x of the Strong LLM. Moreover, the Weak LLM’s accuracy would be dramatically
undermined by adding non-strategy information to the input of Weak LLM compared to the accuracy
for single Weak LLM in Table 1. Only adding retrieved question and answers without instructive and
generalized problem solving strategy to Weak LLM input is harmful: not only lower the accuracy of
Weak LLM, but also call more Strong LLM, which is more expensive. Extensive Ablation studies
on cold start of the strategy repository, effect of the size of strategies and different selection of LLM
pairs are attached in Appendix K.
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Table 7: Pipeline Accuracy and Strong LLM Call Rate in the ablation study on strategy selection : Our (No
strategy) vs. Our (Random) vs. Our (Retrieval). Parameter settings are the same as Table 3.

Data Pipeline Pipeline Acc. (%)↑ Strong Call (%)↓ Cov. (%)

GSM-Symb.
Our (No strategy) 67.55 65.15 83.14
Our (Random) 63.61 54.20 87.90
Our (Retrieval) 70.37 30.84 90.35

GSM-Plus
Our (No strategy) 58.12 54.81 93.83
Our (Random) 53.63 43.64 94.10
Our (Retrieval) 58.31 32.44 94.79

MetaMath(20K)
Our (No strategy) 74.48 57.32 100.00
Our (Random) 67.85 45.99 100.00
Our (Retrieval) 71.56 23.68 100.00

NASA-Hist.
Our (No strategy) 74.64 65.12 100.00
Our (Random) 71.32 25.09 100.00
Our (Retrieval) 72.64 22.54 100.00

Table 8: Weak LLM performance in the ablation study on strategy selection: Our (No strategy) vs. Our
(Random) vs. Our (Retrieval). Parameter settings are the same as Table 3.

Data Pipeline Weak Acc. (%)↑ Weak Corr. Accpt. (%)↑

GSM-Symb.
Our (No strategy) 10.23 17.08
Our (Random) 17.40 15.27
Our (Retrieval) 48.10 46.09

GSM-Plus
Our (No strategy) 20.20 17.08
Our (Random) 25.51 22.38
Our (Retrieval) 38.66 35.73

MetaMath(20K)
Our (No strategy) 33.40 28.38
Our (Random) 38.64 32.66
Our (Retrieval) 58.16 54.07

NASA-Hist.
Our (No strategy) 28.21 22.88
Our (Random) 65.22 55.56
Our (Retrieval) 66.70 58.40

Inter-Cascade Robustness under Automatic Strategies. All strategies and their corresponding
answers are generated by the Strong LLM in a streaming manner, and any strategy whose confidence
exceeds the threshold λs is automatically accepted. This differentiates Inter-Cascade from other
LLM augmentation methods such as manually selected in-context learning, few-shot prompting, or
static retrieval-augmented generation. Consequently, the strategy repository may contain incorrect
strategies. Nonetheless, the results in Table 3 and Table 4 demonstrate the effectiveness of λs and
the robustness of the Inter-Cascade pipeline.

4 CONCLUSION

We propose Inter-Cascade, an online and interactive LLM Cascade framework that enables Weak
LLM to learn online from Strong LLM’s prior experience without fine-tuning. Inter-Cascade im-
proves both the accuracy of Weak LLM and the overall system, while reducing the reliance on Strong
LLM, saving computation, monetary cost, and latency (when Strong LLM is deployed on remote
server), compared with current LLM Cascade.

Inter-Cascade provides a general and scalable framework for multi-LLM systems, which can be
implemented with different LLMs and cascade layers. Despite the promising performance of Inter-
Cascade, further improvements can still be achieved by proposing better methods of generating
strategy, better algorithms to evaluate similarity and mechanisms to prevent mismatch in future work.
Inter-Cascade is also naturally well-suited for distributed systems, where local Weak LLM owners
can teach and boost their model in a tailored way by sending customized queries to Strong LLM.
Another future work direction arises from Inter-Cascade’s potential to bridge online and offline
learning. While augmenting the system performance by incorporating queries with related strategies
during online operation, the generated strategy repository can be exported as local training set for
periodic finetuning, permanently improving the capability of Weak LLM. We hope Inter-Cascade
inspires future research on building more interactive LLM Cascades or other multi-LLM systems.
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A CLARIFICATION: USE OF LLMS ON AIDING OR POLISHING WRITING

We used ChatGPT and Gemini solely as writing assistants to correct the typos and grammars, help
polish the language, improve clarity, and refine the presentation of this manuscript. The LLMs did
not contribute to the conception of ideas, design of experiments, execution of analyses, or interpre-
tation of results.

B EXTENDED RELATED WORK

LLM Cascade There are many LLM paradigms that contain collaboration between multiples LLMs
in a system (Chen et al., 2025b): a)Ensemble before inference, where router choose one LLM from
candidates for inference; b)Ensemble during inference, where LLMs work in parallel; c) Ensem-
ble after inference, where LLMs work in sequence and LLM Cascade belongs to this filed. LLM
Cascade is firstly proposed by Chen et al. (2024) to balance the LLM performance and cost by allo-
cating queries to a weak model or a strong model according to the confidence estimate of the queried
question. Shen et al. (2024) propose a latent variable model to let the weak model learn the deferral
function at the token-level. Rayan & Tewari (2025) also extend the Learning to Defer (Madras et al.,
2018) setting to LLM by training a post-hoc deferral function for each token of the sequence. Ong
et al. (2025) train a separate router such that deferral decision can be made before sending the query
to weak LLM, saving more tokens. Zellinger et al. (2025) provide extra option to early discard the
unsolvable queries in weak model. Xia et al. (2024); Nie et al. (2024) formulate LLM Cascade
as online problem to dynamically adjust its deferral policy over time. Zellinger & Thomson (2025)
propose a rational tuning pipeline for LLM Cascade via probabilistic modeling. Since the deferral
result relies on the confidence score of weak model, there are are literatures focusing on boosting
the the measure of confidence of weak model’s output (Jitkrittum et al., 2023; Chuang et al., 2025).
Together with experimental verification, Jung et al. (2025) conduct fixed sequence testing to prov-
ably guarantee the lower bound of accuracy. Therefore, we choose Cascaded Selective Evaluation
by Jung et al. (2025) as the baseline of our work. Beside deferring to strong model, Beyond standard
LLM Cascade, Strong et al. (2025a) propose a deferral system that weak model also sends its gen-
erated intelligent guidance to strong model once deferred, boosting the performance of next level
model. However, current LLM Cascades cannot adapt to the query streaming once trained and de-
ployed. And the weak model cannot learn from the previous deferrals and corresponding strategies
generated by the strong model, causing the waste of computation, tokens, money and sometimes
communication.

