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Abstract

This study examines the inherent limitations of the prevailing Observation-Oriented model-
ing paradigm by approaching relationship learning from a unique dimensionality perspective.
This paradigm necessitates the identification of modeling objects prior to defining relations,
confining models to observational space, and limiting their access to temporal features. Re-
lying on a singular, absolute timeline often leads to an oversight of the multi-dimensional
nature of the temporal feature space. This oversight compromises model robustness and
generalizability, contributing significantly to the AI misalignment issue.

Drawing from the relation-centric essence of human cognition, this study presents a new
Relation-Oriented paradigm, complemented by its methodological counterpart, the relation-
defined representation learning, supported by extensive efficacy experiments.

1 Introduction

The prevailing modeling paradigm rules that observed variables (and outcomes) are the premise of building
relationships. Model variables are often estimated by their observational values with an independent and
identical distribution (i.i.d.) setting. Back in the 1890s, Picard-Lindelof theorem introduced a logical timeline
t to record observational timestamps, establishing the paradigm z;11 = f(x;) to depict variable X’s time
evolution. Since then, this Observation-Oriented principle has become our learning convention, where
the temporal dimensionality is equated to the counts of {t,¢+ 1} unit, a predetermined constant time lag.

For a relationship X — Y, the model can be in form yi1m = f(2t), or Yrym = f({z:}), where {z;} =
{z1,..., 24, Tt41,..., 27} Tepresents a time sequence of X within a certain length T, and a predetermined
time progress m from X to Y. No matter in which form, the outcome Y is strictly observational only, leaving
all potentially significant temporal changes of Y completely managed by f(-). However, although function
f () can be selected as linear or nonlinear, the time evolution from ¢ to ¢t + m is always left as linear.

Such a conventional linearity on the temporal dimension may be sufficient in the past, but not present, given
the current technological advancements in data collection and Artificial Intelligence (AI) learning. Exploring
nonlinear temporal distributions is gradually becoming essential. From a broader viewpoint, this is calling
for a new modeling paradigm |Scholkopf et al.| (2021}), which does not rest on the conventional i.i.d. assumed
observations, but can treat t as a distinct computational dimension.

This study aims to fundamentally reveal the inherent deficiency of the current Observation-Oriented modeling
paradigm (Chapter I: Sections 2-4), and accordingly propose the new Relation-Oriented one as desired,
along with feasibility assessments (Chapter II: Sections 5-7). Particularly, the single absolute timeline ¢ that
we conventionally use, inherently cannot capture the multifaceted nature of temporal dimensionality, leading
to widespread biases and resulting in AI models misaligned with our cognitive understanding, contributing
significantly to the AT misalignment issue |Christian| (2020)).

In this paper, we approach the concept of relationships in modeling through a novel dimensionality framework,
offering a unique perspective. The remainder of this section aims to lay the groundwork. Then, in Chapter I,
we will inspect causal learning from the view of temporal dimensionality, highlighting the key role of relations
in modeling. Subsequently, Chapter II will concentrate on the proposed relation-defined representation
learning method, which embodies the advocated Relation-Oriented modeling paradigm.
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1.1 Manifestation of Al Misalighment

Today, Al has displayed capabilities surpassing humans in solely observational learning tasks, such as gen-
erating images, Go gaming, and so on. However, Al may appear “unintelligent” in comprehending certain
relations that humans find intuitive. For instance, Al-created personas on social media can have realistic
faces but barely with the presence of hands, due to Al struggling with the complex structure, instead treating
hands as arbitrary assortments of finger-like items.

Moreover, when it comes to time evolution, causal reasoning presents a substantial challenge for AI, although
it is innate for humans. Traditional causal learning methods, while having made valuable contributions to
various fields of knowledge over the years [Wood| (2015); Vukovi¢, (2022); |Ombadi et al| (2020), often suffer
from a limitation in their generalizability [Scholkopf et al|(2021]). Unsuccessful neural network applications
are particularly evident when addressing large-scale causal questions [Luo et al.| (2020). As a result, these
methods are often confined to context-specific applications and encounter difficulties in extending to diverse
scenarios. Thus, it is not strange that AI’s capability on the temporal dimension remains notably constrained.

The questions “How to leverage AI’s capability in causality” and “How to simulate hands with reasonable
fingers” may seemly pertain to specific domains such as causal inference and computer vision. However, they
fundamentally converge toward the broader challenge of Al Alignment, encapsulated by the essential ques-
tion: “Why are these relations unseen to AI?” Reflecting on Dr. Geoffrey Hinton’s warning, the misalignment
of Al capabilities with human values can result in unintended and potentially harmful consequences. It is
becoming increasingly critical to address this essential question.

1.2 Relations in Hyper-Dimension

Consider a pairwise relationship comprised of three elements: two observable objects, and a relation con-
necting them, which comes from our knowledge. The two objects can be solely observational (e.g., images,
spatial coordinates of a quadrotor, etc.), or either observational-temporal (e.g., trends of stocks, persistent
rain for five hours, etc.). Interestingly, the “relation” has to be unobservable to make this relationship
meaningful for machine learning, distinguished from mere statistical dependencies.

This principle was initially introduced in the form of Common Cause Dawid| (1979)); [Scholkopf et al.| (2021)),
suggesting that any nontrivial conditional independence between two observables requires a third, mutual
cause (i.e., our unobservable “relation”). Take the relationship “Bob has a son named Jim” as an example.
The father-son relation is unobservable information that exists in our knowledge, which can also be seen as
the common cause that makes their connection unique rather than any random pairing of “Bob” and “Jim”.
Given sufficient observed social activities, Al may deduce this pair of “Bob” and “Jim” have some special
connection, but that does not equate to discerning their genuine father-son relation.

Put simply, the existence of unobservable element(s) makes the relationship model informative. In other
words, the information contained by the model stems from our knowledge, rather than direct observations.
Let’s denote the model as Y = f(X;6) with € indicating the function parameter in demand. Then, in the
context of modeling, the term “relation” can be represented by 6.

Temporal Space
Unobservable
Hyper-Dimensional Linear Distribution
Space = Static Feature
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Figure 1: Observational, Temporal, and Hyper-Dimensional spaces, with the former two Observable.

From a dimensionality standpoint, a relationship can be viewed as a joint distribution across multiple di-
mensions: The observable objects feature the distribution on observational-temporal dimensions, while the
unobservable relation manifests as some unseen distribution on a hyper-dimension. As illustrated in Figure[i]
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our cognitive space storing the knowledge relationships can be divided into three categories accordingly, where
the Hyper-Dimensional space symbolizes the collective of all unobservable relations within our knowledge.
Chapter I of this study aims to examine why Al cannot autonomously model certain relations in this space
and understand the implications for its learning results.

1.3 Observational and Temporal Spaces

Under the Observation-Oriented principle, current models largely operate within the observational space.
For example, CNNs (Convolutional Neural Networks) can learn observational associations among two-
dimensional pixels; a quadrotor’s movement can be estimated in three spatial dimensions; LLMs (Large
Language Models) work in a semantic space along a logical timeline representing the order of words. Some
applications (e.g., the last two examples) are aligned with the Picard-Lindelof theorem, using a single logical
timeline to depict the absolute time evolution, thus often referred to as spatial-temporal analysis [Alkon
(1988)); [Turner| (1990)); |Andrienko| (2003). However, in a modeling context, an attribute of timestamps is
not distinguishable from other observational attributes, unnecessarily to be temporally significant. Thus, we
classify this single absolute timeline scenario as within the observational space.

According to our discussions at the beginning, the form of timestamps can only capture linear relationships
on the temporal dimension, thus fundamentally impeding AI’s ability to handle the temporal nonlinearity.
This inherent disparity between our knowledge understanding and established models results in misalignment
(see Section for further discussions), accentuated by the rise of highly efficient AT applications.

Moreover, in our cognition (not the modeling context), multiple logical timelines may exist to form the
cognitive temporal space in Figure [1| (see Section 4| for further insights). However, the current modeling
paradigm has determined they cannot be distinguished as different dimensions in computation but crudely
represented by a column of timestamps, i.e., consolidated as a single timeline.

In the observational-temporal joint space, as shown in Figure [T} observable distributions can be categorized
as either linear or nonlinear. The temporal-significant ones can manifest as “static” or “dynamical” temporal
features within a modeling context. For example, in the relationship “rain leads to wet floors”, the events
“rain” and “wet floors” are snapshots at specific timestamps and are thus viewed as static temporal objects.
In contrast, events such as “persistent rain for five hours” and “floors becoming progressively wetter” are
considered dynamical temporal due to their indispensable sequential patterns on the temporal dimension.

