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Abstract
Foundation models (FMs) have revolutionized
computer vision, enabling effective learning
across different domains. However, their per-
formance under domain shift is yet underex-
plored. This paper investigates the zero-shot
domain adaptation potential of FMs by compar-
ing different backbone architectures and introduc-
ing novel domain-aware components that lever-
age domain related textual embeddings. We pro-
pose domain adaptive normalization, termed as
Domino, which explicitly leverages domain em-
beddings during fine-tuning, thus making the
model domain aware. Ultimately, Domino en-
ables more robust computer vision models that
can adapt effectively to various unseen domains.

1. Introduction
Computer vision has made tremendous progress in recent
years, thanks to the development of powerful neural net-
work architectures and large-scale datasets (Deng et al.,
2009; Simonyan & Zisserman, 2014; Long et al., 2015; Ron-
neberger et al., 2015; Hao et al., 2020; Dosovitskiy et al.,
2020; Li et al., 2022; Schuhmann et al., 2022). However,
when faced with domain shift - a common problem in real-
world applications where the target domain has different
characteristics than the training data - the performance of
these models drops significantly. This is particularly prob-
lematic for tasks that require zero-shot domain adaptation,
where during training there is no sample available in the
target domain, though we might have an estimation of the
potential domains (Farahani et al., 2021; Liu et al., 2022).

Foundation models (FMs), have become pivotal in various
applications, from natural language processing to computer
vision. Due to the large-scale pretraining, FMs have gen-
eralizable representations. Despite showing promising re-
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2University of Mannheim 3Max Planck Institute for Informatics
4Bosch Center for Artificial Intelligence. Correspondence to: Yu-
meng Li <yumeng.li@de.bosch.com>.

Published at ICML 2024 Workshop on Foundation Models in the
Wild. Copyright 2024 by the author(s).

Unseen domain (rain) Ground truth

Baseline Ours

Figure 1. Traditional segmentation models trained on
Cityscapes (Cordts et al., 2016) fail to make robust predic-
tions under adverse weather conditions (Sakaridis et al., 2021),
where the person is misclassified. By employing the proposed
domain-aware FM fine-tuning, our model can successfully detect
the person, potentially avoiding accidents.

sults on zero-shot classification tasks (Brown et al., 2020;
Oquab et al., 2023), it is yet challenging to employ these
models directly for dense prediction tasks, e.g., semantic
segmentation (see 1st row in Table 2), necessitating the need
of fine-tuning for the specific task. However, this will in-
evitably lead to knowledge forgetting and raise the question
of how robust the adapted models are under domain shifts.
Alternatively, Gong et al. (2023) proposed a prompt tuning
method for test-time model adaptation.

To investigate the zero-shot domain adaptation performance
of FMs, we first compare different FM backbone architec-
tures on the challenging semantic segmentation task. We
evaluate various vision backbones in Table 1, such as DI-
NOv2 (Oquab et al., 2023; Darcet et al., 2023), ResNet-50
and ResNetRS-420 (He et al., 2016; Bello et al., 2021),
CLIP-based fine-tuning methods leveraging MaskCLIP
(Dong et al., 2023), and Stable Diffusion (SD) (Rombach
et al., 2022) based fine-tuning, i.e., VPD (Zhao et al., 2023).
We observe that these models are generally not robust to
domain shifts, where there is a considerable performance
drop when tested on unseen domains.

We hypothesized that visual embeddings can vary consider-
ably with different domains, making the model vulnerable
to changes such as weather and lighting conditions. To mit-
igate this issue, we propose to incorporate textual domain
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embeddings and introduce domain adaptive normalization,
termed as Domino during fine-tuning. We employed CLIP
(Radford et al., 2021) to automatically extract the domain
embedding, eliminating the need for manual definition of
the domain concept. Further, we explicitly leverage the
domain embedding through Domino, making the model do-
main aware. Domino can effectively improve the model’s
generalization ability across different domains without re-
quiring data from the target domain during training (see
Figure 1).

Among all FM backbones, we observe that Stable Diffusion
delivers the best generalization performance. Therefore,
we employ it as the default backbone to test the proposed
Domino, where we observed a significant enhancement on
the model generalization capability with domain-aware fine-
tuning. Meanwhile, SD can not only serve as the backbone,
its generative nature benefits us to explore diverse synthetic
data potentially resembling the target domain, which helps
to close the domain gap. We discovered that with a proper
mixing ratio of real and synthesized data (see Table 3), the
model’s generalization performance can be further boosted.