Learning With Reject Option The general framework that allows a machine learning model to
abstain from making decision was originally propose by Chow (1957; 1970) in the 1950s. After
decades, the Learning with reject option was continuously explored in different periods by Herbei
& Wegkamp (2006) and Cortes et al. (2016). The more recent works extend the framework to a
multi models system where the local model can learn to defer its task to one expert (human or
existing model) (Madras et al., 2018; Mozannar & Sontag, 2020; Verma & Nalisnick, 2022; Mao
et al., 2024b), multiple experts (Verma et al., 2023; Mao et al., 2024a) or unknown experts (Nguyen
et al., 2025a; Strong et al., 2025b; Tailor et al., 2024). There are literature that also explore the
case when expert can learn to adaptively help the local model (Wu & Sarwate, 2024; Wu et al.,
2025). Adding reject option at the network layer level is another branch of works called early
exiting (Teerapittayanon et al., 2016). However, most of the learning with reject option works focus
on classical prediction tasks, few of them address the NLP tasks that rely on generative-based model
while this work focus on the collaboration between LLMs.

Knowledge Distillation Knowledge distillation (KD) is a machine learning technique for training
smaller "student" models by transferring "knowledge" from larger, more powerful "teacher" models.
Classical knowledge distillation use soft-labels (Hinton et al., 2015) to let the student model learn
the distribution of teacher model. The concept of KD is expanded to more levels: besides mimicking
the output of teacher model, the student model can also learn from intermediate features (Romero
et al., 2015; Pham et al., 2024), relationships (Joshi et al., 2024), actively chosen sample (Liu et al.,
2024), principle discovery (Wang et al., 2024a) and itself (Lee et al., 2023). Our Inter-Cascade also
helps the knowledge transfer from the Strong LLM to Weak LLM. However, current knowledge
distillation relies on the training or finetuning of the student model and can not continue learning
process during inference phase while our method doesn’t require the updating of the LLM param-
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eters and continually improves during the inference phase via dynamically matching stored Strong
LLM’s strategy.

Retrieval-Augmented Generation(RAG)RAG (Lewis et al., 2020) is an approach that combines
pre-trained parametric and non-parametric memory for language generation. Given the focus of our
work, we group RAG-style approaches into three categories: static RAG, history-aware RAG, and
agentic RAG.

Static RAG. Classical RAG assumes a fixed, pre-constructed external corpus and focuses on how to
retrieve, re-rank, and fuse evidence to support generation. Works in this line focus on design dense
retrieval and re-ranking pipelines over a static collection (Lewis et al., 2020; Edge et al., 2025;
Wang et al., 2025a; Rubin et al., 2022; Margatina et al., 2023).In all these methods, the source of
knowledge is an offline, human-curated dataset, and the system’s adaptivity lies purely in how it
accesses this corpus, not what the corpus contains. By contrast, Inter-Cascade does not assume any
pre-existing database: the “corpus” is constructed online as the strong LLM generates strategies and
reasoning traces that are stored for future reuse by the weak LLM. Thus, our system is closer to an
online, LLM-driven knowledge construction mechanism than to classical static RAG.

History-Aware RAG. A second line of work augments RAG with dialogue history and user feedback,
dynamically updating a memory store based on past interactions. Conversational RAG frameworks
like DH-RAG (Zhang et al., 2025), CHIQ (Mo et al., 2025) maintain short-term and long-term
memories of successful dialogue turns, using them to improve future retrieval and personalization.
Other methods such as ComRAG (Chen et al., 2025a), ERAGent (Shi et al., 2024), Pistis-RAG (Bai
et al., 2024), and Social-RAG (Wang et al., 2025b) update user profiles or QA memories when
users provide explicit positive feedback or when high-quality answers are validated by the social
community. Despite their dynamism, these systems either take history information for self usage or
treat the human user (or user community) as the source of new content. The resulting models are
primarily personalized assistants. In Inter-Cascade, the update loop is fundamentally different: the
weak LLM decides when to update, and the strong LLM decides what to write, without any human
in the loop. The stored content is not user utterances or QA pairs, but LLM-generated strategies
and reasoning structures distilled from a stronger model. Rather than personalizing to a single user,
Inter-Cascade uses interaction between two models to build a reusable strategic knowledge base for
many users and tasks.

Agentic RAG A third, increasingly prominent direction combines RAG with multi-agent or agen-
tic architectures (Li et al., 2025). In these systems, different agents are assigned distinct roles,
e.g., planner, retriever, answer generator, or verifier. Those agents collaborate via tool calls and
message passing. For centralized systems like MA-RAG (Nguyen et al., 2025b), HM-RAG (Liu
et al., 2025), and SurgRaw (Low et al., 2025), the focus is on managing the workflow, such as
deciding when to use the retriever to access the existing database. Decentralized methods like M-
RAG (Wang et al., 2024c) and MDocAgent (Han et al., 2025) consider retrieval from partitioned
databases. There are also works like RECOND (end-to-end generation) (Xu et al., 2025)Hippo
(knowledge-graph) (Gutiérrez et al., 2025), IM-RAG (multi step refinement) (Yang et al., 2024)
and FAIR-RAG (fair retrieval) (Shrestha et al., 2024) propose algorithms to refine answers from
RAG database. However, in all such designs, the RAG component itself remains an external, fixed
resource: agents coordinate how to use RAG, but no agent is responsible for constructing a new
corpus of knowledge for others. Inter-Cascade differs from these agentic RAG systems in two key
aspects. First, there are only two “agents”: a weak LLM and a strong LLM, but their interaction
is explicitly teacher–student and online knowledge distillation, rather than mere division of labor.
Second, the strong LLM actively produces the knowledge store that the weak LLM later retrieves,
making the RAG-like database a product of model interaction rather than a static tool.

Across all three categories, existing RAG approaches either (i) operate over a fixed, human-curated
external corpus, (ii) update a memory store using human dialogue and feedback, or (iii) update a
memory using self history for personalization without knowledge transfer. To our knowledge, Inter-
Cascade is the first framework where a weak LLM and a strong LLM jointly and autonomously build
a RAG-like corpus under the framework of LLM Cascade, with the weak model deciding when to
consult and update it, and the strong model providing the organized knowledge. This yields a new
form of online, interaction-driven distillation, particularly suitable for small models without access
to large external knowledge bases or the Internet.
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Other related topics There are also a weak model and strong model in Speculative decod-
ing (Leviathan et al., 2023; Narasimhan et al., 2025). In speculative decoding, the weak model
works as a answer draft while the strong model work as a verifier to speed up the generation com-
pared to only using strong model. However, in Inter-Cascade, Strong LLM is called only when the
Weak LLM is unable to handle current query. CombLM (Ormazabal et al., 2023) and LLM De-
bate (Irving et al., 2018; Du et al., 2023; Estornell & Liu, 2024; Khan et al., 2024; Zhou et al., 2025)
are other branches of works that also involve interaction between LLMs. CombLM integrates the
logit distribution of two LLMs while LLM Debate requires different LLMs to argue and refine their
initial answers and eventually reach consensus through multiple rounds of interaction. The key dif-
ference between Inter-Cascade and them is that Inter-Cascade let the Strong LLM and Weak LLM
work in a sequential order can conduct early stop to save tokens.

