A Variational Perspective on Generative Protein Fitness Optimization

Lea Bogensperger | Dominik Narnhofer> Ahmed Allam'! Konrad Schindler> Michael Krauthammer !

Abstract

The goal of protein fitness optimization is to dis-
cover new protein variants with enhanced fitness
for a given use. The vast search space and the
sparsely populated fitness landscape, along with
the discrete nature of protein sequences, pose sig-
nificant challenges when trying to determine the
gradient towards configurations with higher fit-
ness. We introduce Variational Latent Genera-
tive Protein Optimization (VLGPO), a variational
perspective on fitness optimization. Our method
embeds protein sequences in a continuous latent
space to enable efficient sampling from the fitness
distribution and combines a (learned) flow match-
ing prior over sequence mutations with a fitness
predictor to guide optimization towards sequences
with high fitness. VLGPO achieves state-of-the-
art results on two different protein benchmarks
of varying complexity. Moreover, the variational
design with explicit prior and likelihood functions
offers a flexible plug-and-play framework that can
be easily customized to suit various protein design
tasks.

1. Introduction

Protein fitness optimization seeks to improve the function-
ality of a protein by altering its amino acid sequence, to
achieve a desired biological property of interest called “fit-
ness” — for instance, stability, binding affinity, or catalytic
efficiency. It requires searching through a vast combina-
torial space (referred to as the “fitness landscape”), where
the number of possible sequences grows exponentially with
the sequence length d, while only a small subset of these
sequences exhibit meaningful biological functionality (Her-
mes et al., 1990). Traditionally, protein fitness optimization
has been addressed through directed evolution (Romero &
Arnold, 2009), mimicking natural evolution in the labora-
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tory with a time-consuming, yet narrow random exploration
of the fitness landscape. This highlights the need for effi-
cient in-silico methods capable of exploring the space of
potential sequences, so as to prioritize promising candidates
for experimental validation.

Many different approaches exist, from generative mod-
els (Jain et al., 2022; Gruver et al., 2024; Notin et al.,
2022), evolutionary greedy algorithms (Sinai et al., 2020) to
gradient-based sampling strategies, such as Gibbs With Gra-
dients (GWG) (Grathwohl et al., 2021; Emami et al., 2023)
and smoothed GWG variants (Kirjner et al., 2023). In gen-
eral, these methods are challenged by the high-dimensional,
sparse and discrete nature of the fitness landscape, charac-
terized by ruggedness (Van Cleve & Weissman, 2015) due
to epistasis as well as holes due to proteins with very low
fitness (Johnston et al., 2023; Sinai & Kelsic, 2020). To deal
with the inherently discrete nature of amino acids, compu-
tational methods tend to rely on discretized processes, and
thus must cope with issues such as non-smooth gradients
and the vast diversity of possible sequences (Kirjner et al.,
2023; Frey et al., 2023).

Here we look at the problem from a different perspective:
instead of relying on a token-based sequence representation,
we embed sequences in a continuous latent space and learn
the corresponding latent distribution in a generative manner.
In this way, patterns and relationships can be captured that
are difficult to model in the original discrete space, espe-
cially if one only has access to a small data set containing
only a few thousand mutations of a protein.

To construct a prior distribution over latent protein se-
quences, we leverage flow matching (Lipman et al., 2023;
Liu et al., 2022), a powerful generative modeling scheme
that learns smooth, continuous representations amenable to
gradient-based sampling and optimization. The prior is then
integrated into a variational framework, making it possible
to guide the search towards regions of high fitness with a
fitness predictor in the form of a neural network, trained
on a limited set of sequence mutations with associated fit-
ness labels. See Figure 1. The versatility of the variational
framework means that it can easily be tuned to different
protein optimization tasks by suitably adapting the prior and
the guidance function. We validate VLGPO on two public
benchmarks for protein fitness optimization in limited data
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Figure 1. Overview of VLGPO sampling. The central section illustrates the VAE framework, showcasing protein sequences, their latent
representations z, and the approximate posterior distribution. While the upper section depicts unconditional sampling from the prior
p(z) using flow matching in the latent space, the lower section illustrates the modifications introduced by VLGPO during sampling.
We additionally incorporate a likelihood term p(y|x) to condition on the fitness y, enabling sequence generation from the posterior
distribution p(z|y) and facilitating sampling from high-fitness regions (as shown by the shifted and reshaped distribution).

regimes, namely Adeno-Associated Virus (AAV) (Bryant
et al., 2021) and Green Fluorescent Protein (GFP) (Sark-
isyan et al., 2016), as suggested by (Kirjner et al., 2023).

To summarize, our contributions are:

* We introduce Variational Latent Generative Protein
Optimization (VLGPO), a variational framework for
protein fitness optimization that enables posterior sam-
pling of protein sequences conditioned on desired fit-
ness levels. Our method combines a learned prior and
a fitness predictor to effectively guide the optimization
towards high-fitness regions.

* We perform fitness optimization in a continuous latent
representation that embeds meaningful relations be-
tween discrete protein sequences. Within this latent
space, we employ flow matching to learn a generative
prior that enables efficient exploration of the fitness
landscape and thus facilitates the discovery of high-
fitness sequences.

