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Abstract: Increasingly large imitation learning datasets are being collected with the
goal of training foundation models for robotics. However, despite the fact that data
selection has been of utmost importance in vision and natural language processing,
little work in robotics has questioned what data such models should actually be trained
on. In this work we investigate how to weigh different subsets or “domains” of robotics
datasets for robot foundation model pre-training. Concretely, we use distributionally
robust optimization (DRO) to maximize worst-case performance across all possible
downstream domains. Our method, Re-Mix, addresses the wide range of challenges
that arise when applying DRO to robotics datasets including variability in action spaces
and dynamics across datasets. Re-Mix employs early stopping, action normalization,
and discretization to counteract these issues. Through extensive experimentation on the
largest open-source robot manipulation dataset, the Open X-Embodiment dataset, we
demonstrate that data curation can have an outsized impact on downstream performance.
Specifically, domain weights learned by Re-Mix outperform uniform weights by 38%
on average and outperform human-selected weights by 32% on datasets used to train
existing generalist robot policies, specifically the RT-X models.
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1 Introduction
Many breakthroughs in machine learning can be attributed to “Internet-scale” datasets, from the develop-
ment of vision models like CLIP [1] to advancements in transformer-based language modeling powered by
the Common Crawl dataset [2]. Seeking to capitalize on this trend, several recent efforts in robotics focus
on collecting [3–6] or pooling [7] large scale robotics datasets with the goal of training more performant
imitation learning policies. Learning from this data, however, is particularly challenging: robotics datasets
are collected with different robots, environments, state spaces, action spaces, and dynamics [8]. For exam-
ple, the commonly used Bridge V2 Dataset [4] uses a third person camera on a small WidowX robot and
cartesian delta control, while many datasets [9–12] collected on the popular and much larger Franka Panda
robot use wrist cameras [3] or joint-space actions [13]. While embracing such heterogeneity quickly scales
the amount of available training data [7], it amplifies the importance of a fundamental question: how do we
curate these raw, heterogeneous data sources into effective training datasets for generalist robot policies?

While early vision and language models were trained on highly-curated academic datasets such as ImageNet
[14], questions surrounding data selection have shaped modern training pipelines that use Internet-scale data
[15–17]. For example, training large language models involves numerous stages of data filtering [18]. Simi-
larly, large vision datasets, e.g. LAION [19], use pre-trained models to assess data quality. Thus as we scale
robot data, curation weill become critical. Unfortunately, prior filtering techniques are often inadequate in
robotics; we cannot use n-grams and visual embeddings do not capture the sequential nature of episodic data.

Even though aspects of demonstration data such as action quality [20] and visual diversity [3, 4, 21] have
been shown to be of paramount importance to downstream performance, approaches for robotics data
curation remain limited. In imitation learning (IL), the data selection problem has only been characterized
theoretically [22, 23] or in simple small-scale settings [24]. Thus in practice we are left with ad hoc
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solutions. For example, though the Open-X-Embodiment dataset (OpenX) [7] is comprised of more
than 60 individual datasets totalling over 2M robot trajectories, the RT-X models released alongside it
were trained on a mixture of only 12 datasets, weighted based on expert intuition. The recently released
Octo [25] and OpenVLA [26] generalist policies were similarly trained on a subset of OpenX, where
the authors chose which datasets to include at what sampling weight based on a subjective notion of
“interestingness”. While the resulting data mixes are shown to work well in practice, their curation requires
extensive domain knowledge and manual data inspection. Such ad hoc selection strategies are unlikely
to scale to the rapidly growing datasets used to train robot policies [3, 5, 27].

In this work, we ask: how can we automatically curate large-scale robotics datasets to maximize the
performance of generalist IL policies across domains? Though many filtering techniques are not directly
applicable to robotics, we can borrow ideas from language modeling that systematically optimize data
mixtures based on model performance. Specifically, DoReMi [28] uses group distributionally robust opti-
mization [29] to maximize performance across “domains” in a given dataset. In the context of robotics, such
“domains” can correspond to different scenes within a single dataset, e.g., different toy kitchens in Bridge V2
dataset [4], or can refer to full robot datasets in mixtures such as the OpenX dataset. However, due to the het-
erogeneity of robotics datasets we find that naively applying such techniques does not work. Distributionally
robust optimization approaches minimize worst-case loss. Differences in action spaces and their distribu-
tions can cause loss magnitudes to be imbalanced across domains, leading some domains to be weighed
more heavily than they should be. Moreover, the smaller size of robotics datasets makes overfitting easy.
Both of these issues result in poor estimates of model performance, and consequently bad mixture weights.

