
Machines and Mathematical Mutations: Using GNNs to Characterize Quiver
Mutation Classes

Jesse He 1 2 Helen Jenne 2 Herman Chau 3 Davis Brown 2 Mark Raugas 2 Sara Billey 3 Henry Kvinge 2 3

Abstract
Machine learning is becoming an increasingly
valuable tool in mathematics, enabling one to
identify subtle patterns across collections of ex-
amples so vast that they would be impossible for
a single researcher to feasibly review and ana-
lyze. In this work, we use graph neural networks
to investigate quiver mutation—an operation that
transforms one quiver (or directed multigraph)
into another—which is central to the theory of
cluster algebras with deep connections to geome-
try, topology, and physics. In the study of cluster
algebras, the question of mutation equivalence
is of fundamental concern: given two quivers,
can one efficiently determine if one quiver can
be transformed into the other through a sequence
of mutations? In this paper, we use graph neural
networks and AI explainability techniques to inde-
pendently discover mutation equivalence criteria
for quivers of type D̃. Along the way, we also
show that even without explicit training to do so,
our model captures structure within its hidden rep-
resentation that allows us to reconstruct known cri-
teria from type D, adding to the growing evidence
that modern machine learning models are capable
of learning abstract and parsimonious rules from
mathematical data.

1. Introduction
Examples play a fundamental role in the mathematical re-
search workflow. Exploration of a large number of exam-
ples builds intuition, supports or disproves conjectures, and
points the way towards patterns that are later formalized as
theorems. While computer-aided simulation has long played
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an important role in mathematics research, modern machine
learning tools like deep neural networks have only recently
begun to be more broadly applied. From the other direction,
increasing attention in machine learning has been given to
whether complex models like neural networks can learn to
reason when faced with mathematical or algorithmic tasks.
For example, the phenomenon of algorithmic alignment in
graph neural networks is known to improve the sample com-
plexity of such networks when compared to networks with
similar expressive power (Dudzik & Veličković, 2022; Xu
et al., 2020), and graph neural networks remain competitive
with transformers for recognizing local subgraph structures
(Sanford et al., 2024).

Of course, working mathematicians often need more than
just a model that achieves high accuracy on a given task.
In many cases, a model is only useful if it learns features
that can provide insight to a mathematician. Further, one
must be able to extract this insight from the model. In this
work, we consider the specific problem of characterizing
quiver mutation equivalence classes. We show first that in
this setting a graph neural network learns representations
that align with known non-trivial mathematical theory. We
then show how one can use a performant model to generate
a concise conjecture, which we then prove.

Introduced by Fomin and Zelevinsky in (Fomin & Zelevin-
sky, 2002), quiver mutation is a combinatorial operation on
quivers (directed multigraphs) which arises from the notion
of a cluster algebra, an algebraic construction with deep con-
nections to geometry and physics. Quiver mutation defines
an equivalence relation on quivers (that is, it partitions the
set of quivers into disjoint subsets). Two quivers belong to
the same equivalence class if we can apply some appropri-
ate sequence of quiver mutations to the first and obtain the
second. Identifying whether such a sequence of mutations
exists is generally a hard problem (Soukup, 2023). In some
cases, however, a concise characterization which involves
checking some simple conditions is known. For example,
Theorem 5.1 (Buan & Vatne, 2008) and Theorem 5.3 (Vatne,
2010) tell us that we can check whether a quiver belongs to
types A or D by verifying certain conditions relating to the
presence of specific structural motifs. Henrich (2011) pro-
vides a complete description of Dynkin and affine Dynkin
type quivers in terms of certain families of infinite graphs.
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We train a graph neural network (GNN) on a dataset consist-
ing of ∼ 70, 000 quivers labeled with one of six different
types (A, D, E, Ã, D̃, Ẽ). We find that not only does the re-
sulting model achieve high accuracy, it also extracts features
from type D quivers that align with the characterization
from (Vatne, 2010). We identify the latter through a careful
application of model explainability tools and exploration of
hidden activations. Pushing this further, we carefully probe
the hidden representations of type D̃, independently achiev-
ing a similar characterization1. We describe how insights
gained through the clustering of hidden activations and other
explainability tools helped us prove our characterization of
type D̃ quivers (Theorem 6.1). This provides yet another
example of how machine learning can be a valuable tool for
the research mathematician.

In summary, this work’s contributions include the following:
(1) We describe an application of graph neural networks to
the problem of characterizing mutation equivalence classes
of quivers. (2) Using AI explainability techniques, we pro-
vide strong evidence that our model learned features which
align with human-developed characterizations of quivers of
type D from the mathematical literature. (3) Using insights
gained from interpreting our model, we independently con-
jecture and then prove a characterization of quivers of type
D̃ in terms of certain subquivers.

2. Background and Related Work
Quivers and quiver mutations are central in the combina-
torial study of cluster algebras, a relatively new but active
research area with connections to diverse areas of mathe-
matics. For a high-level discussion of quiver mutation in
the broader context of cluster algebras, see Appendix A.1.
Since quivers and quiver mutation can be studied indepen-
dently of their algebraic origin, we have written the rest of
the paper so that it does not depend on this background.

2.1. Mutation-Finite Quivers

In (Fomin & Zelevinsky, 2003), Fomin and Zelevinsky gave
a complete classification of finite cluster algebras, which
can be generated by a finite number of variables. (Equiv-
alently, their associated quiver mutation classes are finite).
Amazingly, they correspond exactly to the Cartan-Killing
classification of semisimple Lie algebras. Their result says
that a quiver associated to a cluster algebra of finite type
must be mutation equivalent to an orientation of a Dynkin di-
agram (Figure 3 for examples). However, this result does not
give an algorithm for checking this. To answer this question,
Seven (Seven, 2007) gave a full description of the associated

1After initially circulating our completed manuscript within
the community, we were alerted that (Henrich, 2011) had already
proved the theorem we discovered in somewhat different language.

quivers by computing all minimal quivers of infinite type.
Since then, several other researchers have provided explicit
characterizations of particular mutation classes of quivers
(Bastian, 2011; Buan & Vatne, 2008; Vatne, 2010). Our
main result follows these: we give an explicit characteri-
zation of quivers of type D̃n, akin to the characterization
of quivers of type Dn given in (Vatne, 2010). This differs
subtly from (Henrich, 2011), which characterizes finite-type
quivers as subgraphs of certain families of infinite graphs.

2.2. Mathematics and Machine Learning

Machine learning has recently gained traction as a tool for
mathematical research. Mathematicians have leveraged its
ability to, among other things, identify patterns in large
datasets. These emerging applications have included some
within the field of cluster algebras (Cheung et al., 2023; Bao
et al., 2020; Dechant et al., 2023). Unlike our work, this
research does not aim to establish new theorems around
mutation equivalence classes, focusing rather on the per-
formance of models on different versions of this problem.
Armstrong-Williams et al. (2025) obtain a result concerning
the mutation-acyclicity of quivers, though their theoretical
result guides their ML investigation rather than the reverse.
Though unrelated to cluster algebras, Davies et al. (Davies
et al., 2021) take an approach similar to the one taken here:
using machine learning to guide mathematicians’ intuition.
They focus on two questions: one related to knot theory and
one related to representation theory.