In this paper, we use the term “feature” to indicate the potential variable that fully represents the distribution
of interest in any dimension. Additionally, the observational-temporal joint space may also be referred to as
“observable data space”, in contrast to the “latent feature space”.

1.4 Hyper-Dimensional Space

Unobservable relations that fall outside the primary modeling objective can profoundly affect relationship
models. This can be traced back to an undetected joint distribution within the hyper-dimensional space.

For example, when evaluating the impact of spicy foods on health, the direct link between spiciness and
health is our primary modeling focus. However, there are underlying relations at play - such as how personal
traits (individual-level features) are influenced by their cultural context (population-level features). Even if
cultural differences are out of our modeling concern, overlooking these hierarchical distributions may intro-
duce biases into our relationship model. For clarity, we term these hidden hyper-dimensional distributions
as unobservable hierarchies, sidestepping their relational aspects that fall outside the modeling objective.

These unobservable hierarchies often signify different granularity levels within the population. Achieving
model generalizability across these levels is a common concern, dependent on the model’s ability to reuse
learned lower-level relationships for higher-level learnings |Scholkopf et al.[ (2021]). We argue that a shift from
Observation-Oriented to Relation-Oriented is essential to realize this goal, in light of the relation-centric
nature of human intelligence. In human understanding, relations function as indices that point to our
mental representations [Pitt| (2022)), crafting interconnected knowledge systems in memory, inclusive of their
hierarchical structures. In line with this perspective, our proposed relation-defined representation learning
is conceived as an attempt to “simulate” the process of human knowledge construction.
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Chapter I: Deficiency of Current Observation-Oriented Paradigm

This chapter begins by examining the impact of unobservable hierarchies on models in Section [2] to high-
light how these hierarchies can result in significant information loss on the temporal dimension, and its
challenges for conventional causal inference. In Section [3] we offer a comprehensive critique of the prevailing
Observation-Oriented causal learning paradigm. Finally, Section [f] delves into the temporal space untouched
by the current paradigm, spotlighting its multi-dimensional nature that leads to inherent modeling issues.

2 Impact of Unobservable Hierarchies

Unobservable hierarchies in knowledge suggest unknown distributions in the hyper-dimensional space, which
are related to but distinct from the modeling objective. For solely observational learning tasks, such un-
knowns may lead to troubles, but still have the potential to be uncovered through methods like reinforce-
ment learning. However, when it comes to observational-temporal causal learning, the Observation-Oriented
paradigm inherently falls short in capturing dynamical temporal features across all hierarchical levels. This
section will illustrate these phenomena via two examples: one from computer vision and another from health
informatics. For the latter, we will further dissect the issue from a traditional causal inference perspective.

2.1 Observational Hierarchy

(a) Al-generated faces accompanied with hands (b) How human understand images of hands

Knuckles, Nails, ... ‘—:-> Identification of Fingers

Level I Relative Positions ——— Left/Right & Gestures

Figure 2: A comparison of Al-generated and human-sketched hand images. Al processes observed features
simultaneously, thus treating hands as arbitrary mixtures of finger-like items. The process is hierarchical for
humans, indexed using relations, where higher-level recognition relies on lower-level conclusions.

Figure (a) showcases Al-created hands with faithful color but unrealistic shapes, while humans can easily
recognize a plausible hand from simple grayscale sketches in (b). Indeed, we can rapidly decompose our
observations hierarchically according to different relations in our knowledge, and process sequentially from
lower to higher levels: I identifies fingers through knuckles, nails, and relative lengths; IT denotes hand
gestures through positions; III retrieves the gesture’s meaning from memory. However, such an intuitive
hierarchy exists in our cognitions only. To Al, or similarly, to an extraterrestrial without our knowledge, the
hands in Figure a) may seem as reasonable as the actual hands.

Such observational hierarchy may not always create major problems. If features at different levels do not
significantly overlap, Al may successfully “distinguish” them. For instance, Al can generate convincing faces
because the appearance of eyes is strongly indicative of the facial angle, eliminating the need for Al to
recognize “eyes” from “faces”. But various hand gestures may have similar appearances, leading to chaos.

Even with problems, Al may learn the hidden knowledge via reinforcement learning [Sutton & Barto| (2018)),
under the guidance of human feedback. For example, human approval of five-fingered hands could lead Al
to start identifying fingers autonomously. It works because of completely captured observational features at
each level, while may not function when involving distributions across temporal dimensions.

2.2 Observational-Temporal Hierarchy

Figure a) depicts patients’ daily effects on B following do(A), with ¢ indicating the elapsed days. For
simplicity, let’s assume the patient’s (unobserved) personal characteristics linearly influence M 4’s release,
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i.e., uniformly accelerate or decelerate its effective progress. The individualized causal effects (i.e., the red
and blue curves in (a)) are shaped by two levels of dynamical temporal features: 1) the population-level effect
sequence with a standard length of 30, and 2) the individual-level progress speed. An accurate estimation
of the level 1) dynamical feature provides the desired clinical effectiveness evaluation of M 4.

A = Dose of Medication My,  do(A) = Event “A changes from 0 to 1” B = Measured Blood Lipid
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(a) Observational Time Sequences (b) Complete Dynamical Features

Figure 3: Medication M4 treats high blood lipid, with do(A4) denoting its initial use. The population-level
effect takes about 30 days to fully manifest (¢ = 30 at the elbow), depicted by the black curve in (a). Patient
P; achieves this effect curve elbow in 20 days, while P; takes 40 days.

Figure b) represents patients’ effects in a 31-length feature vector, disentangled by two hierarchical levels.
Traditional medical effect estimation is often obtained by averaging the patients’ after-30-day performances.
This essentially builds a correlation model B30 = f(do(At)), which only captures a static temporal feature
By 130, the last step of the level 1) dynamic, disregarding the preceding 29 steps. Moreover, even if the
estimation method employs a sequence of length 30 (e.g., Granger causality), it can capture the level 1)
dynamic at most and is exclusive of further levels. Causal effects with multiple levels of dynamics are preva-
lent in various causal learning applications, such as epidemic progression, economic fluctuations, strategic
decision-making, etc. The Observation-Oriented paradigm necessitates identifying objects before establishing
relations, making it often difficult to comprehensively encompass all levels of dynamics.

2.3 Strange Hidden-Confounder in Causal Inference

Correlation Model By, 3¢ = f(do(A,)) do(A) xE = {do(A) = E;,do(A) = Ej, ...} Patient ID = {i,}, ... }
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(a) DAG with Hidden Confounder (b) Relation-Oriented Disentanglement (c) Latent Space Representation of (b)
Figure 4: (a) Traditional causal inference DAG. (b) Hierarchical disentanglement of dynamics using relations
as indices. (c) Autoencoder-based generalized and individualized reconstructions of the sequential data.

For patients P; and Pj, the estimated last-day effect B, 30 is biased, as P; exceeds 100% full effect, while
P; only achieves about 75%. To account for such individual-level biases, causal inference usually introduces
a hidden confounder into DAG (Directed Acyclic Graph), to represent the unobserved personalized charac-
teristics, depicted as the node E in Figure [4] (a), a strangely involved outer variable. It implies an illogical
assertion: “Our model is biased due to some unknown aspects we have no intention to know.”

It is because, while E is unknown, its effect, the individual-level dynamical feature, is observable, but excluded
by the correlation model f. Although hidden, F is solely observational and thus could be incorporated by f
if revealed. Thus, introducing a hidden confounder transforms observed dynamical variables into unobserved
observational ones, which enhances human understanding but unnecessarily benefits the model.
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As depicted in Figure b), traditional causal inference views the individual-level effect as caused by the un-
observed composite cause do(A) * E, not a directly modelable relationship. Conversely, a Relation-Oriented
approach just treats relation as an index, to extract representations of observational-temporal effects from
sequential data, so we can employ any observed identifier, e.g., patient ID. Figure c) illustrates its imple-
mentation architecture, to realize a relation-defined hierarchical disentanglement.

3 Causality on Temporal Dimension

Causality research acts as a gateway into the temporal dimension, going beyond the observational space.
However, the current causal learning models, represented as y;1.,n, = f(z;) for causality X — Y, do not fully
integrate t as a computational dimension.