To address these problems, we propose Re-weighing Robotic Dataset Mixtures with Minimax Optimization
(Re-Mix for short), which instantiates the data curation problem as a min-max optimization, where a
policy minimizes its excess behavior cloning loss over a reference model subject to learned domain mixture
weights that try to maximize it. Intuitively, the excess loss measures how much room the policy has to
improve on a given domain, and the data mixture is optimized to maximize such improvement potential.
Crucially, we carefully control the loss magnitudes between domains via domain-independent action
normalization and discretization, even if the final policies we train are continuous diffusion models [30, 31].
Moreover, we find that selecting a reference model that has not overfit to any domain prevents drastic
skewing of the downstream domain weights.

We empirically evaluate Re-Mix by using it to automatically optimize the training data mixture for the
Bridge V2 dataset [4] and the OpenX-based dataset used to train RT-X [7]. We show that policies trained
with our data mix improve performance by 38% and 32% respectively over naı̈ve data balancing and
human-expert-curated data mixtures in evaluations using WidowX and Franka robot arms. Additionally,
we show that weights from Re-Mix can effectively sub-sample both datasets, achieving competitive
performance when using only 25% of the original data, while using uniform or human curated weights
significantly reduces performance. Our contributions are as follows:

• We introduce Re-Mix, a method for automatically curating large-scale robotics datasets using group
distributionally robust optimization over the behavior cloning loss.

• We demonstrate Re-Mix’s ability to curate effective training data mixtures for the Bridge [4] datasets
and the subset of the OpenX dataset [7] used to train the RT-X models.

• We curate 25% subsets of the Bridge and OpenX datasets which can be used for training generalist
policies with minimal loss in performance, while reducing the required compute budget.

2 Related Work
In congruence with the rise of deep learning in various fields, data selection has become of increasing
interest. Here we review the most relevant works, organized by area.

The Data Problem in Robotics. Several recent works in robotics have focused on collecting large demon-
stration datasets for imitation learning in simulation [20, 32, 33] and the real world [3, 7, 34–38] to train
large-scale robot policies [6, 25, 39, 40]. Generally, these works along with others that study the influence
of data collection on compositional generalization [21, 41, 42] show that aspects of dataset construction
such as scene and task diversity have a direct impact on downstream policy generalization. Though several
studies focus on how data should be collected via specific hardware [43], collection procedures [11, 21, 44],
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or provide theoretic insights about data collection [22], little work in robotics addresses the post-hoc dataset
selection and analysis problem. This is particularly important as the number and diversity of robot datasets
are increasing with less clear conclusions about how to train a policy that effectively consumes all the col-
lected data [3, 7, 25]. Baker et al. [45] train a classifier to predict data quality, but require human annotations
which are impractical to scale. Perhaps most related are retrieval-based methods that subset datasets [12, 46],
but do so based on a priori target task specifications and are thus inapplicable to training generalist policies.

Data Curation in Computer Vision. Computer vision datasets were originally hand-crafted and manually
labeled [14, 47]. However, scaling datasets to beyond what is possible to curate by hand, while retaining
quality, has been critical to increasing performance [1, 48]. Notably, filtering techniques based on
metadata-count balancing [49], embeddings [19], optical flow [50], and clustering [51] have shown to
greatly improve downstream performance despite filtering out large amounts of data. At the extreme,
coreset selection methods use active learning [52, 53], but have prohibitive computational requirements
[54, 55] Data curation techniques from computer vision can only filter state-action trajectories in an
action-agnostic manner – potentially removing useful parts of a dataset.