* We demonstrate state-of-the-art performance on es-
tablished benchmarks for protein fitness optimization,
namely AAV and GFP, targetting in particular tasks of
medium and high difficulty in a limited data regime'.

'Source code available at
https://github.com/uzh-dgbm-cmi/VLGPO.

2. Related Work

We consider in-silico methodologies for protein fitness op-
timization at the sequence level, while emphasizing that
there is an extensive stream of research centered around
active learning frameworks, which iteratively integrate com-
putational predictions with experimental validations (Yang
etal., 2025; Lee et al., 2024). While these methods are often
considered the gold standard due to their integration of ex-
perimental feedback, our contribution is confined to purely
computational strategies, thereby complementing existing
active learning approaches.

In a typical directed evolution setup (Romero & Arnold,
2009), biologists simulate nature in the laboratory by run-
ning multiple rounds of mutagenesis, searching through the
local landscape by sampling a few mutations away from
the current position in the sequence, effectively discovering
new sequences through random walks in the sequence space.
This process can be resource-intensive, as many mutations
do not enhance the fitness of the starting sequence, and the
vast number of combinations makes exhaustive exploration
impractical. Therefore, many techniques have been intro-
duced to address these challenges by employing surrogate
models to guide the search more efficiently (Sinai et al.,
2020; Brookes et al., 2019; Trabucco et al., 2021; Ren et al.,
2022). For instance, Adalead (Sinai et al., 2020) uses a
black-box predictor model to inform a greedy algorithm to
prioritize mutations that are more likely to improve protein
fitness.
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Moreover, generative methods have been explored for
sequence generation. For instance, GFlowNets (GFN-
AL) (Jain et al., 2022) are designed to sample discrete
objects, such as biological sequences, with probabilities
proportional to a given reward function, facilitating the
generation of diverse and high-quality candidates. Further,
discrete diffusion models have been used for sequence sam-
pling, where gradients in the hidden states of the denoising
network help to guide the sequence design (Gruver et al.,
2024). Alternatively, a walk-jump algorithm was proposed
to learn the distribution of one-hot encoded sequences using
a single noise level and a Tweedie step to recover the sam-
pled sequences after MCMC sampling (Frey et al., 2023),
which was further extended using gradient guidance in the
noisy manifold (Ikram et al., 2024). Likewise, also GWG
proposes a strategy to obtain gradients for MCMC sam-
pling of discrete sequences (Grathwohl et al., 2021; Emami
et al., 2023). The method Gibbs sampling with Graph-
based Smoothing (GGS) builds upon this by additionally
regularizing the noisy fitness landscape with graph-based
smoothing (Kirjner et al., 2023).

Since the search space of protein sequences grows with se-
quence length, many works have started to recognize the
significance of a latent space (Praljak et al., 2023) or em-
bedding spaces that are used in large-scale protein language
models (Lin et al., 2023). LatentDE (Tran et al., 2024) for
instance combines directed evolution with a smoothed space
which allows to employ gradient ascent for protein sequence
design in the latent space guided by a fitness predictor.

Within the diverse array of approaches to protein fitness opti-
mization, we propose a variational perspective that is known
for its efficacy in other domains like inverse problems and
image reconstruction. Specifically, we integrate a generative
flow matching prior that learns the distribution of protein
sequence mutations from a data set of protein sequences and
combine it with a fitness predictor. The integration of this
predictor helps to effectively guide a sampling process that
generates high-fitness samples. Moreover, we address the
problem within a compressed latent space, encoding protein
sequences into a latent representation that facilitates contin-
uous optimization techniques based on gradient information.
This approach enables efficient exploration of the protein
fitness landscape, leveraging the latent space to perform
guided sampling directly on the encoded sequences.

3. Method

3.1. Protein Optimization

Let € V¥ represent a protein sequence, with dimension-
ality d corresponding to the number of amino acids chosen
from a vocabulary V of 20 amino acids. Protein fitness
optimization seeks to find a sequence x that maximizes a

specific fitness metric y := f(z) with y € R, which quanti-
fies desired protein functionality such as stability, activity,
or expression.

Therefore, we work with paired data S = {(z;, )},
(note that S is only a subset of the entire data S*, see
Table 2) and we use the parameterized convolutional neural
network (CNN) g : V¢ — R (Kirjner et al., 2023) to infer
the fitness for a given sequence. Specifically, we employ g
and g; as predictors, which are trained on a small subset
of the data (see Section 4.1) without and with graph-based
smoothing, respectively. Additionally, we use g, as an
in-silico oracle for the final evaluation, trained on the entire
paired data set S*. Note that all models share an identical
architecture, differing only in their respective weights
which we re-use without further training.

Building on the predictive framework for estimating
protein fitness, we now turn our attention to creating new
sequences that may exhibit desirable properties. Generative
modeling provides a powerful approach for navigating the
vast sequence space, offering a data-driven way to propose
candidate proteins beyond those observed in the training
set. In the following, we introduce generative models and
discuss how they can be leveraged to discover novel protein
sequences with optimized fitness.