Due to the existence of unambiguous ground truth and
known algorithmic solutions, there has also been renewed
interest in using mathematical tasks to better analyze how
machine learning models learn tasks at a mechanistic level,
including the emergence of reasoning in large models.
For example, in (Chughtai et al., 2023), the authors use
group operations to investigate the question of univer-
sality in neural networks. Group multiplication is also
used in (Stander et al., 2024) to investigate the grokking
phenomenon. The idea of mechanistic interpretability—
explaining model behavior by identifying the role of small
collections of neurons—is also demonstrated in (Zhong
et al., 2023), where Zhong et al. are able to recover two
distinct algorithms from networks trained to perform modu-
lar arithmetic, and (Liu et al., 2023), where Liu et al. find
evidence that a network trained to predict the product of two
permutations learns group-theoretic structure.

3. Preliminaries
3.1. Quivers and Quiver Mutation

In their work on cluster algebras (Fomin & Zelevinsky,
2002), Fomin and Zelevinsky introduce the notion of matrix
mutation on skew-symmetric (or skew-symmetrizable) in-
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teger matrices. By regarding skew-symmetric matrices as
directed graphs, we obtain a combinatorial interpretation of
matrix mutation in terms of quivers which are the central
objects of our study. In this section we briefly describe
preliminaries concerning quivers and quiver mutations.
Definition 3.1. A quiver Q is a directed (multi)graph with
no loops or 2-cycles. There may be multiple parallel edges
between vertices, represented as positive integer weights.
The underlying graph of Q is the undirected graph where
we ignore edge orientations.
Definition 3.2. The mutation of a quiver Q at a vertex j is
the quiver µj(Q) obtained by performing the following: (i)
For each path i → j → k in Q, add an arrow i → k; (ii)
Reverse all arrows incident to j; (iii) Remove any resulting
2-cycles created from the previous two steps.

Quiver mutation is an involution. That is, for a vertex j in
a quiver Q, µj(µj(Q)) = Q. Consequently, mutation is an
equivalence relation on quivers.

j
2

µj j
22 2

Figure 1. An example of a quiver and mutation at a vertex j.

Definition 3.3. We say two quivers Q,Q′ are mutation
equivalent if Q′ can be obtained from Q (up to isomorphism)
by a sequence of mutations. We refer to the mutation class
of Q as the set [Q] of (isomorphism classes of) quivers
which are mutation-equivalent to Q.
Definition 3.4. We say a quiver Q is mutation-finite if its
mutation class [Q] is finite, and mutation-infinite otherwise.
Definition 3.5. Given a starting quiver Q, the mutation
depth of a quiver Q′ ∈ [Q] (with respect to Q) is the mini-
mum number of mutations required to obtain Q′ from Q.

We will consider the mutation classes of quivers that are
of simply laced (that is, with no parallel edges) Dynkin or
extended (affine) Dynkin type. These are the quivers whose
underlying undirected graphs are shown in Figure 3. In
particular, the quivers of type D and type D̃ will be the
focus of our explainability analysis. We also include quivers
of type E (Figure 2) which are not finite or affine type in
our training and test sets. (The diagram En is only finite
type for n = 6, 7, 8, and affine for n = 9.)

The following well-known lemma (Vatne, 2010) ensures the
mutation classes of the simply laced Dynkin diagrams are
well-defined.
Lemma 3.6. If quivers Q1 and Q2 have the same underly-
ing graph T and T is a tree, then Q1 and Q2 are mutation
equivalent.

En . . .
1 2 3 4 5 n− 1

n

Figure 2. Coxeter-Dynkin diagram for En, n ≥ 6. Quivers of type
En are only mutation-finite for n = 6, 7, 8, 9.

The machine learning task: Train a classifier Φ to predict
the mutation class of a quiver of type A, D, E, Ã, D̃, or Ẽ
(Figure 3). We train Φ on a set of quivers with 6, 7, 8, 9, or
10 nodes, and test on quivers with 11 nodes. More details
are provided in Section 4.1.

As we will show through our explainability studies, a model
trained on this task can learn rich features that point towards
concise characterizations of these quivers.

3.2. Graph Neural Networks

Because quivers are represented as directed graphs, it is nat-
ural to use graph neural networks to classify them. Graph
neural networks (GNNs), introduced in (Defferrard et al.,
2016; Kipf & Welling, 2017), are a class of neural net-
works which operate on graph-structured data via a message-
passing scheme. Given an (attributed) graph G = (V,E)
with node features xv ∈ Rp for each node v ∈ V and
euv ∈ Rq for each edge (u, v) ∈ E, each layer of the net-
work updates the node feature by aggregating the features of
its neighbors. The final graph representation is computed by
pooling the node representations. Because prior work has
characterized quiver mutation classes based on the presence
of particular subgraphs, we use the most expressive GNN
architecture for recognizing subgraphs (Xu et al., 2019).
To this end, we adopt a version of the graph isomorphism
network (GIN) introduced in (Xu et al., 2019) and modified
in (Hu et al., 2020) to support edge features. Since quivers
are directed graphs, we adopt a directed message-passing
scheme with separate message-passing functions along each
orientation of an edge. We refer to our architecture as a
Directed Graph Isomorphism Network with Edge features
(DirGINE), and denote the network itself by Φ. We describe
our DirGINE architecture in greater detail in Appendix B.1.

4. Methods
4.1. Model Training

We train a 4-layer DirGINE GNN with a hidden layer width
of 32 to classify quivers into types A, D, E, Ã, D̃, and
Ẽ. The training data consists of quivers of each type on
6, 7, 8, 9, and 10 nodes. The test set consists of quivers
of types A,D,E, Ã, D̃ on 11 nodes. (Type Ẽ is not de-
fined on 11 nodes.) We generate data with Sage (The Sage
Developers, 2023; Musiker & Stump, 2011), which we de-
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An . . . Ãn−1 . . .

Dn . . . D̃n−1 . . .

E6 Ẽ6

E7 Ẽ7

E8 Ẽ8

Figure 3. Simply laced Dynkin diagrams and their extensions.
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Figure 4. Average cross-entropy loss (left) and classification accu-
racy (right) on train and test sets across 10 trials of training. Testing
accuracy is consistently higher than training accuracy, perhaps due
to the absence of class Ẽ in the test set and the fact that Ẽ8 = E9

in the train set.

scribe in greater detail in Appendix C. Figure 4 shows the
average cross-entropy loss and classification accuracy by
epoch across 10 trials. We take the best epoch from training
(99.2% test accuracy) for our analysis.