Algorithm 3 Inter-Cascade Inference Pipeline

Input: Test set T = {q1, . . . , qI} ⊆ Q ; LLM Mn with deferral function dn , generation function
gn , strategy repository Repon and strategy generator hn .
Deferral convention: 0 = handle locally , 1 = defer/forward .

1: Repo = ∅
2: for n← 1 to N do
3: for i← 1 to I do
4: if n < N then
5: (Strategy matching)
6: [st1i , st2i , ..., stki ]← fn(qi,Repon) ▷ Find most relevant top-k strategies to qi
7: q′i ← [qi, s

t1
i , st2i , ..., stki ] ▷ concatenate query and strategies

8: else
9: q′i = qi ▷ Last LLM doesn’t maintain Repo

10: (Deferral Decision)
11: if dn(q

′
i) = 0 then

12: generate answer ai ← g1(q
′
i) ▷ Answer locally at Weaker LLM

13: snew ← h(qi)
14: Repo<n ← Repo<n ∪{snew} ▷ Add strategy to all the weaker LLMs
15: else
16: if n < N then
17: Pass ▷ Defer to next level
18: else
19: Discard current query qi ▷ None of LLMs are confident to answer the query

C ORDER OF LLMS

To distinguish two LLMs into strong model Ms and weak model Mw , we make following defini-
tions. For a task distribution D , we denote the performance of a model M by Perf(M) , which
can be instantiated by measures such as the expected accuracy or negative loss on D . Similarly, we
let Cost(M) represent the expected cost of using M on D , such as the price, latency, or required
computation resource. Note that Cost also depends on the task distribution D , for simplicity, we
only use the notation Cost(M) . We say that Mw is weaker than Ms if Perf(mw) ≤ Perf(ms) ,
and that it is cheaper if Cost(mw) ≤ Cost(ms) . To simplify notation, we introduce the shorthand
relation

Mw ≼wbc Ms

if and only if

Perf(Mw) ≤ Perf(Ms) and Cost(Mw) ≤ Cost(Ms),

where the term “wbc” represents “weaker but cheaper”. Consider a multi-LLM inference/generation
system, which contains N LLM models, M = {M1,M2, ...,MN} , with different capacities and
use costs to a query. WLOG, we assume that M1 ≼wbc M2 ≼wbc ... ≼wbc MN .
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D ALGORITHM FOR GENERAL INTER-CASCADE

Since Inter-Cascade is scalable to any number of layers for LLM, the general Inter-Cascade pipeline
for N -LLM cascade system is shown in Algo. 3.

E PROOF: CLOPPER-PERSON UPPER BOUND AS A BETA QUANTILE

In the lemma below, we apply the Clopper-Pearson upper bound to rewrite R+(λ) , yielding a clearer
form that facilitates computation. This helps the proof of Theorem 2.2 and Theorem G.1.
Lemma E.1 (Clopper–Pearson upper bound as a Beta quantile). Let n(λ) ∈ N be the number of
evaluated items at threshold λ , let R(λ) ∈ [0, 1] denote the unknown risk, and suppose

X ∼ Bin
(
n(λ), R(λ)

)
,

and x ∈ {0, 1, . . . , n(λ)} is the number of error observed. Write R̂(λ) = x/n(λ) . For a fixed
δ ∈ (0, 1) , define the one-sided (1− δ) upper confidence limit by

R̂+(λ) := sup
{
p ∈ [0, 1] : Pr

p

(
Bin(n(λ), p) ≤ x

)
≥ δ

}
.

Then
R̂+(λ) = Beta−1

(
1− δ; x+ 1, n(λ)− x

)
with the usual edge conventions Beta−1(1 − δ; 1, n) = 1 − δ1/n when x = 0 and R̂+(λ) = 1
when x = n(λ) .

Proof. For fixed x < n(λ) the map p 7→ F (p) := Pr
(
Bin(n(λ), p) ≤ x

)
is strictly decreasing in

p , so the set in the definition of R̂+(λ) is an interval [0, p⋆] and the supremum p⋆ uniquely solves

F (p⋆) = P
(
Bin(n(λ), p⋆) ≤ x

)
= δ. (3)

Using the standard identity linking the binomial tail to the regularized incomplete beta function, for
integers 0 ≤ x ≤ n(λ)− 1 ,

P (X ≤ x) =

x∑
k=0

(
n(λ)

k

)
pk(1− p)n(λ)−k = 1− Ip

(
x+ 1, n(λ)− x

)
,

where Ip(a, b) is the CDF of Beta(a, b) at p . Plugging this into equation 3 gives

Ip⋆

(
x+ 1, n(λ)− x

)
= 1− δ,

so p⋆ is the (1− δ) quantile of the Beta
(
x+ 1, n(λ)− x

)
distribution:

p⋆ = Beta−1
(
1− δ; x+ 1, n(λ)− x

)
.

This equals R̂+(λ) by definition. The stated edge cases follow from F (p) = (1 − p)n(λ) when
x = 0 and from monotonicity when x = n(λ) .

F PROOF: UNCHANGED THRESHOLD

Theorem F.1. Suppose that R̂+(λ) is a monotonic decreasing function of λ . Fix δ ∈ (0, 1)
and an integer n ≥ 1 . For x ∈ {0, 1, . . . , n} , ϵ ∈ (0, 1] , and b ∈ [1,∞) . Suppose that
min{ϵx+ 1, n− ϵx} is moderately large and 1− δ is not an extreme tail, then:

(a) Decrease in value. α(ϵ, b) ≤ α(1, 1) when ϵ ∈ (0, 1] and b ∈ [1,∞) .

(b) Normal approximation for the amount of decrease. Let z := Φ−1(1 − δ) , where Φ is the
Normal cumulative distribution function, when n is large enough, the decrease of the risk under
same level of tolerance is given by,

α(1, 1)− α(ϵ, b) ≈
(
x+ 1

n+ 1
− ϵx+ 1

bn+ 1

)
+ z

[√
(x+ 1)(n− x)

(n+ 1)2(n+ 2)
−

√
(ϵx+ 1)(bn− ϵx)

(bn+ 1)2(bn+ 2)

]
.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. We use a Beta function to represent the variable R̂+(λ) , which is equivalent to the risk
α , when R̂+(λ) is a monotonic decreasing function of λ . We then use the approximation to
Beta function to evaluate the decrease of α by definition. For the convenience of statement of our
theories, we define that α(ϵ, b) as the the value of risk bound α when the obtained λ satisfies
n(λ) = bn and incorrectly answered queries among n(λ) is x(λ) = ϵx , given the δ fixed. (a)
Notice that we assume that R̂+(λ) is a monotonic decreasing function of λ . Let us suppose that
λ0 satisfies that n(λ0) = bn and x(λ0) = ϵx . By Algorithm 1, this shows that R̂+(λ0) = α(ϵ, b) .