Under the prevailing Observation-Oriented paradigm, the objects - cause on X and effect on Y - must be
pre-identified prior to formulating the relation function f. While it remains feasible to assign a sequence of X
to encompass key dynamical temporal features for the cause, identifying the exact start and end timestamps
for the effect becomes problematic. Consequently, traditional causal inference typically treats effects as
observational only. Even when trying to represent static temporal features, determining the appropriate value
of m to capture a relevant snapshot can be challenging, especially if the effect carries dynamic significance.

Indeed, integrating the concept of temporal distribution could greatly streamline causal inference theories,
making associated ideas more intuitive. For instance, when we acquire Counterfactuals Pearl| (2009)), we are
essentially capturing temporal distributions in response to conditional queries. Also, as demonstrated in the
prior section, fully capturing the observed dynamical temporal features within the model could potentially
eliminate the need for hidden confounders.

Next, we begin by redefining the notion of causal models concerning the temporal dimension in Section
then delve into existing methodologies in Section focusing on their capacity to capture temporal
distributions, with a particular exploration of the essence of do-calculus. Section discusses inherent
limitations of the dominant Observation-Oriented causal modeling paradigm.

3.1 Redefined Causality vs. Correlation

Traditional causal inference places a strong emphasis on interpreting causal models; for instance, discerning
causal directions is crucial, especially when differentiating them from mere correlations. From a modeling
standpoint, once the domain is established, it functions regardless of the temporal logic behind the dimen-
sions. Hence, it is reasonable that temporal-evolving causal aspects are primarily evident in interpretations,
not directly within the modeling framework. Given this, we distinguish causality from correlation in the
context of modeling, by incorporating distributions along the temporal dimension.

Theorem 1. Causality vs. Correlation in the modeling context.
e Causality is the relationship between observational-temporal features, which can be dynamical.
e Correlation is the relationship between features not dynamical.

A causality X — Y can be divided into two parts: 1) the informative relation connecting X and Y, which
is crucial for modeling, and 2) the causal direction, distinguishing between cause and effect, which holds
significance mainly in interpretation. Specifically, in a modeling context, we can employ Y = f(X;0)
to predict the effect on Y, and, conversely, utilize X = ¢(Y;4) to deduce the cause X given Y. Both
parameters, 6 and v, are derived from the joint probability P(X,Y") without imposing modeling restrictions.

However, practical scenarios often emphasize determining the causal direction prior to modeling, suggesting
underlying modeling concerns. One reason stems from the importance of aligning the modeling direction
with our intuitive understanding of temporal progression. Moreover, the prevailing causal modeling paradigm
displays an imbalanced capacity for capturing dynamical temporal features between the cause X and the
effect Y. For example, in Figure[d] an inverse modeling of do(A) = f({B;}) through RNNs, given a sufficiently
long sequence {B;} = {Bi11, ..., Bitao}, might negate the need for a hidden confounder.
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Within the suggested Relation-Oriented approach, we can utilize relations to accurately identify the effect’s
observational-temporal features and fully extract their representations. As a result, the modeling function f
is relieved from encapsulating temporal facets. The differentiation between causality and correlation becomes
a matter of connected features, rather than the nature of the relational model.

3.2 Learning Temporal Distributions

Numerous methods are dedicated to capturing the dynamical features of the cause alone, such as autore-
gressive models Hyvarinen et al.|(2010) and RNNs Xu et al.| (2020)), both employing the modeling formate
Yeem = f{z}) with {z:} = {x1,..., 2, 2441, ..., 27}. Meanwhile, Granger causality [Maziarz (2015), a
method widely recognized in economics, employs a sequence for the effect that exhibits significant temporal
patterns, in the formate {y,} = f({z:}), where ¢ and 7 signifying two separate timelines.

Yet, using a sequence does not equate to capturing dynamics. The distinction between “a sequence of static
variables” and “a dynamical variable” hinges on whether the nonlinear mutual relationships among these
variables can be identified. For autoregressive, if the selected model is linear, then {z;} remains a static
sequence, which can capture dynamics at a single level at most, akin to the level 1) sequence in Figure b).
Conversely, RNNs can harness the nonlinearity of {z;}, enabling them to encapsulate multiple levels of
dynamics. However, for the effect sequence {y,} in Granger causality, due to its Observation-Oriented
nature, it can capture only a single-level dynamic at most, referring to Figure b)’s discussions.

A more universal approach to represent temporal distributions is do-calculus Pearl| (2012); Huang & Valtorta,
(2012). Instead of specifying time sequences, it takes the identifiable temporal events as modeling objects to
conduct elementary calculus. The do(-) format flexibly modulates the temporal features for the cause alone.
However, such a differential-calculus essence also introduces elevated complexity. Here, we reinterpret its
three core rules from an integral-calculus perspective, aiming for a more intuitive comprehension.

For the time sequence {z;} = {x1,...,z7}, let do(x;) = {x¢,z141} indicate the occurrence of an instan-
taneous event do(x) at time ¢t. Time lag At between {¢,t + 1} is sufficiently small to make this event
identifiable, such that do(z:)’s interventional effect can be depicted as a function of the resultant distribu-
tion at t + 1. Conversely, the effect provoked by static x; snapshot is called observational effect. Then, the
observational-temporal distribution of the cause X € R can be formulated as below:

Given X — Y | Z, where X = (X,t) € R™! encompass the temporal dimension, we have
(do(x¢) = 1) | do(zt),  Observational only (Rule 1)

N _/T do(y) -y dt with (¢ =1) | do(z), Inte'rventionc%l only (Rule 2)
0 (do(xt) = 0) | do(z:), No interventional (Rule 3)
otherwise Associated observational and interventional
T T—1
The effect of X can be derived as f(X) = / I (do(xt) -xt) dt = Z(yt+1 —Yt) =Yr — Yo
0 t=0

Within the graphical system {X,Y,Z}, the rules of do-calculus tackle three specific scenarios (notably,
a specifiable do(x;) - ¢ pertains to Rule 2), where conditional independence is maintained between the
observational and interventional effects. However, these rules bypass more generalized cases.

Utilizing the do(-) format, we can also represent observational-temporal distributions of Y as Y = (Y, 1),
by incorporating an additional timeline 7. However, under the Observation-Oriented paradigm, identifiable
events for both X and ) still require our prior identifications, as opposed to the automatic construction of
Y automatically within the suggested Relation-Oriented in the proposed Relation-Oriented methodology.

3.3 Limitation of Current Causal Modeling Paradigm

Our inherent understanding of causality complies with Theorem 1. But Observation-Oriented models are
mainly confined to the observational space, resulting in potential misalignments between established causal
models and our intuitive knowledge. We have categorized causal modeling into four scenarios shown in
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Figure[5l Depending on whether the relationship is already in knowledge, queries can be divided into causal
discovery, which seeks new insights, and causal learning, which leverages knowledge to model causality.
Further, these applications can be sorted based on the dynamical significance of the effects. For instance,
the causality “raining — wet floor” includes only static temporal features; it is logically a causality but
not distinguishable from correlation when modeled. We explore these scenarios from two perspectives: the
relation connecting features, critical for modeling, and the causal direction, essential for interpretation.

Modeled Relation Modeled Causal Direction
Include Significant No Significant ob ional Onl
Dynamical Features Dynamical Features o Undiscov:z\éaDlo:aamicz z.overed Observational Information Determined.
R v . Not Logical Causal Significant.
by Faithfulness Assumption.
Causal Relationship still 9 Observational Only. Observational Information Determined.
Discovery o 9 Unknown Aligned with Knowledge. Maybe Logical Causal Significant.
4 . . Knowledge Determined.
Relationshi
Causal in K " dp 9 Unmodeled Dynamics covered Knowledge Determined
Learning n Knowledge by Hidden Confounders or & ’
Sufficiency Assumption.
Causal Modeling o Knowledge Determined. Knowledge Determined.

Figure 5: An overview of the current Observation-Oriented causal modeling paradigm’s limitations. On the
left, the rectangle means all logical causal relationships, while its potentially modelable scope is blue-circled.

(1) Modeled Relation Connecting Features

Traditional causal inference has made notable advancements in “downgrading” dynamical temporal features
to be observationally accessible. For instance, do-calculus explores independence conditions on
the temporal dimension. For overlooked dynamical features of the effect, if existing knowledge can suggest
its potential cause, creating a hidden confounder can enhance comprehension; if not, these dynamics may
be dismissed based on the causal Sufficiency assumption, potentially leading to subsequent challenges.

