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ABSTRACT

A central goal of machine learning is the development of systems that can solve
many problems in as many data domains as possible. Current architectures, how-
ever, cannot be applied beyond a small set of stereotyped settings, as they bake in
domain & task assumptions or scale poorly to large inputs or outputs. In this work,
we propose Perceiver IO, a general-purpose architecture that handles data from arbi-
trary settings while scaling linearly with the size of inputs and outputs. Our model
augments the Perceiver with a flexible querying mechanism that enables outputs of
various sizes and semantics, doing away with the need for task-specific architecture
engineering. The same architecture achieves strong results on tasks spanning natu-
ral language and visual understanding, multi-task and multi-modal reasoning, and
StarCraft II. As highlights, Perceiver IO outperforms a Transformer-based BERT
baseline on the GLUE language benchmark despite removing input tokenization
and achieves state-of-the-art performance on Sintel optical flow estimation with no
explicit mechanisms for multiscale correspondence.

1 INTRODUCTION

Humans have a remarkable ability to take in data from many sources, integrate it seamlessly, and
deploy it in the service of a range of goals. Most machine learning research focuses on building
bespoke systems to handle the stereotyped inputs and outputs associated with a single task. This is
true even for models that handle multiple modalities. A typical approach independently processes
each input with a modality specific architecture (for example using a 2D ResNet (He et al., 2016) for
vision and a Transformer (Vaswani et al., 2017) for language), integrates them afterwards using a
third fusion network, and reads out the result in a task-specific manner. The complexity of systems
like this can grow dramatically as the inputs or outputs grow more diverse (e.g. Abramson et al. 2020;
Vinyals et al. 2019; Ramesh et al. 2021), and the structure of a task’s inputs and outputs may place
strong constraints on how data is processed, making adaptation to new settings difficult.

Is the development of problem-specific models for each new set of inputs and outputs unavoidable?
Life would be drastically simpler if a single neural network architecture could handle a wide variety
of both input modalities and output tasks. In this work, we propose such an architecture, with the
ultimate goal of building a network that can easily integrate and transform arbitrary information
for arbitrary tasks. Our starting point is the Perceiver (Jaegle et al., 2021), an architecture which
has demonstrated a remarkable ability to handle data from many modalities with no changes to the
network architecture. The Perceiver uses attention to map inputs of a wide range of modalities to a
fixed-size latent space that is further processed by a deep, fully attentional network. This process
decouples the bulk of the network’s processing from the size and modality-specific details of the
input, allowing it to scale to large and multimodal data.

But the Perceiver can only handle simple output spaces like classification. Much of the complexity
of real-world tasks comes from the variety, size, and structure of their outputs, and in this regard
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Figure 1: The Perceiver IO architecture can be used on domains with a wide variety of input and
output spaces, including multi-task language understanding, dense visual tasks like optical flow,
hybrid dense/sparse multimodal tasks such as video+audio+class autoencoding, and tasks with
symbolic outputs like StarCraft II. See Tables 5 and 6 for details of all domains considered here.

the original Perceiver can’t be considered general purpose. In this work, we develop a mechanism
for decoding structured outputs – language, optical flow fields, audiovisual sequences, symbolic
unordered sets, etc. – directly from the Perceiver latent space, which allows the model to handle a
host of new domains without sacrificing the benefits of deep, domain-agnostic processing. To do
this, we produce each output by attending to the latent array using an output query that specifies the
semantics of that particular output. For example if we wanted the model to predict optical flow on
one particular pixel we could compose a query from the pixel’s xy coordinates plus an optical flow
task embedding: the model would then attend using the query and produce a single flow vector. As a
result, our architecture can produce many outputs, each with arbitrary shape and structure, and yet
the latent features in our architecture remain agnostic to the shape and structure of the outputs.

Perceiver IO does this using a fully attentional read-process-write architecture: inputs are encoded
(read) to a latent space, the latent representation is refined (process) via many layers of processing,
and the latent space is decoded (write) to produce outputs. This approach inherits the best features of
both Transformers – which leverage domain agnostic primitives for nonlocal processing of inputs –
and the encoder-decoder architectures (e.g. Ronneberger et al. 2015; Newell et al. 2016) that are in
widespread use in high-bandwidth domains such as computer vision or multimodal processing. This
approach allows us to decouple the size of elements used for the bulk of the computation (the latent)
from the size of the input and output spaces, while making minimal assumptions about the spatial or
locality structure of the input and output.

Perceiver IO’s decoding procedure uses an attention mechanism to map from latents to arbitrarily
sized and structured outputs using a querying system that can flexibly specify the semantics needed
for outputs on a wide range of domains, including dense and multitask settings. This decoder allows
Perceiver IO to serve as a drop-in replacement for a wide range of specialist networks currently in
use on a set of challenging domains, while improving performance on tasks like classification that
could be handled by the Perceiver.

The proposed architecture can be applied with unprecedented levels of generality. Perceiver IO
can replace the Transformers used in BERT (Devlin et al., 2019) and AlphaStar (Vinyals et al.,
2019). At the same time, Perceiver IO produces state-of-the-art results on the Sintel optical flow
benchmark (Butler et al., 2012) and good results on ImageNet image classification (Deng et al., 2009).
Perceiver IO produces compelling results even when handling highly diverse multimodal data, such
as on joint {video, audio, label} autoencoding in Kinetics (Smaira et al., 2020) and joint audio-video
classification on AudioSet (Gemmeke et al., 2017). Perceiver IO allows us to simplify pipelines and
remove domain-specific assumptions: we process language without tokenizers without a performance
or speed hit, fine-tune on multiple classification tasks simultaneously and without the need for
[CLS] tokens (Sec. 4.1), estimate optical flow without relying on explicit architectural features for
multiscale correspondence (Sec. 4.2), learn joint representations of video, audio, and labels without
separate network trunks (Sec. 4.3), and perform image classification with no information about the
2D structure of images (Sec. A).

2 RELATED WORK

Neural network research has long sought architectures that can handle large, arbitrarily structured
inputs and outputs. Autoencoding (Hinton & Zemel, 1994) was among the first attempts to build
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representation which could encode and reproduce high-dimensional inputs like images. As hardware
grew more powerful, neural nets led to breakthroughs in image understanding (Krizhevsky et al., 2012;
Zeiler & Fergus, 2014; Szegedy et al., 2015) and interest intensified: autoregressive models that could
process and complete samples of handwriting were developed (Graves, 2013), and new convolutional
network designs led to good results in structured output spaces like semantic segmentation (Farabet
et al., 2012; Long et al., 2015; Ronneberger et al., 2015), pose estimation (Toshev & Szegedy, 2014),
detection (Sermanet et al., 2014), captioning (You et al., 2016), and optical flow (Fischer et al.,
2015). At the same time, natural language applications research has made extensive progressive in
capturing the structured nature of language, typically via autoregressive models (Collobert et al.,
2011; Sutskever et al., 2014; Vaswani et al., 2017; Radford et al., 2019; Brown et al., 2020) or context
prediction (Mikolov et al., 2013; Pennington et al., 2014; Devlin et al., 2019).

Similar to our work, several groups have proposed to solve tasks in multiple domains (e.g. Kaiser
et al. 2017; Alayrac et al. 2020; Akbari et al. 2021), but typically across a fixed and predefined set of
modalities by means of domain-specific networks. Although single-task specialist networks remain
dominant in vision, multi-task learning has become popular (Misra et al., 2016; Doersch & Zisserman,
2017; Kokkinos, 2017; Zamir et al., 2018) and individual models achieve generality in a restricted
domain: e.g. Mask-RCNN (He et al., 2017) handles object detection, segmentation, and pose
estimation. In language, training or evaluation on multiple tasks has also become common (Collobert
& Weston, 2008; Luong et al., 2016; Devlin et al., 2019; Liu et al., 2019; Raffel et al., 2020). Several
groups have demonstrated that Transformers (originally designed for language) can be used or
adapted to non-language tasks (e.g. Chen et al. 2020; Lu et al. 2021), but the limited scalability of
Transformers limits their usefulness as general-purpose architectures.

Several groups have proposed to use attention to manipulate the size of arrays or to introduce
bottlenecks in processing. Set Transformers and related work (Lee et al., 2019; Goyal et al., 2022) use
a learned query (“inducing points”) to induce local bottlenecks by mapping a set back and forth from
a set with fewer elements and learned decoder queries (“seed vectors”) to map to outputs (“pooling
by multiheaded attention”). Each layer of these networks has complexity linear in the input size,
while Perceivers use a deep latent network with complexity independent of the input and output.
Our work uses attention over inputs and outputs of different sizes in part to produce an efficient
attention architecture, and several other efficient attention architectures have been proposed, largely
for language or small-scale problems (e.g. Xiong et al. 2021; Wang et al. 2020; Tay et al. 2021a;
Beltagy et al. 2020 and see Tay et al. 2021b). The focus of our work is developing an architecture
that is efficient and also performs well in many settings with a wide range of inputs and outputs.
Several works use attention to process latent spaces that interface with input/output data using task-
or domain-specific architectures (Carion et al., 2020; Locatello et al., 2020; Wang et al., 2021),
and cross-attention itself is widely used to produce outputs in of a different size or structure from
inputs (Dai et al., 2019; Desai & Johnson, 2021; Miech et al., 2021; Vaswani et al., 2017; Raffel et al.,
2020; Santoro et al., 2018; Hudson & Zitnick, 2021; Ma et al., 2021). Perceiver IO builds on this
body of work to produce a general purpose architecture that can be easily and widely applied.