While the differences between the train and test set (par-
ticularly the absence of type Ẽ from the test set) might be
problematic if our goal was to assess whether a machine
learning model can classify quivers into mutation types, our
primary goal is to extract mathematical insights from the
features the model learns for types D and D̃. As such, we
use the test set to indicate whether a model was sufficiently
performant to justify the application of explainability tools.
Moreover, the inclusion of types E and Ẽ help modulate
the difficulty of the classification problem, ensuring that the
model learns discriminative features for classes D and D̃.

4.2. Size Generalization

By training on quivers of sizes 7-10 and testing on quiv-
ers of size 11, we encourage our DirGINE to learn size-
generalizable features, leveraging the promise of size gener-
alization in GNNs. Given this, it is natural to ask how well
our model performs for larger n. (After all, any classifica-
tion rules for quivers should be size-generalizable as well.)
To examine this question, we test our model on quivers of
types A, D, E Ã, and D̃ on n = 12, 13, . . . , 20 vertices.
Because the number of distinct quivers grows quickly with
size, we only use a subsample of each class, which we dis-
cuss in greater detail in Appendix C. The results (Table 1)
indicate that our GNN generalizes well, albeit not perfectly.
We believe this is because our GNN has a fixed depth of
4, and hence cannot recognize the larger substructures that
may appear in larger quivers. In particular, we will see
in Section 5.2 that some quivers can be distinguished by
long cycles, which message-passing networks may fail to
recognize (Chen et al., 2020).

4.3. Explaining GNNs

In order to extract mathematical insight from a trained GNN
model Φ, we require a way to explain its predictions by
identifying the substructures that are responsible for its pre-
dictions. That is, for each graph G, we wish to identify a
small subgraph GS such that Φ(G) ≈ Φ(GS). We use the
GNN explanation method PGExplainer (Luo et al., 2020),
which trains a neural network g to identify important sub-
graphs. For an input graph G, the explanation network
produces an attribution ωu,v for each edge (u, v) using the
final representations for nodes u and v.

While PGExplainer’s effectiveness is mixed across differ-
ent comparisons (Agarwal et al., 2023; Amara et al., 2022),
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n 12 13 14 15 16 17 18 19 20

Accuracy 99.6 98.7 97.7 95.5 94.3 92.0 91.1 89.4 89.1

Table 1. Accuracy of our trained DirGINE on unseen quivers of size n = 12, 13, . . . , 20.

it is effective at providing model-level substructure expla-
nations for graph classification tasks. For example, when
applied to a GNN trained on the MUTAG dataset (Debnath
et al., 1991) to predict the mutagenicity of molecules, PGEx-
plainer is regularly able to identify that the model predicts
mutagenicity based on the presence of nitro (NO2) groups
(Luo et al., 2020). As we will see in Section 5, the ability
of PGExplainer to identify explanatory graph motifs makes
it suitable for our purposes. To analyze our trained Dir-
GINE, we train PGExplainer on 1000 randomly selected
instances from the train set for 5 epochs. Further discussion
of PGExplainer is provided in Appendix B.2.

5. Extracting Quiver Characterizations
Before we state Theorem 6.1, which we re-discover through
analysis of our GNN model, we describe the known char-
acterizations of mutation class A quivers (Buan & Vatne,
2008) in Section 5.1 and mutation class D quivers (Vatne,
2010) in Section 5.2. We also describe in Section 5.2 how
we can reconstruct the characterization of type D (Vatne,
2010) by probing our trained GNN2.

5.1. The Mutation Class of An Quivers

The class of An quivers consists of all quivers which are
mutation equivalent to (1).

1 2
. . .

n− 1 n (1)

The following theorem provides a combinatorial charac-
terization of all such quivers. We refer to the collec-
tion of all such quivers as MA

n . We will also denote
MA =

⋃
n≥1MA

n .

Theorem 5.1 (Buan & Vatne 2008). A quiver Q is in the
mutation classMA

n if and only if: (i) All cycles are oriented
3-cycles. (ii) Every vertex has degree at most four. (iii) If a
vertex has degree four, two of its edges belong to the same
3-cycle, and the other two belong to a different 3-cycle. (iv)
If a vertex has degree three, two of its edges belong to a
3-cycle, and the third edge does not belong to any 3-cycle.

While this result is interesting in its own right, the impor-
tance for this paper is that the quivers in the mutation class
of type Dn contain subquivers of type A.

2Unlike Theorem 6.1, we were already aware of the type A and
type D characterizations when we began this work.

5.2. The Mutation Class of Dn Quivers

We now describe the classification of the mutation class
MD

n of Type Dn quivers by Vatne (2010). As with type A,
we useMD to denote the collection of type D quivers for
all n ≥ 3 (noting that A3 = D3 and that D1, D2 are not
defined):

1 2
. . .

n− 2

n− 1

n

(2)

In Vatne’s classification, each type is a collection of subquiv-
ers joined by gluing vertices. The proof relies on the fact
that if the vertex joining the blocks is a connecting vertex
(defined below), one can mutate a sub-quiver of type A to
the quiver in (1) without ever mutating at the connecting
vertex. Formally, we have the following.
Definition 5.2. For a quiver Γ ∈MA

n , we say a vertex c of
Γ is a connecting vertex if c is either degree one or degree
two and part of an oriented 3-cycle.

Vatne proves the following classification of quivers ofMD
n

into four types by first proving that each subtype is mutation-
equivalent to (2), then proving that the collection of quivers
described by these subtypes is closed under quiver mutation.
Theorem 5.3 (Vatne 2010). The quivers of the mutation
class of Dn consist of four subtypes shown in the diagrams
below. In these diagrams, Γ, Γ′, and Γ′′ are full subquivers
of mutation class A with a connecting vertex. Unoriented
edges mean that the orientation does not matter.

Type I.

Γ
c

(3)

Type II.

Γ
c c′

Γ′ (4)

Type III.

Γ
c c′

Γ′ (5)
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Type IV.

αc′

Γ′
c

Γ

c′′

Γ′′

(6)

In particular, we draw attention to the oriented central cycle
in type IV. Every edge in the central cycle may be part of an
oriented triangle with a connecting vertex not on the central
cycle (called a spike).

Because our DirGINE can, in general, learn to recognize
certain subgraphs in a quiver, it is reasonable to ask whether
the model was relying on the same subtype motifs identi-
fied by human mathematicians. We investigated the case
of the type D classification from Theorem 5.3 using PGEx-
plainer as described in Section 4.3. Some sample soft masks
produced by PGExplainer are shown for quivers correctly
classified as type D in Figure 5. Dark red edges are judged
more important for the type D prediction by PGExplainer,
while lighter edges are judged less important. In each case,
the explanation highlights edges which align with Theo-
rem 5.3. Figure 5 contains an example of each of the four
types. The reader can check that in each case the edges of
the relevant subtype motif tends to have substantially higher
attribution. This initial analysis seems to suggest that our
model has independently learned the same subtype motifs
for classifying type D quivers from known (human) theory.
The attributions shown in Figure 5 also suggest that the
model relies on the opposite end of the quiver—a behavior
that seems superfluous for recognizing type D. We will
show in Section 6 that this is actually very important for
distinguishing quivers of type D from D̃.

