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Abstract. Abdominal medical image segmentation is essential for clini-
cal diagnosis and treatment planning. Although abdominal CT multi-
organ segmentation has achieved significant progress, MRI and PET
modalities face challenges of annotation scarcity and cross-modal do-
main gaps. Unsupervised domain adaptation (UDA) provides an effec-
tive solution. However, existing methods suffer from domain shift and
training instability when adapting to multiple target styles. Thus, we
propose a UDA framework for MRI/PET abdominal multi-organ seg-
mentation based on multi-style perceptual translation and self-filtering.
Achieved accurate segmentation of unlabeled MRI/PET only using CT
annotations. Specifically: (1) We designed an enhanced 2.5D Multi-Style
Perceptual Translation Network (MST-Net) synthesizing diverse fake
MRI/PET images from CT; (2) We train a dense segmentation model
using multi-style data to generate pseudo-labels for real MRI/PET im-
ages; (3) We filter fake images and pseudo-labels through accuracy and
stability assessment to improve final train data quality; (4) Final, we
employ a two-stage lightweight segmentation model for accurate and
efficient MRI/PET segmentation. Experiments on FLARE2025 valida-
tion set show our method achieves excellent performance with fast, low-
resource characteristics: MRI and PET average DSC reach 80.77% and
62.83%, with 3.47s average inference time and 2479MB peak memory
consumption.

Keywords: Unsupervised domain adaptation - Cross-Modal Segmenta-
tion - Style Translation.

1 Introduction

Abdominal multi-organ segmentation is fundamental to computer-assisted diag-
nosis, treatment planning, and prognosis [11]. With advances in deep learning,
CT-based abdominal multi-organ segmentation methods [36] [35] have achieved
remarkable results. However, while CT imaging is widely adopted in clinical
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practice, MRI and PET offer unique advantages for abdominal imaging and di-
agnosis. MRI provides superior soft tissue contrast and radiation-free imaging,
enabling clearer visualization of parenchymal organ structures. PET imaging of-
fers metabolic functional information that is irreplaceable for tumor detection,
staging, and treatment response evaluation. However, the high cost and effort
of obtaining expert annotations on MRI and PET hinder the development of
robust segmentation models in these modalities. Thus, making effective cross-
modal domain adaptation methods essential.

Direct application of CT-trained segmentation models to MRI and PET im-
ages faces significant challenges due to substantial domain gaps caused by dif-
ferent imaging mechanisms, scanning protocols, and tissue contrasts [14]. Un-
supervised domain adaptation (UDA) offers a promising solution by leveraging
labeled source domain data and unlabeled target domain data to improve target
domain performance. Current UDA approaches primarily fall into two categories:
(1) image-to-image translation methods using generative adversarial networks
(GANS) to establish cycle consistency [8], and (2) feature alignment approaches
that minimize distributional constraints at the feature level [27]. However, simple
feature alignment cannot meet the needs of multi-factor differences, and it is also
prone to causing negative transfer and performance degradation when adapting
to MRI and PET, especially leading to domain shift and training instability in
small organ.

Recent works have explored disentangled representation learning to address
domain gaps in medical imaging. Yang et al. [32] combined structural and ap-
pearance features through image translation. Yao et al. [33] proposed multi-style
image translation frameworks to mitigate domain alignment issues. However,
most existing methods operate on 2D images and stack slice-wise predictions,
potentially losing anatomical continuity in the depth dimension [12]. While some
works like [25] incorporate inter-slice attention mechanisms, they typically apply
attention only at the deepest layers, leaving multi-level global context under-
exploited. Furthermore, existing disentanglement-based methods employ rela-
tively simple style feature extraction, which may be insufficient for modalities
with large style variations like CT-to-MRI/PET translation. May cause stylistic
ambiguity of certain tissue textures and organs.

