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Abstract

Synthesizing programs from natural language descriptions is a challenging task.
In this paper, we leverage the power of transformer-based language models for
the task of program synthesis. We experiment with two variants of transformers
and showcase their superior performance than the existing SOTA models. We
also discuss the qualitative differences in the learned representation of these two
variants. Finally, we compared both these models through the lens of " degree of
memorization" and demonstrated that the vanilla transformer model has a higher
affinity towards memorizing the training data than the other variant.

1 Introduction

Recently, we witnessed a growing interest in synthesizing programs using natural language problem
descriptions. Moreover, the field of Natural Language Processing (NLP) is going through a significant
paradigm shift towards self-supervised learning, especially with the onset of massive transformer-
based models like GPT-3 [1]. Thus, some of the pertinent questions from the current context can be

“Can self-supervised learning paradigm provide near state-of-the-art program synthesis performance?”
We experiment with several variants of Transformer-based encoder-decoder models to showcase that
self-supervised models significantly outperform previous neural approaches like RNN and LSTM
based attention architectures [2, 3, 4]. We show that the transformer architecture uses relatively lesser
training text (only problem description and no I/O pairs) and is able to achieve higher performance
than traditional neural code generation models.

Language models based on attention mechanism have demonstrated greater abilities to generate
natural language text [5] and have been adapted to several modelling and reasoning tasks [6]. Also,
over the past decade, machine learning approaches have been applied to source code text to yield a
variety of new tools to support software engineering [7]. Combining these trends raises the question
of whether such models designed for natural language understanding and generation can be brought to
use in code synthesis. These models provide multiple benefits compared to traditional code generation
models. Firstly, it is not necessary for us to encode the grammar for the model, as the model learns
this implicitly from the provided training instances. Secondly, these models can be trained on a large
amount of data, so they can learn about how various code snippets interact with each other and the
idiosyncrasies of code descriptions. Finally, these language models allow us to consider a more
flexible type of program specification: classically, programs were specified using logical constraints
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or input-output examples; for modern language models, a program can be specified by a short natural
language description.

In this paper, we study how variants of Transformer language models perform when applied to the
synthesis of short programs written in general-purpose programming languages like LISP. Our work
is especially focused on ALGOLISP dataset. Other popular synthetic datasets include ALGOLISP [4],
NAPS [8], Karel [9], WikiSQL [10] and dataset of bash commands [11]. To the best of our knowledge,
except for NAPS [8] and Karel [9], no similar code synthesis dataset exists that contains problem
description along with the test cases and other meta information. Popular datasets like JAVA [12],
WikiSQL [10] only contain problem description and the corresponding code, leading to limitations in
evaluating structurally different but logically similar synthesized codes. Although NAPS and Karel
contains all the required meta-information, Karel does not deal with any natural language; it is a
robotic programming language. On the other hand, in our internal data analysis, NAPS shows several
data inconsistencies1 such as the presence of a long sequence of characters like abcdabcd, which
conveys no meaning and inconsistent tokenization of sentences.

2 BASELINE AND PROPOSED MODELS

In this section, first we discuss the baseline models present for our work, then we discuss our
implementation of the neural model AUTOCODER to address the automatic code generation problem.

2.1 Baseline Works

SketchAdapt: SketchAdapt [3] (hereafter ‘SA’) synthesizes programs from textual descriptions as
well as input-output test examples. It combines neural networks and symbolic synthesis by learning
an intermediate ‘sketch’ representation. It has been demonstrated empirically that SA recognizes
similar descriptive patterns as effectively as pure RNN approaches while matching or exceeding
the generalization of symbolic synthesis methods. It is also the state-of-the-art DSL-based code
generation model.

SAPS: Structure-Aware Program Synthesis [2] (hereafter, ‘SAPS’) adapts the program synthesis
problem under the Neural Machine Translation framework by employing a bi-directional multi-layer
LSTM network for generating code sequence corresponding to textual descriptions.

Seq2Tree: The Seq2Tree [4] model consists of a sequence encoder and a tree decoder. The sequence
encoder reads the problem description, and a tree decoder augmented with attention computes
probabilities of each symbol in a syntax tree node one node at a time.