From Lemma E.1, we know that

α(ϵ, b) := Beta−1
(
1− δ; ϵx+ 1, bn− ϵx

)
.

Let p1 = Beta−1(1−δ; x+1, n−x) . Then, by the property of Beta distribution, P
(
Bin(n, p1) ≤

x
)
= δ . It follows that,

P
(
Bin(bn, p1) ≤ ϵx

)
≤ P

(
Bin(n, p1) ≤ x

)
= δ,

because lowering the threshold ( ϵx ≤ bx ) and increasing trials ( bn ≥ n ) makes the left tail event
rarer. Let us assume that p2 = Beta−1(1 − δ; ϵx + 1, bn − ϵx) . From the proof of Lemma E.1,
it is equivalent to that P

(
Bin(bn, p2) ≤ ϵx

)
= δ . It follows that P

(
Bin(bn, p2) ≤ ϵx

)
= δ ≥

P
(
Bin(bn, p1) ≤ ϵx

)
, which implies that p2 ≤ p1 . Hence the new upper bound p2 = Beta−1(1−

δ; x′ + 1, n′ − x′) satisfies p2 ≤ p1 . This shows the statement (a).

(b) Write

µϵ,b :=
ϵx+ 1

bn+ 1
, σϵ,b :=

√
(ϵx+ 1)(bn− ϵx)

(bn+ 1)2(bn+ 2)
.

In the large–sample, interior regime, e.g., min{ϵx+1, n− ϵx} ≫ 1 and x/n bounded away from
0 and 1 ,

Beta−1
(
1− δ; ϵx+ 1, bn− ϵx

)
= µϵ,b + z σϵ,b + O

(
1

n

)
.

This is by the approximation to Beta distribution by normal distribution. Calculate α(1, 1)−α(ϵ, b)
demonstrate the result of theorem.

G PROOF: UNCHANGED USED QUERIES

Other than the case that the threshold remains unchanged, which is analyzed above, another case
may be that when the user want the same number of queries to be covered by the Weak LLM during
two rounds of queries (before and after adding strategies), one of which has a better Weak LLM.
Such a case controls the cost. This case considers the influence of a better Weak LLM to our pipeline.
In this case, we instead assume that n(λ) = n(λ′) , and abbreviate them as n for simplicity, which
ensures the same coverage of Weak LLM. The number of wrongly answered queries before and after
getting a better Weak LLM are denoted by x and ϵx , and we still estimate the decrease of α under
the same level of tolerance δ . We give an approximation on the change rate of the risk bound with
respect to the proportion of decrease of errors. We denote by α(ϵ) the α(ϵ, b = 1) for simplicity,
and present the analysis in Theorem G.1.

Theorem G.1. Suppose that R̂+(λ) is a monotonic decreasing function of λ . Fix δ ∈ (0, 1) and
an integer n ≥ 1 . For x ∈ {0, 1, . . . , n} and ϵ ∈ (0, 1] . Suppose that min{ϵx + 1, n − ϵx} is
moderately large and 1− δ is not an extreme tail, then:

(a) Exact monotonicity. α(ϵ) is strictly increasing in ϵ . In particular, for any ϵ ∈ (0, 1) ,

α(ϵ) < α(1).

(b) Normal approximation for the amount of decrease. Let z := Φ−1(1− δ) , for ϵ near 1 ,

α(1)− α(ϵ) ≈ (1− ϵ)

[
x

n+ 1
+

z

2(n+ 1)
√
n+ 2

x(n− 1− 2x)√
(x+ 1)(n− x)

]
.
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(a) GSM-Plus (b) MetaMath (c) Nasa-History-MCQ

Figure 3: Accuracy as a function of the confidence threshold for the base Weak LLM and for the Weak LLM
within the Inter-Cascade using random and retrieval strategies across three benchmarks.

Hence the decrease is approximately linear in (1− ϵ) with the coefficient in brackets; in particular,
when x ≤ n/2 the variance term is nonnegative and the decrease is at least (1 − ϵ)x/(n + 1) to
first order.

Proof. (a) Similar to the proof of the statement (a) of Theorem 2.2, increasing x moves mass to the
right in the Binomial, so the lower-tail CDF in p decreases and its (1− δ) quantile increases; with
n fixed this is equivalent to α(ϵ) being strictly increasing in ϵ .

(b) Similar to the proof of the statement (a) of Theorem 2.2, notice that

α(ϵ, 1) := Beta−1
(
1− δ; ϵx+ 1, n− ϵx

)
.

For i = ϵx + 1 , j = n − ϵx , the Beta (i, j) mean and variance are µϵ = i/(i + j) and σ2
ϵ =

ij/[(i+ j)2(i+ j + 1)] . Approximating the (1− δ) quantile by the Normal formula gives α(ϵ) =
µϵ + zσϵ +O(1/n) . Differentiate at ϵ = 1 to obtain the first-order change:

dµϵ

dϵ

∣∣∣
ϵ=1

=
x

n+ 1
,

dσϵ

dϵ

∣∣∣
ϵ=1

=
1

2(n+ 1)
√
n+ 2

· (n− 1− 2x)x√
(x+ 1)(n− x)

.

A first-order Taylor expansion around ϵ = 1 yields the displayed approximation.

H CONFIDENCE DISTRIBUTION

Figures 3 and 4 present results for the GSM-Plus, MetaMath, and Nasa-History-MCQ datasets,
complementing the GSM-Symbolic analyses in the main text.

Figure 3 shows accuracy as a function of the confidence threshold for the base Weak LLM and for the
Weak LLM within the Inter-Cascade using random and retrieval strategies. For each threshold, only
queries with confidence equal to or above the threshold are considered, and accuracy is calculated as
the proportion of correct predictions. Across the reasoning datasets (GSM-Plus and MetaMath), the
Inter-Cascade with retrieval strategies consistently improves accuracy over the baseline and random-
strategy variants. For the factual non-reasoning dataset (Nasa-History-MCQ), the Inter-Cascade
achieves comparable performance.

Figure 4 depicts the distribution of query confidence for the three benchmarks. Across all datasets,
the Inter-Cascade with retrieval strategies concentrates probability mass near high confidence
(0.9–1.0), whereas the base and random-strategy variants place more mass at lower confidence lev-
els. These results further confirm that providing strategies helps the Weak LLM not only produce
more accurate predictions but also better calibrate its confidence.