To address these limitations, we propose an unsupervised cross-modal do-
main adaptation framework that integrates a novel 2.5D Multi-Style Transla-
tion Network (MST-Net) with self-filtering mechanisms for CT-to-MRI/PET
segmentation. In the style translation stage, unlike existing approaches that em-
ploy separate models for different target modalities, our MST-Net simultaneously
processes MRI and PET images within a unified framework, reducing training
complexity while fully exploiting inter-modal correlations. In MST-Net, we de-
sign a 2.5D dynamic slice fusion module that learns adaptive weights among
three adjacent slices, effectively capturing inter-slice spatial relationships. Be-
sides, we incorporate a pyramid attention mechanism in the style encoder that
extracts and aggregates multi-scale features from different encoding layers, en-
hancing style vector expression for cross-modal generalization. Moreover, we
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introduce a Large-Small Convolution (LSConv [28]) module that mimics hu-
man visual perception by combining large kernel global context capture with
small kernel local detail processing, improving feature discriminability across
modalities. In the segmentation stage, we first establish reliable supervision by
selecting stable CT cases based on overlap agreement among top-performing
FLARE2022 [9] [29] models. Then, a dense segmentation model trained on real
CT and fake MRI/PET data generates pseudo-labels for real target images.
We then employ accuracy and stability-based self-filtering to select high-quality
synthetic images and pseudo-labels, culminating in a two-stage coarse-to-fine
segmentation framework for precise target domain adaptation segmentation.
Our main contributions are summarized as follows:

— We proposed a unified 2.5D multi-style perceptual translation and self-
filtering UDA framework for cross-modal abdominal multi-organ segmen-
tation.

— We introduced an enhanced multi-style translation network MST-Net, for
improved style disentanglement and feature learning.

— We apply a comprehensive self-filtering strategy using overlap ratio, accu-
racy, and stability metrics for high-quality data selection.

— Superior segmentation performance on FLARE2025 with efficient resource
utilization, demonstrating practical clinical applicability.

2 Method

As illustrated in Figure 1, our framework consists of three main stages: (1) Data
preparation: to enhance training efficiency and ensure data quality, a hierar-
chical data selection strategy was adopted. For the source domain computed
tomography (CT) data, 50 fully annotated CT images were selected from the
FLARE2022 dataset. Additionally, 450 CT images with reliable pseudo-labels
were screened from 2000 candidates through pseudo-label overlap calculation.
For the target domain data, 180 unannotated MRI images were randomly se-
lected from the AMOS dataset, and 320 unannotated MRI images (8 modalities
x 40 cases) were obtained from the LLD dataset; meanwhile, 500 unannotated
PET images were collected. These data were integrated to construct a multi-
modal training set. (2) Style translation: the selected CT, MRI, and PET
data were fed into the multi-style translation network (MST-Net) for cross-
modal style translation training. To fully leverage 2.5D spatial information, 5
groups of consecutive 3-slice sequences were randomly sampled from each 3D
input image, ensuring that all slice regions of the images were covered during
the training process. Through the multi-style perceptual translation capability
of MST-Net, synthetic CT images with MRI-style and PET-style characteristics
were generated. (3) Self-Filtering and Segmentation: first, the MedNeXt-
M [24] dense segmentation model was trained using the CT data selected in the
previous stage and the fake MRI-style/PET-style images, to guarantee the ac-
curacy of pseudo-label generation. By performing inference on the fake images
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and comparing the results with the ground truth labels, 50 cases with the high-
est precision were selected as a part of the final high-quality training dataset.
Simultaneously, inference was conducted on the real MRI and PET data, and
400 cases with the most stable performance were screened via category stability
detection as another part of the final train set. Finally, a two-stage coarse-to-
fine segmentation framework inspired by [15] was employed to achieve fast and
accurate MRI/PET segmentation with low resource consumption.
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Fig. 1. Overview of our proposed unsupervised domain adaptation abdominal multi-
organ segmentation framework based on 2.5D multi-style perceptual translation net-
work and self-filtering.