On the other hand, causal discovery mainly scans the observational space to explore dependencies. As a
result, if the underlying causality does not encompass dynamical features, causal discovery can be effective.
However, if such dynamics exist, they largely go undetected. This potential gap may be negated under the
causal Faithfulness assumption suggesting that observed variables fully represent the causal reality.

(2) Modeled Causal Direction

Consider observed variables X and Y in a graphical system, with specified models Y = f(X;6) and X =
g(Y;1). Based on observations, the discovered causal direction between X and Y is determined by the
likelihoods of estimated parameters 6 and 1/3 Given the joint distribution P(X,Y), one would prefer X — Y
if £(d) > L()). Now, let Z(#) be a simplified form of Zx y (0), the Fisher information, representing the
amount of information contained by P(X,Y) about unknown 6. Assume p(-) to be the probability density
function; then, in this context, [ « P(z;0)dr remains constant. So, we have

7(6) = Bl( g torp(X.Y:0))* | 6] = [ [ (5 logpta:0) ot s O)dady

= a/ (889 log p(y; x,0))*p(y; x,0)dy + B = aZy|x(0) + B, with «, 3 constants.

Thus, § = argmaxP(Y | X, 0) = arg min Zy | x (#) = argmin Z(#), and L(0 )) o 1/Z(0).
0 0 0

Subsequently, the likelihoods of the estimated parameters 6 and zZAJ depend on the amount of information,
Z(6) and Z(¢)). That means, the learned directionality between X and Y essentially indicates how much
their specified distributions are reflected in the data, with the more dominant one deemed the “cause”. It
presumes that the cause is more comprehensively captured in the observations than the effect by default.
Due to restricted data collection techniques, such a presumption was justifiable in past decades. But in the
present era, assuming such discovered directions to have logical causal meaning is no longer appropriate.
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4 The Overlooked Temporal Space

Data is commonly stored in matrices, with time series data incorporating an extra attribute for the times-
tamps, which forms a logical timeline to reflect the absolute time evolution in reality. Traditionally, modeling
has relied on this timeline to determine the chronological order of all potential events. However, our intuitive
understanding of time is far more complex than this singular, simplified absolute timeline.

Consider an analogy where ants dwell on a two-dimensional plane of a floor. If these ants were to construct
models, they might use the nearest tree as a reference to specify the elevation in their two-dimensional models.
By modeling, they observe an increased disruption at the tree’s mid-level, which indicates a higher chance of
encountering children. However, since they fail to comprehend humans as three-dimensional beings, instead
of interpreting this phenomenon in a new dimension “height”, they solely relate it to the tree’s mid-level. If
they migrate to a different tree with a varying height, where mid-level no longer presents a risk, they might
conclude that human behavior is too complex to model effectively. Similarly, when modeling time series, we
usually discount the dimension “time” as the single absolute timeline, which has become our “tree”.

Our understanding allows for the simultaneous existence of multiple logical timelines. If one is designated as
the absolute timeline, the remaining ones can be viewed as relative timelines, each representing distinctive
temporal events, which can be interconnected via specific relationships. In such Relation-Oriented perspec-
tive, like, during a causal inference analysis, the temporal dimension contains numerous possible logical
timelines that we could choose to construct any necessary scenarios. However, once we enter a modeling
context, like, using Al to model the time series along a single timeline, the temporal significance no longer
exists, but only a regular dimension containing timestamp values, indistinguishable from other observational
attributes. Metaphorically, if we consider the observational space for Al modeling as Schrédinger’s box and
our interest is the “cat” within, our task is to accurately construct the box, giving adequate consideration
to all potential logical timelines, to ensure the “cat” remains reasonable upon unveiling.

Theorem 2. The term Temporal Dimension encompasses all potential logical timelines, not just a
singular one. Consequently, a Temporal Space is defined as the space built by chosen timeline axes.

Fundamentally, as three-dimensional beings, we are limited from truly understanding temporal dimension-
ality. As the term “space” typically evokes a three-dimensional conception, the notion of “temporal space”
might seem odd for a four-dimensional creature. Like ants can use trees as references without the need to
fully comprehend the third dimension, we rely on logical timelines to interpret the fourth. At this juncture,
our mission is to recognize the potential “forest” beyond the present single “tree”.

This section will demonstrate how the single-timeline-based timestamp specification operation, rooted in the
Observation-Oriented paradigm, inherently biases modeling and hinders model generalizability. Then we
will summarize advancements and challenges on our journey towards realizing causal knowledge-aligned Al.

4.1 Inherent Temporal Bias Scheme

Model specification typically requires event timestamps to be set up, often based on a single absolute timeline
present in the data. Yet, for structural causal models (SCMs), this can introduce inherent temporal biases,
considerably constraining our ability to leverage AI’s potential in the temporal dimension. This challenge
can be more pronounced in large-scale causal relationships, which may hide more logical timelines.

To better ascribe this issue, we redefine the causal Directed Acyclic Graph (DAG) [Pearl (2009)) as follows: 1)
incorporating (potentially multiple) logical timelines as axes into the DAG space, and 2) defining edges along
timeline axes to be vectors with meaningful lengths indicating the timespans of causal effects. For example,
the single-timeline scenario in Figure [3| has the redefined DAG depicted in Figure |§|(b)7 with (a) showing
the traditional one as a comparison. The edge do(A) — B in Figure [6fa) can only (partially) represent
population-level effect, thus necessities a hidden confounder to explain the individual-level diversities, while

—
in Figure |§|(b)7 they can be explicitly represented by varying lengths of do(A) B.

Consider an expanded two-timeline scenario in Figure a), where A shorthandly represents do(A). Apart
from its primary effect on B, A also indirectly influences B through its side effect on another vital sign, C,
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depicted as edges ﬁ and C@ . For simplicity, assume the timespan for ﬁ is 10 days for all patients, with
the individual-level diversity solely confined to timeline T’x. In conventional single-timeline causal modeling,
the SCM function would be Bii39 = f(A¢, Cit10). Let’s assume f(A¢, Ciy19) is implemented using RNNs,
which could accurately depict the individual-level final effects of A on B for any patient.

The confounding relationship over nodes { A, B, C'} forms a triangle across timelines T'x and Ty - such shape
geometrically holds for any hierarchical level relationship. For patients P; and P;, the individualization
process is to “stretch” this triangle along T'x by different ratios, which is a homographic linear transformation
in this space. However, as illustrated in Figure 7| (b) and (c), for either P; or P;, equating the outcome of f
to be Bii3g violates the causal Markov condition necessary for reasonable SCMs.

do(A)s P; is 1/3 Faster P; is 1/3 Slower
1

do(A)
(b)

|

! |

(a) the Unobserved {
Characteristics ¢---------=

Timeline of Days
of Patient E = {E;, Ej, ...}

[
|
|
|
; . . ;
et .. |t+20 [t+30 | t+40

Figure 6: (a) Traditional Causal DAG introducing hidden E. (b) Redefined DAG: the standard black vector
signifies the population-level effect, while the individual-level ones are represented by its different scaling.

(a) Valid Individualization = Linear Transformation (b) Biiso # f(As Crr10) () Btyso # f (At Crr10)
Timeline
i IR C
Ty c ! | | t+10 | | Cei10 | |
| | | | : :
_______ ' Timeline ' ' !
A B, B! B| Ty R A, Biizo)  Biido ¢ Biizol  Bilao

"o '20 '30 ' 40 ! ' ' ! T

Figure 7: (a) A two-timeline (redefined) DAG space, where a valid individualization presents a linear transfor-
mation. (b)(c) Violations of the Markov condition for the prevailing SCM with confounding across timelines.

Notably, the violation may not cause significant issues for AI models like RNNs in this specific case. Given the
independence of dynamical features on T'x and Ty, the SCM can be formulated as Byy3o = f1(A:)+ f2(Cii10),
which suggests that the cross-timeline confounding can be broken down into two single-timeline issues.
However, making assumptions such as independence or non-confounding is unrealistic. Given that each cause-
and-effect pair might exist on its own unique logical timeline, such biases could accumulate exponentially,
profoundly affecting causal applications regardless of our model choices.

Theorem 3. The inherent temporal bias may occur in SCM if it contains: 1) Confounding dy-
namical features across Multiple logical timelines, and 2) Unobservable hierarchy.

It is interesting to notice that most of the successful applications instinctively avoid one of the two fac-
tors: confounding or multi-timeline. Statistical causal models can be particularly adjusted to facilitate
de-confounding, e.g., the backdoor adjustment Pearl (2009). For AI models, most of the sweeping achieve-
ments do not potentially involve relative timelines, e.g., the large language model (LLM) in a semantic space,
where the phrases are ordered consistently along a single logical timeline.