Data Curation in Natural Language Processing. When training on large real-world sources of text,
language modeling pipelines employ a number of text-specific preprocessing steps including metadata,
dialect, de-duplication, and toxicity filtering [16, 18, 56, 57]. More advanced methods also consider
sub-setting data to maximize downstream performance, as in this work, but use techniques such as
k-means clustering over embedded text [58, 59]. While such clustering techniques are potentially
visually informative in robotics – similar to curation works in computer vision – they do not provide
information about actions. Mixture techniques, such as Domain Reweighting with Minimax Optimization
(DoReMi) [28] balance text domains using robust optimization and build upon ideas from prioritized
training [60–62]. Our work is inspired by DoReMi as such robust optimization approaches can be applied to
imitation learning as well. In this work, we discuss the challenges of applying these techniques in robotics,
and propose a solution that addresses their limitations for effective dataset curation for imitation learning.

3 Re-weighing Robotic Dataset Mixtures with Minimax Optimization
In this section, we first formalize the problem of re-weighting data mixtures for IL. We then discuss our
approach which uses distributionally robust optimization to select domain weights.

Problem Setup. We consider the general imitation learning problem, where we are given a dataset of
demonstrations D={τ1,...,τn} consisting of state-action trajectories τ=(s1,a1,...,sTi

,aTi
). Our goal is

to learn a parameterized policy πθ that learns a mapping from states to actions πθ :S→A. In practice, this
is often done through standard imitation learning algorithms such as behavior cloning (BC) by minimizing
the expected negative log-likelihood of the actions under the policy:

LBC(πθ,D)=E(s,a)∼D[−logπθ(a|s)] (1)

However, datasets often contain more information than just state action pairs. We assume that the overall
dataset D can be split into k heterogeneous domains D1,...,Dk. This is a general assumption: while
these domains could be larger groups, like different datasets from the Open X-Embodiment dataset [7]
with different embodiments, they could also be as small as single trajectories. Moreover, each of the k
domains can differ in state space S, action space A, transition dynamics, or their distributions. In fact
when learning large behavior models, such heterogeneity becomes necessary to access more sources of
diverse data. In this work, we use the Bridge dataset [4] – with different environments as the domains,
and the Open-X-Embodiment dataset [7] – with different robot embodiments as the differing domains.

Our goal is to learn a weighting vector α∈∆k that specifies a probability distribution over all domains
such that any model, when trained on a domain mixture weighted according to α, attains maximum
performance across all domains. Unlike the data retrieval, where data is selected for a particular target
task, our goal is to curate datasets for effective pre- or co-training without any knowledge of a target task.

Distributionally Robust Optimization. When pre-training on large amounts of robot data we want
policies to generalize to new settings and tasks, not master a specific target task. With that in mind,
we want to optimize for a data mixture that results in models that i) can perform as well as possible on
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each domain, but ii) do not overfit to any one domain at the expense of another. Distributionally robust
optimization (DRO) techniques aim to solve the same problem: learn models that minimize the worst-case
training loss [29] – BC loss in the case of imitation learning – across domains D1 ...Dk. Specifically,
naı̈vely applying group robust optimization techniques in robotics would result in the following objective:

minθmaxα∈∆k

∑︁k
i=1αiLBC(πθ,Di). (2)

With this objective, α up-weights domains that have a higher loss value, emphasizing the hardest domains.
However, in practice we might not be interested in just fitting the domains with higher losses. For example,
a dataset with complex rotations may always have higher BC loss than simple pick-place datasets. Thus,
standard robust optimization techniques could end up ignoring the latter domain. Instead, as in prior
work [28, 52, 63], we consider the difference in loss between our learned policy πθ and a reference policy
πref which is trained to convergence on an initial guess of the domain weights, usually assumed to be
proportional to the size of each domain, i.e. uniform sampling. In Eq. (2) this equates to replacing LBC
with LBC(πθ,Di)−LBC(πref,Di). We refer to this difference as the excess loss, and use it for robust
optimization. Like before, this will down-weight domains that the policy fits well, as it can achieve a
loss similar to that of the reference model. However, it crucially also down-weights domains which are
difficult to fit (i.e. they have a high policy loss and a high reference loss) due to the relative nature of
the excess loss. Therefore, only domains that have a high excess loss, meaning the policy can improve
to match the reference model, will be up-weighted as α is chosen to maximize the excess overall loss.

Unfortunately, models trained directly with robust optimization often exhibit worse overall performance
[64, 65]. Alternatively, we can use the learned α for downstream training as in Xie et al. [28]. This gives us
a set of reusable weights that can be used to train different policies without the need for robust optimization.