3.2. Generative Modeling

A recent class of generative models, known as diffusion
models (Ho et al., 2020; Song et al., 2021; Sohl-Dickstein
et al., 2015), has shown remarkable success in generating
high-quality data across various domains. These models
work by progressively transforming simple noise distribu-
tions into complex data distributions through a series of iter-
ative steps. During training, noise is systematically added to
the data sample x at varying levels, simulating a degradation
process over time ¢t. The model ¢y is then tasked with learn-
ing to reverse this process by predicting the added noise € for
x; at each step, effectively reconstructing the original data
from the noisy observations. In detail, a model is trained
to predict the added noise € at each step by minimizing the
objective

‘c(e) = E:UNP(ZIJ),tNM[UJ],ENN(O,I) |:||6 - 69($t7 t)||2 .

Flow Matching. A more recent approach to generative
modeling is given by the versatile framework of flow match-
ing (Lipman et al., 2023; Liu et al., 2022). Rather than
removing noise from data samples, flow matching aims to
model the velocity of the probability flow ¥,, which gov-
erns the dynamics of how one probability distribution is
transformed into another over time. By learning the velocity
field u, of the probability flow, the model vg ; captures the
evolution of a simple base distribution at ¢ = 0 into a more
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complex target distribution p(z) at ¢ = 1, directly model-
ing the flow between them. Since the velocity field w; is
intractable, it was shown in (Lipman et al., 2023) that we
can equivalently minimize the conditional flow matching
loss:

minEr z, o [506.4(Ve(20)) = (@1 = 20)[*], (1)

where t ~ Ujg 1], 1 ~ p(x) and 2o ~ N(0,I), and the
conditional flow is given by ¥, (zg) = (1—t)zo+tx;. Once
trained, samples can be generated by numerical integration
of the corresponding neural ordinary differential equation
(ODE) with t € [0, 1]:
d

E\Ilt(ac) = vg 1 (T(x)). )
Our aim is to learn a flow-based generative model that ap-
proximates the distribution of sequence variants of a protein
p(z). We then seek to leverage this model in order to gen-
erate sequence variants with high protein fitness through
guidance, as explained in the following.

3.3. Classifier guidance

Diffusion and flow-based methods can be guided by the
log-likelihood gradient of an auxiliary classifier during gen-
eration, which enables conditional sampling (Dhariwal &
Nichol, 2021). In detail, our goal is to sample from a con-
ditional distribution p(z|g,(z) = y), where g4 represents
the predictor and y denotes the desired fitness value. We
therefore adopt the framework of classifier guidance which
allows for a decomposition of p(x|y) ~ p(y|z)p(z). Thus,
we guide the sampling process by using the gradient of the
predictor g, (x) with respect to the input sequence z. By
introducing this gradient into the generative process, we can
bias the sampling trajectory towards regions of the distribu-
tion that are more likely to yield sequences with the desired
fitness value. The velocity field vy ; in the generative frame-
work is modified to incorporate this guidance, yielding the
following variational update:

vo,t(z[y) = vo,¢(2) + ;Va log p(y|), ©)

where V, log p(y|z) ~ =1V, |9 (z) — y||* represents the
gradient of the log-likelihood of a sequence x having desired
fitness y and oy is a scheduler dependent constant (Zheng
et al., 2023). Given the goal to maximize the fitness value of
generated sequences, one could also set the gradient of the
log-likelihood to $V,|ge ()|, or a similar suitable form.
Both approaches perform very similar in practice. In this
work, we chose the first version to demonstrate the possibil-
ity of steering sequences toward specific fitness values.

For the classifier guidance we use the trained CNN-based
predictors gy and the smoothed g; from (Kirjner et al.,

2023). Note that for guiding the process towards the highest
fitness, y is simply set to 1, which represents the highest
fitness in the normalized fitness spectrum.

3.4. Latent space representation

So far, we introduced a general framework that in theory
allows for sampling from a learned distribution of protein
sequences. However, these sequences represent proteins that
are combinations of a discrete set of amino acids. As a re-
sult, the underlying distribution of these sequences is likely
sparse and complex, making it difficult to approximate or
directly sample from in its original form. To overcome this
limitation, we operate in an embedded latent space, where
protein sequences are encoded as continuous representa-
tions. This is achieved by a VAE framework (Kingma &
Welling, 2022), which maps discrete sequences to a con-
tinuous latent space through an encoder &£ : V¢ — R and
reconstructs them back to the original sequence space us-
ing a decoder network D : R! — RVl where | << d.
Because of the discrete nature of amino acid tokens, the de-
coder produces logits, which are then mapped to tokens via
an argmax operation. The training objective of the employed
(B-VAE (Higgins et al., 2017) is given by the weighted Evi-
dence Lower Bound (ELBO):

mIn K q, s10) ~log Pu(2]2) + AKL(qp(2]2)Ip(2)), 4)

where due to the discrete tokens — log p,, (z|z) simplifies to
the cross-entropy loss in our case.

Note that while the VAE is trained with variational inference,
VLGPO goes further by introducing additional generative
modeling components: flow matching as described in Sec-
tion 3.2 and classifier-guided sampling in Section 3.3. We
show how these extensions refine the generation and help to
better control it.