Figure 5 strongly suggests that our GNN recognizes the
same subtypes as in Theorem 5.3. However, one should
be careful in this interpretation, as there is a substantial
literature showing that it is easy to misinterpret post-hoc
explainability methods (Ghorbani et al., 2019; Kindermans
et al., 2019). Thus, we also examine the embeddings of
type Dn quivers in the model’s latent space. We use prin-
cipal component analysis (PCA) to reduce the dimension
of the embedding from the model width of 32 to 2 dimen-
sions for visualization. The resulting graph embeddings,
plotted in Figure 6, show a clear separation of the different
subtypes. In fact, the layer 3 embeddings in the original
32-dimensional embedding space can be separated by a
linear classifier with 99.7 ± 0.0% accuracy. Subtypes I
through IV are not labeled in the training data, so this analy-

sis, combined with the PGExplainer attributions, provides
strong evidence that a GNN is capable of re-discovering the
same abstract, general characterization rules that align with
known theory through training on a naive classification task.

5.2.1. DO CHANGES IN SUBTYPE MOTIFS ACTUALLY
IMPACT PREDICTIONS?

To further understand how the model is using the type D-
specific subquivers from Theorem 5.3 in practice, we ex-
amine the model’s predictions when the edges identified by
PGExplainer are removed. If the model is primarily keying
into the type D motif, removing this should result in the
quiver being predicted as type A.

We find that across all 32, 066 test examples from type D, a
plurality (14,916 or 46.5%) of the predictions flip to A, as
we would expect if it was using the characterization from
Theorem 5.3. Of the remaining examples, most (14,238 or
44.4% of the total) flip to a predicted class of E, with the
next-largest being D (no flip) at 2,581 or 8.0%. Finally, 264
quivers (0.08%) flip to Ã, while 67 quivers (0.02%) flip to
D̃. None of the predictions flip to Ẽ.

Why are there so many instances that flip to type E? This
may be due to the PGExplainer attributions for type D being
inexact, perhaps because PGExplainer generalizes imper-
fectly or because some edges do not contribute positively to
D but rather contribute negatively to other classes. As a re-
sult, many of the quivers where we remove highly attributed
edges may be out-of-distribution for the model. Since type
E is the only class which contains mutation-infinite quivers,
it is perhaps not surprising that the model would predict
these out-of-distribution quivers are of type E.

6. Characterizing D̃ Quivers
In this section, we describe how our trained model and ex-
plainability techniques enable us to independently discover
a characterization of the mutation class of D̃ quivers, stated
in Theorem 6.1 below. We learned after initial circulation
of this work that this result can be derived from (Henrich,
2011). However, as our characterization closely reflects
the way in which we analyzed our model, we felt it would
still be of interest to the machine learning community as an
example of extracting research-level mathematics from a
deep learning model. Due to the complexity of the charac-
terization, some of the details of the characterization are left
to Appendix D, and the proof to Appendix E.

Theorem 6.1. The mutation class of class D̃n−1 quivers
isMD̃

n−1, the collection of quivers of paired types together
with Types V, Va, Vb, V’, Va’, Vb’, VI, and VI’.

Similar to Vatne’s classification of the mutation class of
Dn quivers, our classification consists of different subtypes.
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Figure 5. Edge attributions from PGExplainer on type D11 quivers of each subtype. The masked prediction is the GNN prediction when
highly attributed edges are removed. From left to right: Type I. Five dark red edges highlight the subquiver consisting of the leaves 0 and
10, the connecting vertex 1, and the 3-cycle that the connecting vertex is a part of; Type II. Five dark red edges highlight the center block
seen in the Type II diagram(the vertices 5 and 8 are c and c′, respectively); Type III. Four dark red edges highlight the oriented 4-cycle,
where the vertex 6 is the vertex c′; Type IV. The dark red edges highlight the oriented 5-cycle and the spike 5

α−→ 10 → 4 → 5.

Figure 6. PCA of latent space embeddings for mutation class D quivers colored by subtypes.

However, there are many more subtypes compared to the
type D case, so we find it convenient to organize them into
families: what we call paired types, quivers with one central
cycle, and quivers with two central cycles.

As in Types A and D, Lemma 3.6 means that we may choose
an arbitrary orientation of the extended Dynkin diagram
D̃n−1. It will be convenient to begin with the orientation
in (7), viewing it as two quivers Q1 and Q2 of type D (2)
connected at their roots by a connecting vertex c.

0

1

2
. . .

c
. . .

n− 2

n− 1

n

(7)

From the orientation in (7) it is immediately clear that by
mutating Q1 and Q2 independently without mutating c, we

can obtain any pair of subtypes of type D. Because the
placement of c is arbitrary, we see that many type D̃n−1
quivers can be described by two of the type D subtypes
characterized in Section 5.2 which share a type A piece Γc.
We will refer to such quivers as Types I-I, I-II, I-III, etc., and
collectively as paired types. (See Figure 13 in Appendix F
for all paired types.) It remains, then, to identify the quivers
in this mutation class which not are of paired type.

While a human mathematician could conceivably discover
the same characterization of D̃ quivers simply by begin-
ning with (7) and exhaustively performing mutations, the
mutation class of D̃ quivers admits many diverse subtypes
compared to classes A or D. This increased complexity cre-
ates some difficulty (and perhaps more importantly, tedium)
in examining examples manually. By taking advantage of
machine learning, we are able to quickly organize examples
into distinct families to examine.

Based on our strategy in Section 5.2, we plot PCA reduc-
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Figure 7. PCA reductions of latent space embeddings for mutation class D̃10 quivers colored by paired types or “Other”.

tions of the latent space in Figure 7. We can see that the
quivers that do not correspond to paired subtypes, colored
as “Other”, separate clearly into two clusters in layer 3. By
isolating these quivers and performing k-means clustering
with k = 2, the model guides our characterization of the
remaining class D̃ subtypes. Figure 8 shows examples from
each cluster. (More examples are given in Appendix F.)
The key insight we gain from examining the quivers in each
cluster is that the remaining subtypes can be separated by
the number of Type IV-like central cycles.

a bαc

Γ
d

d′

c′

Γ′

(8)

c

Γ′

Γ′′′

Γ

Γ′′

(9)

The type D̃ quivers with a single central cycle make up the
Type V family. These all have a sort of “double spike” motif;

we show one example of Type V in (8). The rest of the Type
V family, types Va, Vb, V’, Va’, and Vb’, can be obtained
from (8), as we describe in Appendix D.1.