In summary, we empirically study the generalization ca-
pability of different FM backbones. Further, we propose
a domain-aware fine-tuning strategy to explicitly leverage
the domain information, leading to more robust models,
especially when combined with diverse synthetic data.

2. Method
2.1. Preliminary

Stable Diffusion has demonstrated astonishing text-to-image
synthesis capability, thanks to their large-scale pretraining.
Naturally, it has learned rich multi-modal representations.
Recent work VPD (Zhao et al., 2023) has explored its po-
tential for downstream applications, e.g., depth estimation
and semantic segmentation. More specifically, they fine-
tune the denoising UNet and extract intermediate features
and cross-attention maps from it, which can provide se-
mantically meaningful features (Hertz et al., 2023; Li et al.,
2023a). Note that semantic classes are used as prompts for
semantic segmentation task, and a text adapter is introduced
as well. Further, a lightweight task-specific decoder taking
extracted features is incorporated.

Despite showing promising results on the in-domain evalua-
tion, it remains unclear how this model can perform under
domain shift. In other words, it’s not yet explored how the
prior knowledge of powerful Stable Diffusion can help the
downstream applications, which is of greater interest, and
the focus of this work. Additionally, we propose a novel
domain-aware fine-tuning strategy, where we extract the
domain embeddings with CLIP (see Section 2.2), and in-
corporate them into the fine-tuning pipe to enhance domain
awareness (see Section 2.3).

Figure 2. Trainable CLIP image encoder integrated into VPD ar-
chitecture. Domain embedding is computed from input image and
added/subtracted from text adapter output to manipulate domain
cues. Cross-attention calculation with strengthened/weakened cues
improves segmentation performance in both in-domain and domain
shift scenarios.

2.2. Automatic Domain Embedding Extraction

The domain concept is quite often assigned manually. In-
stead, we seek a way to automatically obtain the domain
information. Prior work (Wang et al., 2023) has shown that
CLIP (Radford et al., 2021) is capable of assessing the look
and feel of images. Thus, we propose to leverage CLIP to
automatically extract the domain embeddings, which can
be further utilized to enhance domain-awareness during FM
fine-tuning.

To calculate the domain embedding, we begin by defining
base cases that describe the aspects of interest. For instance,
in autonomous driving, related domains involve different
weather conditions and time of the day. Each of these do-
main descriptions are encoded using the CLIP text encoder:

di = CLIPText(ki) ∀i = 1, . . . , N ,

where K = {k1, . . . , kN} are defined domain descriptions
and D = {d1, . . . , dN} is the resulting description embed-
dings. Given an image, we can obtain the image embedding
through the CLIP image encoder and compute the similarity
with each individual description embedding. Finally, the
domain embedding of the given image is computed via a
weighted sum of all description embeddings:

I = CLIPImage(x)

αi = Softmax
(

I · di
||I|| · ||di||

)
,

W =
∑
i

αi · di ,
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Table 1. Comparison of the different foundation models as backbone for semantic segmentation.

BACKBONE PRE-TRAINING PARAMETER SIZE
CITYSCAPES

MIOU ↑
ACDC

MIOU ↑ MIOU% ↑
VIT-L/14 DINOV2 WITH REGISTERS 304M 49.90 22.35 47.79
VIT-B/16 CLIP (MASKCLIP+) 147M 73.51 36.98 50.31
RESNET-101 CLIP (MASKCLIP+) 156M 73.95 35.27 47.69
RESNET-50 SUPERVISED 28.5M 69.68 38.28 54.94
RESNETRS-420 UNET SUPERVISED 205M 73.74 50.85 68.96
VPD STABLE DIFFUSION 868M 76.82 62.50 81.36

where x represents the input image, αi and W denotes
the similarity and final domain embedding, respectively.
By doing so, we eliminate the need for manual domain
assignment and mitigate the ill-defined one-to-one mapping
issue by taking a weighted average.