Unlike AT’s black-box nature, causal inference inherently takes a Relation-Oriented view. But in its context,
the inherent temporal biases are difficult to recognize, as they often intermingle with the biases resulting from
unsolvable nonlinearity - They have similar manifestations, and both can be addressed by de-confounding.
Consider Figure @(a), a linear causal model overlooking the individual-level dynamical feature can mismatch
with individuals P; and P;, which may not be distinguishable from the model mismatching in Figure b)(c)7
caused by dynamics crossing two timelines.

10
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4.2 Inherent Impact on SCM Generalizability

The traditional SCM possesses an Observation-Oriented nature, typically necessitating timestamp specifica-
tion for object events prior to formulating relations. Due to the inherent temporal bias, such specifications
can influence the precision of ongoing models. However, more significantly, they might render the established
SCM non-generalizable for different scenarios, such as a new population that maintains the same core causal
relationship but manifests differently from the current training group.

Predict the Risk of T2D T2D: Type Il Diabetes Statin: Medicine to Reduce LDL
7-1 LDL: Blood Lipid BP: Blood Pressure
T t-1 -1 r
N
£ > s A C Wl A B, C
© -
£ . 2 ] S
= r+2 ﬁ ﬁ +1 -
£ £
2 =
“ A B’ = b B = 42 H 4
T =
‘_"'\' AI BI CI
~ 0 {J_}_f______r’——’v;m B t+2 43
Timeline < & Statin DL T2D - Statin  LDL  T2D BP - . Statn LDL T2D BP
Ty = Variables

Figure 8: An example DAG in 3D observational-temporal space, where the SCM function B’ = f(A, C, S)
aims to evaluate Statin’s medical effect on reducing the risk of T2D, with two logical timelines 7y and 7.
On Ty, the step At from ¢ to (¢t + 1) allows A and C to fully influence B, while the step A7 on Tz, from
(14 1) to (1 + 2), let medicine S completely release its effect on LDL, which is, switching from A to A’.

Let’s consider the practical scenario depicted in Figure Here, At and A7 represent actual time spans.
The main point is not determining their exact values, but on their intended causal relatig)ship: As each unit
of Statin’s effect is delivered on LDL via SA’, it immediately impacts T2D through A’B’. Simultaneously,
the next unit effect begins generation. This dual action runs concurrently until S is fully administered. The
ultimate aim of this process is to evaluate the total cumulative influence stemming from S at B’'.

_— = —— —
Given the relationship SB’ = SA’ + A’B’, specifying the SB’ time span inherently sets the At : A7 ratio,
defining the AS B’ triangle’s shape in the model. While the mean effect at B’ might be precise for the present
population, the preset At : At ratio’s universality is questionable, potentially constraining the established
SCM’s generalizability.

4.3 Toward Causal Knowledge-Aligned Al

Our quest for causal reasoning Al involves broadening our modeling techniques from purely observational to
include temporal dimensions, as summarized in Figure )] The present challenge lies in enabling structural
causal models in the temporal space. Recognizing the underlying logical timelines is critical to avoid the
inherent biases and enhance model generalizability. However, since manual identification is unrealistic, it
may have been time for us to consider the new paradigm.

The initial models under i.i.d. assumption only approximate observational associations, proved unreliable
for causal reasoning [Pearl et al.| (2000); [Peters et al.| (2017)). Correspondingly, the common cause principle
highlights the significance of the nontrivial conditional properties, to distinguish structural relationships from
statistical dependencies [Dawid| (1979); (Geiger & Pearl| (1993)), providing a basis for effectively uncovering
the underlying structures in graphical models [Peters et al.| (2014)).

Graphical models, employing conditional dependencies to construct Bayesian networks (BNs), often operate
in observational space and neglect temporal aspects, reducing their causal relevance|Scheines| (1997)). Notably,
causally significant models, such as Structural Equation Models (SEMs) and Functional Causal Models
(FCMs) |Glymour et al| (2019); [Elwert| (2013)), are able to address counterfactual queries [Scholkopf et al.
(2021). Typically, these models leverage prior knowledge to construct causal DAGs.

11
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State-of-the-art deep learning applications on causality, which encode the DAG structural constraint into
continuous optimization functions [Zheng et al.| (2018} |2020)); [Lachapelle et al. (2019), undoubtedly enable
highly efficient solutions, especially for large-scale problems. However, larger question scales indicate more
underlying logical timelines, which may lead to snowballing temporal biases. It can be evident from the
limited successful applications of incorporating DAG structure into network architectures |Luo et al.| (2020);
Ma/ (2018), e.g., neural architecture search (NAS).

Handle Capture
Model Principle Cause Connection & Direction Effect Unobservable P ,
. Dynamics
Hierarchy
Mechanistic or Observational- Observational-
Physical Y=16) Temporal X = (X, t) by Knowledge Temporal Y = (Y, t) Yes Yes
Relation-Oriented . Observational- Learn Representation Observational-
Structural Model Given P(X,Y) & X =Y Temporal X = (X, t) U=f(X;0) Temporal § = (7, ¢t) Yes Yes
Structural Causal GivenP(X,Y)&X - Y Observational Connected via 6 Observational and 5 5
Learning Y =f(X;0) Sequence {X;} X — Y by Knowledge Static V;
Graphical Causal Given P(X,Y) Speciy 9 ) Connected via 9 ) 5
Discovery Find L(Y|X;9) > L(X|Y;9) Observational X X — Y by Observed Info Observational ¥ ' No
ComrAr/l,ZZeC;ause Given P(X,Y|Z) Observational X Connected via Z Observational Y ? No
kd D’\;;z:jflnven Given P(X,Y) Observational X None Observational Y No No

Figure 9: Simple Taxonomy of Models (Adapted in part of Table 1 in |Scholkopf et al.| (2021)), from more
knowledge-driven (top in purple) to more data-driven (bottom in green). Notations: ¢ or § = parameters
derived from joint or conditional distribution, (X, t) = augment ¢-dimension, “?” = depending on practice.

Scholkopf|Scholkopf et al.| (2021)) summarized three key challenges impeding causal Al applications to achiev-
ing generalizable success: 1) limited model robustness, 2) insufficient model reusability, and 3) inability to
handle data heterogeneity (caused by unobservable hierarchies in knowledge). Notably, all these challenges
can be attributed to the timestamp specification required by Observation-Oriented structural models.

On the other side, physical models, which explicitly integrate temporal dimensions in computation, and are
able to establish abstract concepts through relations, may provide insights into these challenges. We believe
that the Relation-Oriented approach can help bridge the gap between observational and temporal spaces.

Chapter II: Realization of Proposed Relation-Oriented Paradigm

This chapter begins by formulating the factorizations to achieve hierarchical disentanglement in the latent
space. Then, we explore the proposed relation-defined representation methodology as an embodiment of the
Relation-Oriented paradigm. Lastly, we validate its feasibility through comprehensive experiments.

5 Hierarchical Disentanglement in Latent Space

For observational variable X € R¢ with time sequence {x;} = {x1,...,2¢_1,%¢,T¢11,..., 27}, We aim to
devise a latent feature space R” for two purposes: 1) Fully represent the observational-temporal features of
X = (X,t) € R¥*1. 2) Hierarchically disentangle X’s representation according to knowledge. Consequently,
the established system can facilitate the reusability of models at any level, indexed by relations in knowledge.

For Y = (Y,7) € R*' if the relationship X — ) identifies a level in the unobservable hierarchy for ),
the proposed relation-defined representation learning aims to extract the representation Y as defined by
the relation with X. Moreover, the resulting Y should be reusable in the development of further levels of
representations based on it, facilitating the model’s generalizability. For example, in the graphical system
{X,Y, Z} with relationship X — Y + Z, ) can be viewed within a two-level hierarchy. The first level is
defined by X — Y and the second by (X, Z) — Y, where the second level enhances the first by incorporating
an additional data stream from Z.