2.1 Preprocessing

For the data preparation stage, in addition to random select part, we mainly did
the following operations:

— From the 2000 CT case pseudo-labels from the best-performing team [9] [29]
in the FLARE2022 dataset [21], the cases were ranked according to the
average overlap rate across all categories, and the 450 cases with the highest
annotation consistency were finally selected.

— From the LLD-MMRI dataset [16], we select 40 cases encompassing 8 imag-
ing modalities, resulting in 320 image volumes.

For the style translation stage, we use the following data preprocessing steps:

— All CT, MRI, and PET images are resampled to uniform [4.0, 1.0, 1.0] mm
spacing using trilinear interpolation.
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— Images are zero-padded to achieve consistent dimensions of depthx512x512.
— All data were normalized. In addition, to ensure the accuracy of the CT
structure in the translation model, the CT intensity was clipped to [-350:350].

For the segmentation phase, we employ the following data preprocessing steps:

— For LLD-MMRI dataset, we utilize C+Delay modality segmentation results
as pseudo-labels for the remaining 7 modalities due to its good annotation
quality and contrast characteristics.

— All data is redirected to the target direction.

— Target-size-based scaling replaces physical spacing-based resampling for com-
putational efficiency. Dense and fine segmentation models use input dimen-
sions of [96, 192, 192]. Coarse segmentation model employs reduced input
size of [64, 64, 64] for faster processing.

— The resampled data were normalized to [0, 1] based on the mean and stan-
dard deviation.

2.2 2.5D Multi-Style Perceptual Translation Network (MST-Net)

Multi-Style Translation Network(MST-Net)

Stepl: preprocesing 2D slices

Step2: 2.5D style translation
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Fig. 2. The detailed structure of MST-Net. The translation model mainly consists of
three independent style encoders, a shared content encoder, and a decoder. As well as
three image discriminators and content discriminators

As shown in Figure 2, our proposed MST-Net starts with input from three
consecutive slices of three modalities. We define the CT input slices as X,_1,
X, and X, 1, representing three longitudinally adjacent abdominal CT slices,
and we denote X,_1.4+1 as X4. Similarly, we define Xp and X as the inputs
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for MRI and PET modalities. After data augmentation operations such as flip-
ping and rotation, they are respectively input into style encoders S,, Sy, and
S. to extract rich style features from CT, MRI, and PET modalities. Addition-
ally, we extract common structural and content features of the three modalities
through a shared content encoder C. Subsequently, the style vector F,, from
S, and the CT content features F,, from C are jointly input into the decoder,
utilizing AdalIN [13] multi-level style embedding to complete the reconstruction
from CT to CT modality. Similarly, style translation from CT to MRI and PET
modalities can be obtained. To better constrain the style of generated images,
we also perform image generation from MRI and PET to all three modalities.
Finally, we feed all reconstructed images, transferred images, and content into
the discriminator for discrimination to complete adversarial training. To ensure
transfer stability, the loss function of our MST-Net is similar to [33], including
reconstruction loss, adversarial loss, and discriminative loss.
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(a) 2.5D Dynamic Slice Fusion (b) Pyramid Attention (c) LS Convolution Block

Fig. 3. Detailed structures of our proposed three modules in MST-Net.

2.5D Dynamic Slice Fusion(DSF): To model the depth-wise relationships
between adjacent slices and tissue continuity and mitigate the inter-slice incon-
sistency problem associated with 2D methods, we propose the Dynamic Slice
Fusion (DSF) module, which is integrated at the input stage of the style and
content encoders. Specifically, the input is a 2.5D tensor X consisting of three
consecutive slices X;_1.441. First, adaptive average pooling, 1x1 convolution,
and ReLU activation are employed to extract the global semantic information
of each slice. Subsequently, 1x1 convolution and Sigmoid activation are utilized
to generate channel-adaptive weights; these weights are then applied to weight
the context-enhanced features, enabling dynamic attention to different slices and
channels. Finally, cross-slice feature fusion is achieved through 3x3 convolution,
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batch normalization (BN), and ReL.U activation, which enhances the represen-
tation quality of longitudinal structures.