3 THE PERCEIVER IO ARCHITECTURE

The Perceiver IO architecture builds on the Perceiver (Jaegle et al., 2021), which achieved its cross-
domain generality by assuming that its input is a simple 2D byte array: a set of elements (which
might be pixels or patches in vision, characters or words in language, or some form of embedding,
learned or otherwise), each described by a feature vector. The model then encodes information about
the input array using a smaller number of latent feature vectors, using Transformer-style attention,
followed by iterative processing and a final aggregation down to a category label.

Rather than output a single category, Perceiver IO aims to have the same level of generality with
respect to its outputs as the Perceiver has with respect to its inputs: that is, it should produce arbitrary
output arrays. We can predict each element of the output array using another attention module by
querying the latent array using a query feature vector unique to the desired output element. In other
words, we define a query array with the same number of elements as the desired output. The queries
may be hand-designed, learned embeddings, or a simple function of the input. They attend to the
latents to yield an output array of the desired shape.
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Figure 2: The Perceiver IO architecture. Perceiver IO maps arbitrary input arrays to arbitrary output
arrays in a domain agnostic process. The bulk of the computation happens in a latent space whose size
is typically smaller than the inputs and outputs, which makes the process computationally tractable
even for very large inputs & outputs. See Fig. 5 for a more detailed look at encode, process, and
decode attention.

3.1 ENCODING, PROCESSING, AND DECODING

Fig. 2 illustrates the Perceiver IO. We first encode by applying an attention module that maps input
arrays x ∈ RM×C to arrays in a latent space z ∈ RN×D. We next process the latents z by applying a
series of modules that take in and return arrays in this latent space. Finally, we decode by applying an
attention module that maps latent arrays to output arrays y ∈ RO×E . M , C, O, and E are properties
of the task data and can be very large (Tab. 5), while N and D are hyperparameters and can be chosen
to make model computation tractable. Following the design of the Perceiver, we implement each of
the architecture’s components using Transformer-style attention modules.

Each of these modules applies a global query-key-value (QKV) attention operation followed by
a multi-layer perceptron (MLP). As usual in Transformer-style architectures, we apply the MLP
independently to each element of the index dimension. Both encoder and decoder take in two input
arrays, the first used as input to the module’s key and value networks, and the second used as input to
the module’s query network. The module’s output has the same index dimension (the same number
of elements) as the query input.

The Perceiver IO architecture builds on primitives similar to those in Transformers. Why aren’t
Transformers all you need? Transformers scale very poorly in both compute and memory (Tay et al.,
2020). Because Transformers deploy attention modules homogeneously throughout its architecture,
using its full input to generate queries and keys at every layer. This means each layer scales
quadratically in compute and memory, which makes it impossible to apply Transformers on high-
dimensional data like images without some form of preprocessing. Even on domains like language
where Transformers shine, preprocessing (e.g. tokenization) is often needed to scale beyond short
input sequences. Perceiver IO uses attention non-homogeneously by mapping inputs to a latent
space, processing in that latent space, and decoding to an output space. Perceiver IO has no quadratic
dependence on the input or output size: encoder and decoder attention modules depend linearly on
the input and output size (respectively), while latent attention is independent of both input and output
sizes (Sec. E.2). Because of the corresponding reduction in compute and memory requirements,
Perceiver IO scales to much larger inputs and outputs. While Transformers are typically used in
settings with data preprocessed to contain at most a few thousand dimensions (Brown et al., 2020;
Raffel et al., 2020), we show good results on domains with hundreds of thousands of dimensions.

This architecture can be applied to inputs of any shape or spatial layout including inputs or outputs
with different spatial structure (e.g. sound and video). In contrast to latent spaces typically used
in vision (e.g. Ronneberger et al. 2015) the latent does not explicitly share the structure (spatial or
otherwise) of the inputs. To decode this information, we query for it using cross-attention.
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Figure 3: We construct queries with output-specific features to produce outputs with different
semantics. For settings where each output point differs only in its position, like language, a position
embedding can be used. Input features for the target output can also be used to query, either alone
(as for StarCraft II) or alongside position features (as for flow). For multi-{task, modal} settings we
use one embedding for each {task, modality} instead of each position. A single learned embedding
suffices for simple classification tasks, like ImageNet. For tasks with heterogeneous outputs like
multimodal autoencoding, features that are specific to some queries (like xy position) can be combined
with modality embeddings, which also pad embeddings to fixed length.

3.2 DECODING THE LATENT REPRESENTATION WITH A QUERY ARRAY

Our goal is to produce a final output array of size O×E, given a latent representation of size N ×D.
We produce an output of this size by querying the decoder with an array of index dimension O. To
capture the structure of the output space, we use queries containing the appropriate information for
each output point, e.g. its spatial position or its modality.

We construct queries by combining (concatenating or adding) a set of vectors into a query vector
containing all of the information relevant for one of the O desired outputs. This process is analogous
to the way that positional information is used to query implicit functions like NeRF (Mildenhall et al.,
2020). We illustrate the query structure for the tasks we consider here in Fig. 3. For tasks with simple
outputs, such as classification, these queries can be reused for every example and can be learned
from scratch. For outputs with a spatial or sequence structure, we include a position encoding (e.g. a
learned positional encoding or a Fourier feature) representing the position to be decoded in the output.
For outputs with a multi-task or multimodal structure, we learn a single query for each task or for
each modality: this information allows the network to distinguish one task or modality query from
the others, much as positional encodings allow attention to distnguish one position from another. For
other tasks, the output should reflect the content of the input at the query location: for instance, for
flow we find it helpful to include the input feature at the point being queried, and for StarCraft II we
use the unit information to associate the model’s output with the corresponding unit. We find that
even very simple query features can produce good results, suggesting that the latent attention process
is able to learn to organize the relevant information in a way that’s easy to query.

Each output point depends only on its query and the latent array, allowing us to decode outputs in
parallel. This property allows us to amortize model training on datasets of very large output size. For
example, Kinetics consists of labels, video voxels, and audio samples which together come to over
800,000 points (Tab. 5), which is prohibitively expensive to decode at once, even with linear scaling.
Instead, we subsample the output array at training time and compute the loss on an affordable subset
of points. At test time, we generate outputs in batches to produce the full output array.

4 EXPERIMENTS

To probe the generality of Perceiver IO, we evaluate it on several domains including language under-
standing (Wikipedia+C4 masked language modeling), visual understanding (Sintel/KITTI optical
flow and ImageNet classification), multi-modal (Kinetics autoencoding and AudioSet classifica-
tion) & multi-task settings (multi-task GLUE), and symbolic representations for games (StarCraft
II). All experiments were conducted using JAX (Bradbury et al., 2018) and the DeepMind JAX
ecosystem (Babuschkin et al., 2020).
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Model Tokenization M N Depth Params FLOPs SPS Avg.
BERT Base (test) SentencePiece 512 512 12 110M 109B - 81.0
BERT Base (ours) SentencePiece 512 512 12 110M 109B 7.3 81.1
Perceiver IO Base SentencePiece 512 256 26 223M 119B 7.4 81.2
BERT (matching FLOPs) UTF-8 bytes 2048 2048 6 20M 130B 2.9 71.5
Perceiver IO UTF-8 bytes 2048 256 26 201M 113B 7.6 81.0
Perceiver IO++ UTF-8 bytes 2048 256 40 425M 241B 4.2 81.8

Table 1: Perceiver IO on language: results on the GLUE benchmark (Avg. = average performance, higher
is better). Following Devlin et al. (2019) we exclude the WNLI task. We use Pearson correlation on STS-B,
Matthews correlation on CoLa and accuracy on the remaining tasks. BERT Base (test) performance is reported
from Devlin et al. (2019). SPS = train-time steps per second. M = # inputs and N = # latents.

4.1 LANGUAGE

We first compare Perceiver IO to standard Transformers for language. Although Transformers were
originally developed for language, their quadratic complexity makes them difficult to use on language
inputs without tokenization, which typically shortens the length of input sequences by a factor of
∼4. But unlike Transformer-based models such as BERT (Devlin et al., 2019) or XLNet (Yang
et al., 2019), Perceiver IO scales linearly with input length. Our experiments focus on showing that
Perceiver IO performs as well as or better than Transformers for masked language modeling (MLM)
while removing tokenization (which is hard to maintain, introduces engineering overhead, and adds
needless complexity to language models (Bostrom & Durrett, 2020; Clark et al., 2022)).

We compare results for a given FLOPs budget rather than a given parameter budget as the former grows
quadratically with sequence length but the latter is independent (except for positional encodings).
From a practioner’s perspective, FLOPs matter more than parameters since FLOPs directly relate to
training time. We evaluate the quality of the learned representation on the GLUE benchmark (Wang
et al., 2019) and report our results in Tab. 1. We find that at a given FLOPs budget, Perceiver IO
trained without tokenization matches the performance of a strong Transformer-based model trained
with SentencePiece tokenization (Sennrich et al., 2016; Kudo & Richardson, 2018).

Pretraining. We pretrain on the Masked Language Modeling (MLM) task proposed in Devlin et al.
(2019) using a large text corpus obtained by combining English Wikipedia and C4 (Raffel et al.,
2020). For both the SentencePiece and the byte-level models, we mask 15% of the words, where
a word is defined as a space-delimited sequence of characters. As a token contains many bytes on
average, we need to increase the sequence length to input a similar amount of text: we use input
sequence lengths of 512 SentencePiece tokens or 2048 UTF-8 bytes. For the SentencePiece models
we use a vocabulary size of 32, 000 following Devlin et al. (2019). For the byte-level models, the
vocabulary size is much smaller: 256 bytes and 4 special tokens ([PAD], [MASK], [CLS], [SEP]).
Perceiver IO produces one output vector per masked input by using learnable position-dependent
vectors to query the output of the final latent processing layer. We then apply a position-wise linear
layer on top of these output vectors and train the model using a softmax cross-entropy loss to predict
the original non-masked input as target. The full details of the architecture are given in Sec. F.2. See
Appendix Fig. 7 for analysis and visualization of the learnt features.