The Type VI family consists of the type D̃ quivers with two
central cycles. An example of Type VI is provided in (9),
where we color each central cycle for clarity. Type VI’ (10)
is an exceptional version of type VI in which both central
cycles are of length 3 and c is allowed to be a connecting
vertex for a type A quiver. Theorem 6.1, which we prove
in Appendix E, states that these subtypes together with
the paired types give an exhaustive characterization of the
mutation class of D̃n−1 quivers.

c
Γ (10)

7. Conclusion
In this work we analyze a graph neural network trained to
classify quivers as belonging to one of 6 different types,
motivated by the theory of cluster algebras and the problem
of quiver mutation equivalence. Using explainability tech-
niques, we provide evidence that the model learns prediction
rules that align with existing theory for one of these types
(type D). Moreover, the model behavior which allows us to
recover this result emerges from the model in an unsuper-
vised manner—the model is not given any subtype labels,
and yet is able to identify relevant blocks to recognize type
D quivers. Applying the same explainability techniques
to another case, we also independently discover and prove
a characterization of the mutation class of D̃n−1 quivers.
Taken together, our work provides more evidence support-
ing the idea that machine learning can be a valuable tool in
the mathematician’s workflow by identifying novel patterns
in mathematical data.

8
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Figure 8. PCA of clustered layer 3 latent space embeddings of “Other” quivers in MD̃
10 (middle), with selected examples from each cluster

(left, right). Edges are colored by PGExplainer attributions. The quiver on the left is of Type V while the quiver on the right is of Type VI.

Impact Statement
This work showcases an application of explainability to ad-
vance an application in algebraic combinatorics. It shares
the societal consequences of machine learning and alge-
braic combinatorics in general, none which we feel must be
specifically highlighted here.
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A. Additional Background
A.1. Cluster algebras and quiver mutations

A cluster algebra is a special type of commutative ring that is generated (in the algebraic sense) via a (possibly infinite)
set of generators that are grouped into clusters. A cluster algebra may have finitely or infinitely many generators, but the
size of each cluster is always finite and fixed. A cluster algebra is said to be of rank n if each of the clusters contains n
generators, called cluster variables. These clusters are related via an exchange property which tells us how to transform
one cluster to another (Fomin & Zelevinsky, 2002).3 It turns out that there is a nice combinatorial interpretation of this
transformation when we interpret clusters as quivers with each generator corresponding to a vertex in the quiver. Then
quiver mutation describes this exchange of cluster variables. In this setting, the mutation equivalence problem asks when
two clusters generate the same cluster algebra.

Quiver mutation also appears in physics in the form of Sieberg duality. Seiberg duality is an important low-energy
identification of naively distinct non-Abelian four dimensional N = 1 supersymmetric gauge theories, where gluons
and quarks of one theory are mapped to non-Abelian magnetic monopoles of the other, and vice versa, but result non-
trivially in the same long-distance (low-energy) physics (Seiberg, 1995). Quiver gauge theories in string theory are N = 1
supersymmetric quantum field theories that have field and matter field content defined in terms of their superpotential read
off from an associated quiver diagram. They arise in a number of scenarios, including the low energy effective field theory
associated to D-branes at a singularity. The superpotential and its associated quiver are defined by the representation theory
of the finite group associated to the singularity (e.g., if it is of ADE type), via the McKay correspondence (Greene et al.,
1999). Associated to quivers are cluster algebras, and quiver mutations in this physical context are maps that identify naively
distinct N = 1 4d supersymmetric gauge theories under Sieberg duality in the low-energy (IR) limit. There is an extensive
literature in this area of physics, some earlier work has used machine learning techniques to study pairs of candidate Seiberg
dual physical theories related by quiver mutations (Bao et al., 2020). We hope that the present work may be helpful for those
working to develop an improved mathematical understanding of both Seiberg duality and quiver gauge theory in general.

A.2. Mutation-Finite Quivers

Quivers of type D̃n—the main subject of our study—are mutation-finite. That is, they have a finite mutation equivalence
class. Mutation-finite quivers and their associated cluster algebras are of interest to many cluster algebraists. Felikson,
Shapiro, and Tumarkin 2012b gave a description of the mutation-finite quivers in terms of geometric type (those arising from
triangulations of bordered surfaces), the E6, E7, E8 Dynkin diagrams and their extensions, and two additional exceptional
types X6 and X7 identified by Derksen and Owen (Derksen & Owen, 2008). Specifically, they showed that mutation-finite
quivers must either be decomposable into certain blocks or contain a subquiver which is mutation equivalent to E6 or
X6. It will be occasionally useful to refer to these blocks in in Appendix D, so we describe them here. However, block
decompositions are not unique in general, so we will not place too much emphasis on the block decompositions of each
quiver we describe.

Definition A.1 (Felikson et al. 2012a). A block is one of six graphs shown in Figure 9, where each vertex is either an outlet
or a dead end (Fomin et al., 2008). A connected quiver Q is block-decomposable if it can be obtained by gluing together
blocks at their outlets, such that each vertex is part of at most two blocks. Formally, one constructs a block-decomposable
quiver as follows:

(i) Take a partial matching of the combined set of outlets (no outlet may be matched to an outlet from the same block);

(ii) Identify the outlets in each pair of the matching;

(iii) If the resulting quiver contains a pair of edges which form a 2-cycle, remove them.

It is worth noting that classification in the mutation-finite setting has proven to be more challenging than in the finite setting.
The classification of mutation-finite cluster algebras in the case with no frozen variables was achieved nearly a decade after
Fomin and Zelevinsky classified finite cluster algebras (Felikson et al., 2012b;a), and the general case was solved only last
year (Felikson & Tumarkin, 2024).

3In general, a cluster consists of both cluster variables and generators known as frozen variables (that lack this exchange property).
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BI BII BIIIa BIIIb BIV BV

Figure 9. Blocks of type I-V introduced by (Fomin et al., 2008). Open circles denote outlets, which may be identified with at most one
outlet from another block. Closed circles represent dead ends, which may not be identified with any other vertex.

B. Implementation Details
B.1. Model Architecture

Here we describe in detail our Directed Graph Isomorphism Network with Edge Features (DirGINE). The DirGINE uses a
message-passing scheme, maintaining a representation of each node. In each layer, each node’s representation is updated
according to a parameterized function of its neighbors’ representations. Formally, the ℓ-th layer is given by

x(ℓ)
v = ReLU

W (ℓ)x(ℓ−1)
v +

∑
(u,v)∈E

φ
(ℓ)
in

(
x(ℓ−1)
u , euv

)
+

∑
(v,w)∈E

φ
(ℓ)
out

(
x(ℓ−1)
w , evw

) (11)

where W (ℓ) is an affine transformation and φ
(ℓ)
in and φ

(ℓ)
out are feedforward neural networks with 2 fully connected layers.