Pyramid Attention(PA): To enhance the multi-style expression capability
and generalization of the style encoder. Avoiding vector under-representation or
excessive noise caused by a single scale, we design a Pyramid Attention (PA)
module within the style encoder. Specifically, candidate style features are ex-
tracted from the multi-level encoder stages (Stage 1...5). For the feature vector
of each level, adaptive pooling, 1x1 convolution, and Sigmoid activation are
applied to generate channel attention weights for the corresponding scale. Sub-
sequently, the multi-scale weighted features undergo global average pooling and
flattening, respectively; the resulting vectors are concatenated to form a multi-
scale aggregated style vector. Finally, a multi-layer perceptron (MLP) composed
of two fully connected layers is employed for feature fusion and dimensionality
reduction, resulting in a more robust style vector.

LS Convolution Block: To balance global context and local details during
the content encoding stage, improve the transferability of cross-modal shared
features, and enhance the stability of disentanglement and transfer, we introduce
LS Convolution Block [28] in the content encoder that combines large-kernel and
small-kernel convolutions. To simulate the collaborative perception of human
vision toward global structures and local textures, thereby enhancing the ability
to capture structural information.

Style Translation Visualization: As illustrated in Figure 4, we present
the cross-domain translation results of MST-Net from CT to MRI and PET
modalities. The first, second, and fourth column displays real CT, MRI, and
PET images. MST-Net extracts global-to-detail structural features and multi-
scale style vectors from the above images. The third and fifth columns demon-
strate the synthesized MRI and PET images generated by fusing CT structural
content with MRI and PET style characteristics. The visualization reveals that
MST-Net prioritizes structural consistency throughout the cross-domain trans-
lation process by effectively disentangling content from style and progressively
reconstructing the fused features.

2.3 Self-Filtering

To mitigate the impact of low-quality fake data and pseudo-labels on segmenta-
tion results, we implement a self-filtering strategy that processes generated fake
MRI and PET images and pseudo-labels for real MRI and PET through two
stages.

Accuracy calculation for fake images with real labels: To reduce the
impact of domain shift on the real target domain, we perform inference predic-
tion on 500 trained transferred images after completing precision model training.
Since the transferred images are perfectly paired with corresponding CT images,
we evaluate the Dice score between prediction results P, and ground truth labels
Y,, filtering the top 100 results as high-quality transferred images for the final
training set.
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Real CT Real MRI Fake MRI Real PET Fake PET

Fig. 4. CT-to-MRI and CT-to-PET style translation visualization.

Accuracy() Z Dice(P, @, C)» Ya(i’c)) (1)

where C represents the number of classes, P(Ei’c), Ya(i’c) mean the prediction and
ground truth for image i, class c.

Stability calculation for real images with pseudo-labels: To reduce
the impact of pseudo-label quality, we perform class instability detection on all
unlabeled MRI and PET images. Following [9], we adopt segmentation target-
oriented detection by calculating the proportion of non-overlapping regions be-
tween two prediction results for each class, selecting the top 400 images with
highest stability rankings as another part of the final training set.

C

(1 ()AP i, (')|
Instability(7) Z — e (2)
(/_1 ( ) U P )|

where Pl(i’c) , PQ(i’C) represents two prediction results for image 4, class ¢, /A mean
symmetric difference operator.
2.4 Final Segmentation Train and Inference

Regarding the coarse and fine segmentation models trained, both models are PH-
Trans, which adopt a U-shaped encoding design consisting of a parallel mixture
of convolution and Swin Transformer. For more details, please refer to [15].
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Loss function: we use the summation between Dice loss and cross-entropy
loss because compound loss functions have been proven to be robust in various
medical image segmentation tasks [17].

2.5 Post-processing

We use leverage connected-component analysis. For each organ class, we keep
only the largest predicted connected region and discard all remaining compo-
nents, thereby suppressing spurious fragments and reducing false positives.