3.5. Variational Latent Generative Protein Optimization

From here on we will use the building blocks introduced ear-
lier to describe our proposed VLGPO approach. We start by
using our respective sequence data x ~ p(z) to train a VAE
with encoder £ and decoder D that compresses the higher-
dimensional discrete protein sequences into a continuous
latent space representation z ~ p(z|x). In order to model
and sample from the learned latent space in an effective way,
we train a flow matching model vy ; to learn the probability
flow dynamics in the latent space. This network captures
the transformation between a simple base distribution (e.g.,
Gaussian noise) at ¢ = 0 and the complex latent distribution
of protein sequences at t = 1. By integrating the learned
flow from ¢ € [0, 1], we can efficiently generate new latent
representations z;, which can subsequently be decoded back
into protein sequences via the VAE decoder, resulting in
x ~ py(x|z1) = D(21), similar to (Esser et al., 2024).
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Algorithm 1 VLGPO sampling
Require: K, J,y, oy
1: Initialize zg ~ po(2) := N(0,1)
2: Set step size At < -
3: fork=0to K —1do

4:  t<+k-At

5: Zé — 2zt + At ’Ug’t(Zt)

6: forj=0toJ —1do

7: 2121+ (1 —t — At)vg i (2])

8: 2y 20— $ Vo llge(D(21)) — yl1?
9:  end for

10: Zt+AL S Z;

11: end for

12: return z = D(z1)

Sampling from the posterior. Instead of merely sampling
from the sequence distribution p(x), we also seek to gen-
erate high-fitness sequences. To achieve this, we condition
the sampling process on a fitness score y, ideally set to the
maximum value y = 1, which is estimated by a predictor
§ = go(x).

Although incorporating the likelihood term into the gradient,
as shown in Equation (3), may appear straightforward, it
is actually challenging because it becomes intractable due
to the time-dependent nature of the diffusion/flow model.
Moreover, explicitly including this term can push the gener-
ated samples off the current manifold related to time point
t (Chung et al., 2022). Inspired by (Chung et al., 2023;
Ben-Hamu et al., 2024), we employ a scheme that evaluates
the likelihood at 21, while the gradient of the likelihood is
calculated at x;, which has the effect of constraining the
update to the same manifold. Therefore, at each of the K
sampling steps the model estimates 27 (Line 7, Algorithm 1)
which is decoded to z1, the denoised version of the current
decoded sample z, using the learned flow model vg ;. The
likelihood is then evaluated at Z; to reflect the target data
distribution. However, the gradient of the likelihood, which
guides the generative process, is computed with respect to
x4, leading to backpropagation through vy ;. Furthermore,
as the predictor g4 was trained in sequence space, our likeli-
hood function changes to

1 .
Vo logp(yler) ~ 5V llgs(D(2)) —ull*,

where we additionally have to backpropagate through the
decoder. The pseudocode of our VLGPO can be found
in Algorithm 1, a detailed visualization of the sampling
scheme is reported in Figure 2. The hyperparameters .J
and o, denote the number of gradient descent steps on the
likelihood and the guidance strength, respectively.

4. Experiments
4.1. Data Sets

We adopt the medium and hard protein optimization bench-
marks on AAV and GFP from (Kirjner et al., 2023). Given
the full data set S*, the task difficulty is determined by
(i) the fitness percentile range of the considered sequences
(20 — 40 for medium, < 30 for hard) and (ii), the required
gap of mutations to reach any sequence of the 99 fitness
percentile of S* (a gap of 6 mutations for medium, 7 muta-
tions for hard), see Table 1.

Table 1. Task definition.

Task Range % Gap
Medium 20-40 6
Hard <30 7

Together, this results in four different tasks described in
Table 2, each of which only sees a limited number of N
sequences in a limited fitness range. The idea of protein
fitness optimization is to enhance these sequences to higher,
previously unseen fitness values. The setting reflects re-
alistic scenarios in terms of data set sizes. The diversity
(Appendix A.2) in the training data sets of the four tasks
is quite high: for GFP (medium) it is 14.5, for GFP (hard)
16.3, for AAV (medium) 15.9, and for AAV (hard) 18.4. On
the other hand, the diversity within the top-performing (99"
percentile) sequences of the full data set S* is 4.73 for GFP
and 5.23 for AAV.

Table 2. GFP and AAV data sets with number of data samples [V,
median normalized fitness scores and fitness range.

Task N

Fitness 1  Fitness Range

GFP Medium 2828 0.09 [0.01,0.62]
GFP Hard 2426 0.01 [0.0,0.1]

AAV Medium 2139 032 [0.29, 0.38]
AAV Hard 3448 0.27 0.0,0.33]

For in-silico evaluation of the generated sequences with
the oracle g, we use the median normalized fitness, di-
versity and novelty following (Jain et al., 2022), see Ap-
pendix A.2. The oracle was trained on the complete DMS
data with 56,086 mutants for GFP and 44,156 mutants for
AAV. While diversity and novelty are reported in evaluation,
no definitive higher or lower values are considered superior
for a sequence. Note that y,i, and y,.x from the entire
data set S* are used for both GFP and AAV to normalize
fitness scores to [0, 1].
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Figure 2. Schematic depiction of classifier guidance, with J = 1 and K = 6. Grey lines represent the latent manifolds at different time
steps t, the blue line marks the trajectory of the maximum likelihood. Solid arrows indicate how the latent evolves over time. Left: Naive
guidance with likelihood gradients V., computed directly at z; pushes the sample off the manifold. This error accumulates, as indicated
by the purple regions. Right: Guidance with manifold constraint, as employed in VLGPO (Algorithm 1), converges to a valid sequence
with fitness y. Solid arrows again denote the evolution of the latent, dashed arrows indicate the flow posterior sampling scheme that
ensures the latent stays on the manifold when applying the likelihood gradient.