I FULL DESCRIPTION OF BENCHMARKS

GSM-Symbolic. The GSM-Symbolic benchmark, released by Apple’s team (Mirzadeh et al., 2025),
is a structured variant of GSM8K (Cobbe et al., 2021b). Unlike traditional benchmarks such as
GSM8K, which present problems in a plain context, GSM-Symbolic reformulates problems into a
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(a) GSM-Plus (b) GSM-Plus (c) GSM-Plus

(d) MetaMath (e) MetaMath (f) MetaMath

(g) Nasa-History-MCQ (h) Nasa-History-MCQ (i) Nasa-History-MCQ

Figure 4: Confidence histograms for three benchmarks. Columns correspond to (a)(d)(g) the base Weak LLM,
(b)(e)(h) the Weak LLM within the Inter-Cascade using random strategies, and (c)(f)(i) the Weak LLM within
the Inter-Cascade using retrieval strategies. Across all datasets, the Inter-Cascade with retrieval strategies
concentrates probability mass near high confidence (0.9–1.0), while the base and random-strategy variants
place more mass at lower confidence levels.

more structured and abstract format following a symbolic template, providing a more reliable mea-
sure of models’ reasoning capabilities. The dataset contains 12, 500 grade-school math problems.
We randomly sample 1, 250 problems as the calibration set for threshold computation and use the
remaining 11, 250 problems as the test set. The prompt template and an example problem are
provided in Appendix L.

GSM-Plus. GSM-Plus (Li et al., 2024) is derived from the 1, 319 test questions in GSM8K by intro-
ducing eight types of question variations: numerical substitution, digit expansion, integer-decimal-
fraction conversion, adding operation, reversing operation, problem understanding, distractor inser-
tion, and critical thinking. GSM-Plus thus comprises a total of 10, 552 question variations. We
randomly sample 1, 048 problems as the calibration set for threshold computation and use the re-
maining 9, 504 problems as the test set. The prompt template and an example problem are provided
in Appendix L.

MetaMath. MetaMath (Yu et al., 2024) is a dataset generated by bootstrapping the mathematical
benchmarks GSM8K (Cobbe et al., 2021b) and MATH (Hendrycks et al., 2021). The augmenta-
tion is performed in both forward and backward directions. In the forward direction, MetaMath
contains the original and LLM-rephrased questions, while in the backward direction, it includes
self-verification questions and FOBAR questions (Jiang et al., 2024), resulting in a total of 395K
diverse problems. For our experiments, we randomly select 1, 000 problems as the calibration set
for threshold computation and use 20, 000 additional problems as the test set. The prompt template
and an example problem are provided in Appendix L.

NASA-History-MCQ. NASA-History-MCQ (Fleith, 2025) is a multiple-choice question bench-
mark on the history of NASA. It contains 7.47K questions, and each question provides four answer
choices. We randomly sample 1, 000 problems as the calibration set for threshold computation and
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use the remaining 6, 469 problems as the test set. The prompt template and an example problem
are provided in Appendix L.

BarExamQA. BarExamQA (Zheng et al., 2025) is a legal reasoning benchmark constructed from
real U.S. bar examination questions. Each question is posed in a multiple-choice format and requires
multi-step legal reasoning over complex legal fact patterns. BarexamQA contains a total of 954
problems, we randomly sample 95 problems as the calibration set for threshold computation and
remaining 859 as the test set.

BigBench Hard. BIG-Bench Hard (Suzgun et al., 2022) is a subset of 23 particularly challenging
BIG-Bench tasks for which no prior result from (Srivastava et al., 2022) has outperformed the av-
erage human-rater score. It is a diverse benchmark designed to test capabilities of language models
on a diverse set of crowd-sourced tasks. The benchmark aims to focus on the problems that beyond
the capabilities of existing LLMs. We use 5412 problems as test set and 599 problems as calibra-
tion set for threshold computation. The calibration set are selected from each tasks with the same
proportion.

GSM8K. GSM8K (Cobbe et al., 2021b) is a widely used grade-school math word problem bench-
mark designed to evaluate multi-step numerical reasoning. The dataset contains 7473 training ques-
tions and 1719 test questions, with each problem requiring several arithmetic operations and logical
reasoning steps to reach the final answer. Following standard practice, we use problems in calibra-
tion set for threshold computation and use the remaining problems as the test set.

MedMCQA. MedMCQA (Pal et al., 2022) is a large-scale multiple-choice question benchmark in
the medical domain. It covers high-quality AIIMS and NEET PG entrance exam MCQs covering
2400 healthcare topics and 21 medical subjects. It contains over 194, 000 questions, each with four
answer choices and a single correct answer. We randomly sample 2, 000 problems as the calibration
set for threshold computation and use 8000 additional problems as the test set.

J EXTENSIVE EXPERIMENT ON MORE BENCHMARKS

Although the Inter-Cascade diagram is motivated by the real-world scenarios that contain similar
or repeated tasks, we also provide the result of our Inter-Cascade on extensive benchmarks that are
more diverse and do not contain explicit sample variants: GSM8K (Cobbe et al., 2021a), BigBench
Hard (Suzgun et al., 2022), BarExamQA (Zheng et al., 2025) and MedMCQA (Pal et al., 2022). The
full description of those benchmarks are in Appendix I. We firstly test the accuracy of each single
LLM on those benchmarks and the result is in Table 9.

Inter-Cascade vs. Jung’s LLM Cascade. We evaluate our Inter-Cascade pipeline and Jung’s
method, as shown in Table 10. Our method outperforms Jung’s, with a 0.18%− 3.96% increase in
Pipeline Accuracy. The Strong LLM Call Rate is reduced on all benchmarks, with reductions rang-
ing from 1.52% to 16.14% . Compared with the results on GSM-Symbolic, GSM-Plus and Meta-
Math benchmarks, the accuracy improvement is not that large, but the more important part is that
our Inter-Cascade can still reach a better trade-off between accuracy and cost since our method still
remarkablely reduce the usage of Strong LLM. These results indicate that Inter-Cascade pipeline is
also beneficial across different categories of tasks on diverse benchmarks.

Impact of Inter-Cascade on Weak LLM. Having examined the overall pipeline improvements,
including Pipeline Accuracy and Strong LLM Call Rate reduction, we now investigate how our
proposed Inter-Cascade affects the Weak LLM. As shown in Table 11, our Weak LLM still out-
performs the Weak LLM in the other pipeline across all benchmarks. The improvements on Weak
Accuracy are between 0.91% and 9.56% and the improvements on Weak Correct Accepted are
between 2.24% and 15.56% . The results implies that even though we test our Inter-Cascade on
diverse benchmarks, retrieving most similar problems and solution strategies can still help boosting
the performance and confidence of Weak LLM.