Because we are classifying graphs, we use sum pooling. That is, in the final layer L we can assign a vector to the entire
graph G by adding the vectors associated with each vertex in the layer. We write

Φ(G) = Φ(L)(G) =
∑

v∈V (G)

x(L)
v . (12)

The expressive power of graph neural networks is intimately connected to the classical Weisfeiler-Lehman (WL) graph
isomorphism test (Weisfeiler & Leman, 1968). Given an undirected graph with constant node features and no edge features,
a graph neural network cannot distinguish two graphs which are indistinguishable by the WL test (Xu et al., 2019), and
graph neural networks are able to count some (but not all) substructures (Chen et al., 2020). In our case, operating on
directed graphs with edge features slightly enhances the expressive power of our network, as the WL tests for attributed
and directed graphs is strictly stronger than the undirected WL test (Beddar-Wiesing et al., 2022). As we saw in Section 5,
the ability to distinguish directed substructures is crucial to their application in classifying quiver mutation classes. (For
example, distinguishing a Type Dn from a Type Ãn−1 quiver.)

B.2. Further Discussion of PGExplainer

While a number of post-hoc explanation methods exist for GNNs, most fall into one of two categories:

(i) Gradient-based methods use the partial derivatives of the model output with respect to input features. A larger gradient
is assumed to mean that a feature is more important.

(ii) Perturbation-based methods observe how the model’s predictions change when features are removed or distorted.
Larger changes indicate greater importance.

The method we adopt, PGExplainer (Luo et al., 2020), is a perturbation-based method which produces edge attributions
using a neural network g. Using the final node embeddings of u and v as well as any edge features euv, g produces an
attribution

ωuv = g(x(L)
u , x(L)

v , euv). (13)

We use the implementation provided by PyTorch Geometric (Fey & Lenssen, 2019), where g is implemented as an MLP
followed by a sigmoid function to ensure that 0 ≤ ωuv ≤ 1. Then rather than produce a “hard” subgraph as our explanatory
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graph GS , the attribution matrix Ω = (ωij) can be seen as a “soft” mask for the adjacency matrix A(G). That is, instead of
providing a binary 0-1 attribution for each edge, PGExplainer provides an attribution ωij ∈ [0, 1]. We then use the weighted
graph with adjacency matrix Ω⊙A(G) for GS (where Ω⊙A(G) is the elementwise product).

PGExplainer follows prior work (Ying et al., 2019) in interpreting GS as a random variable with expectation Ω = E[A(GS)],
where each edge (i, j) is assigned a Bernoulli random variable with expectation ωij . PGExplainer then attempts to maximize
the mutual information I(Φ(G), GS). However, because this is intractable in practice, the actual optimization objective is

min
Ω

CE(Φ(G),Φ(GS)) + α∥Ω∥1 + βH(Ω). (14)

Here CE(Φ(G),Φ(GS)) is the cross-entropy loss between the predictions Φ(G) and Φ(GS), ∥Ω∥1 is the L1-norm of Ω,

H(Ω) = −
∑

(i,j)∈E

∑
(i,k)∈E

[(1− ωij) log(1− ωik) + ωij log(ωik)], (15)

and α and β are hyperparameters. In our analysis, we use hyperparameter values α = 2.5 and β = 0.1. The ∥Ω∥1 term acts
as a size constraint, penalizing the size of the selected GS . The H(Ω) term acts as a connectivity constraint, penalizing
instances where two incident edges are given very different attributions. By training a neural network to compute Ω,
PGExplainer allows us to generate explanations for new graphs very quickly, as well as take a more global view of the
model behavior.

C. Data Generation and Model Training
Quivers were generated using Sage (The Sage Developers, 2023; Musiker & Stump, 2011). For training and inference, each
quiver was converted to PyTorch Geometric (Fey & Lenssen, 2019). Following the representation convention in Sage, k
parallel edges are represented by a single edge with edge attribute (k,−k), and each vertex is initialized with constant node
feature. The train set consists of:

• All quivers of types A, D, Ã, and D̃ on 7, 8, 9, and 10 nodes.

• All quivers of type Ẽ. (Type Ẽ is only defined for 7, 8, and 9 nodes, corresponding to extended versions of E6, E7,
and E8, respectively. All quivers of type Ẽ are mutation-finite.)

• All quivers of type E for n = 6, 7, 8. (The Dynkin diagram E9 is the same as the extended diagram Ẽ8.) Type E is
only mutation-finite for n = 6, 7, 8. and coincides with Ẽ8 for n = 9.

• Quivers of type E10 up to a mutation depth of 8, with respect to Sage’s standard orientation for E10 (Figure 10). (While
type E is mutation finite for n ≤ 9, E10 is mutation-infinite).

1 2 3 4 5 6 7 8 9

10

Figure 10. Default orientation of E10 in Sage. Mutation depth is assessed with respect to this orientation for generating data in Sage.

The test set consists of quivers on 11 nodes. We use all quivers of type A11, Ã10, D11 and D̃10, and again generate quivers
up to a mutation depth of 8 for E11. The number of quivers of each size from each class can be found in Table 2. Note that
type Ẽ is absent from the test set, because Ẽ is not defined for 11 nodes. The class of type Ã quivers is also unique, as the
collection of Ãn−1 is actually partitioned into ⌊n/2⌋ distinct mutation classes, as described by (Bastian, 2011).

For the size generalization experiment in Section 4.2, we only generate quivers up to a mutation depth of 6, as the number of
distinct quivers grows too quickly with size to generate classes exhaustively. When the number of generated quivers exceeds
100,000, we randomply subsample 100,000 quivers to avoid out-of-memory errors.

We train with the Adam optimizer for 50 epochs with a batch size of 32 using cross-entropy loss with L1 regularization
(γ = 5× 10−6) using an Nvidia RTX A2000 Laptop GPU.
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Train
n An Dn En Ãn−1 D̃n−1 Ẽn−1

7 150 246 416 340 146 132
8 442 810 1,574 1,265 504 1,080
9 1,424 2,704 — 4,582 1,868 4,376

10 4,522 9,252 10,906 16,382 6,864 —

Test
11 14,924 32,066 24,060 63,260 25,810 —

Table 2. Number of quivers of each type and size in train and test sets.

D. The Mutation Class of D̃n−1 Quivers

Theorem 6.1 groups the mutation class of D̃n−1 quivers into three families: paired types, quivers with one central cycle, and
quivers with two central cycles. A complete list of paired types is shown in Figure 13. Here we provide additional details
about the subtypes with one and two central cycles.

D.1. One central cycle

Types V, Va, Vb. Type V quivers resemble Type IV quivers of class D, but one edge in the central cycle is part of a BIV

block that appears in the Type II quiver of class D. In the diagram below, this is the edge α : a→ b. Note that no larger
subquiver may be attached to d and d′.

a bαc

Γ
d

d′

c′

Γ′

(16)

Mutating Type V at d produces the subtype Type Va, which is similar, but the block BIV is replaced with an oriented
4-cycle, as shown below.

a bc

Γ
d

d′

c′

Γ′

(17)
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Mutating type Va at d′ produces the subtype Type Vb, which is similar to (16) except the block BIV is reversed.

a bc

Γ
d

d′

c′

Γ′

(18)

Mutating again at d creates a quiver isomorphic to Type Va by swapping d and d′, and finally mutating once more at d′

results in Type V again. Notice that the choice of d and d′ is arbitrary.