4.2. Implementation Details

For training, we start by learning the VAE to compress the
sequence token input space (d = 28 and d = 237 for AAV
and GFP) to [ = 16 and [ = 32. A learning rate of 0.001
with a convolutional architecture and 5 € {0.01,0.001} for
AAV and GFP is used for training the encoder £ and decoder
D in Equation (4), also see Appendix B.2. To learn the prior
distribution of embedded latent sequences z = £(x) using
flow matching, the 1D CNN commonly used for denoising
diffusion probabilistic models (DDPMs)? is employed. A
learning rate of 5e-5 and a batch size of 1024 were used
to train vg ¢ for 1000 epochs. All VAE and flow matching
models are always trained under the limited-data setting as
listed in Table 2.

At inference time, we follow the procedure outlined in Algo-
rithm 1 to generate samples. The predictors g4 and g (for
details, see Appendix A.1) are re-used without any further
training (Kirjner et al., 2023). We start from zg ~ N (0, I)
and use K = 32 ODE steps to integrate the learned flow
until we obtain z;. To optimize sequence fitness, the con-
dition y = 1 is selected for all samples. The parameters
oy and J are determined via a hyperparameter search, as
shown in Figure 3 and discussed in detail in Appendix B.4.
Ultimately, they modulate the trade-off between increas-
ing fitness and maintaining diversity. After generating 512
samples z; to encourage sampling from the entire learned
distribution, they are decoded using x = D(z;). Potential
duplicates are then filtered out, and the top-k (kK = 128)
samples, ranked by the predictor (g4 or g 3 respectively),
are selected. Note that also the predictors g4 and g for

https://github.com/lucidrains/
denoising-diffusion-pytorch

each setting, used for classifier guidance and for ranking the
samples, are trained only on the data sets listed in Table 2.

For evaluation of the generated samples, we use the or-
acle g, as in-silico fitness estimate, see Appendix A.l.
The oracle is directly sourced from (Kirjner et al., 2023)
and is the only model that was trained using the en-
tire data S*. For sampling following Algorithm 1, we
use g4 and compare VLGPO to GWG (which also uses
the same trained predictor), and the identical smoothed
predictor g5 in VLGPO to GGS (Kirjner et al., 2023).
We benchmark against the respective baselines, namely
GFlowNets (GFN-AL) (Jain et al., 2022), model-based adap-
tive sampling (CbAS) (Brookes et al., 2019), greedy search
(AdaLead) (Sinai et al., 2020), Bayesian optimization (BO-
gei) (Wilson et al., 2017), conservative model-based opti-
mization (CoMS) (Trabucco et al., 2021) and proximal ex-
ploration (PEX) (Ren et al., 2022). Moreover, we investigate
the performance of the recently introduced gradient-guided
walk-jump sampling algorithm (gg-dWJS), which extends
the walk-jump sampling framework originally developed
for antibody sequence design (Ikram et al., 2024; Frey et al.,
2023). Because the available source code was not directly
compatible with the data sets in Table 2, we adapted our
existing model architectures for implementation. We then
performed a grid search over sampling parameters, followed
by top-k sampling for each task, to ensure a fair comparison.

4.3. Results

We compare VLGPO as illustrated in Algorithm 1 for the
four tasks in Table 2 by averaging over five seeds and com-
puting the median normalized fitness, diversity and novelty
(see Appendix A.2). The results reported in Table 3 and Ta-
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Figure 3. Grid search for median fitness depending on sampling parameters a;; and J for the different tasks using the predictor g4. In
general, higher values of «; and J, corresponding to strong classifier guidance, yield higher predicted fitness values.

ble 4 for GFP and AAV respectively, demonstrate the fitness
improvement of VLGPO with both predictors (g, and g;)
over all other benchmarked methods. In particular, VLGPO
shows clear fitness improvement over GWG (which uses the
same predictor g4) and GGS (which uses the same predictor
93)- Moreover, the performance difference between our
method and GWG (case of using non-smoothed predictor
gs) further highlights the robustness of our approach in lim-
ited data regimes and supports the advantage of the guided
flow matching prior in the latent space.

When it comes to diversity and novelty, there is no clear
definition of what is better — higher or lower scores (Kirjner
et al., 2023). In general, we observe that reported values of
VLGPO are in line with competing methods. Moreover, the
variations between different methods in terms of diversity
and novelty are significantly larger in GFP than in AAV.
That discrepancy may arise due to GFP sequences being
longer, thus representing a sparser and higher-dimensional
search space that makes the protein harder to optimize. Inter-
estingly, the sequences in the 99 fitness percentile, which
are on the top end of high-fitness sequences, show a diversity
of 4.73 for GFP and 5.23 for AAV, which are approximately
comparable to our results in Table 3 and Table 4, except for
AAV hard. In practice, the smoothed predictor g p reduces
the diversity within the generated sequences for both GGS
and VLGPO. Additionally, more samples tend to collapse
to the same decoded sequence, likely due to the smoother,
less distinct gradients.