Finetuning. We finetune Perceiver IO on the GLUE Benchmark Wang et al. (2019), reporting the
best performance on the dev set for a fixed size sweep of finetuning hyperparameters. Individual task
results and hyperparameters are given in Sec. F.4.

Perceiver IO on SentencePiece tokens. We first observe that Perceiver IO applied on SentencePiece
tokenized input sequences slightly outperforms a strong BERT baseline applied on the same inputs
(81.2 vs 81.1). As a result of the reduced latent size of 256 we can train a much deeper network with
26 processing layers compared to BERT Base (12 layers) while maintaining a similar FLOPs budget.

Perceiver IO on UTF-8 bytes. Next, we show that we can leverage Perceiver IO to run on much
longer sequences than a regular Transformer. Rather than using a fixed, handcrafted vocabulary, our
model works directly with the raw byte inputs: we simply feed in and predict the UTF-8 bytes of the
input string. Perceiver IO significantly outperforms a byte-level BERT baseline at the same FLOPs
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budget, demonstrating the real advantage of Perceiver IO architecture for language.1 Remarkably, the
bytes Perceiver IO is on par with BERT running on SentencePiece tokens, showing that Perceiver IO
is also competitive against strong baselines relying on handcrafted tokenizers. The performance of
Perceiver IO on bytes scales well with more FLOPs where we obtain 81.8 on the GLUE benchmark.

The byte-level Perceiver IO shares some similarities with the concurrent CANINE work (Clark
et al., 2022). While Clark et al. (2022) rely on a relatively sophisticated pipeline that maps Unicode
codepoints to hash embeddings (Svenstrup et al., 2017), we embed raw UTF-8 bytes directly. Clark
et al. (2022) also uses a bottleneck architecture to scale to longer text inputs, but their upsampling
strategy differs from ours: they concatenate raw inputs with their aligned downsampled latent
representation, apply a 1D convolution and then run a shallow transformer stack on the resulting
upsampled sequence. Their approach scales quadratically with respect to the original input length
while Perceiver IO’s decoder scales linearly with respect to the target output size. Our work scales to
byte-level inputs without making any assumptions about the structure of the input, which allows it to
be used beyond language as shown in the following sections.

Multitask Perceiver IO. We use multitask queries as described in Sec. 3.2

Method Avg.
Single-task query 81.0

Multitask
Shared input token 81.5
Task-specific input tokens 81.8
Multitask query 81.8

Table 2: Multitask Perceiver IO. Re-
sults use the same metric as Tab. 1
(higher is better).

to finetune on all 8 GLUE tasks simultaneously using the UTF-
8 byte model (results in Tab. 2). We compare to results from
the single task regime where the model is trained independently
on each task. We also compare to an approach analogous to
BERT’s [CLS] token that prepends a special token to the
input and uses the position corresponding to this token to query
the task logits. We do this either by sharing a single token
among tasks (Shared input token) or using task-specific tokens
(Task-specific input token). In both cases, we use a 2-layer
task-specific MLP head to generate output logits for each task.
We observe that our multitask approach outperforms single-task
approaches and matches the approach that uses 8 task-specific
input tokens. Our approach is more generic as it decouples the

output array from the input array by not relying on[CLS] tokens. This is especially appealing when
the tasks are many or inhomogeneous, as we show in Sec. 4.3.

4.2 OPTICAL FLOW

Optical flow is a decades-old open problem in computer vision (Lucas & Kanade, 1981; Horn &
Schunck, 1981). Given two images of the same scene (e.g. two consecutive frames of a video), the
task is to estimate the 2D displacement for each pixel in the first image. This has many broader
applications, such as navigation and visual odometry in robots (Campbell et al., 2004), estimation
of 3D geometry (Ranftl et al., 2020), and even to aid transfer of more complex, learned inference
such as 3D human pose estimation from synthetic to real images (Doersch & Zisserman, 2019).
Optical flow is challenging for neural networks for two reasons. First, optical flow relies on finding
correspondence: a single frame provides no information about flow, and images with extremely
different appearance can produce the same flow. Second, flow is extremely difficult to annotate, and
the few datasets with realistic images and high-quality ground truth are small and biased. While it is
straightforward to generate large synthetic datasets as training data, e.g. AutoFlow (Sun et al., 2021),
there is still a large domain gap.

Algorithms for optical flow thus must learn to accomplish several steps in a way that transfers from
synthetic to real data. First, the algorithm must find correspondence between points. Then it must
compute their relative offsets. Finally it must propagate flow across large regions of space, including
to parts of the image which have no texture for correspondence. To generalize to real data, the learned
procedure needs to work for objects and textures that weren’t seen in the training data.

These difficulties have led flow researchers to develop some of the most involved architectures in
the computer vision literature. State of the art algorithms, such as PWCNet (Sun et al., 2018),
RAFT (Teed & Deng, 2020) or GMA (Jiang et al., 2021), use explicit machinery to ensure each
of these steps is performed correctly even on out-of-domain data. Expensive global correlation

1Despite its greater depth, Perceiver IO is also faster than the Transformer-based BERT baselines in real
wall-clock terms – by over a factor of 2 for the byte-based models – as shown in Tab. 1.
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volumes explicitly compare features within a spatiotemporal neighborhood across images to find
correspondences. Flows are computed iteratively and hierarchically in 2D space using explicit lookup
operators to verify correctness, leading to slow performance on TPUs (Jouppi et al., 2017).

Perceiver IO on Flow In contrast, we apply Perceiver IO to flow in a straightforward manner. We
concatenate the frames along the channel dimension and extract a 3 × 3 patch around each pixel
(leading to 3×3×3×2 = 54 values for each pixel). We concatenate a fixed position encoding to these
features and then apply Perceiver IO. To decode, we query the latent representation using the input
encoding. See Sec. H for training details and results with various forms of pre- and post-processing,
which typically perform similarly. We also test a version with convolutional downsampling and
RAFT-style upsampling, which performs only slightly worse while improving computation time.

It may seem counter-intuitive to append the images along the channel dimension, as large motions
might result in pixels on entirely different objects being concatenated. However, this kind of operation
isn’t unprecedented: one of the earliest optical flow algorithms, Lucas-Kanade (Lucas & Kanade,
1981), makes explicit use of the temporal image gradient, which is approximated by the difference
in intensities at a given pixel across two frames. The algorithm uses the fact that the temporal
gradient of the image approximates the spatial gradient times the spatial velocity, if lighting effects
are ignored. The approximation is even better for image regions with very little texture. Such regions
are challenging for algorithms that attempt to find explicit correspondence in feature space, especially
if feature encoding involves any normalization operations, which may destroy intensity information.

Network Sintel.clean Sintel.final KITTI
PWCNet (Sun et al., 2018) 2.17 2.91 5.76
RAFT (Teed & Deng, 2020) 1.95 2.57 4.23
Perceiver IO 1.81 2.42 4.98

Table 3: Optical Flow evaluated on Sintel (Butler et al.,
2012) and KITTI with average end-point error (EPE) (lower
is better). Baselines are reported from Sun et al. (2021).

Results Tab. 3 shows our results, follow-
ing the standard protocol for training on
AutoFlow (Sun et al., 2021). We compare
to PWCNet and RAFT baselines trained by
the AutoFlow authors. On Sintel (Butler
et al., 2012), our results are slightly better
than RAFT on Sintel and outperform PWC-
Net on KITTI (Menze & Geiger, 2015). As
far as we are aware, this result is state of the
art on Sintel.final (GMA Jiang et al. (2021)

produces slightly better numbers on the somewhat easier Sintel.clean evaluation set using different
training data). This is surprising considering how different our architecture is from PWCNet and
RAFT and how little tuning for flow Perceiver IO required. We use no cost volumes or explicit
warping, our model is not explicitly hierarchical, and the latent representation doesn’t even maintain
the 2D layout of the inputs. Also note that we reuse RAFT’s AutoFlow augmentation parameters,
which were tuned specifically for RAFT using population-based training (Sun et al., 2021). As shown
in Appendix Fig. 8, qualitatively Perceiver IO is good at following object boundaries, and can easily
propagate motion across image regions with little texture.

4.3 MULTIMODAL AUTOENCODING

We explore using Perceiver IO for audio-video-label multimodal autoencoding on the Kinetics-
700-2020 dataset (Smaira et al., 2020). The goal of multimodal autoencoding is to learn a model
that can accurately reconstruct multimodal inputs in the the presence of a bottleneck induced by
an architecture. This problem has been previously studied using techniques such as Restricted
Boltzmann Machines (Ngiam et al., 2011), but on much more stereotyped and smaller scale data.

Kinetics-700-2020 has video, audio, and class labels. We wish to train a model to reconstruct all
modalities simultaneously. With traditional autoencoding models like convolutional encoder-decoders,
it is not obvious how to combine these modalities, because each uses data of different dimensions –
3D (video), 1D (raw audio), and 0D (class labels) – and with wildly different numbers of elements.
With Perceiver IO, we pad the inputs with modality-specific embeddings, serialize them into a single
2D input array and query outputs using queries containing position encodings (for video and audio)
and modality embeddings.

We train on 16 frames at 224× 224 resolution, preprocessed into 50k 4x4 patches as well as 30k raw
audio samples, producing a total of 1920 16-d vectors and one 700-d one-hot class label. We decode
directly into pixels, raw audio, and the one-hot label without any post-processing. To prevent the
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Figure 4: Multimodal audio-video-label autoencoding with 88x compression. Side-by-side: inputs
on left, reconstructions right. See the supplemental material for example output video and audio.

model from encoding the label directly into one of the latent variables, we mask the class label 50%
of the time in training. Due to the scale of inputs and outputs in this task we subsample decoding
in training, while fully decoding in testing: we sampled 512 audio samples and 512 pixels and the
class label for every training example. This allows us to directly decode to a video-sized array, which
would otherwise be infeasible given memory constraints. We used a latent array with 512 channels
and 784, 392, and 196 latents, resulting in compression ratios of 88x, 176x, and 352x respectively.