According to experiment results for extensive benchmarks, it shows that Inter-Cascade not only
work for tasks that contain constructive similarity, but also help in more general and diverse cases,
since explicit or implicit similarity occurs everywhere and the pipeline in our Inter-Cascade take the
advantage of the similarity nature of daily tasks.
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Token and API Cost Savings. The results of analysis on cost and latency for extensive benchmarks
are attached in Table 12 and Table 13. The tendency is similar: integrating with strategies, the
token usages on Weak LLM increase between 115.89% and 216.37% , but since the Strong Call
decrease on all benchmark, the token usages on Strong LLM decrease between 1.28% and 83.17%
and therefore, we can save 2.33% - 83.94% money on API price. On the other hand, the average
latency change on each query is between 0.005 s and 0.374 s on different benchmarks, which is
acceptable to the user experience.

Table 9: Accuracies of the base LLMs on extensive benchmarks

Dataset LLM Accuracy Dataset LLM Accuracy

GSM8K gpt-3.5-turbo 31.46% BigBench gpt-3.5-turbo 49.75%
gemini-2.0-flash 74.83% gemini-2.0-flash 78.80%

BarExamQA gpt-3.5-turbo 48.42% MedMCQA gpt-3.5-turbo 62.80%
gemini-2.0-flash 78.95% gemini-2.0-flash 83.05%

K EXTRA ABLATION STUDY

To better evaluate the performance and generalization capacity of Inter-Cascade, we set up extra
ablation studies in this section.

K.1 COLD START

To evaluate the effect of cold start of our strategy repository, we measure the dynamic pipeline ac-
curacy for both Jung’s method and our standard Inter-Cascade on GSM-Symbolic. The result in
Figure 5 shows that at early stage, the pipeline accuracy for our Inter-Cascade is much close to
baseline method: Jung (Jung et al., 2025). However, as the size of stored strategies increase, the per-
formance of Inter-Cascade increase and gradually exceed Jung’s method and eventually converges.

Figure 5: The dynamic of pipeline accuracy for both Jung’s method and our standard Inter-Cascade on GSM-
Symbolic.

K.2 EFFECT OF STRATEGIES NUMBER

To evaluate the effect the number of strategies we matched for each queries, we test the pipeline
accuracy with different number of strategies that used for integrating with the input of Weak LLM.
The result in Figure 6 shows that the trend of pipeline accuracy is increasing first, reaching peak
and then decreasing along with the number of strategies. The result makes sense because too few
strategies might not retrieve the best strategy in repository, while too many strategies might distract
the answer from certain query question, furthermore, there is a chance that the longer contexts
may exceed the the maximum limit of the input context window. Both factors might undermine
the performance of the pipeline accuracy. In our experiment on GSM-Symbolic benchmark, the
empirical best number of strategies k is 2.
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Table 10: Results across extensive datasets using different pipelines. “Jung” denotes Jung’s LLM-Cascade and
“Our (Retrieval)” denotes the Inter-Cascade with similarity-based retrieval. The number of strategies is fixed
at k = 2 for both Inter-Cascade settings. Metrics reported are Pipeline Accuracy (Pipeline Acc.), Strong
LLM Call Rate (Strong Call), and Coverage Rate (Cov.). (a) GSM8K: For the Strong LLM, αs = 0.2, δs =
0.8, λs = 0.44 . For the Weak LLM, αw = 0.5, δw = 0.5, λw = 0.49 . (b) BigBench: No threshold is applied
for the Strong LLM. For the Weak LLM, αw = 0.4, δw = 0.6, λw = 0.61 . (c) BarExamQA: No threshold
is applied for the Strong LLM. For the Weak LLM, αw = 0.5, δw = 0.5, λw = 0.51 . (d) MedMCQA: No
threshold is applied for the Strong LLM. For the Weak LLM, αw = 0.3, δw = 0.8, λw = 0.69 .

Data Pipeline Pipeline Acc. (%)↑ Strong Call (%)↓ Cov. (%)

GSM8K Jung 59.02 37.03 95.95
Our (Retrieval) 60.62 35.46 96.05

BigBench Jung 64.14 33.04 100.00
Our (Retrieval) 64.32 23.84 100.00

BarExamQA Jung 57.39 23.17 100.00
Our (Retrieval) 58.67 21.65 100.00

MedMCQA Jung 71.69 18.74 100.00
Our (Retrieval) 75.65 2.60 100.00

Table 11: Results on Weak LLM across extensive datasets. Reported metrics are Weak LLM Accuracy (Weak
Acc.) and Weak Correct Accepted (Weak Corr. Accpt.). Parameter settings are the same as in Table 10.

Data Pipeline Weak Acc. (%)↑ Weak Corr. Accpt. (%)↑

GSM8K Jung 37.06 33.38
Our (Retrieval) 39.30 35.62

BigBench Jung 49.02 39.34
Our (Retrieval) 49.93 46.60

BarExamQA Jung 47.50 39.81
Our (Retrieval) 51.22 43.31

MedMCQA Jung 64.95 58.16
Our (Retrieval) 74.51 73.72

K.3 RESULTS ON NEW LLM PAIRS

To show that our Inter-Cascade is a framework that work general multiple LLM collaboration sys-
tems, we also test the result on different choice of Weak LLM and Strong LLM. We switch our
Weak LLM to Gemini-2.0-flash and switch our Strong LLM to Gemini-2.5-flash. The results on
single LLM are in Table 14. We also analyze the performance on those metrics: Pipeline Accuracy,
Strong Call Rate, Weak Accuracy and Weak Correct Accept in Table 15 and Table 16. The results
shows that although we test on different pairs of Weak LLM and Strong LLM, the trend doesn’t
change: Inter-Cascade would help improve the accuracy of Weak LLM, pipeline accuracy, reduce
the the usage of Strong LLM, reaching a better trade-off between the Accuracy and Cost in LLM
Cascade systems.

Table 12: Token and API cost changes across extensive datasets for Inter-Cascade compared with Jung’s
pipeline.

Benchmark Weak LLM Tokens Strong LLM Tokens Token
PriceTotal Input Output Total Input Output

GSM8K +115.89% +116.56% -2.27% -3.25% -4.10% -1.28% -2.33%
BigBench +134.53% +135.32% -5.47% -26.37% -30.90% -19.67% -22.70%
BarExamQA +216.37% +216.90% +0.12% -5.70% -5.39% -6.28% -5.98%
MedMCQA +129.64% +130.70% -0.16% -84.74% -85.58% -83.17% -83.94%
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Table 13: Processing Latency and Strategy Repository Size across extensive datasets. Retrieval refers to the
time spent on strategies matching and ranking. Generation refers to time spent on generating answer via API.