While gg-dWIS is conceptually similar to VLGPO, its per-
formance on both GFP and AAV (hard) does not fully align
with our findings. We hypothesize two main reasons for
this discrepancy. First, the GFP data set (Table 2) is rel-
atively small and limited to mutations of a single protein,
posing a challenge for methods that rely on one-hot en-
coding. Although gg-dWJS performs well on AAV, the
one-hot-encoded space becomes extremely sparse for the
longer GFP sequences (d = 237), causing many generated
samples to collapse onto identical sequences. Second, the
discriminator model acting as the guidance for gg-dWJS

(analogous to our predictor gg) is trained in the noisy one-
hot-encoded space of sequences with a single noise level,
which limits its predictive capabilities.

4.4. Fitness Extrapolation

Table 2 illustrates the limited fitness range of the sequences
in each task, whereas protein fitness optimization aims to
sample sequences with higher fitness values. Because the
available data set is small, extrapolating to these high-fitness
sequences during sampling becomes especially challenging.
The following experiment examines how much the oracle-
evaluated fitness 14 (provided by g,) deviates from the
target fitness y, which is used as an input to the sampling
in Algorithm 1. Thereby, we compare two approaches:
our variational method VLGPO and a directly learned poste-
rior p(z|y) via fitness-conditioned flow matching vg 4 (2, y).
The learned posterior does not need the predictor g for clas-
sifier guidance, as it learns the conditional distribution in
the latent space end-to-end. For a fair comparison, the raw
output without top-k sampling is applied. The results are
depicted in Figure 4 for GFP and AAV hard.

Due to the sparse data availability and the limited fitness
range, the evaluated fitness ¥, cannot be expected to pre-
cisely follow the required fitness y. Nevertheless, the results
in Figure 4 clearly demonstrate the advantage of classifier
guidance in VLGPO, whereas the direct posterior fails to
effectively exploit the given fitness condition. This gap is
most evident in the GFP hard task, where the training data’s
fitness range is only in [0.0, 0.1], making it difficult for the
learned posterior to extrapolate to higher fitness values. In
contrast, VLGPO leverages the additional gradient infor-
mation from the predictor g4, thereby overcoming these
limitations in higher-fitness regions. This highlights the
advantages of using a separate classifier for guidance in
domains where classifier-free guidance struggles to produce
high-fitness sequences.
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Table 3. GFP optimization results. Best score for fitness in bold, second-best underlined, and the results for our method (VLGPO) are

highlighted in grey.
Medium difficulty Hard difficulty

Method Fitness 1 Diversity Novelty Fitness 1 Diversity Novelty

GFN-AL 009+0.1 251+£05 213£22 01+£02 23.6+10 214+£42
CbAS 01400 97+£1.1 724+04 0.18+0.0 9.6 +1.3 7.8+04
AdalLead 05600 35+£0.1 20+£00 0.18+0.0 5.6 0.5 28+04
BOgei 020+£00 193+£00 00+£00 00£05 946+71 54.1 £ 81
CoMS 0.00+£0.1 133+25 192 + 12 0.0+£0.1 144+75 201 £3.0
PEX 047+£00 3.0+£0.0 14+02 0.0=£0.0 3.0+ 0.0 1.3£03
gg-dWIS 055+0.1 523+£34 163+£57 0.61£01 68056 448147
GWG 0.10+00 33.0+£08 128+04 0.0+£0.0 42+70 7.6 £1.1
VLGPO, predictor g5  0.87 £0.0 431+0.1 6.0+0.0 0.75£0.0 31£02 6.0+ 0.0
GGS 07600 37£02 50+£00 0.74+£0.0 3.6£0.1 8.0+0.0
VLGPO, smoothed g; 0.84£0.0 2.06+0.1 50+0.0 0.78 £+ 0.0 25402 6.0+ 0.0

Table 4. AAV optimization results. Best score for fitness in bold, second-best underlined, and the results for our method (VLGPO) are

highlighted in grey.
Medium difficulty Hard difficulty

Method Fitness 1 Diversity Novelty Fitness 1 Diversity Novelty

GFN-AL 0.20 £ 0.1 960+12 194+1.1 0.10+£0.1 11.6x14 19.6x1.1
CbAS 043+00 127£07 72£04 03600 144+07 86=+0.5
Adalead 046+00 850£08 28+£04 040=£00 853=£0.1 34+05
BOgei 038+00 152208 00£00 03200 17903 00=+0.0
CoMS 0.37 £ 0.1 101 £59 82+35 026£00 107+£35 10.0+238
PEX 040+00 280=£00 14+02 03000 28£00 13+03
gg-dWIS 048+00 948£03 42+£04 033+£00 143+£07 53404
GWG 043 +0.1 6.60+63 7.7+08 033+00 120+04 1224+04
VLGPO, predictor g5 0.58 £0.0 558+02 50+00 051£00 844+£02 78+04
GGS 0.51 £0.0 40+02 54+£05 060£00 45+£05 7.0+£0.0
VLGPO, smoothed g5 053 £0.0 496+02 50+£00 0.61+0.0 429=+0.1 6.2+04

4.5. Ablation Studies

We conduct an ablation study on the influence of manifold
constrained gradients in sampling (Line 7, Algorithm 1).
The results in Table 5 and Table 6 demonstrate the improve-
ment gained by estimating z; to compute the gradient of
the likelihood term.