Compression Audio Video Top-1
Ratio PSNR PSNR Accuracy
88x 26.97 24.37 10.2%

176x 25.33 24.27 8.6%
352x 14.15 23.21 11.5%

Table 4: Multimodal autoencoding results. Higher
is better for accuracy and PSNR.

We show results in Tab. 4 and reconstructions in
Fig. 4. By masking the classification label during
evaluation, our autoencoding model becomes a Kinet-
ics 700 classifier. Latent variables are shared across
modalities, so the quality of reconstructions for each
modality is sensitive to the weight of its loss term
and other training hyperparameters. Tab. 4 shows
one tradeoff, where we emphasized video and au-
dio PSNR at the expense of classification accuracy.
By putting stronger weight on the class loss, we can

reach 45% top-1 accuracy while maintaining 20.7 PSNR for video (Sec. I). This strongly suggests
that Perceiver IO can jointly represent modalities with very different properties.

4.4 IMAGENET, STARCRAFT II, AND AUDIOSET

Please read the Appendix for results on ImageNet (Sec. A), StarCraft II (Sec. B), and AudioSet
(Sec. C). We have omitted these results from the main paper to make the exposition as clear as possible
within 9 pages (the ICLR camera ready page limit). As highlights of these experiments: (1) on
ImageNet, Perceiver IO surpasses 80% top-1 accuracy (84.5% top-1) without using 2D convolutions
after pretraining on JFT. (2) When used to replace AlphaStar’s entity Transformer, Perceiver IO
obtains a ∼ 3.5× reduction in FLOPs while preserving StarCraft II 87 % win rate and parameter
count, after only 3 experimental runs. (3) On AudioSet, Perceiver IO consistently outperforms the
original Perceiver when using the same training protocol on multimodal video + audio classification.
The Appendix includes additional details of the experimental domains included in the main paper.

5 CONCLUSION

In this work we introduce Perceiver IO, an architecture capable of handling general purpose inputs
and outputs while scaling linearly in both input and output sizes. As we show, this architecture
achieves good results in a wide variety of settings, making it a promising candidate for a general
purpose neural network architecture. Perceiver IO leverages the expressive power of latent attention
and uses learned queries to expose a simple and unified interface that can handle multimodal and
multitask settings. Overall, Perceiver IO offers a promising way to simplify the construction of
sophisticated neural pipelines and facilitate progress on multimodal and multiask problems.
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APPENDIX

Modalities Tasks Preprocessing Postprocessing # Inputs # Outputs
Text Token-level pred. Tokenization + Embed. Linear projection 512× 768 512× 768
Text Byte-level pred. Embed. None 2, 048× 768 2, 048× 768
Text Multi-task (8 tasks) Embed. None 2, 048× 768 8× 768

Video Flow prediction None None 365, 056× 64 182, 528× 64
Video Flow prediction Concat None 182, 528× 64 182, 528× 64
Video Flow prediction Conv+maxpool RAFT upsampling 22, 816× 64 11, 408× 64
Video Flow prediction Conv+maxpool+concat RAFT upsampling 11, 408× 64 11, 408× 64

Video+Audio+Label Autoencoding Patch: 1x4x4 Vid, 16 Aud None 50, 657× 704 803, 297× 512

Image Classification None None 50, 176× 3 1× 1, 000
Image Classification Linear projection None 50, 176× 256 1× 1, 000
Image Classification Conv+maxpool None 3, 136× 64 1× 1, 000

StarCraft Unit Set Encoding and Classification Tokenization Pointer network 512× 256 512× 128

Video+Audio Classification Patch: 2× 8× 8 Vid, 128 Aud None 13, 024× 487 1× 527
Video+Audio Classification Patch: 2× 8× 8 Vid. Aud→ mel-spectrogram None 17, 344× 487 1× 527

Table 5: Details of each of the tasks we use to evaluate Perceiver IO here. The positional and task embeddings
appended to inputs for each case are listed in Tab. 6.

In the following sections, we describe experiments on three additional domains (ImageNet, StarCraft
II, and AudioSet) and provide additional details for the methods and experiments described in the
paper. For ease of reference and comparison across domains, we describe the input and output size
and processing used in all experiments in Tab. 5 and provide details of input key/value, position
encoding, and output queries used in all experiments in Tab. 6.

On all domains but StarCraft II, we include experiments with several input configurations, ranging
from no domain adaptation (e.g. tokenizer-free language, flow from raw pixels, ImageNet with
no convolutional or patch-based preprocessing and fully learned position encodings) to moderate
domain adaptation (e.g. SentencePiece language understanding, flow from conv+maxpool-processed
images and with RAFT upsampling, ImageNet with conv+maxpool-preprocessing and 2D Fourier
features). These results demonstrate the unprecedented generality of Perceiver IO, the simplicity
that this architecture unlocks in handling a range of tasks, and its flexibility to work as part of a
domain-adapted system.

Domain Input Modality Encoder KV input Encoder KV channels Decoder query input Decoder query channels
Language (MLM) Text byte/token encoding + learned pos 768 learned pos 1280

Language
(Perceiver IO++ MLM) Text byte/token encoding + learned pos 768 learned pos 1536

Language (GLUE) Text byte/token encoding + learned pos 768 Class query (per-task) 1280

Language
(Perceiver IO++ GLUE) Text byte/token encoding + learned pos 768 Class query (per-task) 1536

Optical Flow Video (concat. frames) [conv or Linear(concat RGB), 2D FFs] 322 [Linear(RGB), 2D FFs] 322

Optical Flow Video [conv or Linear(RGB), 3D FFs] 451 [conv features, 3D FFs] 451

Kinetics Video, [patched RGB, 3D FFs, learned modality feat.] 704 [3D FFs, learned modality feat.] 1026
Audio, [patched sound pressure, 1D FF, learned modality feat.] 704 [1D FF, learned modality feat.] 1026
Label [one-hot label, learned modality feat.] 704 [learned modality feat.] 1026

ImageNet (2D FFs) Image [RGB, 2D FFs] 261 Class query (single) 1024

ImageNet (learned pos) Image [Linear(RGB), learned pos] 512 Class query (single) 1024

ImageNet (conv) Image [Conv features, 2D FFs] 322 Class query (single) 1024

StarCraft II SC2 entities Entity features 128 Entity features 128

AudioSet Video, [patched RGB, 3D FFs, learned modality feature] 487 Class query (single) 1024
Audio [patched sound pressure, 1D FFs, learned modality feature] 487

AudioSet Video, [patched RGB, 3D FFs, learned modality feature] 487 Class query (single) 1024
Mel-spectrogram [mel-spectrogram features, 1D FFs, learned modality feature] 487

Table 6: Table best viewed on a screen. The structure and size of the positional and task embeddings used to
construct Perceiver IO’s encoder key-value inputs and decoder query inputs, for each domain described in the
main text. “[x, y]” indicates that x’s and y’s features are concatenated, while “x + y” indicates that x’s and y’s
features are added to produce the full featurization. “FF” = Fourier features as in Jaegle et al. (2021).

A IMAGE CLASSIFICATION

Perceiver did well on ImageNet (Deng et al., 2009) classification without using 2D structure in the
design of the architecture, but generated class scores using a simple average + project decoder (see
Sec. E.3 and Fig. 6 for a diagram illustrating the difference between the two forms of decoder). We
now evaluate the effect of this more general decoder. See Sec. C for similar validation on AudioSet.
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Model Pretrained? Accuracy FLOPs Params
ConvNet baselines
ResNet-50 (He et al., 2016) N 78.6 4.1B 26M
NFNet-F6+SAM (Brock et al., 2021) N 86.5 377.3B 438.4M
Meta Pseudo Labels (Pham et al., 2021) Y 90.2 - 480M

ViT baselines
ViT-B/16 (Dosovitskiy et al., 2021) N 77.9 55.4B 86M
ViT-H/14 (Dosovitskiy et al., 2021) Y 88.6 - 632M
DeiT 1000 epochs (Touvron et al., 2021a) N 85.2 - 87M
CaiT-M48 448 (Touvron et al., 2021b) N 86.5 329.6B 356M

w/ 2D Fourier features
Perceiver N 78.6 404B 42.1M
Perceiver IO, config A N 79.0 407B 48.4M
Perceiver IO, config B (pretrained) Y 84.5 213B 212M

w/ learned position features
Perceiver (learned pos) N 67.6 404B 55.9M
Perceiver IO, config A (learned pos) N 72.7 407B 62.3M

w/ 2D conv + maxpool preprocessing
Perceiver (conv) N 77.4 367B 42.1M
Perceiver IO, config A (conv) N 82.1 369B 48.6M
Perceiver IO, config B (conv) (pretrained) Y 86.4 176B 212M

Table 7: Results on ImageNet image classification (top-1 accuracy, higher is better). “-” indicates a value
we could not find reported in the literature. We did not extensively tune our models for efficiency on image
classification – the primary focus of this work is generality, rather than speed on images – Perceiver IO uses
comparable FLOPs to attention-based image classification models, especially for the more compact configuration
B pretrained on JFT. The positional encoding does not significantly change model FLOPs.