Types V’, Va’, Vb’. The rest of this cluster consists of the following types, which we call V’, Va’, and Vb’ as they are
related to each other by an analogous sequence of mutations. That is, starting from V’, performing the sequence of mutations
µd, µd′ , µd, µd′ yields Types Va’, Vb’, Va’, V’, in that order. Moreover, µc converts each of Type V’, Va’, Vb’ into a
corresponding Type V, Va, or Vb quiver, respectively. The Type V’ to Type V case is shown in Figure 11.

Type V’

a b

d d′

c

Γ

(19)

Type Va’

a b

d d′

c

Γ

(20)

Type Vb’

a b

d d′

c

Γ

(21)

To see that these types are mutation equivalent to (7), it suffices to show that Type V are mutation equivalent to one of the
paired types.

Lemma D.1. Type V quivers (16) are mutation equivalent to (7).

Proof. We mutate at vertex a. There are several cases. Recall from Theorem 5.3 that a spike refers to an oriented triangle on
the central cycle.

If the central cycle is of length > 3, there are two subcases:

(a) If there is a spike at vertex c, then the resulting quiver is of Type II-IV, where the vertices c and a are playing the roles
of c and c′′ in Figure 13, respectively, and b plays the role of c′′.

(b) Otherwise, the resulting quiver is of Type I-IV, where d and d′ are the pair of dead ends.

If the central cycle is length 3, say a triangle a→ b→ v → a, then there are four subcases, depending on the presence of
spikes on the central cycle:

(a) If the central cycle has no additional spikes, then µa yields a Type I-I quiver.
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(b) If a is part of a spike but b is not, then the result is a Type I-II quiver, where b and v are the pair of dead ends on the
Type I side and d, d′ are the dead ends in the BIV block in the Type II side.

(c) If a is not part of a spike but b is then the result is Type I-III, where d and d′ are the pair of dead ends in the Type I side.

(d) If both a and b are parts of spikes, then the result is Type II-III with dead ends d, d′ in the BIV block in the Type II side.

Corollary D.2. Quivers of Types Va (17) and Vb (18) are mutation equivalent to (7).

Corollary D.3. Type V’ quivers (19) are mutation equivalent to (7).

Corollary D.4. Quivers of Types Va’ (20) and Vb’ (21) are mutation equivalent to (7).

a b

d d′

c

Γ Γ′

µc
a b

d d′

c

Γ Γ′

Figure 11. Performing µc to convert between a quiver of Type V’ (left) and Type V (right). Note that in the Type V quiver, the central
cycle is a → c → b → a, so the vertex c is not a connecting vertex as it is in 16.

This completes the description of new types with one central cycle.

D.2. Two central cycles

The other family, with quivers with two central cycles, consists of the following:

Type VI. Quivers of Type VI consist of two Type IV quivers which share one vertex c among both central cycles, and are
further joined by two edges that create oriented triangles for which c is a vertex. These oriented triangles can be seen as
shared spikes among both central cycles. In (22), we color one central cycle blue and one red for clarity. The central cycles

17



Machines and Mathematical Mutations: Using GNNs to Characterize Quiver Mutation Classes

may be any length ≥ 3.

c

Γ′

Γ′′′

Γ

Γ′′

(22)

Type VI’. In Type VI, the shared connecting vertex c is not allowed to be a connecting vertex for a larger subquiver of Type
A in general. However, there is one exception to this when both central cycles are triangles and have no additional spikes.
The result is a block BV whose outlet is a connecting vertex for a type A subquiver Γ. We refer to this as Type VI’. Notice
that if the quiver has only five vertices, then Γ is only one vertex, in which case there is no difference between Types VI and
VI’.

c
Γ (23)

Again, to show that these are mutation equivalent to (7), it suffices to reduce to the paired types.

Lemma D.5. Type VI quivers (22) are mutation equivalent to (7).

Proof. If both central cycles are of length > 3, then mutating at vertex c results in a quiver Type IV-IV. If a central cycle is
of length 3, then µc turns that central cycle into a subquiver of Type I or Type III, depending on whether or not that central
cycle does not have or does have a third spike, respectively.

For the case of Type VI’ quivers, the following lemma from (Vatne, 2010) will be useful:

Lemma D.6 (Vatne 2010). Let Γ ∈ MA
n , n ≥ 2, and let c be a connecting vertex for Γ. Then there exists a sequence of

mutations on Γ such that:

(i) µc does not appear in the sequence (that is, we do not mutate at c);

(ii) The resulting quiver is isomorphic to (1) in Section 5.1;

(iii) Under this isomorphism, c is mapped to 1.

Lemma D.7. Type VI’ quivers (23) are mutation equivalent to (7).

Proof. By Lemma D.6, we may mutate so that c has in-degree 0 and out-degree 1 in Γ. Then mutating at vertex c results in
a quiver of Type I-II (cf. Figure 12).
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c

v2

v4

v1

v3

Γ

µc c

v2

v4

v3

v1

Γ

Figure 12. Performing µc on a quiver of Type VI’ (left).

Remark D.8. Our characterization was achieved independently, without knowledge of that of Henrich (2011). Although we
will not discuss the overlap in detail, we give a brief description of how our characterization corresponds to (Henrich, 2011),
using the notation found therein:

• D⋆,⋆′ in Henrich (2011) corresponds to our paired types, except when (⋆, ⋆′) = ((⃝, n), (⃝,m)) and Q is in a
so-called “merged stage”. We call this type VI.

• D(⃝,n)∧�, D(⃝,n)∧�, D
(⃝,n)∧←→� are our types Va, V, Vb, respectively.

• D�∧� and D�∧� are our types V’ and Vb’. Our type Va’ falls into the definition of D(⃝,3)∧�.

• D⊠ is our type VI’.

E. Proof of Theorem 6.1
Proof. From the preceding lemmas we know that these types are mutation equivalent to the quiver in (7), so we need only
prove that these types are exhaustive by showing thatMD̃

n−1 is closed under quiver mutation.

We will begin with the paired types. Suppose that Q ∈MD̃
n−1 is the union of two quivers Q1, Q2 ∈MD whose intersection

Γc is inMA. If Γc ∈ MA
k for k > 1, then any mutation can affect the type of at most one of Q1 or Q2 and hence by

Theorem 5.3 results in a quiver of (possibly different) paired type. Thus in what follows we assume that Γc is a single vertex
c. Moreover, we need only consider mutating at c, since a mutation anywhere else can only convert Q from one paired type
to another.