3 Experiments

3.1 Dataset and evaluation measures

The training dataset is curated from more than 30 medical centers under the

license permission, including TCIA [2], LiTS [1], MSD [26], KiTS [6,7], au-
toPET [5,4], AMOS [11], LLD-MMRI [16], TotalSegmentator [30], and AbdomenCT-
1K [23], and past FLARE Challenges [20,21,22]. The training set includes 2050

CT scans, 4817 MRI scans and 1000 PET scans. The core set includes 100 MRI
and 100 PET scans sampled from the original training set. The validation set
includes 160 MRI scans and 50 PET scans. The organ annotation process used
ITK-SNAP [34], nnU-Net [10], MedSAM [18], and Slicer Plugins [3,19].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Data augmentation: We use online data augmentation strategies, including
random rotation and scaling, adding white Gaussian noise, applying Gaussian
blur, adjusting brightness and contrast, low-resolution simulation, gamma trans-
formation, and elastic deformation.

Environment settings: The development environments and requirements are
presented in Table 1.

Training settings: To maximize the quality of pseudo labels, we adopt the
larger segmentation model MedNeXt-M with more parameters—as the high-
precision generator; its training configurations are provided in Table 2. To reduce
resource consumption and improve inference speed while maintaining accuracy,
the final deployed coarse-to-fine SegNet uses a configuration with fewer param-
eters and lower FLOPs, resulting in faster training; the corresponding settings
are listed in Table 2.
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Table 1. Development environments and requirements.

System Ubuntu 20.04.3 LTS

CPU 18 vCPU AMD EPYC 9754 CPUQ2.70GHz
RAM 60GB

GPU (number and type) NVIDIA 4090D 24G

CUDA version 11.3

Programming language Python 3.8.10

Deep learning framework torch 1.13, torchvision 0.13.1

Specific dependencies connected-components-3d, MedPy, batchgenerators etc.

Code https://github.com/zzm3zz/FLARE2025

Table 2. Training protocols for the dense and final segment model.

Model Dense / Coarse / Fine
Network initialization "He" normal initialization
Batch size 2/4/2

Patch size 96x192x192 / 64x64%x64 / 96x192x192
Total epochs 300

Optimizer AdamW

Initial learning rate (Ir) 5e-4

Lr decay schedule Cosline Annealing LR
Training time 26 / 2 / 20 hours

Loss function Cross entropy + Dice
Number of model parameters 18.27 / 4.2 / 4.2M’

Number of flops 558.09 / 18.60 / 251.19G ~
COzeq 6.2415 / 0.0973 / 1.8788 Kg°

Table 3. Quantitative evaluation results of MRI scans.

Target Validation Testing
DSC(%) NSD(%) |DSC(%) NSD (%)

Liver 95.95 £ 2.68 95.27 £ 5.81

Right kidney 94.70 £ 5.97 95.30 £ 8.29

Spleen 93.37 + 12.21 93.31 + 13.47

Pancreas 77.97 £+ 18.42 87.85 £ 19.43

Aorta 92.16 £ 7.06 94.80 £ 7.71

Inferior vena cava | 86.24 £ 7.44 89.72 + 8.66
Right adrenal gland|62.61 + 18.69 79.31 £ 20.04
Left adrenal gland |60.35 + 25.74 74.04 £ 29.08

Gallbladder 72.17 £ 29.74 68.63 £+ 31.02
Esophagus 72.77 £ 17.73 89.65 £ 17.59
Stomach 82.09 £+ 15.76 86.03 + 17.33
Duodenum 64.98 + 19.08 84.14 + 19.25
Left kidney 94.61 4+ 6.24 95.79 &+ 8.90

Average 80.77 4+ 13.16 87.22 &+ 8.68
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Table 4. Quantitative evaluation results of PET scans.

Target Validation Testing
DSC(%) NSD(%) |DSC(%) NSD (%)

Liver 89.34 + 3.27 80.15 £ 8.29

Right kidney|71.27 4+ 19.24 64.84 £+ 19.96

Spleen 34.10 + 30.78 39.65 + 26.66

Left kidney |56.61 + 34.65 61.96 £ 37.22

Average 62.83 + 28.50 61.65 + 25.73

Table 5. Ablation Study Results of our method.