Results Tab. 7 shows our results alongside representative numbers from the literature. Perceiver and
Perceiver IO differ in their decoder, and neither model uses convolutional preprocessing by default.
Perceiver IO consistently outperforms the original architecture. After pretraining on JFT (Sun et al.,
2017), Perceiver IO performs in the ballpark of models designed primarily for image classification.
Perceiver IO is competitive with members of the Vision Transformer (ViT) (Dosovitskiy et al., 2021)
family even without relying on 2D convolutions. Perceiver IO is also compatible with convolutional
preprocessing: adding a 2D conv+maxpool preprocessing stage leads to a moderate increase in
efficiency and bump in performance.

While neither the Perceiver and Perceiver IO incorporate any 2D spatial structure architecturally, they
use positional features that inject 2D spatial information (Sec. 3.2 and Appendix sec. D of Jaegle
et al. 2021). By replacing these 2D position features with a fully learned position encoding as used
on language, we can learn an image classification model that is given no privileged information
about the structure of images. This positional encoding is an array of shape 50,176 × 256, which
is randomly initialized using a truncated Gaussian distribution with scale 0.02. ImageNet networks
that use this positional encoding are given no information about 2D image structure. For these
experiments, we additionally use a 1D convolutional network to project the RGB at each point to 256
before concatenating it with the learned positional encoding. The results of this experiment are shown
in Tab. 7 (w/ learned position features). To our knowledge, this is the best result by any model on
ImageNet without 2D architectural or feature information.

A.1 DETAILS OF IMAGENET TRAINING

For ImageNet experiments, we use CutMix (Yun et al., 2019) and MixUp (Zhang et al., 2018)
regularization, in addition to RandAugment (Cubuk et al., 2020) as used in Jaegle et al. (2021). We
observed only marginal improvements in performance from this change, but it brings the augmentation
strategy more in line with the strategy used elsewhere in the literature (Brock et al., 2021; Touvron
et al., 2021a). In all experiments, we use RandAugment with 4 layers at magnitude 5 (as in Jaegle
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Model Train steps/sec
Perceiver (2D FF) 4.73
Perceiver IO (2D FF) 4.85

Perceiver (learned pos) 4.16
Perceiver IO (learned pos) 4.14

Perceiver (conv) 4.73
Perceiver IO (conv) 5.58

Perceiver IO (pretrained) 6.41

Table 8: ImageNet model training speed. The model used for pretraining is faster because it uses only 16
process modules. We did not reimplement baselines, so we report only the training speed of Perceiver and
Perceiver IO models.

et al. 2021) and CutMix with a ratio of 0.2. In early experiments, we found that higher weight decay
and moderate gradient clipping contributed to better generalization: we use a weight decay of 0.1
and clip to a maximum global gradient norm of 10. We use no dropout. We use an architecture with
weight sharing in depth: the latent (processing) component of the architecture includes 8 blocks of 6
attention modules each, and weights are shared between the corresponding modules in each block.
We omit the repeated encoder cross-attends used in Jaegle et al. (2021) as we found these to lead to
relatively small performance improvements but to significantly slow down training: using 8 encoder
cross-attention instead of 1 adds an additional 303 billion FLOPs. The FLOPs for all ImageNet
models presented here are given in Tab. 7 and the model training step time on 64 TPUv3 are given in
Tab. 8.

For all ImageNet experiments, we train for 110 epochs, using a batch size of 1024 and 64 TPUs. We
use LAMB with a simple learning rate schedule consisting of a flat learning rate of 2× 10−3 for 55
epochs, after which the learning rate is decayed to 0 over the final 55 epochs following a cosine decay
schedule (Loshchilov & Hutter, 2017). We found a cosine learning rate decay schedule simpler to
tune than the step decay schedule used in Jaegle et al. (2021) and that beginning the decay process
halfway through training generally led to good performance without introducing instability. We found
it important to omit an initial learning rate warm-up period, as this often prevented models from
training when using LAMB.

A.2 LARGE-SCALE PRETRAINING

As reported in Jaegle et al. (2021), Perceiver models are able to easily overfit ImageNet-scale datasets
without regularization. For this reason, we explored pretraining a model on JFT, a large-scale,
multi-labeled internal dataset with 300 million images spanning approximately 18,000 classes (Sun
et al., 2017). We pretrain on this dataset at the same resolution used on ImageNet (224 × 224) using
a base learning rate of 3× 10−4 and a cosine decay schedule, decaying to 0 over 14 epochs. We omit
all augmentation except basic cropping, resizing, and left-right flipping. We use a weight decay of
0.1. We use a larger batch size of 8192 and train on 256 TPUs. Images in this dataset come with a
variable number of labels, so we use a cross-entropy loss with a multi-one-hot representation of the
targets. Unlike in the other ImageNet experiments, we do not share weights in the latent self-attention
process modules, but use a 16-layer latent network with no weight sharing in depth. Unlike the
other ImageNet experiments, the process-module MLPs use a hidden layer with 4× the number of
channels (rather than 1× as on other ImageNet experiments). When pretraining the 2D FF model, we
use a 1D convolutional network to project input RGB at each point to 256 before concatenating it
with the positional encoding (a 2D Fourier frequency positional encoding). When pretraining the
conv+maxpool model, we instead use the initial convolutional preprocessing described in Sec. A.3
below.

To evaluate transfer, we fine-tune our pre-trained model on ImageNet. We replace only the final linear
layer of the decoder to produce the required 18,000 classes. For 2D FF fine-tuning, we used similar
optimizer and augmentation settings as with our from-scratch ImageNet training: 1024 batch size on
64 TPUs, 131K steps with LAMB using a flat base LR of 0.002 for the first 70K steps and a cosine
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Entity encoder Win rate Params (M) FLOPs Train steps/sec
Transformer (Vinyals et al., 2019) 0.87 144 3.3B 2.9
Perceiver IO 0.87 140 0.93B 2.9

Table 9: We evaluate Perceiver IO on StarCraft II by using it to replace the well-tuned Transformer entity
encoder. Perceiver IO matches the performance of the original Transformer despite using fewer FLOPs and
parameters and requiring essentially no tuning. Note that the training steps/sec of the overall system does not
change because the entity encoder is not the speed bottleneck.

learning rate decay for the last 61K steps. We use identical settings for conv+maxpool fine-tuning
with the exception of the base learning rate, which we set to 0.0002, as training with the higher 0.002
rate was unstable.

A.3 2D CONVOLUTIONAL PREPROCESSING ON IMAGENET

In other image settings discussed here, we optionally use simple pre- and post-processing steps
to reduce the size of very large inputs and outputs. Because ImageNet data points are relatively
small (Tab. 5), we are able to process full images without convolutional pre- and post-processing.
Consequently, we can use this dataset to probe the sensitivity of the model to convolutional pre-
processing. Incorporating a single convolution + max pooling leads to a moderate improvement in
the performance of the architecture: this is perhaps unsurprising, as convolutional pre-processing
injects information about the 2D structure of images into the architecture. By comparison ViT first
processes images by applying a 2D convolution with matched kernel and stride to downsample its
inputs (referred to as a “linear projection of flattened patches” in that work and throughout the ViT
literature). As in other experiments, we find that incorporating an attention-based decoder (Perceiver
IO) leads to better results than averaging and pooling the output (Perceiver). Using convolutional
preprocessing leads to a moderate reduction in the number of FLOPs used by the model (Tab. 7) and
training speed in some configurations (Tab. 8). The input to the network after preprocessing is 56 ×
56 instead of 224 × 224 as in the experiments directly on pixels.

B STARCRAFT II

To further demonstrate Perceiver IO’s capabilities on discrete modalities and as a drop-in replacement
for Transformers, we plug in Perceiver IO in place of AlphaStar’s Transformer. AlphaStar (Vinyals
et al., 2019) is the state-of-the-art system for the challenging real-time strategy game of StarCraft II.

At its core, AlphaStar represents the units in the game as a discrete, unordered set of symbols (the
“units”). These units are represented by a vector of properties including unit type, position, and health.
At each timestep, the architecture encodes units with an entity encoder, which in the original model
was parameterized using a vanilla Transformer.

The entity encoder takes as input a set of 512 entities (referred to as embedded_entity in Vinyals
et al. (2019)) and produces as output an embedding for each entity (entity_embeddings)
and a 1D embedding reduced over entities (embedded_entity). These 512 entities repre-
sent the units and other entities that are present in the game: unused entity slots are masked.
entity_embeddings is produced by passing the outputs of the entity encoder through a ReLU
and a 1D convolution with 256 channels. embedded_entity is produced by averaging the
(unmasked) entity encoder outputs and passing it through a linear layer with 256 units and a ReLU.

In the original AlphaStar system, the entity encoder consisted of a Transformer with 3 attention
layers, each of which used 2 heads and a feature dimension of 128. The output of each attention layer
is projected to 256 and followed by an 2-layer MLP with hidden size 1024 and output size 256. This
architecture was arrived by an extensive tuning process as reported in Vinyals et al. (2019).

The representation produced by the entity encoder is used both as a summary of the state (after pooling)
and as a rich representation of the units. This representation is used by a pointer network (Vinyals
et al., 2015) to assign a probability to each possible unit selection, in the process parameterizing
the agent’s unit selection policy. For this reason, we view AlphaStar as an important test case for
Perceiver IO’s ability to function as a general-purpose tool for processing symbolic or set-valued
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Model Input mAP Latent channels (D) Params (M) FLOPs Train steps/sec

Perceiver Raw audio + video 42.4 512 21.0 52.3B 3.8
Perceiver IO Raw audio + video 43.3 512 25.0 52.9B 3.8

Perceiver mel-spectrogram + video 43.6 512 21.0 60.7B 3.8
Perceiver IO mel-spectrogram + video 44.9 1024 88.2 129.5B 3.8

Table 10: Perceiver IO on multimodal (audio + video) AudioSet classification (mAP = mean average precision,
higher is better). All models have similar runtimes despite FLOPs differences because the bottleneck is data
loading and preprocessing rather than model forward/backward passes.

data. If the question is “can Perceiver IO serve as a replacement for a well-tuned Transformer as a
symbolic processing engine?” then the answer is yes:

We obtained StarCraft II results by using Perceiver IO instead of a Transformer for the AlphaStar
entity encoder. We replaced the Transformer with a Perceiver IO with a latent of index dimension 32,
keeping the input and output size of 512 units. We performed no tuning beyond sweeping the size of
the latent index dimension (we tried values of 32 and 64): Perceiver IO works out of the box. We
observed that the resulting agent reached the same level of performance as the original AlphaStar
agent, reaching an 87% win-rate versus the Elite bot after behavioral cloning (Pomerleau, 1989) on
human data, while also leading to a 3× decrease in FLOPs (Tab. 9).