In the casework below, when a type V quiver has a central cycle of length 3 and only 7 edges, we will refer to it as minimal
type V. Similarly, a minimal type VI quiver is a type VI quiver where both central cycles are length 3.

Type I-I. Because we assume Γc is a single vertex c, the underlying graph of this quiver is the star graph on 5 vertices,
rooted at c. Mutating at c depends on the number of arrows to and from c. If c has indegree 4 or outdegree 4, then µc simply
reverses every arrow. If c has indegree 3 or outdegree 3, then µc produces a minimal Type V quiver. If c has indegree 2 and
outdegree 2, then µc produces Type VI (or VI’, since they are the same when there are only 5 vertices).

Type I-II. Let c′ denote the connecting vertex opposite c in the block BIV in the Type II subquiver, and a, b denote the
endpoints of the Type I arrows. Then if Q contains the paths a→ c→ c′ and b→ c→ c′ or c′ → c→ a and c′ → c→ b,
then µc yields another Type I-II quiver. If Q has c→ c′ with c→ a and c→ b, or if Q has c′ → c with a→ c and b→ c
the result is Type VI’. If Q has a→ c and c→ b (or vice versa) then the result is Type V (regardless of the orientation of the
BIV block.

Type I-III. If the Type I arrows are of the same orientation with respect to c, then µc results in a quiver of Type V. Otherwise,
the result is Type VI.
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Type I-IV. If the Type I arrows are of the same orientation with respect to c, then µc results in a quiver of Type V. Otherwise,
the result is Type VI.

Type II-II. Let c′, c′′ denote the connecting vertices opposite c in the BIV blocks in the Type II subquivers Q1 and Q2,
respectively. Then if the arrows are oriented c′ → c→ c′′ (or the reverse) then µc yields a quiver of Type VI’ where the
connecting vertex c is glues the BV block to an oriented triangle. Otherwise µc yields another Type II-II quiver.

Type II-III. Mutating at c yields a Type V quiver (regardless of the c− c′ orientation).

Type II-IV. Mutating at c yields a Type V quiver (regardless of the c− c′ orientation).

Type III-III. Mutating at c yields a Type VI quiver with two central cycles of length 3.

Type III-IV. Mutating at c yields a Type VI quiver.

Type IV-IV. Mutating at c yields a Type VI quiver.

Having finished the paired types, we turn our attention to our newly identified types.

Type V. In the proof of Lemma D.1, we showed that mutating at a stays inMD̃
n−1, producing a quiver of paired type in all

cases. In Appendix D.1, we showed that mutating at d (and d′ by symmetry) produces a Type Va quiver. If we mutate at b,
we bifurcate into the same cases as when mutating at a in Lemma D.1, and in fact obtain the same types. Now, if the central
cycle is of length > 3, then we are done, as mutating anywhere along the central cycle will simply shrink the central cycle by
1, leaving us with another quiver of Type V. However, suppose the central cycle is of length 3, given by a

α−→ b→ v → a.
Then we must consider µv , which yields Type V’. (In this manner, Type V’ can be seen as the result of shrinking the central
cycle to length 2, which we then remove because digons are prohibited.) Here the subquiver Γ is a single vertex if there are
no additional spikes, a single directed edge if there is one spike, and an oriented triangle if there are two spikes.

Type Va. We know from Appendix D.1 that µd and µd′ yield Types V and Vb, respectively. Continuing, µa and µb both
yield Type VI. If the central cycle (sans α) is length > 3, then we are done. Otherwise, we consider the case where we have a
vertex v with b→ v → a and compute µv , which we see yields Type Va’.

Type Vb. From Appendix D.1 we see that µd and µ′d yield Type Va. Mutating at a or b yields Type Vb again, simply moving
the reversed arrow around the central cycle with the associated d, d′. Finally, we are done unless the central cycle is an
unoriented triangle a← b→ v → a, in which case we must consider µv , which yields Type Vb’.

Type V’. We know the mutations µd and µd′ yield Type Va’. The mutations µa and µb yield Type VI’. Finally, we know
that mutating at c yields Type V from Corollary D.3 (see Figure 11).

Type Va’. As we have seen, µd yields Type V’ and µd′ yields Type Vb’. The mutations µa and µb both result in Type Va’
by cyclically permuting (a, b, d) forwards and backwards, respectively. Finally, µc yields Type Va.

Type Vb’. The mutations µd and µd′ yield Type Va’. Mutating at a or b produces an automorphism which swaps a and d
with b and d′, respectively, so µa and µb yield Type Vb’ again. Finally, mutating at c yields Type Vb.

Type VI. From Lemma D.5 we know that µc yields a paired type. Call the two central cycles C1 and C2. If we mutate at
any vertex which is not adjacent to c, the result is still Type VI, as the mutation affects the relevant cycle C1 or C2 as a Type
IV subquiver, and cannot break C1 or C2. Suppose then that we mutate at a vertex v which is adjacent to c and suppose,
without loss of generality, that v ∈ C1. Then µv simply moves v from C1 to C2, resulting in Type VI, unless C1 is a triangle,
in which case the result is Type Va.

Type VI’. Since c is a connecting vertex in Γ, it has degree at most 2. If c has degree 1 in Γ, µc yields Type I-II, and if c has
degree 2 in Γ, µc yields Type II-II. Any other mutation in Γ cannot change the type, so it remains only to check the vertices
adjacent to c. Mutating at any results in Type V’.

Thus we have shown thatMD̃
n−1 is closed under quiver mutation. This completes the proof.

F. Additional figures
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Type I-I.

Γ
c′c

Type I-II.

Γ
c′ c′′c

Γ′

Type I-III.

Γ
c′ c′′c

Γ′

Type I-IV.

Γ
c′c

Q′

Type II-II.

c c′

Γ Γ′
c′′ c′′′

Γ′′

Type II-III.

c c′

Γ Γ′
c′′ c′′′

Γ′′

Type II-IV.

c c′

Γ Γ′
c′′

Q′

Type III-III.

c c′

Γ Γ′
c′′ c′′′

Γ′′

Type III-IV.

c c′

Γ Γ′
c′′

Q′

Type IV-IV.

c
Q′ Γ

c′

Q′′

Figure 13. All paired types. Unoriented edges may have any orientation. Circles indicate oriented cycles. Here Γ, Γ′, Γ′′ are subquivers
of Type A, and Q′ is a subquiver of Type D-IV for which c, c′, or c′′ is part of a spike. Notice that we may have Γ ∈ MA

1 with c = c′,
but Q′ and Q′′ must contain at least two edges in addition to the ones shown.
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Figure 14. Randomly selected quivers from the orange (left) cluster in Figure 8, consisting of quivers of Types V, Va, Vb, V’, Va’, Vb’.
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Figure 15. Randomly selected quivers from the blue (right) cluster in Figure 8, which consists of quivers of Types VI and VI’.
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