2.3. Domain Aware Fine-tuning

Stable Diffusion naturally is capable of utilizing textual
embedding, and thus we can simply combine the domain
embedding with the original prompt embedding, i.e., class
embedding, as illustrated in Figure 2. There are two possible
ways of combination, namely addition or subtraction. When
adding the domain embedding, we encourage the model to
explore the domain information for prediction. While for
subtraction, we essentially try to remove domain-related
information, thus enforcing domain-invariant learning. As
experimented in Table 2, we found the latter is more effec-
tive in improving the generalization performance.

In addition to being utilized by the Stable Diffusion back-
bone, we propose to incorporate the domain embedding in
the segmentation decoder head to further enhance domain
awareness. Inspired by SPADE (Park et al., 2019), we in-
troduce domain adaptive normalization, termed as Domino.
Specifically, we map the domain embedding through simple
MLP layers into modulation parameters γ and β.

fadp =
f − µf

γf
γ(W ) + µ(W ), (1)

where f are intermediate features from the segmentation
decoder, µf and γf denote their mean and standard devia-
tion. µ(W ) and γ(W ) are the learned affine transformation
parameters, conditioned on the domain embedding W . In
doing so, we effectively inject domain information into the
segmentation decoder, making it domain-aware.

3. Experiments
Experimental Setup. In this study, we focus on the chal-
lenging task of semantic segmentation, which requires per-
pixel semantic class prediction. We train the models on the
Cityscapes (Cordts et al., 2016) training set, and evaluate the
model’s generalization performance on ACDC (Sakaridis
et al., 2021). Cityscapes is an urban scene dataset with 19
semantic classes, which is collected mainly in Germany

under good weather conditions during daytime. In contrast,
ACDC contains more adverse weather conditions, such as
fog, snow, rain and nighttime. Compared to Cityscapes,
there is a significant domain shift, making it a challenging
test dataset meanwhile a perfect testbed for assessing the
model’s generalization capability.

For evaluation, we use the mean intersection-over-union
(mIoU) (Everingham et al., 2015). Similar to (Fahes et al.,
2023), we also report the domain adaptation performance as
the percentage of target domain mIoU (ACDC) over source
domain mIoU (Cityscapes):

mIoU% = 100× ACDC mIoU
Cityscapes mIoU

We train all models on A100 GPUs using single-GPU train-
ing, using weighted cross-entropy loss. For a fair compar-
ison, we train all models for 80,000 iterations. We use
the AdamW optimizer (Loshchilov & Hutter, 2018) with a
learning rate of 8e− 5 and weight decay 1e− 3. Diffusion
transformer is using a different learning rate of 0.1 while
the text encoder is frozen as in the VPD paper. We use poly
learning rate scheduling to decrease the learning rate to 0 as
training progresses.

Comparison of FM Backbones. In this comparison, we in-
clude a wide range of FMs, such as self-supervised DINOv2
(Oquab et al., 2023; Darcet et al., 2023), CLIP (Radford
et al., 2021) and Stable Diffusion (Rombach et al., 2022).

Additionally, to provide a comparison against a similar
model structure, we combine pre-trained ResNetRS-420’s
(Bello et al., 2021) in UNet form and fine-tune it on the
Cityscapes dataset. We use CLIP-based methods with ViT
and ResNet backbones, based on MaskCLIP+ (Dong et al.,
2023).

In Table 1, we present the evaluation results of all mod-
els finetuned with cross entropy loss. We can see that
VPD (built upon Stable Diffusion) performs the best on the
Cityscapes validation set, as well as on the unseen ACDC,
which presents a considerable domain shift. Notably, CLIP
backbones and supervised models come close to the VPD
performance on Cityscapes, but all of them show a sig-
nificant performance degradation under domain shift. A
surprising observation is the evident under-performance
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Table 2. Comparison of architectural modifications. Using a
frozen backbone leads to the worst results. Our proposed Domino
can effectively boost the generalization performance, especially
when subtracting the domain information to encourage domain-
invariant learning.

VARIANT
CITYSCAPES

MIOU ↑
ACDC
MIOU↑ MIOU% ↑

VPD (FROZEN) 69.19 50.48 72.96
VPD 76.87 62.61 81.45
DOMINO-ADD 77.20 63.53 82.29
DOMINO-SUB 76.13 65.00 85.38

Table 3. Comparison of varying mixing ratio of real and synthetic
data. An even split provides the best generalization performance.