We replaced this Transformer with a 3-layer Perceiver IO with a latent of index dimension 32. We
tuned only the size of the index dimension (sweeping values of 32 and 64), but otherwise used the
same hyperparameters as ImageNet.

C AUDIOSET

We seek to confirm that the the attention-based decoder helps even on classification, where the
original Perceiver’s decoder could be used. We show that the trend identified on ImageNet holds more
generally, by revisiting the multimodal AudioSet classification domain. AudioSet is a large-scale
event classification dataset containing 1.7 million training examples, each consisting of 10s long
video and audio. Each example is labeled with several labels drawn from 527 classes.

We perform experiments using the protocol described in Jaegle et al. (2021), training models for
100 epochs using 32-frame clips at train time and 16 overlapping 32-frame clips at test time. As
in the ImageNet experiments, We compare the performance of Perceiver and Perceiver IO using
models that are matched except for the decoder (we use an average + project decoder for Perceiver
and a query-based attention decoder for Perceiver IO, see Sec. E.3 and Fig. 6). All models use an
architecture with 12 processor modules and a latent index dimension N of 512 (we omit the repeated
cross-attends used in Jaegle et al. (2021)). We compare models taking video and either raw audio or
mel-spectrogram (pre-processed audio) as input. For all four model settings, we swept the number of
latent channels (using D ∈ {512, 1024}) and report the best value for each setting. We performed no
additional tuning.

Results of this experiment are shown in Tab. 10. We find that as in the ImageNet experiments,
using the attention-based decoder leads to small but consistent improvements over the less generally
applicable average + project decoder. Because Perceiver IO introduces no domain assumptions not
present in the original Perceiver, this is evidence that Perceiver IO is a strictly more general model.

D FLOPS CALCULATION

In all cases, we report theoretical FLOPs with multiplies and accumulates counted as separate
operations. This is the strategy used in Kaplan et al. (2020) and elsewhere in the literature. We use
this strategy consistently here to allow comparisons between the models we propose and develop
(including our BERT reimplementation). Note that some papers in the literature report FLOPs using
fused multiply-accumulates: using this strategy will cut the figures reported here in half.
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Figure 5: Schematic depiction of encode, process, and decode attention. Each attention module uses
the same operations, but differs in which inputs are used to generate key/values or queries and in
the output shape. Encode attention can be viewed as mapping an input to a latent space, typically
with a smaller index dimension (fewer elements). Decode attention can be viewed as mapping a
latent to an output space, often with a larger index dimension (more elements). Both of these are
forms of cross-attention. Process attention (self-attention) preserves the input index dimension (same
elements). Red and blue dashed lines are used to highlight the two matrix multiplications used in
QKV attention, as described in the text.

E ARCHITECTURAL DETAILS

Perceiver IO is constructed from GPT-2-style (Radford et al., 2019) Transformer attention modules,
which consist of QKV attention followed by an MLP, along with linear projection layers to ensure
inputs to and outputs from the QKV attention and MLP take on desired sizes. Using the array sizes of
the encoder attention, the QKV attention takes in two two-dimensional arrays, a key-value input array
XKV ∈ RM×C and a query input array XQ ∈ RN×D, and maps them to an array XQKV ∈ RN×D,
sharing the shape of the query input (after projection). XQKV is used as input to an MLP, which is
applied independently to each element of the index dimension (i.e. convolving the MLP with its input
along the first dimension), producing a final array XMLP ∈ RN×D.

While we describe attention as taking two inputs, in standard Transformers it is typically described
as mapping one input to an output of the same size. This is because all modules of a standard
Transformer use self -attention, where the same input is used for both key-value inputs and query
inputs. The view of attention that we describe encompasses both cross-attention and self-attention,
both of which are specific ways of using QKV-attention. Perceiver IO uses cross-attention for encoder
and decoder attention modules and uses self-attention for the latent processing modules. These
modules differ primarily in terms of what shape data they ingest and produce (Fig. 5).

We now describe the structure of QKV attention and the MLP in more detail.

xxii



Published as a conference paper at ICLR 2022

E.1 ATTENTION MODULE INTERNALS

QKV attention takes in two two-dimensional arrays, a query input XQ ∈ RN×D and a key-value
input XKV ∈ RM×C . The output of QKV attention is an array with the same index (first) dimension
as the query input and a channel (second) dimension determined by an output projection:

Q = fQ(XQ); K = fK(XKV ); V = fV (XKV ) (1)

XQK = softmax(QKT /
√
F ) (2)

Attn(XQ, XKV ) = XQKV = fO(XQKV ), (3)

where XQK is an array of attention maps ∈ RN×M , and XQKV is an array ∈ RN×D. The functions
f{Q,K,V } are linear layers mapping each input to a shared feature dimension F and fO is a linear
layer projecting the output to a target channel dimension, which is often the same size as XQ’s.
All linear layers are applied convolutionally over the index dimension (the first dimension of their
inputs). We have omitted batch and head dimensions (in the case of multi-headed attention) for
readability. QKV attention is followed by a two-layer MLP with a GELU (Hendrycks & Gimpel,
2016) nonlinearity following the first layer. The full module has the following structure:

XQKV = Attn(layerNorm(XQ), layerNorm(XKV )) (4)
XQKV = XQKV +XQ (5)
XQKV = XQKV + MLP(layerNorm(XQKV )), (6)

slightly abusing notation for simplicity and to emphasize the residual structure. “Attn” refers to QKV
as described above.

In the context of decoder attention, we sometimes find it helpful to omit the second step (XQKV =
XQKV + XQ), as it involves adding the model output with a query. Queries sometimes include
features inherited from the input space (Tab. 6), and this residual connection may make learning
unnecessarily difficult. For example, for optical flow, including this residual connection forces the
network to produce optical flow output by adding RGB and Fourier features to the model’s output.

E.2 COMPUTATIONAL COMPLEXITY

The computational complexity of each attention module is dominated by the two matrix multiplica-
tions in QKV attention. Still using the shapes of the encoder attention, these two matrix multiplies
involve matrices of shape M×F and N×F and M×N and N×F , giving overall time and memory
complexity of O(MNF ). Let M , N , and O be the index dimensions for the input, latent, and output
arrays, and to simplify the analysis let F be the feature size for all layers. The KV and Q sizes for the
encoder, latent transformer, and decoder will then be M × F and N × F (for the encoder), N × F
and N × F (for the latent transformer), and N × F and O × F (for the decoder). A model with L
latent attention blocks has complexity O([M + O + LN ]NF ). In other words, Perceiver IO has
complexity linear in the size of the input and output arrays and it decouples the depth of the latent
transformer from the input and output sizes. Both of these properties contribute to Perceiver IO’s
efficiency: while many proposals for efficient attention modules or architectures include linear or
sub-quadratic scaling with input/output size, Perceiver IO is unusual in also decoupling depth from
input/output size (without requiring domain-specific strategies like 2D convolution). For further
discussion of these points, see Sec. 2 and Sec. A of Jaegle et al. (2021).

E.3 USING THE DECODER FOR CLASSIFICATION / REGRESSION

As we show in ImageNet and AudioSet experiments, the attentional decoder used here can be used
in settings where standard average + project decoders are applicable. We find that the attentional
decoder typically produces somewhat better results than the standard decoder. This likely occurs
because attentional decoding is more expressive than average + project decoding. To make this clear,
we illustrate the two pooling schemes in Fig. 6. Both decoders can be viewed as first averaging the
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Figure 6: Single-query attention decoder (left), as used in Perceiver IO for classification tasks and
a standard average + project decoder (right), as used in Jaegle et al. (2021). Both modules can be
seen as first aggregating latents by weighted averaging (learned, data-dependent weighting for the
attention decoder; uniform weights for the average + project decoder) and then projecting to an output
channel dimension (linear value projection + MLP for the attention decoder; simple linear projection
by the average + project decoder). Attentional decoding is more expressive than average + project
decoding and follows the same architectural template as encoder and processor modules.

latents and then projecting them to a target shape, but decoder attention uses more expressive modules
for each of these operations. Instead of uniformly weighting each input in the averaging operation,
decoder attention uses the attention scores as data-dependent weights for each input point. Instead of
projecting the raw averaged input to a target dimensionality, decoder attention first projects inputs via
a value layer and then processes them with an MLP. In addition to its greater expressivity, decoder
attention has the advantage of being easily generalizable to dense outputs (by increasing the number
of queries) and of reusing the same architectural pattern used for the encoder and processor modules.

F LANGUAGE: ADDITIONAL DETAILS

F.1 OTHER TOKENIZER-FREE MODELS

One application of Perceiver IO is byte-level language processing, which has concurrently been
addressed by several other groups. Clark et al. (2022) trains models on Unicode code points and
shows results competitive with subword-based models on a multilingual question answering dataset.
Tay et al. (2022) trains on UTF-8 bytes directly by introducing a hand-designed module that is
trained end-to-end to perform subword tokenization and produces results on-par with and sometimes
better than subword-based models. Xue et al. (2022) trains encoder-decoder T5 models on UTF-8
bytes directly and shows that making the encoder 3x deeper than the decoder leads to comparable
performance with subword baselines.