Benchmark Tested
Samples

Our Jung Repository
SizeTotal Retrieval Generation Total

GSM8K 7473 1.344s 0.005s 1.339s 1.216s 6.3MB
BigBench 5412 1.456s 0.004s 1.452s 1.227s 3.4MB
BarExamQA 859 1.686s 0.254s 1.432s 1.312s 1.1MB
MedMCQA 8000 0.975s 0.004s 0.971s 0.970s 6.3MB

Figure 6: Effect of number of Strategies on pipeline accuracy for GSM-Symbolic Benchmark

L PROMPT TEMPLATES AND EXAMPLES

Table 17 and Table 18 present the strategy-free prompt templates for the four datasets, along with
one example question per dataset. Table 19 - Table 22 show the strategy-based prompt templates
and example inputs for each dataset. In our experiments, the number of strategies is set to k = 2 ;
these strategies and their corresponding answers are generated by the Strong LLM. Since the pipeline
operates without human intervention, all strategies that exceed the Strong LLM confidence threshold
λs are accepted. Consequently, the Repo may contain incorrect strategies or answers. Nonetheless,
the results in Table 3 and Table 4 demonstrate the effectiveness of λs and the robustness of our
proposed Inter-Cascade pipeline.
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Table 14: Accuracies of new pair of base LLMs on GSM-Symbolic Benchmark

Dataset LLM Accuracy

GSM-Symbolic gemini-2.0-flash 69.36%
gemini-2.5-flash 89.28%

Table 15: New LLM Pairs (Weak LLM: Gemini-2.0-flash; Strong LLM: Gemini-2.5-flash) Results on GSM-
Symbolic dataset using different pipelines. “Jung” denotes Jung’s LLM-Cascade and “Our (Retrieval)” denotes
the Inter-Cascade with similarity-based retrieval. The number of strategies is fixed at k = 2 for both Inter-
Cascade settings. Metrics reported are Pipeline Accuracy (Pipeline Acc.), Strong LLM Call Rate (Strong Call),
and Coverage Rate (Cov.). GSM-Symbolic: No threshold is applied for the Strong LLM. For the Weak LLM,
αw = 0.2, δw = 0.8, λw = 0.47 .

Data Pipeline Pipeline Acc. (%)↑ Strong Call (%)↓ Cov. (%)

GSM-Symbolic Jung 79.10 19.10 100.00
Our (Retrieval) 85.50 9.90 100.00

Table 16: New LLM Pairs (Weak LLM: Gemini-2.0-flash; Strong LLM: Gemini-2.5-flash) Results on Weak
LLM across GSM-Symbolic dataset. Reported metrics are Weak LLM Accuracy (Weak Acc.) and Weak
Correct Accepted (Weak Corr. Accpt.). Parameter settings are the same as in Table 15.

Data Pipeline Weak Acc. (%)↑ Weak Corr. Accpt. (%)↑

GSM-Symbolic Jung 64.20 63.40
Our (Retrieval) 77.00 76.80
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Table 17: Strategy-free prompt template with example questions from GSM-Symbolic, GSM-Plus, and Meta-
Math

Prompt Template:
Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes,
feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead
of 20% ); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Example:
[Question]: x+ y = 10, y = 4 , what is x ?
[Strategy]: To solve for x , isolate x by subtracting y from both sides of the equation.
x = 10− y = 10− 4 = 6.
[Answer]: 6

Now answer this question:
[Question]: {question}
[Strategy]:
[Answer]:

GSM-Symbolic Example Question:
[Question]: A fog bank rolls in from the ocean to cover a city. It takes 495 minutes to cover every 95
miles of the city. If the city is 95 miles across from the oceanfront to the opposite inland edge, how
many minutes will it take for the fog bank to cover the whole city?

GSM-Plus Example Question:
[Question]: A clothing store has 60 white shirts and 70 floral shirts. Two-thirds of the white shirts
have collars, and 30 of the floral shirts have buttons. How many more floral shirts with no buttons are
there than white shirts with no collars?

MetaMath Example Question:
[Question]: Lara bought 52 stems of flowers at the flower shop. She gave 15 flowers to her mom
and gave x more flowers than she gave to her mom to her grandma. She put the rest in a vase. How
many stems of flowers did Lara put in the vase? If we know the answer to the above question is 16 ,
what is the value of unknown variable x ?
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Table 18: Strategy-free prompt template with example question from NASA-History-MCQ

Prompt Template:
Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the single capital letter of the correct option (exactly
one of: A, B, C, D). Do NOT include the option text or any explanation.

Example:
[Question]: Which of the following was a direct result of the Treaty of Versailles (1919)?
A. The outbreak of World War II
B. The United States declaring war on Germany and entering World War I
C. The establishment of the Fascist regime in Italy
D. The creation of the League of Nations
[Strategy]: Recall that the treaty ended World War I and included peacekeeping measures. Compare
options with the treaty: only the League of Nations was directly established by it.
[Answer]: D

Now answer this question:
[Question]: {question}
[Strategy]:
[Answer]:

Nasa-History-MCQ Example Question:
[Question]: What three distinct stages comprise current psychological support protocols for US astro-
nauts?
A. Individual, group, family
B. Training, mission, debriefing
C. Cognitive, emotional, behavioral
D. Preflight, in-flight, postflight
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Table 19: Strategy-based prompt template with example input from GSM-Symbolic

Prompt Template:
Using the following problem examples:
{strategy}

Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes,
feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead
of 20% ); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Now answer this question:
[Question]: {question}
[Strategy]:
[Answer]:

GSM-Symbolic Example Input:
Using the following problem examples:
1. [Question]: A fog bank rolls in from the ocean to cover a city. It takes 93 minutes to cover every 2
miles of the city. If the city is 24 miles across from the oceanfront to the opposite inland edge, how
many minutes will it take for the fog bank to cover the whole city?
[Strategy]: First, determine how many 2 -mile segments are in the 24 -mile city. Divide the total
distance of the city by the length of each segment. Then, multiply the number of segments by the time
it takes to cover each segment to find the total time.
[Answer]: 1116

2. [Question]: A fog bank rolls in from the ocean to cover a city. It takes 114 minutes to
cover every 3 miles of the city. If the city is 99 miles across from the oceanfront to the opposite
inland edge, how many minutes will it take for the fog bank to cover the whole city?
[Strategy]: First, determine the rate at which the fog bank covers the city in miles per minute. Then,
multiply this rate by the total distance of the city to find the total time it takes to cover the city. The
rate is 3 miles / 114 minutes = 1/38 miles per minute. The total time is ( 1/38 miles/minute) ∗ 99
miles = 99/38 minutes. Simplify the fraction 99/38 = 2.60526315789 . Multiply 114 by 99/3 to
get the answer 114 ∗ (99/3) = 114 ∗ 33 = 3762 .
[Answer]: 3762

Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes,
feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead
of 20% ); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Now answer this question:
[Question]: A fog bank rolls in from the ocean to cover a city. It takes 495 minutes to cover every 95
miles of the city. If the city is 95 miles across from the oceanfront to the opposite inland edge, how
many minutes will it take for the fog bank to cover the whole city?
[Strategy]:
[Answer]:
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Table 20: Strategy-based prompt template with example input from GSM-Plus