ID |Train Data Model Fake |Pseudo|MST-| Self- DSC(%)
Dense Coarse Fine Image| Label | Net |Filtering| MRI PET
vl 50CT nnUNet-B - - - - - - 35.36 24.71
v2 | 50CT+Core | nnUNet-B - - v - - - 67.85 41.78
v3 | 50CT+Core | PHTrans-L - - v - - 69.12 43.53
v4 |50CT+Core |MedNeXt-M - - v - - - 70.06 44.57
v5 | 50CT+Core |MedNeXt-M - - v v - - 72.64 46.33
v6 | 50CT+Core [MedNeXt-M MedNeXt-S MedNeXt-S| v v - - 72.03 45.78
v7 |50CT+Core [MedNeXt-M PHTrans-S PHTrans-S v v - - 72.12 46.07
v8 |50CT+Core [MedNeXt-M PHTrans-S PHTrans-S v v v - 76.46 52.21
v9 |all C+M~+P |MedNeXt-M PHTrans-S PHTrans-S v v v - 78.38 55.65
ours|500C+M+P |MedNeXt-M PHTrans-S PHTrans-S v v v v 80.77 62.83

4 Results and discussion

4.1 Quantitative results on validation set

The quantitative results on the FALRE25 MRI validation set are summarized
in Table 3. On the 110-case multimodal MRI validation cohort, our framework
achieved a mean DSC of 80.77% with a standard deviation of 13.16%, and a mean
NSD of 87.22% with a standard deviation of 8.68%. These results demonstrate
effective domain adaptation, indicating successful transfer of knowledge from
the source domain to the target domain. Additionally, the results on the 50-
case PET validation set from FLARE25 are summarized in Table 4. Across the
four-organ segmentation task, the framework achieved a mean DSC of 62.83%
(standard deviation 28.50%) and a mean NSD of 61.65% (standard deviation
25.73%). Although the segmentation performance for the left-sided spleen and
left kidney was suboptimal, competitive results were obtained for the right-sided
liver and right kidney. These findings indicate that our framework also exhibits
competitive performance on the PET modality.

To validate our framework design, we conducted comprehensive ablation ex-
periments as shown in Table 5. (v1): Training nnUNet on 50 labeled CT cases
achieved only 35.36% and 24.71% DSC on MRI and PET, respectively, confirm-
ing the substantial domain gap challenge. (v2): Introducing unsupervised domain
adaptation with style-content translation model [33] on 50 CT cases and 100 core
MRI/PET samples significantly improved performance to 67.85% and 41.78%,
demonstrating the effectiveness of disentangled image translation. (v3,v4): We
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evaluated different dense models, ultimately selecting MedNeXt-M [24] for op-
timal performance. (v5): Incorporating pseudo-labels from unlabeled target im-
ages provided modest improvements. (v6, v7): For computational efficiency, we
adopted a two-stage coarse-to-fine approach using PHTrans-S [15], which main-
tained competitive accuracy while enhancing inference speed. (v8): Our pro-
posed MST-Net substantially improved translation quality, boosting target do-
main performance to 76.46% and 52.21%. (v9): Scaling to the full dataset (all
C+M+P) further increased performance to 78.38% and 55.65%, confirming the
benefits of data augmentation for generalization. (ours): Finally, implementing
self-filtering for quality control achieved the best results of 80.77% and 62.83%
for MRI and PET, respectively. Notably, PET showed greater improvement from
filtering due to its inherently lower structural clarity compared to MRI.
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Fig. 5. Visualization of segmentation results of the MRI validation set.