Further, the performance of the directly learned posterior
p(z|y) was investigated. While this approach still performs
well for the medium tasks, it shows a larger performance
drop on GFP (hard), indicating that it cannot match the
explicit likelihood guidance provided by the fitness predictor
in our variational method VLGPO.

Table 5. Influence of manifold constrained gradient in sampling for
both predictors g and smoothed g and directly learned posterior
for GFP medium and hard tasks.

Medium Hard
Method Fitness 1 Fitness 1
VLGPO, predictor g4 0.87+0.0 0.75+0.0
w/o manifold constraint 0.81 £0.0 0.73 +0.0
learned posterior 0.83+0.1 044 £0.1
VLGPO, smoothed 95 0.84 +0.0 0.78 0.0
w/o manifold constraint 0.84 £0.0 0.67 £ 0.1
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Figure 4. Comparing evaluated fitness ¢ from the oracle g, with required fitness y using the directly learned posterior model (in the

same latent space) and our variational approach VLGPO.

Table 6. Influence of manifold constrained gradient in sampling for
both predictors g4 and smoothed g and directly learned posterior
for AAV medium and hard tasks.

Medium Hard
Method Fitness 1 Fitness 1
VLGPO, predictor g4 0.58 0.0 0.514+0.0
w/o manifold constraint 0.55 0.0 0.47 +0.0
learned posterior 055+0.0 044+0.0
VLGPO, smoothed 95 0.534+£0.0 0.614+0.0
w/o manifold constraint 0.52 £0.0 0.58 0.0

5. Discussion

We present VLGPO, a variational approach for protein
fitness optimization that enables posterior sampling of
high-fitness sequences. Our method operates in a learned
smoothed latent space and learns a generative flow match-
ing prior that imposes a natural gradient regularization, re-
moving the need for extra smoothing. Additionally, it in-
corporates a likelihood term through manifold-constrained
gradients that helps guiding the sampling process towards
high-fitness regions. VLGPO achieves clear fitness improve-
ments, with respect to the fitness of training sequences, but
especially when compared to all baseline and competing
methods.

The variational framework offers a versatile approach, as
its modular design allows replacing any of its components
as needed, such as the prior model, the predictor, or the
architectures. Future work could explore using embeddings
from pretrained protein language models (pLMs) instead of
the VAE, since such embeddings provide a more expressive
latent representation. However, this would require finetun-
ing the decoder to ensure faithful sequence reconstruction,

which can be prone to overfitting given the limited size of
employed data sets.

A limiting factor of our method lies in its hyperparameter
tuning requirements. We observe that hyperparameter selec-
tion becomes more critical for challenging tasks such as GFP
(hard), while it remains stable and robust for other tasks. Ad-
ditionally, the restriction of the benchmark to only AAV and
GFP is a limitation that should be addressed in future work.
Conceptually, VLGPO as well as competing approaches
can be extended to other proteins from FLIP (Dallago et al.,
2021) or ProteinGym (Notin et al., 2023).

Another important point is our reliance on in-silico eval-
uation, where we follow (Kirjner et al., 2023) in using a
trained oracle as the ground truth. This oracle was trained
on a significantly larger data set than the tasks presented in
Table 2 and can therefore be expected to serve as a good es-
timator. Nevertheless, actual experimental validation could
provide valuable insights into the applicability of VLGPO.
A complementary direction may be to design more idealised,
synthetic in-silico benchmarks that are nevertheless good
proxies for protein design (Stanton et al., 2024). Moreover,
additional metrics such as folding confidence or structural
stability could be added to obtain a more complete perspec-
tive beyond the fitness score (Johnson et al., 2023).
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A. Additional Methods
A.1. Fitness predictor and oracle

The fitness predictors g4 and g 3> as well as the oracle g,
are directly re-used from (Kirjner et al., 2023) without any
modifications. The authors use the identical 1D CNN ar-
chitecture with 157k learnable parameters for all networks,
which maps a one-hot encoded protein sequence to a scalar
value representing the predicted fitness. Our method VL-
GPO allows to replace all of these components by re-trained
models or alternative architectures, although it is known
that simple CNNs can be competitive in such data-scarce
settings (Dallago et al., 2021).

Since (Kirjner et al., 2023) does not explicitly report the final
performance of the in-silico oracle, we compute the Mean
Squared Error (MSE) on a subset of 512 randomly selected
samples from the ground truth data set S* to estimate its
reliability. The oracle’s predictions closely follow the target
fitness values, resulting in MSE values of 0.012240 for GFP
and 0.002758 for AAV.

A.2. Metrics

For the evaluation of the generated sequences, we use me-
dian fitness, diversity and novelty as described in (Kirjner
et al., 2023; Jain et al., 2022). The sequences are assessed
by the oracle g, that was trained on the full data set S* with
minimum and maximum fitness values yin and Ymax. The
median normalized fitness of sampled sequences x € X is
computed using

{gw(x) — Ymin

Ymax — Ymin

median(

: xGX}).