2.2 AUTOCODER

Recently, Transformers [13] have shown state-of-the-art performance for several Natural Language
Processing tasks [14, 15, 16], including machine translation, classification, etc. Inspired by its success,
we propose a transformer-based code-generation model to generate code based on natural language
descriptions automatically. Specifically, the model encodes the textual description using multiple
layers of encoders and then decodes a program token-by-token while attending to the description.
The basic pipeline of our proposed model is analogous to the simpler sequence-to-sequence models
that are employed for similar generation tasks. These models usually have an encoder-decoder
architecture [17, 18]. The encoder maps an input sequence of symbol representations consisting of
tokens x1, x2, · · · , xn to intermediate representation which the decoder then generates an output
sequence y1, y2, · · · , ym of symbols one element at a time. At each step, the model is auto-regressive,
consuming the previously generated symbols as additional input when generating the next output
symbol. As depicted in Figure 1, we utilize the core Transformer [13] model implementation and
propose significant structural alterations in the attention module to develop AUTOCODER.

The Encoding and Decoding Layers: We keep the number of encoder layers (=6) the same as the
core Transformer model. Similar to core implementation, we keep the output dimension size as 512
in all the encoding sub-layers of the model as well as in the embedding layers. The decoder side is
also stacked with six identical layers. In Figure 1, the sub-layers of encoder and decoder layers are
described using standard notations.

1The NAPS dataset is very noisy due to crowd-sourcing.
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Figure 1: Transformer model. (b) The self-attention mechanism. (c) The gated-attention mechanism.

The different Attention Mechanisms: Attention mechanisms have become an integral part of
sequence modeling tasks, allowing modeling of dependencies without regard to their distance in the
input or output sequences. Specifically, we experiment with two attention mechanisms: (i) vanilla
self-cross attention and (ii) gated cross attention. The Vanilla self-cross attention is the basic attention
mechanism used in traditional transformer models [13]. The self-attention module relates different
positions of an input sequence in order to compute a representation of the input sequence. This
module is present in both encoder and decoder layers. The cross attention module relates different
positions of an input sequence to the output sequence. This module connects the encoder and decoder
components. We term AUTOCODER variant that uses the standard self-cross attention module as
VANILLA-AUTOCODER (VAC).

fSA = fdot(Qe,Ke, Ve) = softmax

(
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T
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d

)
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fCA = fdot(Qe,Kd, Vd) = softmax

(
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T
d√

d

)
Vd (2)

where fdot represents scaled dot product attention [13], (Qe,Ke, Ve) denotes encoder sequence
representations in terms of query, key and value respectively, and (Qd,Kd, Vd) denotes decoder
sequence representation in terms of query, key and value respectively.

The gated cross attention mechanism filters out the unnecessary part of the sequence by attending
over the generated cross attention scores fCA and determining the relevant attention. The gated
cross attention module (fGA) uses a sigmoidal gating mechanism for filtering out irrelevant cross
attention while decoding the output. It generates an information vector(i) which carries relevant
representation of the input vector and an attention gate (g) that filters the relevant attention scores.
Now this filtered attention is applied to the information vector to obtain attended information, or the
relevant information.

fGA = σ(W g
q Qe +W g

v fCA + bg)

⊙(W i
qQe +W i

vfCA + bi)
(3)

σ denotes sigmoid activation, ⊙ denotes element-wise product, W i
q and W i

v represent weight matrices
corresponding to value query and value at information vector, respectively, W g

q and W g
v represent

weight matrices corresponding to value query and value at attention gate, respectively. Note that,
{W i

q ,W
i
v,W

g
q ,W

g
v } ∈ Rd×d and {bi, bg} ∈ Rd. Figure 1c shows the gated cross-attention archi-

tecture. We term AUTOCODER variant that uses gated cross attention as GATED-AUTOCODER
(GAC).

2.3 AUTOCODER Implementation Details

The AUTOCODER variants are implemented using open-source OpenNMT tool [19]. All experiments
run on a four NVIDIA Tesla V100 GPU. During training, we keep six identical layers and eight
attention heads for the encoder as well as the decoder. Keeping in mind the smaller vocabulary
size of 260, we keep word embedding size equal to 64 dimensions. The model is trained for
300,000 steps with a batch size of 100 for the entire dataset. Adam optimizer [20] with β1 = 0.9,
β2 = 0.98 and ϵ = 10−9 is used. With an initial learning rate of 2, we apply Noam’s Decay [21] with
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warmup_steps equal to 8000. We use ReLU as activation function and a gradient accumulation
factor of 2. For regularization, dropout is applied with probability = 0.1, and label smoothing is
applied in loss function with ϵls = 0.1. The model implementation and evaluation scripts are available
at https://tinyurl.com/4ut7hez5.

3 Result and Discussion

In this section, we will describe the evaluation metric used to evaluate these code generation models;
then we discuss the overall performance and adversarial performance of the transformer and its
variant.