REAL /
SYNTHETIC

CITYSCAPES
MIOU ↑

ACDC
MIOU ↑ MIOU% ↑

100/0 76.87 62.61 81.45
75/25 77.45 63.52 82.01
50/50 77.07 64.49 83.68
0/100 71.24 56.84 79.79

of the DINOv2 model. We attribute this to its need for a
longer training time. In our experiments, we observed that
while the validation performance of the other models kept
increasing slowly nearing the end of our training schedule,
DINOv2’s validation scores kept increasing quickly, and it
could have benefited from more training time. However, for
a fair comparison, we have trained it using the same training
schedule as the other models, which led to its underfitting
on Cityscapes.

Another observation is that despite CLIP-based models also
being pre-trained on large-scale image-text pairs, they have
a substantial degradation on ACDC compared to Stable Dif-
fusion. We hypothesize this is due to CLIP’s tendency of
catastrophic forgetting when fine-tuned fully, while being
trained with a generative objective, Stable Diffusion is more
tolerant in this regard. Ultimately, this validates our selec-
tion of Stable Diffusion as the FM backbone for further
improvement of zero-shot domain adaptation.

Effect of Domino. In Table 2, we present the comparison
of the proposed domain-aware fine-tuning Domino with
the original VPD (Zhao et al., 2023). We first examine
the impact of architectural changes on performance, taking
into account prior work suggesting that some foundational
models perform better with frozen weights. To explore this
phenomenon, we experimented using a frozen Stable Dif-
fusion backbone (1st row in Table 2), which has the worst
performance. This indicates the necessity of fine-tuning the
entire backbone for the specific downstream task. We imple-
mented both domain addition and subtraction, denoted as
Domino-Add and Domino-Sub in Table 2. We observe that
both variants outperform the baseline VPD in generalization

performance on ACDC, which indicates the effectiveness
of domain-aware fine-tuning. Notably, the Domino-Sub ver-
sion achieves the best generalization results. This suggests
that by encouraging domain-invariant representation learn-
ing during training, the model becomes more robust under
domain shifts. We also see that Domino-Add can improve
in-domain performance. We hypothesize that encouraging
the usage of domain embedding can ease pattern learning
as Cityscapes mostly consist of clear day images.

Effect of Synthetic Data. We investigate the impact of in-
corporating synthetic data into our framework for zero-shot
domain adaptation. Prior work has demonstrated that utiliz-
ing synthetic data during training can enhance performance
for traditional models (Beery et al., 2020; Li et al., 2023b;
2024; Wang et al., 2024). However, the effectiveness of
synthetic data with Foundation Models (FMs) is a topic of
discussion, particularly as these models have been trained
on massive real data. Yet, we hypothesized for improving
domain generalization, it is crucial for the model to see
diverse data from different domains, e.g., under different
weather conditions. To explore this, we employ ALDM (Li
et al., 2024) to generate synthetic data based on the labels
of Cityscapes training set and diverse prompts.

In Table 3, we present the results of fine-tuning the base
VPD model with varying ratios between real and synthetic
data. Notably, combining synthetic data with real data leads
to improved performance in both domains. As we increase
the proportion of synthetic data, target domain performance
also increases. However, when using synthetic data only,
we observe a performance decrease in both domains. This
finding suggests that relying solely on synthetic data is not
beneficial, as the quality of synthetic might not be as good
as real ones. This also highlights the importance of incor-
porating real data alongside synthetic data for foundational
models during fine-tuning.

4. Conclusion & Discussion
In this study, we conducted extensive experiments compar-
ing different foundation models as the backbone for zero-
shot domain adaptation in semantic segmentation. We em-
pirically observe that Stable Diffusion based VPD model
achieves better generalization performance. We then demon-
strated the proposed Domino with explicit usage of the
domain information can significantly boost the model’s gen-
eralization further. Our results indicate that domain embed-
ding addition encourages the use of domain cues, which
can be beneficial for improving the in-domain segmenta-
tion performance. In contrast, domain embedding subtrac-
tion encourages the use of more domain-invariant features
which can enhance the generalization performance. Further-
more, we have found that incorporating synthetic data with
a proper ratio during the foundational model fine-tuning is
also beneficial for domain generalization performance.
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