Prompt Template:
Using the following problem examples:
{strategy}

Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes,
feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead
of 20% ); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Now answer this question:
[Question]: {question}
[Strategy]:
[Answer]:

GSM-Plus Example Input:
Using the following problem examples:
1. [Question]: A clothing store has some white shirts and 50 floral shirts. Half of the white shirts
have collars, and 20 of the floral shirts have buttons. How many more floral shirts with no buttons are
there than white shirts with no collars?
[Strategy]: Let W be the number of white shirts. The number of white shirts with collars is W/2 ,
so the number of white shirts without collars is W − W/2 = W/2 . The number of floral shirts is
50 . The number of floral shirts with buttons is 20 , so the number of floral shirts without buttons is
50 − 20 = 30 . We want to find the difference between the number of floral shirts without buttons
and the number of white shirts without collars, which is 30 − W/2 . However, we are not given
the number of white shirts, W . Therefore, we cannot determine the exact numerical value of the
difference.
[Answer]: None

2. [Question]: A clothing store has 40 white shirts and 50 floral shirts. Half of the white
shirts have collars, and some of the floral shirts have buttons. There are 10 more floral shirts with no
buttons than white shirts with no collars. How many floral shirts have buttons?
[Strategy]: 1. Calculate the number of white shirts with collars: 40/2 = 20 . 2. Calculate the number
of white shirts without collars: 40 − 20 = 20 . 3. Calculate the number of floral shirts without
buttons: 20 + 10 = 30 . 4. Calculate the number of floral shirts with buttons: 50− 30 = 20 .
[Answer]: 20

Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes,
feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead
of 20% ); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Now answer this question:
[Question]: A clothing store has 60 white shirts and 70 floral shirts. Two-thirds of the white shirts
have collars, and 30 of the floral shirts have buttons. How many more floral shirts with no buttons are
there than white shirts with no collars?
[Strategy]:
[Answer]:
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Table 21: Strategy-based prompt template with example input from MetaMath

Prompt Template:
Using the following problem examples:
{strategy}

Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes,
feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead
of 20% ); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Now answer this question:
[Question]: {question}
[Strategy]:
[Answer]:

MetaMath Example Input:
Using the following problem examples:
1. [Question]: Martha has x crayons. She lost half of them, so she bought a new set of 20 crayons.
Martha has 29 crayons in total after the purchase. What is the value of unknown variable x ?
[Strategy]: Let x be the number of crayons Martha initially had. She lost half of them, so she had
x/2 crayons left. Then she bought 20 new crayons, so she had x/2 + 20 crayons. We are given that
she has 29 crayons in total, so x/2 + 20 = 29 . Subtracting 20 from both sides gives x/2 = 9 .
Multiplying both sides by 2 gives x = 18 .
[Answer]: 18

2. [Question]: Justin and Sabrina at Pine Grove Elementary have 50 pencils combined. Justin
has x more than twice as many pencils as Sabrina. Sabrina has 14 pencils. What is the value of
unknown variable x ?
[Strategy]: Let J be the number of pencils Justin has and S be the number of pencils Sabrina has.
We are given that J + S = 50 and S = 14 . We are also given that Justin has x more than twice
as many pencils as Sabrina, which can be written as J = 2S + x . We can substitute S = 14 into
the first equation to find J : J + 14 = 50 , so J = 50 − 14 = 36 . Now we can substitute J = 36
and S = 14 into the second equation: 36 = 2(14) + x , so 36 = 28 + x . Solving for x , we get
x = 36− 28 = 8 .
[Answer]: 8

Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the value. (1) Do NOT include units such as minutes,
feet, etc.; (2) If the question asks for a percentage, ONLY provide the number (e.g., answer 20 instead
of 20% ); (3) Do NOT include any explanations; (4) If there is no answer, RETURN None as the value.

Now answer this question:
[Question]: Lara bought 52 stems of flowers at the flower shop. She gave 15 flowers to her mom
and gave x more flowers than she gave to her mom to her grandma. She put the rest in a vase. How
many stems of flowers did Lara put in the vase? If we know the answer to the above question is 16 ,
what is the value of unknown variable x ?
[Strategy]:
[Answer]:
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Table 22: Strategy-based prompt template with example input from NASA-History-MCQ

Prompt Template:
Using the following problem examples:
{strategy}

Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the single capital letter of the correct option (exactly
one of: A, B, C, D). Do NOT include the option text or any explanation.

Now answer this question:
[Question]: {question}
[Strategy]:
[Answer]:

Nasa-History-MCQ Example Input:
Using the following problem examples:
1. [Question]: Beyond communication and care packages, what specific types of hardware or software
aid psychological well-being during long-duration spaceflights?
A. Specialized dietary supplements to combat isolation
B. Automated exercise routines tailored to reduce stress
C. Psychological support hardware and software
D. Advanced life support systems with mood stabilizers
[Strategy]: The question asks about specific hardware or software that aids psychological well-being
during long-duration spaceflights, beyond communication and care packages. We need to evaluate
each option to see if it fits this description. Option A focuses on dietary supplements, which are not
hardware or software. Option B describes automated exercise routines, which could involve software
and hardware. Option C is too general, simply restating the question. Option D focuses on life support
systems with mood stabilizers, which are not necessarily hardware or software designed specifically
for psychological well-being. Therefore, option B is the most specific and relevant answer.
[Answer]: B

2. [Question]: What is the anticipated effect of constraints inherent in lunar and Martian mis-
sions on psychological support approaches?
A. Greater emphasis on real-time communication with Earth-based support teams
B. Increased reliance on virtual reality and AI companionship to mitigate isolation
C. A shift towards highly individualized psychological profiles and tailored interventions
D. A return to the mindset and strategies of earlier explorers and their families
[Strategy]: The question asks about the impact of constraints in lunar and Martian missions on psy-
chological support. These constraints include isolation, limited resources, communication delays, and
the need for self-sufficiency. Considering these limitations, the most likely effect would be a greater
reliance on technologies that can provide support in the absence of immediate Earth-based assistance
and a need for personalized approaches due to the unique challenges faced by each astronaut. Options
A and D are less likely because of communication delays and the differences between modern space
missions and earlier explorations. Option B is plausible, but option C is more comprehensive as it
addresses the need for personalized support, which is crucial given the constraints.
[Answer]: C

Based on the question below, please strictly follow this format when answering:
1. Start with [Strategy] section explaining the general approach for solving similar problems;
2. End with [Answer] section containing ONLY the single capital letter of the correct option (exactly
one of: A, B, C, D). Do NOT include the option text or any explanation.

Now answer this question:
[Question]: What three distinct stages comprise current psychological support protocols for US
astronauts?
A. Individual, group, family
B. Training, mission, debriefing
C. Cognitive, emotional, behavioral
D. Preflight, in-flight, postflight
[Strategy]:
[Answer]:
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