3.1 Evaluation Metric

We compute accuracy scores (A) for performance evaluation defined as A = n
N , where n is the

number of problems for which the generated code passes all the 10 test cases and N is the total
number of problems in the holdout test set, this metric helps us to evaluate structurally different but
logically similar synthesized codes.

3.2 Quantitative Result

Table 1 compares AUTOCODER variants against baseline systems. Both variants outperformed the
previous three baselines on the overall accuracy. Among the two variants, VAC performed marginally
better than GAC. To summarize, the results showcase that even simple Transformer variants can result
in high gains in code synthesis. However, these scores do not reflect the brittleness of the model.

Model Accuracy Scores
SA 0.958
SAPS* 0.929
SEQ2TREE* 0.858†

VAC 0.968
GAC 0.963

Table 1: Comparing state-of-the-art code generation models. * represents accuracy scores taken,
verbatim, from the corresponding papers due to unavailability of code or pretrained model. †

represents accuracy scores on the original test set.

3.3 Qualitative Results

In our analysis, we found that if variables b and d are interchanged, the model fails to recognize this
change and outputs code as if no change has been done on the input sentences. We observe that one
of the possible reasons for the poor performance of these models is because of the incorrect/poor
cross attending. For example, the variable a in the output is not attending the corresponding variable
a in the problem description. We suspect that this incorrect cross attendance adds brittleness to the
system and can easily break under adversarial settings. Consider the following program description
and the corresponding code:

Program Description: consider a number a , compute individual digits of a ?
Code : ( digits ( a ) )

The above mentioned program description conveys the high-level idea to compute digits of a number
‘a‘, which can be minimalistically written in just four tokens:
Minimalistic Description: compute digits of a.

We observe that the model does not pay attention to these important words while predicting the output
rather focuses on the other redundant tokens. Figure 2 shows the attention score of each token. It
is evident that the variable ‘a‘ in the output is not attending the corresponding token ‘a‘ in the
problem description but on other tokens like ‘digits’. We suspect that since the variable ‘a‘ is
now associated with the token ’digit’, changing the variable name from ‘a‘ to ‘b‘ in the input
statement won’t reflect in the synthesized code because of poor cross-attention.
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Figure 2: Visualization of Decoder Attention. The variable ‘a’ in the output is not attending the
corresponding token ‘a’ in the problem description. We take avg of all attention heads in the fourth
layer since it has focused attention while most of the other layers had very broad attention as
demonstrated in [22].

We also observe that VAC was able to significantly perform better for problems involving "finding
the length of segment/array", "doing boolean arithmetic operation like greater than, less than, equals
to and not equals to" on the other hand for the problems related to "central tendency (finding mean or
median) of array elements" or "finding common subsequence between two arrays". GAC was able to
outperform the other variant significantly. Some other classes like "sorting problems" and "problems
related to palindrome sequences" has very high accuracy(> 99%) for both the variants. And finally,
there are problems related to "manipulation of array head" in which both the variants have high error
rates. We also observe that, in the case of longer sequences, the error rate is higher for VAC than
GAC. However, GAC made frequent mistakes in synthesizing shorter programs.

Although it is evident from Table 1, that overall VAC has higher accuracy than GAC, i.e. more
number of correct program has been synthesized in case of VAC. However, we argue that there are
significant differences in the learned representation of both variants. On carefully analyzing the
output of both the variants, we observe that more number of structurally different codes(SDC) were
synthesized by GAC which passes all the test cases than VAC.

SDC = total number of ‘correct programs‘ − total number of ‘exact match programs‘

where ‘correct programs‘ are those programs that pass all the test cases while ‘exact match programs‘
are those that exactly match the ground truth code. In total, 69 and 52 structurally different codes
were synthesized by GAC and VAC. The SDC value has a negative correlation with the "degree of
memorization" of training data. Higher the SDC value, lower is the degree of memorization. The
above result indicates that the vanilla transformer model (VAC) tends to memorize the training data
that has been fed to it and hence is more susceptible to adversarial perturbations. Moreover, a similar
trend was observed in the case of ‘almost correct program‘ (we consider the program to be almost
correct when a program passed 50% of the test cases) with 70 and 58 in case of GAC and VAC
respectively. Both the variants were able to learn the grammar of ALGOLISP to a very high precision,
which is evident from the fact that nearly zero programs were syntactically incorrect or had runtime
errors during the inference.

4 Conclusion

In this paper, we experiment with two variants of the transformer model, both variants able to
outperform the previous state-of-the-art model on ALGOLISP dataset. We finally demonstrate that the
learned representation of both the variants was significantly different from each other and concluded
that the vanilla transformer model tends to memorize the training data more than the gated-attention
transformer.
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