F.2 ARCHITECTURE DETAILS

The architecture hyperparameters and the training speed for the Perceiver IO used in the language
experiments are given in Tab. 11.

Model BERT Base BERT matching FLOPs Perceiver IO Base Perceiver IO Perceiver IO++
Tokenizer SentencePiece UTF-8 bytes SentencePiece UTF-8 bytes UTF-8 bytes

Number of inputs (M ) 512 2048 512 2048 2048
Input embedding size (C) 768 768 768 768 768

Number of Process layers 12 6 26 26 40
Number of latents (N ) - - 256 256 256
Latent size (D) - - 1280 1280 1536
FFW hidden dimension for latents - - 1280 1280 1536

Number of output queries during pretraining (O) - - 512 2048 2048
Dimension of learned queries (E) - - 768 768 768
FFW hidden dimension for outputs - - 768 768 768

Training steps/second 7.3 2.9 7.4 7.6 4.2

Table 11: Perceiver IO architecture details for language experiments.
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F.3 MLM PRETRAINING

We pretrain all models on a mixture of the C4 dataset (Raffel et al., 2020) and English Wikipedia,
where 70% of the training tokens are sampled from the C4 dataset and the remaining 30% from
Wikipedia. We concatenate 10 documents before splitting into crops to reduce wasteful computation
on padding tokens. We use the same masking strategy for SentencePiece and byte-level experiments:
each word is masked independently with probability 15% where word boundaries are defined using
white-space boundaries.

The pretraining hyperparameters are given in Tab. 12. For the BERT (matching FLOPs) model trained
on bytes, we reduce the model width from 768 to 512, the feed-forward hidden size from 3072 to
2048, the number of layers from 12 to 6 and the number of attention heads from 12 to 8. Given the
longer sequence length of 2048 bytes, this model has about the same number of inference FLOPs as
a BERT Base model on a sequence length of 512 tokens.

In order to decode, we use learned queries of the same dimension of the input array (Tab. 11). We
have as many output queries as inputs to be able to predict the masked token at all positions in the
sentence (M=O).

To get an insight into the learnt queries we visualize the attention weights in the first cross attention
layer on a small paragraph (Fig. 7). We discover that the model has learnt both position and content
based look-ups. The position-based look-ups can be either very sparse and precise or more distributed
and periodic. This second mode appears somewhat less often and is more efficient because more data
is being attended to at the same time, but also more distributed, since the values are subsequently
averaged: this acts as a learned pooling. The content based retrievals focus mostly on syntactic
elements like capital letters and punctuation (colon, exclamation marks, quotation marks, etc). This is
probably because these are good word delimiters and can help the model reduce prediction uncertainty.

Training steps 500,000
Batch size 2048
Masking strategy Words

Optimizer LAMB (You et al., 2021)
Learning rate 0.00125
Linear warmup steps 1,000
Cosine cycle decay 500,000
Weight decay 0.01

Table 12: Hyperparameters for masked language modelling (MLM) pre-training experiments

F.4 GLUE FINETUNING

Following Devlin et al. (2019), we specify a fixed-size hyperparameter grid and select the best dev
performance across that grid for each task independently (Tab. 12). The full GLUE results are shown
in Tab. 14. Following Devlin et al. (2019) we exclude the WNLI task. We use accuracy for all tasks
expect STS-B and CoLA where we use Pearson correlation and Matthews correlation respectively.
The average is computed by first averaging the results of MNLI-matched and MNLI-mismatched,
which is then counted as a single task in the overall average.

For single-task experiments, we do not require a [CLS] token as we use a single decoding query
vector. In both single-task and multi-task experiments an extra 2-layer MLP with a hidden size of
E and a tanh activation is used to map the the Perceiver IO outputs to the class logits (or regression
target for STS-B).

F.5 ABLATION ON THE NUMBER OF LATENTS

For a given FLOPs budget, there is a trade off between the number of latents N and the width D of
the latents. We ablate this in Tab. 15 by varying the number of latents between 128, 256 (best), and
512. We adapt the latent dimension accordingly to match the FLOPs budget.
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(a) Very sharp location based attention.

(b) A more efficient and more distributed “periodic” location based attention.

(c) Content based attention for syntactic elements like punctuation and capital letters.

Figure 7: Visualization of attention weights for a few queries in the initial cross-attention layer. We
use the color to convey the weight of the attention and normalize by the maximum weight to make
them easier to visualize. Best viewed in color.

Training epochs 10
Batch size {16, 32, 64}

Optimizer LAMB
Learning rate {1×10−4, 5×10−5, 2×10−5, 1×10−5 }
Linear warmup steps 200
Weight decay 0.01

Table 13: Hyperparameters for GLUE finetuning experiments. We sweep over the values in brackets.

G POSITIONAL ENCODINGS FOR IMAGE AND AUDIO EXPERIMENTS

For all image experiments (with the exception of the ImageNet experiment that uses learned positions,
Sec. A.1), we use a 2D Fourier feature positional encoding (Vaswani et al., 2017; Stanley, 2007;
Mildenhall et al., 2020; Tancik et al., 2020) using a sine and cosine bands with frequencies spaced
linearly from a minimum frequency to a maximum frequency. We use 64 sine/cosine bands per
dimension in all settings. The minimum frequency is always set to the minimum frequency of the
input signal, corresponding to a single full oscillation over the input dimension. The maximum
frequency is typically set to the input’s Nyquist frequency (e.g. 112 cycles for an image with 224
pixels per dimension). The input position used to construct the Fourier frequencies is scaled to [-1, 1]
for each input dimension. For example, the upper left corner of an image is at position [-1, -1] while
the bottom right corner is at position [1, 1]. We follow the same strategy using 1D and 3D Fourier
feature positional encoding for audio’s time and video’s spatiotemporal inputs, respectively.

H OPTICAL FLOW: ADDITIONAL DETAILS AND RESULTS

Pre- and post-processing can provide non-trivial inductive biases when processing image data and
also change computation time. In this section, we ablate these choices. The network in the main
paper concatenates the two frames frames before extracting 3D patches around each pixel, each of
size 3×3×2. Tab. 16 shows a few alternative designs for patch extraction. 1×1 means that only
a single pixel (or pair of pixels) is used for each input element. ‘Separate frames’ means that the
frames are not concatenated, but rather, input array elements are extracted independently from the
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Model Tokenizer Multi-task CoLA MNLI-m/mm MRPC QNLI QQP RTE SST-2 STS-B Average
Bert Base (test) (Devlin et al., 2019) SentencePiece No 52.10 84.60/83.40 84.80 90.50 89.20 66.40 93.50 87.10 80.95
Bert Base (ours) SentencePiece No 50.28 85.56/85.68 85.75 92.67 91.05 61.72 93.98 88.04 81.14
Perceiver IO Base SentencePiece No 47.11 84.53/85.03 87.25 92.12 90.22 65.23 94.38 88.18 81.16

BERT (matching FLOPs) UTF-8 Bytes No 20.06 74.11/75.55 77.00 85.75 88.23 53.91 89.00 82.84 71.45
Perceiver IO UTF-8 Bytes No 50.19 83.22/83.89 87.24 91.71 90.12 64.84 93.17 86.81 80.95
Perceiver IO++ UTF-8 Bytes No 52.54 84.13/84.91 86.03 92.06 90.46 66.54 93.98 87.93 81.76

Perceiver IO (Shared input token) UTF-8 Bytes Yes 47.43 82.03/82.65 89.58 90.18 89.20 82.03 93.17 77.95 81.49
Perceiver IO (Task specific input token) UTF-8 Bytes Yes 49.06 82.14/82.64 89.84 90.53 89.40 79.69 93.17 80.02 81.76
Perceiver IO (Multitask query) UTF-8 Bytes Yes 47.88 82.05/82.77 90.36 90.37 89.49 80.08 93.75 79.95 81.79

Table 14: Full GLUE results (higher is better). The first 3 models use SentencePiece tokens, the latter 3 use
UTF-8 bytes directly.

Number of latents (N ) Latent width (D) FLOPs Average GLUE score
128 1920 120B 75.84
256 1280 113B 80.95
512 896 125B 80.92

Table 15: Ablation on the UTF-8 Bytes Perceiver IO latent width versus depth.

two frames (thereby doubling the number of input elements). In the case of separate frames, 1×1
means essentially no preprocessing: each pixel becomes its own element with no spatio-temporal
context whatsoever.

We also performed experiments with a less expensive input model which uses a 7×7 convolution to
64 channels, followed by a max pool, similar to the one used in our ImageNet experiments. After
feeding this through the Perceiver IO architecture (including querying with the same convolutional
features used as input), we have an output a feature grid with stride 4 and 64 channels, on top of
which we apply a RAFT upsampling layer. This involves a linear projection from 64 dimensions
to 2, which is the coarse-resolution optical flow estimate. We then upsample this flow for a given
pixel in the high-resolution flow map by applying attention over a neighboring 3x3 block of the
low-resolution flow map, following the uppsampling approach in RAFT (Teed & Deng, 2020).

We found that concatenating frames led to a non-trivial performance improvement across the more
difficult Sintel.final and KITTI Flow 2015 (Menze & Geiger, 2015) datasets. Spatial context helps,
and the impact of frame concatenation is larger when more context is available, suggesting that the
algorithm is comparing spatial and temporal gradients. Convolutional downsampling and RAFT
upsampling provide even more spatial context for both the input features and the queries, but this
doesn’t make up for the loss of resolution and overall performs slightly worse than using the full
resolution.