Diversity is defined as the median similarity within the set
of generated sequences by

median({dist(m,x') cx, ' € X, 1 # x’}),

using the Levenshtein distance as we are evaluating discrete
sequences. Finally, novelty considers the minimum distance
of the generated sequences x € X to any of the sequences in
the respective data set S that the generative flow matching
prior was trained on (see Table 2). Therefore, it is computed
using

medlan({glelg{dist(x,x) NS X}})
T#x
B. Additional Results
B.1. Fitness Extrapolation

The experiments on fitness extrapolation of generated se-
quences shown in Section 4.4 are complemented by the

additional task of AAV (medium) in Figure 5. It supports
the finding that the classifier guidance in combination with
the generative prior in our variational approach VLGPO
yields sequences whose predicted fitness yg¢ follow the con-
ditioned fitness y more closely than the directly learned
posterior model.

0.61 learned posterior p(z|y) o
—— VLGPO /

0.1+

02 04 06

Figure 5. AAV medium

B.2. Variational Autoencoder

The VAE embeds sequences into a latent space that yields
continuous gradients for sampling in Algorithm 1. Empiri-
cally, we choose [ = 16 and [ = 32 for AAV and GFP, since
further compression reduces the decoder D’s reconstruction
accuracy and harms sequence generation. Moreover, as the
medium and hard tasks are defined by a minimum number
of mutations from the 99™ fitness percentile of S*, a suffi-
ciently large latent dimensionality is required to retain all
relevant information.

We train a VAE for each task to achieve at least 80% re-
construction accuracy on a validation subset, balancing the
latent prior with 3. Table 7 shows these results. The lower
accuracy in AAV compared to GFP is due to larger effects
of mutations on shorter proteins (sequence length d). Since
the data sets (see Table 2) are very small, the Kullback-
Leibler (KL) divergence in Equation (4) is crucial to ensure
a Gaussian latent distribution. We can also sample from
the VAE and evaluate predicted fitness via g, (Table 7),
although median normalized fitness is lower than in Table 2.
This is expected, given the sparse latent space and the “hole”
problem of VAEs (Rezende & Viola, 2018).

B.3. Unconditional Sampling

In Algorithm 1 one can recover the unconditional sampling
case by setting o, = 0 and J = 0, thereby sampling exclu-
sively from the learned generative flow matching prior. As a
result, the classifier guidance in the likelihood term does not
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Figure 6. Grid search for diversity depending on sampling parameters «; and J for the different tasks.

Table 7. VAE reconstruction and sampling results.

Task Reconstruction Accuracy 1  Fitness 1
GFP Medium 97.0% -0.08
GFP Hard 96.8% -0.21
AAV Medium 80.4% 0.28
AAV Hard 87.8% 0.23

impact the sampling procedure. The median fitness values
of the generated samples, evaluated as usual by the oracle
gy, are shown in Table 8. Note that, in the absence of the
predictor g4 during VLGPO sampling, the flow matching
model effectively serves only as a prior without any fitness
conditioning, so no post-processing with top-k sampling is
applied for the sake of solely analyzing the prior model.

As shown in Table 8, the median fitness is lower than in
Table 3 and Table 4, both of which use VLGPO with classi-
fier guidance g4. However, it exceeds the median fitness of
the data sets S from Table 2, likely due to limited training
data and the lack of fitness information of the flow matching
prior. Moreover, the model may exhibit a mode-seeking
tendency, concentrating on modes that are easier to model.
While the averaged novelty aligns with expectations, di-
versity is much higher in the unconditional scenario, since
no classifier guidance steers samples towards higher-fitness
modes.

Table 8. Unconditional optimization results (ox = 0, J = 0).

Task Fitness 1 Diversity ~ Novelty
GFP Medium 0.224+0.1 189+25 62+04
GFP Hard 042+01 142+11 7.0+£00
AAV Medium 0.38+00 11.8+0.1 6.0+0.0
AAV Hard 028+0.0 156+02 80+£00

B.4. Sampling Parameters

The determination of the hyperparameters o; and J in VL-
GPO sampling is performed through a grid search across dif-
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ferent tasks. We keep «; constant for all steps ¢. In addition
to Figure 3, the resulting heatmaps for these two parameters
on diversity are shown in Figure 6. Overall, combining the
findings on predicted fitness and diversity it seems to be a
heuristic tradeoff to balance these metrics, unlike for GFP
(medium), which allows to choose both parameters high.
Likewise, for AAV (hard) and (medium) there appears to be
a broad range from which suitable parameter choices for a;
and J can be made. Only GFP (hard) displays substantially
compromised diversity very quickly (note the limited numer-
ical range displayed in the colorbar), hence we choose sig-
nificantly lower values a; = 0.02 and J = 5. For the other
tasks, we use the hyperparameter settings obtained from
the grid search experiments, i.e., a; € {0.97,1.2,0.56}
and J € {39,19,37} for AAV (medium), AAV (hard) and
GFP (medium). Nevertheless, we do not observe major
differences if these hyperparameters are adjusted slightly.

Finally, the influence of the number of ODE steps, which
directly corresponds to the sampling steps K, is examined.
This is shown in Figure 7, with the resulting fitness on the
left and diversity on the right. The fitness initially exhibits
an overshooting behavior, accompanied by a decrease in
diversity, but this effect stabilizes after approximately 10
sampling steps. Beyond this point, both metrics remain
relatively constant and stable with respect to the number of
sampling steps K, which is generally the desired behavior.
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Figure 7. Median fitness (left) and diversity (right) for all four tasks
depending on employed ODE steps K in sampling.