12



Under review as submission to TMLR

5.1 Factorize Observational-Temporal Hierarchy

Let X = (X1,...,Xy) € RY, and assume X = (X, t) € R¥! has an n-level hierarchy. Define ©; as the i-th
level component of X in the observable data space, and its counterpart in the latent feature space RY as 6;.
The representation function f; facilitates the transformation from R?*! to R%: for the i-th level, considering
all prior lower-level features as attributes. 6; is a vector in R”, with its significant value residing in a subset of

the L dimensions, denoted as R, forming the disentanglement {RZ1,... R ... RI»}. Then, we obtain:
X =)0, where ©; = fi(6;; ©1,...,0,_1) with ©; € R*"" and ¢; € R** C R* (1)
i=1

To illustrate an observational hierarchy, refer to Figure (b). Let #; € R1, 0, € RP2 and 03 € R represent
the three levels of features, with each subspace being mutually exclusive. That is, L = L1 + Lo + L3. The
combined vector (6, 60s,603) € R represent the whole image. In correspondence, ©1, O,, and O3 are full-
scale images, each presenting unique content. For instance, ©; highlights the details of the fingers, whereas
©1 + O3 expands to showcase the entire hand.

In the context of an observational-temporal hierarchy, the component ©; € R¥! can be expressed as the
original time sequence {0;}; = {6;, € R? | t; = 1,...,T}. Consequently, we obtain a set of relative logical
timelines {t1,...,%;,...,¢,} which, in contrast to the absolute timeline ¢, are each uniquely determined by
the relationship at their respective levels. In the observable data space, the observation at the i-th level,
represented as the sum ©7 + ...+ ©;, maintains its sequence along ¢.

5.2 Factorize Hierarchy of Relationship

Given a set of n-level hierarchical representation functions for X', denoted by F () = { fi (9,) [i=1,..., n},
our goal is to define n relationship functions, collectively termed G, such that Y = G(X) exhibits an n-level
hierarchy. Each i-th level relationship function is ¢;(X; ¢;), where ; is its parameter. Then, we have:

n

G(Xx) = Zgi(X;%‘) = Zgi(@i;%’) = Zgi(9i§ O1,...,0,_1,¢;) =Y (2)

i=1 =1

The i-th level relation-defined representation for ) is g¢;(6;; p;) considering the features of the preceding
(i — 1) levels of X. This relationship can be portrayed as the augmented feature vector (6;, ;) in latent
space R, Using ¥x and ¥y to distinguish the collective hierarchical representations for X and ) respectively,
the overall relationship from X to Y becomes ¥y = (Jx, ), where ¢ = {¢1,...,9n}. The term (Vx, )
represents the pairwise augmentations between collections ¥x and (.

6 Relation-Defined Representation Methodology

Causal Knowledge | Traditional Causal Leaming‘ﬂenerated/SimuIated/lmputed) peconerac e
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Figure 10: Framework of utilizing relation-defined representations to benefit conventional models.

While the existing Observation-Oriented modeling paradigm has its limitations, it still forms the basis of
many existing knowledge infrastructures. As showcased in Figure relation-defined representations enable

13



Under review as submission to TMLR

AT to develop generalizable models within a latent feature space abundant with human-indecipherable data.
Concurrently, this framework amplifies Al’s potential to optimize observations, strengthening traditional
models by enabling necessary counterfactual effects, simulating de-confounded observations, and more.

This section introduces a special autoencoder architecture required for implementing relation-defined repre-
sentation. Building on this, we detail the process of stacking hierarchical levels of representations to construct
graphical models. Finally, we present a causal discovery algorithm within the latent feature space.

6.1 Autoencoder Design for Higher-Dimensional Representation

Autoencoders are primarily used for dimensionality reduction Wang et al.| (2016). In structural modeling,
one often treats all variables (i.e., nodes in a DAG) as aligned observations to reduce data dimensionality.
In contrast, our aim is to model individual relations and “stack” them to construct a DAG within the latent
space RL. This requires a large dimensionality for R” to capture all potential hierarchical features. As a
result, we face the significant technical challenge of achieving a higher-dimensional representation extraction.

Corollary 1. For a given graph G and a data matrix X that is column-augmented with all obser-
vational attributes of variables in G as well as timestamps, the dimensionality of the latent space L
must be at least the rank of rank(X) to adequately represent G.

Corollary 1 stems from the notion that the autoencoder-learned R” is spanned by X'’s top principal compo-
nents, often referred to in Principal Component Analysis (PCA) Baldi & Hornik (1989); Plaut| (2018); [Wang
et al.| (2016). Hypothetically, reducing L below rank(X) may yield a less comprehensive but causally more
significant latent space through better alignment |Jain et al.| (2021)), although further exploration is needed.
In this study, we will set aside discussions on the boundaries of dimensionality. Our experiments feature 10
variables with dimensions 1 to 5 (Table , and we empirically fine-tune and reduce L from 64 to 16.

Fully Relu
. Connect
Encrypt// /o \
Encoder Decoder
Input S~o HEEE ’
— B

Latent Space
Representation

Copy

Figure 11: Invertible autoencoder architecture for extracting higher-dimensional representations.

Figure depicts the proposed autoencoder architecture, which creates symmetrical Encrypt and Decrypt
layers at the input and output. The Encrypt layer amplifies the input vector z by extracting its higher-
order intrinsic features. Conversely, the Decrypt layer symmetrically reduces the input and restores 7 to its
original form. To ensure reconstruction accuracy, the invertibility of these operations is naturally required.

Figure illustrates a double-wise feature expansion. In this method, each pair of two digits from 7 s
encoded into a new digit, thus capturing their association. This is accomplished using a Key, a set of
random constants created by the encoder and mirrored by the decoder for reverse decryption. The double-
wise expansion Key on 7 € R? generates a (d—1)(d — 1) length vector. By augmenting these vectors using
multiple Keys, 7 can significantly extend beyond its original length d. The four differently patterned squares
in Figure[11| represent the results of four distinct Keys. Each square visualizes a (d — 1)(d — 1) length vector
(not suggesting 2-dimensionality), with the patterned grids indicating each Key’s unique “signature”. As an
analogy, higher-order extensions such as triple-wise ones across every three digits can also be employed, by
appropriately adapting the Key to encapsulate more intricate associations within the data.

14
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Figure 12: Encrypt (left) and Decrypt (right). Figure 13: Architecture of Latent Effect.

Figure[12]illustrates the Encrypt and Decrypt functions executing a double-wise expansion. These processes
transform a digit pair (z;,2;), ¢ # j € 1,...,d, via encryption fg(x;,x;), with 0 = (ws,w;) as the Key
comprising two weights defining elementary functions s(-) and ¢(-). Specifically, fo(z;, z;) = z;@exp(s(x;))+
t(z;) is applied to each digit pair, transforming z; into a new digit y,; using z; as a parameter. The Decrypt
layer uses the symmetric inverse function f, 1 defined as (y; — t(y:)) ® exp(—s(y;)). Importantly, this
calculation sidesteps the need for s~! or ¢t~!, permitting both linear and non-linear transformations. With
the set of all fy functions denoted as F(X;¥) - where X is the input variable and ¢ comprises all parameters
- the Encrypt and Decrypt layers can be represented as Y = F(X;9) and X = F~1(Y;4), respectively.
Drawing from the seminal work of Dinh et al.| (2016) on invertible neural network layers, we employ bijective
functions to design our autoencoder. We specifically use the double-wise extension function fy(z;,z;),
operating on digit pairs, thus preserving reconstruction accuracy. This bijective foundation ensures our
architecture’s robustness and adaptability, tailoring extension levels to application requirements. The source
code for Encrypt and Decrypt is provided EL along with a comprehensive experimental demo.

6.2 Structural Model with Hierarchical Representations

Consider a causal system comprising three variables: {X,), Z}. For each, a corresponding representation
{H,V,K} € RL is generated via independent autoencoders with the aforementioned architecture. Figure
portrays the process of connecting H and V to represent the relation X — ), while Figure [[4] illustrates
stacking these relations to represent the entire causal system, thereby enabling a hierarchical representation.

Assume x and y as instances of the relation X — ), with corresponding latent representations h and v. We
utilize an RNN model to estimate the latent dependency P(v|h) as displayed in Figure The training
process involves three simultaneous optimizations per iteration:

1. Optimizing encoder P(h|z), RNN model P(v|h), and decoder P(y|v) to reconstruct the effect x — y.
2. Fine-tuning encoder P(v|y) and decoder P(y|v) to accurately represent y.
3. Fine-tuning encoder P(h|z) and decoder P(z|h) to accurately represent x.

Throughout the learning, h and v values are iteratively refined to minimize their latent space distance, and
the RNN functions act as a bridge to traverse this distance, thereby estimating the causal effect x — y.