Perceiver IO is somewhat slower on traditional GPUs than our baseline RAFT model, but we find
that the trend reverses on TPUs, which is the target architecture for our work. For ease of comparison,
we report inference speed on 1088× 436 images, using a tiled inference setup. Our most expensive
model achieves approximately 0.8 frames/sec on a 2017 TITAN Xp, and our lightweight model (with
conv downsampling and RAFT-style upsampling) achieves 3.3 frames/sec, which is not far from
the 10 frames per second reported for RAFT (Teed & Deng, 2020). On the publicly-available TPU
v3, however, our most expensive model achieves 4.4 frames/sec on a single TPU core, and 17.8
frames/sec for the lightweight model. An efficient Tensorflow implementation of RAFT (Sun et al.,
2020) (received courtesy of the authors) achieves only 1.6 frames/sec on the same hardware. We
suspect that the difference is due to the gather operations required for RAFT but not for Perceivers,
which are slow on TPU due to their poor memory locality properties.

Fig. 8 shows some results on example image pairs from the Sintel.final dataset. We see that the
algorithm is capable of dealing with heavy occlusion, and can propagate optical flow across large
regions with very little texture. The network can also deal with very large motions and very small
objects.

Finally, to verify that Perceiver IO performs well on real-world data despite being trained only
on synthetic imagery, we applied it to a small number (roughly 10) real videos taken from Getty
images (www.gettyimages.com). Perceiver IO typically performs very well out-of-domain,
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Method Patch size Concat. frames Downsample Depth Latents Sintel.clean Sintel.final KITTI
PWCNet (Sun et al., 2018) - - - - - 2.17 2.91 5.76
RAFT (Teed & Deng, 2020) - - - - - 1.95 2.57 4.23
Perceiver IO 3×3 Yes No 24 2048 1.81 2.42 4.98
Perceiver IO 3×3 No No 24 2048 1.78 2.70 6.19
Perceiver IO 1×1 Yes No 24 2048 1.91 2.56 5.39
Perceiver IO 1×1 No No 24 2048 1.72 2.63 5.93
Perceiver IO N/A Yes Yes 24 2048 1.84 2.52 4.83
Perceiver IO N/A No Yes 24 2048 1.90 2.53 6.66
Perceiver IO N/A Yes Yes 16 1024 2.06 2.67 6.12

Table 16: Ablated Optical Flow results (end-point error, lower is better). The top Perceiver IO results show the
configuration from the main paper. We ablate 1) patch size for the context surrounding each pixel, 2) whether
the two frames are concatenated or input separately to the Perceiver, 3) whether the inputs and queries are
downsampled by a factor of 4 using a convolution, and then subsequently upsampled with RAFT, and finally a the
number of self-attention modules (depth) and number of elements in the latent array, resulting in a bottom-row
network which is substantially less expensive than the original model.

Private & Confidential

 

Figure 8: Qualitative examples of optical flow. For each image pair, we show the two frames (top),
and then the estimated flow (bottom left) and the ground-truth flow (bottom right). In the left example,
we see one person under heavy occlusion where the correct flow is propagated into a region with few
details. Another person in the foreground has clothes with little texture and substantial blur, and yet
the algorithm can propagate the flow across the entire region. In the center example, we see very
large motions from both the dragon and the person, yet many fine structures are preserved like the
pole. On the right, we see a forest scene with a few extremely small objects with very subtle motions
(circled) which our algorithm is able to detect and segment correctly.

although some failure cases remain: for instance, shadows tend to be interpreted as objects (Autoflow
contains no shadows), and large regions with compression artifacts but no other texture may result in
hallucinated flow (Autoflow contains no video compression artifacts). We include three challenging
examples in the supplementary zip file, each of which depict complex motion and small objects.
Perceiver IO can pick up on remarkably small objects such as the water droplets thrown by the girl’s
shoe in pigeon.mp4 or the confetti in thai_dance.mp4.

Implementation details: Our experiments with pixels and patches use a sine and cosine position
encoding with 64 bands for both X and Y , plus the raw X and Y values resulting in 258 extra
features concatenated to the pixel or patch values. For experiments without concatenated frames, we
have an additional time dimension which must be encoded with positional encoding, and for this
we also use 64 sine and cosine bands (which are highly redundant, as there’s only two frames). For
this version, only the elements associated with the first frame are included as queries for the decoder.
For both input and query, we project these concatenated features to 64 dimensions before inputting
them into the transformer. We use a latent array with 2048 elements and 512 channels and 24 self-
attention modules, each with 16 self-attention heads, unless otherwise noted. Our experiments with
convolutional downsampling and RAFT upsampling use settings that are mostly similar, although
we use no additional projection as the output of the convolutional network is already 64 channels.
For these experiments, the output of the perceiver decoder’s cross attend is 64 channels, which is fed
into a RAFT-style upsampling operation. For the pixel- and patch-based models, total computational
complexity for a forward pass on a 368 × 496 image is roughly 987 billion FLOPs, and there are
roughly 27.9 million parameters.

In all cases, we train on the AutoFlow dataset (Sun et al., 2021), which consists of 400, 000 image
pairs, for 480 epochs using a cosine learning rate schedule which starts at a learning rate of 4e-4.
We use a batch size of 512. We use the LAMB (You et al., 2021) optimizer. We also use the default
curriculum for AutoFlow, which gradually increases the severity of the augmentations over time. We
find that naïve training on AutoFlow does not train, so we use an additional phase in this curriculum,

xxviii



Published as a conference paper at ICLR 2022

Params FLOPs (train) FLOPs (eval) Train steps/sec
20.0M 310B 6.85T 4.4

Table 17: Additional details of the model used for Multimodal autoencoding.

where we completely disable all augmentations. Furthermore, for this phase, we feed every image
pair twice in a batch: once forward, and once reversed. As the inverse flow is not currently available
for AutoFlow, this inverse flow was computed via an approximation which averages all the flows
terminating at a given pixel.

The evaluation datasets have a different resolution, so we evaluated in a tiled manner, using six
evenly-spaced tiles. For pixels that are covered by multiple tiles, we average the predictions, weighted
proportional the distance to the nearest edge of the respective tile (as we expect predictions nearer to
the tile edges to be less accurate). We leave the possibility of making Perceiver IO invariant to input
shape to future work.

I MULTIMODAL AUTOENCODING: ADDITIONAL DETAILS

For the multimodal autoencoding experiments, we patch preprocessing for both images and audio,
and we embed the labels as one-hot labels. The patch size is 1× 4× 4 for video and 16 for audio.
The audio is sampled at 48kHz, or 1920 samples per frame. The decoder outputs 16× 224× 224 +
16× 1920/16 + 1 vectors with 512 channels, that is, one element for each pixel in the video, one
element for each audio patch, and one element for the classification label. These are then linearly
projected to the appropriate channel size for each modality: 3 for videos, 16 for audio and 700 for
classification (the logits for each of the 700 classes in Kinetics700). Finally, we un-patch the audio to
arrive at the output audio. We note that we read and generate the audio waveform directly in the time
domain; we do not transform first to a spectrogram.

We use a 387 dimensional 3D Fourier position embedding for each input video patch and a 385
dimensional 1D Fourier position embedding for each audio patch (385 to ensure the input dimensions
to Perceiver IO match for all elements). In addition, we pad all input elements with a learned vector
representing the modality; inputs from the same modality share the same token. In particular, we add
a 317 dimensional modality embedding to video elements, a 319 dimensional modality embedding to
audio elements, and a 4 dimensional modality embedding to the label, so that all elements have 704
features.

The decoder queries are also constructed from Fourier position embeddings for video and audio and
a learned positional embedding for label: 387 features for video, 385 features for audio, and 1024
learned features for the label. We pad the queries for each modality with a different learned vector for
each modality, so that the final feature size for the queries is 1026.

We train on Kinetics 700 (Smaira et al., 2020). We use batch size of 1024, and learning rate of 1e-3.
The training loss is a weighted sum of the L1 loss for video, the L1 loss for audio, and the cross
entropy loss for the label. The weightings are 0.03 for video, 1 for audio, and 0.0001 for the label;
the loss weights are imbalanced in favor of audio because it is more difficult to obtain audio of high
perceptual quality by directly outputting the waveform. We also tried a different weighting (0.03 for
video, 1 for audio, and 1 for the label) to obtain higher classification accuracy. Additional model
details are given in Tab. 17.

To help verify the quality of Perceiver IO’s outputs on real-world data, we applied it a small number
of real videos (∼10) with audio taken from Getty Images. Perceiver IO is able to capture the structure
of both video and audio inputs, despite encoding both jointly with a single network. The model
introduces blurriness to both video and audio: this may be partially attributable to the preprocessing,
which included coarse patching (Tab. 5) for both modalities due to the very high computational cost
of processing raw video and audio inputs (which amount to over 2 million raw points). Although
decoding can be done in parallel, allowing us to decode very large output arrays in sequential batches,
Perceiver IO requires all points are encoded simultaneously. Addressing this limitation and scaling to
even larger inputs is an important direction for future work.

xxix


	Introduction
	Related Work
	The Perceiver IO architecture
	Encoding, processing, and decoding
	Decoding the latent representation with a query array

	Experiments
	Language
	Optical flow
	Multimodal autoencoding
	ImageNet, StarCraft ii, and AudioSet

	Conclusion
	Image classification
	Details of ImageNet training
	Large-scale pretraining
	2D convolutional preprocessing on ImageNet

	StarCraft ii 
	AudioSet
	FLOPs calculation
	Architectural details
	Attention module internals
	Computational complexity
	Using the decoder for classification / regression

	Language: additional details
	Other Tokenizer-free models
	Architecture details
	MLM pretraining
	GLUE Finetuning
	Ablation on the number of latents

	Positional encodings for image and audio experiments
	Optical Flow: additional details and results
	Multimodal autoencoding: additional details