4.2 Qualitative results on validation set

As illustrated in Figures 5 and 6, we present segmentation results on the vali-
dation set across four representative cases. The first two rows demonstrate suc-
cessful segmentation examples. As observed in column (c), direct application
of CT-trained models to MRI and PET images produces suboptimal segmen-
tation results, with many small organs remaining undetected. Progressive im-
plementation of our proposed methods yields gradual improvements, with our
final approach (f) achieving comprehensive identification of small organs that
closely approximates ground truth annotations. However, the bottom two rows
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Fig. 6. Visualization of segmentation results of the PET validation set.

of Figures 5 and 6 showcase challenging cases where segmentation performance
remains suboptimal across both ablation variants and our complete framework.
We attribute these failures to several factors: inadequate image resolution (Fig-
ure 5, third row), ambiguous inter-organ boundaries (Figure 5, fourth row), and
poor modal contrast (Figure 6, third and fourth rows). Despite these individ-
ual challenging cases, quantitative analysis of average performance demonstrates
that our method achieves accurate segmentation across the majority of samples,
validating the incremental contributions of each proposed component.

4.3 Segmentation efficiency results on validation set

We conducted a performance analysis of the inference process for the valida-
tion set using our in-house platform. Our method achieved an average inference
time of 3.78 seconds per case on the 110-case MRI validation set, with a peak
GPU memory usage of 2,749 MB. It also demonstrated an average inference time
of 1.67 seconds per case on the 50-case PET validation set, with a peak GPU
memory usage of 2,747 MB. Table 6 presents detailed performance metrics for
representative samples, including runtime, maximum GPU memory consump-
tion, and total GPU memory utilization.

4.4 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI 2025.
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Table 6. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA RTX4090D (24G).

Case ID Image Size  Running Time (s) Max GPU (MB) Total GPU (MB)
amos_ 0540 (192, 192, 100) 9.87 1461.12 7307.72
amos_ 7324 (256, 256, 80) 10.12 1557.12 10377.41
amos_ 0507 (320, 290, 72) 10.16 1695.12 8476.23
amos_ 7236 (400, 400, 115) 11.62 1621.12 9413.21
amos_ 7799 (432, 432, 40) 10.10 1057.12 5487.65
amos_ 0557 (512, 152, 512) 16.51 1639.12 13534.68
amos_ 0546 (576, 468, 72) 12.38 1639.12 10146.25
amos_ 8082 (1024, 1024, 82) 18.46 1639.12 18747.32

fdg 605369e88d (400, 400, 92) 9.76 1639.12 8012.56

fdg d95leeb735 (400, 400, 58) 9.84 1163.12 5732.67
psma

_ af293f5b5149087a (200, 200, 121) 8.12 1639.12 6712.43

4.5 Limitation and future work

The proposed method has several limitations: 1) The MST-Net design is rela-
tively simplistic in detail and should incorporate more advanced research devel-
opments. 2) Due to the 2.5D architecture, the style translation process inevitably
utilizes only partial slices from each sample, resulting in insufficient target do-
main style learning and limited generalization capability. 3) We have not ex-
plored more lightweight and accurate state-of-the-art segmentation models. 4)
PET modality segmentation results show substantial room for improvement, po-
tentially due to the absence of physics-based spacing resampling, causing many
cases to fail in identifying the left kidney and spleen. In future work, we will
address these limitations to enhance UDA segmentation performance.

5 Conclusion

This work presents an unsupervised domain adaptation framework for cross-
modal abdominal multi-organ segmentation in MRI and PET modalities. Our
approach integrates a 2.5D Multi-Style Perceptual Translation Network (MST-
Net) with self-filtering mechanisms to achieve CT-to-MRI/PET adaptation, demon-
strating strong performance on FLARE2025 with 80.77% and 62.83% aver-
age DSC for MRI and PET, respectively, while maintaining efficiency with
3.47s inference time and 2479MB peak memory usage. The framework combines
multi-style translation, enhanced feature learning through pyramid attention and
Large-Small Convolution modules, comprehensive self-filtering, and a two-stage
segmentation pipeline. Future work will address these limitations through more
sophisticated architectures, full 3D processing capabilities, advanced segmen-
tation models, and domain-specific preprocessing strategies to further enhance
cross-modal adaptation performance in clinical applications.
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