Figure presents two stacking scenarios for ) in the three-variable causal system comprising {X,), Z},
based on different causal direction settings. For the established latent edge )717 , the left-side architecture
completes the X — Y < Z relationship, while the right-side caters to X — Y — Z. Stacking is achieved
by adding an extra representation layer, thereby forming a hierarchical structure, enabling diverse input-
output combinations (denoted as ). For example, in the left setup, P(v|h) — P(«a) signifies the X — Y
relationship, while P(alk) implies Z — Y. Conversely, the right setup has P(v) — P(f|k) representing
Y — Z with Y as input and P(v|h) — P(8|k) denoting the X — Y — Z relationship.

Thttps://github.com/kflijia/bijective_ crossing functions/blob/main/code_ bicross_ extracter.py
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Figure 14: Architecutres of the Relation-Defined Hierarchical Representation.

Causal effects of edges can be sequentially stacked based on known causal Directed DAGs by leveraging
domain knowledge. Additionally, this method can facilitate causal structure discovery in the latent space,
identifying potential edges among the initial representations of the variables.

6.3 Causal Discovery in Latent Space

Algorithm 1 details the heuristic process of discovering causal edges among the initially established variable
representations. It employs the Kullback-Leibler Divergence (KLD) as a metric to assess causal relationship
strength. Specifically, KLD measures the similarity between the RN N’s output, P(v|h), and the prior P(v),
as depicted in Figure [[3] A lower KLD signifies a stronger causal relationship, given its closer alignment
with the ground truth. Though Mean Squared Error (MSE) is a conventional evaluation metric, considering
it may be influenced by data variances Reisach et al. (2021); Kaiser & Sipos| (2021]), we primarily employ
KLD as the criterion and use MSE as a supplementary metric. For clarity, in the graphical context, for edge
A — B, we refer to variables A and B as the cause node and result node, respectively.

Algorithm 1: Latent Space Causal Discovery

Result: ordered edges set E = {e1,...,en}
E={}; Nr ={no | no € N, Parent(ng) = 9} ;

Whil; ]_sz}; N do G = (N,E) | graph G consists of N and E
for nc N do N the set of nodes
for p € Parent(n) do E the set of edges
if n ¢_NR anfi PE NR. then Ng the set of reachable nodes
:_ (p,n); B ={k E the list of discovered edges
or r € Nr do .
if r € Parent(n) and r # p then K(B,n) KLD metric of effect 8 — n
| B=BUr B the cause nodes
dend n the result node
en . .
S = K(BUp,n) — K(B,n); e KLD Gain of candidate edge e
A = AUde; A= {4} the set {d.} for e
end n,p,r notations of nodes
end e,0 notations of edges
end
o = argmine(de | e € A);
E=EUo; Ngr=NgrUng;

end

Figure[15| presents an exemplification of the causal structure discovery process within the latent space. Across
four steps, two edges (e; and es) are successively selected. The selection of e; establishes node B as the
starting point for e3. In step 3, the causal effect of e5 from A to C' is deselected from the potential edges
and re-evaluated. This is due to the introduction of edge e3 to C, modifying C’s existing causal conditions.
As the procedure unfolds, the ultimately discovered causal structure is represented by the final DAG.
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Figure 15: Example of the Latent Space Causal Discovery.

7 Feasibility Validation Experiments

The experiments aim to validate the efficacy of the proposed relation-defined representation learning method
in 1) creating high-dimensional feature representations using our autoencoder architecture, 2) constructing
latent effects and stacking them for hierarchical representation, and 3) latent space causal structure discovery.

We employ a synthetic hydrology dataset for the experiments, a prevalent resource in hydrology. The task in-
volves predicting streamflow based on observed environmental conditions like temperature and precipitation.
By using relation-defined representation learning on this hydrology data, we aim to construct generalizable
causal models across diverse watersheds. Despite similarities in hydrological schemes, differences in unmea-
surable conditions such as economic developments and land use complicate direct model application. Current
physical knowledge-based models, however, are often constrained by limited parameters, which restricts their
flexibility in capturing the common knowledge within heterogeneous data.

To assess models’ robustness and generalizability, Electronic Health Record (EHR) data would be an ideal
choice, given their rich confounding relationships across multi-timelines. However, due to empirical restric-
tions, we lost access to EHRs during this study. To confirm the existence of inherent temporal bias, we direct

readers to the previous work (2020). A complete demo of experiments in this study is provided ﬂ

ID Variable Name Explanation
A | Environmental set | Wind Speed, Humidity, Temperature
B Environmental set Il | Temperature, Solar Radiation, Precipitation
—
1t tier causality C | Evapotranspiration Evaporation and transpiration
D | Snowpack The winter frozen water in the ice form
2" tier li
LEcatE LY E Soil Water Soil moisture in vadose zone
3rd tier causality F Aquifer Groundwater storage
G | Surface Runoff Flowing water over the land surface
H Lateral Vadose zone flow
| Baseflow Groundwater discharge
J Streamflow Sensors recorded outputs

Figure 16: DAG of structured hydrology data, with tiers of routines ordered by decreasing causal strengths.

7.1 Hydrology Dataset

Our experiments leverage the Soil and Water Assessment Tool (SWAT), a comprehensive hydrology data
simulation system rooted in physical modules. We use SWAT’s simulation of the Root River Headwater wa-
tershed in Southeast Minnesota, selecting 60 consecutive virtual years with daily updates. The performance
evaluations predominantly focus on the accuracy of the autoencoder reconstructions.

In hydrology, deep learning methodologies are frequently employed |Goodwell et al.| (2020)) to distill effec-
tive representations from time series data, with RNN models emerging as a favored choice for streamflow
prediction (2018). Figure [16]illustrates the causal DAG used by SWAT, with accompanying node
descriptions. The nodes signify different hydrological routines, with the intensity of causality between them
determined by their contribution to the output streamflow, denoted by various colors. The surface runoff
routine (1st tier causality) plays a significant role in causing swift streamflow peaks, followed by the lateral
flow routine (2nd tier causality). The baseflow dynamics (3rd tier causality) exert a more subtle influence.
In our causal discovery experiments, we aim to uncover these ground truths from the observed data.

2https://github.com/kflijia/bijective_ crossing functions.git
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Table 1: Statistics of Attributes and the Reconstruction Performances.

Variable | Dim | Mean Std Min Max | Non-Zero Rate% | RMSE on Scaled | RMSE on Unscaled | BCE of Mask
A 5 1.8513 | 1.5496 | -3.3557 | 7.6809 | 87.54 0.093 0.871 0.095
B 4 0.7687 | 1.1353 | -3.3557 | 5.9710 | 64.52 0.076 0.678 1.132
C 2 1.0342 | 1.0025 | 0.0 6.2145 | 94.42 0.037 0.089 0.428
D 3 0.0458 | 0.2005 | 0.0 5.2434 | 11.40 0.015 0.679 0.445
E 2 3.1449 | 1.0000 | 0.0285 | 5.0916 | 100 0.058 3.343 0.643
F 4 0.3922 | 0.8962 | 0.0 8.6122 | 59.08 0.326 7.178 2.045
G 4 0.7180 | 1.1064 | 0.0 8.2551 | 47.87 0.045 0.81 1.327
H 4 0.7344 | 1.0193 | 0.0 7.6350 | 49.93 0.045 0.009 1.345
I 3 0.1432 | 0.6137 | 0.0 8.3880 | 21.66 0.035 0.009 1.672
J 1 0.0410 | 0.2000 | 0.0 7.8903 | 21.75 0.007 0.098 1.088

Table 2: Brief Summary of the Latent Causal Discovery Results.
Edge | A»C | B»D | C—»D | C—»G | D—»G | G=J | D—»H | H—»J | BE E—G | E-H C—E | E»F F—=I | I-»J | DI
KLD | 7.63 | 851 |10.14 | 11.60 | 27.87 | 5.29 | 25.19 | 15.93 | 37.07 | 39.13 | 39.88 | 46.58 | 53.68 | 45.64 | 17.41 | 75.57
Cain | 7.63 | 851 | 1.135 | 11.60 | 2454 | 5.29 | 25.19 | 0.209 | 37.07 -5.91 | -3.29 2.677 | 53.68 45.64 | 0.028 | 3.384

7.2 Higher-Dimensional Representation Reconstruction Test

As depicted in Figure there are 10 nodes needing initial representation establishment. Table [1| displays
the statistics of their attributes (post-normalization), and reconstruction performance using the proposed
high-dimensional feature representation autoencoders. Accuracy is evaluated via root mean square error
(RMSE); lower RMSE equates to higher accuracy, on both scaled (i.e., normalized) and unscaled data.

The task poses challenges due to the exceedingly low dimensionality of the 10 variables, with a maximum
of just 5 and the target node, J, possessing a single attribute. To counter this, we duplicate their columns
to achieve a uniform 12-dimensionality, supplemented by the dummy variables of the 12 months, yielding a
24-dimensional autoencoder input. Through a double-wise feature extension, we generate a 576-dimensional
amplified input, from which we extract a 16-dimensional representation via the encoder and decoder.

Significant challenges also arise from considerable meaningful-zero values. For example, node D (Snowpack in
winter) includes numerous zeros in other seasons, closely related to node E (Soil Water) values. We address
this by concurrently reconstructing non-zero indicator variables, named masks, within the autoencoder,
evaluated using binary cross entropy (BCE).

Despite these challenges, the shallow RMSE values within [0.01,0.09] suggest success, barring node F' (the
Aquifer). Considering that research into the physical schemes under the aquifer system is still in its infancy,
it is plausible that in this synthetic dataset, node F' is more representative of random noise than other nodes.

7.3 Latent Causal Effects Learning Test

Table [3| shows the results of the latent effect learning, organized by each result node. For convenience, the
pairwise relationship performances are referred to as “pair-effect”, and the hierarchical multi-level perfor-
mances as “stacking-effect”. To facilitate comparison, the baseline performances from the initial variable
representation (Table are also included. During latent effect estimation, each result node fulfills two roles:
preserving an accurate self-representation (optimization 2), and reconstructing the effect (optimization 1).
These dual roles are respectively depicted in the middle and right-hand side of Table

The KLD metrics in Table[3]indicate the strength of learned causality, with a lower value signifying a stronger
causal relationship. For instance, node J’s minimal KLD values suggest a significant causal effect from nodes
G (Surface Runoff), H (Lateral), and I (Baseflow). In contrast, the high KLD values imply that predicting
variable I using D and F' is challenging.

For nodes D, E, and J, the stacking-effect causal strengths hover at a middle range compared to their pair-
effects, suggesting a potential associative uninformative among their cause nodes. In contrast, for nodes G
and H, lower stacking-effect KLDs indicate effective capture of associations by hierarchical representations.
The KLD metric also unveils the most contributive cause node to the causal effect. For instance, the C' — G
strength being closer to CDE — G indicates C' as the primary source of this causal effect.
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Figure 17: Time series simulation examples for the reconstruction performances’ comparison.

Figure [17] showcases time series simulations of nodes J, G, and I, in the same synthetic year, to provide a
straightforward overview of the hierarchical representation performances. Here, blue lines represent recon-
structed data, black dots represent the ground truth, and red lines are hierarchical representations. Except
for RMSE, we also employ the Nash—Sutcliffe model efficiency coefficient (NSE) for accuracy evaluation,
which ranges from -oo to 1.

The reconstructions closely mirror the ground truth, and as anticipated, the stacking-effect outperforms the
pair-effect in Figure Although node J has the best prediction, node I proves challenging. For node G,
which is predicted from causes CDE, C offers the most potent causality.

One might observe via the demo that our experiments do not show smooth information flows along successive
long causal chains. Given that RNNs are designed primarily for capturing the dynamics of causes rather than
the effects, relying on them to spontaneously organize the effects’ dynamical representations might prove
unreliable. It underscores a significant opportunity for enhancing effectiveness by improving the architecture.

7.4 Latent Space Causal Discovery Test

Table [6] shows the order of discovered edges, with the KLD values after each edge’s inclusion, and respective
KLD gains. Cells follow the color-coding scheme from Figure[I6] representing different tiers of causal routines.

For a detailed look at the causal discovery process, see [d] which presents sorted detection rounds. For
comparison, we conducted a 10-fold cross-validation using the conventional FGES method; results can be
found in Appendix A Table[5] The proposed method markedly outperforms the traditional FGES approach.
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Table 3: Performances of Latent Causal Effect Learning via Reconstructions.

Varl_a.ble Representation Vz.mable Represe.ntatlon Latent Causal Effect Reconstruction
Result (Initial) (in Effect Learning)
Node RMSE BCE | Cause RMSE BCE RMSE BCE | KLD
on Scaled | on Unscaled Mask Node | on Scaled | on Unscaled Mask | % Scaled | on Unscaled Mask (in latent
Values Values Values Values Values Values space)
C 0.037 0.089 0.428 | A 0.0295 0.0616 0.4278 | 0.1747 0.3334 0.4278 | 7.6353
BC 0.0350 1.0179 0.1355 | 0.0509 1.7059 0.1285 | 9.6502
D 0.015 0.679 0.445 | B 0.0341 1.0361 0.1693 | 0.0516 1.7737 0.1925 | 8.5147
C 0.0331 0.9818 0.3404 | 0.0512 1.7265 0.3667 | 10.149
BC 0.4612 26.605 0.6427 | 0.7827 45.149 0.6427 | 39.750
E 0.058 3.343 0.643 | B 0.6428 37.076 0.6427 | 0.8209 47.353 0.6427 | 37.072
C 0.5212 30.065 1.2854 | 0.7939 45.791 1.2854 | 46.587
F 0.326 7.178 2.045 | E 0.4334 8.3807 3.0895 | 0.4509 5.9553 3.0895 | 53.680
CDE | 0.0538 0.9598 0.0878 | 0.1719 3.5736 0.1340 | 8.1360
C 0.1057 1.4219 0.1078 | 0.2996 4.6278 0.1362 | 11.601
G 0-045 0-81 1827 D 0.1773 3.6083 0.1842 | 0.4112 8.0841 0.2228 | 27.879
E 0.1949 4.7124 0.1482 | 0.5564 10.852 0.1877 | 39.133
DE 0.0889 0.0099 2.5980 | 0.3564 0.0096 2.5980 | 21.905
H 0.045 0.009 1.345 | D 0.0878 0.0104 0.0911 | 0.4301 0.0095 0.0911 | 25.198
E 0.1162 0.0105 0.1482 | 0.5168 0.0097 3.8514 | 39.886
DF 0.0600 0.0103 3.4493 | 0.1158 0.0099 3.4493 | 49.033
1 0.035 0.009 1.672 | D 0.1212 0.0108 3.0048 | 0.2073 0.0108 3.0048 | 75.577
F 0.0540 0.0102 3.4493 | 0.0948 0.0098 3.4493 | 45.648
GHI 0.0052 0.0742 0.2593 | 0.0090 0.1269 0.2937 | 5.5300
G 0.0077 0.1085 0.4009 | 0.0099 0.1390 0.4375 | 5.2924
J 0.007 0-098 1.088 H 0.0159 0.2239 0.4584 | 0.0393 0.5520 0.4938 | 15.930
1 0.0308 0.4328 0.3818 | 0.0397 0.5564 0.3954 | 17.410

8 Conclusions

Prompted by the challenges of Al misalignment, this research delves into the inherent constraints of the
predominant Observation-Oriented modeling paradigm. Accordingly, we introduce a new Relation-Oriented
paradigm, complemented by its practical methodology, the relation-defined representation learning, and
experimentally validate the efficacy of this approach.

Our perspective offers a new lens - viewing relationship learning through a dimensionality framework, where
the relationships in our knowledge can be seen as distributions spanning various dimensions. It brings fresh
insights into causal inference theories, presenting them in a more intuitively accessible manner.

The prevailing Observation-Oriented paradigm necessitates the identification of modeling objects prior to
defining relations. This confines models to the observational space and limits their access to temporal features.
By depending on a singular, absolute timeline, the paradigm overlooks the multi-dimensional nature of the
temporal space, thereby compromising model robustness and generalizability, which is a major factor in the
AT misalignment issue.

Human cognition, in essence, prioritizes relations, leading to our vast relation-centric knowledge systems.
We can identify dynamical temporal features by navigating the intricate network of relations in the hyper-
dimensional space. This insight inspired the Relation-Oriented paradigm.

While implementing the relation-defined representation learning method, we encountered formidable techni-
cal challenges, such as crafting an invertible autoencoder for higher-dimensional representation. Nevertheless,
thorough experiments have affirmed the feasibility of our proposed method. AI alignment is never a question
with a simple answer but calls for interdisciplinary efforts |Christian| (2020)). Through this work, we aim to
contribute to the development of more genuine AI and provide a foundation for future advancements.
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