3.1 The Challenges of Applying Robust Optimization in Robotics

While Group DRO has been applied in language modeling [28], robust optimization techniques face
unique challenges in robotics which we highlight here. We then detail how we adapt a distributionally
robust optimization pipeline to select domain weights for robotics datasets.

αnoise αbridge
Bounds 0.943 0.057
Gaussian 0.158 0.842

Table 1: Learned α from toy set-
ting in Section 3.1

Unbalanced Losses. Large robotics datasets are often highly hetero-
geneous: many are collected across different embodiments, controllers,
frequencies and even units (e.g., inches vs meters). Within the same
dataset, different scenes or tasks require vastly different ranges and speeds
of motion. As a result, some datasets may have an outsized effect on
robust optimization. To address this issue, one needs to align action losses across domains. Action normal-
ization is often applied in imitation learning to standardize datasets to a common distribution [20, 25]. In our
case, we specifically apply Gaussian normalization to each embodiment individually. We note that bounds
normalization [30] applied to each domain, would be insufficient as it would not align the moments of
each domains action distribution. To underline the importance of aligning actions to a common distribution,
we construct a simple experiment by training a policy with Group DRO [29] (Eq. (2)) when the action
distributions match versus when they differ. Specifically, we construct a noise domain where a subset of the
Bridge V2 dataset [4] is assigned random Gaussian actions and a bridge domain which uses the original ac-
tions, either normalized to also be unit gaussian or rescaled between -1 and 1 using “bounds” normalization.
When Gaussian normalization is applied to the bridge domain, the action distribution matches the random
noise unlike with bounds normalization. We show the learned domain weights α for each scheme in
Table 1. While one might expect thatα assigns majority weight to the bridge domain, as the noise domain is
impossible to fit, this is actually only true in the “Gaussian” case when the action distributions of are aligned.

Continuous Losses. Robust optimization has largely been applied in discrete classification problems
with cross-entropy losses, for example in language modeling [63]. Popular policy learning approaches,
however, often predict continuous actions and use L1 or L2 loss functions [20, 30, 66, 67]. Applying robust
optimization in these settings can be problematic for two reasons. First, action distributions can be multi-
modal, and expressive continuous policy classes such as diffusion models only optimize an upper bound on
the true loss. However, without the expressiveness to fit multi-modal distributions, both the reference policy
and DRO would be unable to effectively minimize BC loss on domains with multi-modal actions. Second,
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compared to language datasets, robot datasets often have a large number of action outliers which can heavily
sway the value of continuous action losses. With L1 or L2 loss, these outliers can significantly increase the
loss of a given domain, causing DRO to believe it can still make progress. To resolve these problems, when
applying robust optimization in the robotics domain, we discretize each action dimension via binning.

Overfitting. Datasets in language modeling often contain billions of tokens. As a result, robust
optimization techniques like Xie et al. [28] do not experience overfitting when applied to these large scale
datasets. On the other hand, large robot datasets are comparatively small (∼10-100k demonstrations).
In this regime, it is common for high-capacity policies to achieve near-zero training loss for every datapoint
[6, 25, 26, 68]. This is problematic when using the excess loss for robust optimization: if the reference
model achieves near-zero training loss on every data point within a domain, the excess loss is equivalent
to the regular loss (since the reference loss is always ≃0) and α no longer reflects the potential for
improvement on each domain. To counteract this problem, we employ aggressive early stopping on both
the reference model and robust optimization. Specifically, we select the latest checkpoint from the reference
model that has not overfit to any of the domains D1,...,Dk as measured by the difference in loss values
between the training dataset and a held-out validation dataset for the respective domain. This ensures that
the reference model does not overfit to any individual domain and the learned weights α are informative.

3.2 Re-weighing Robotic Dataset Mixtures with Minimax Optimization

Our approach, Re-Mix, uses group distributional robustness to determine the weights of a data mixture
[28] that could then be used for policy training and incorporates the key design considerations from the
previous section, addressing issues around unbalanced losses, continuous losses, and overfitting. We note
that Re-Mix only returns the weights of the data mixture α, as opposed to the final policy. This is to
decouple the data curation problem from the policy training problem. After running Re-Mix, the resulting
weights can be used for learning policies of a different type (i.e. diffusion) or at a larger scale.

Stage 1: Action Preprocessing. Following Section 3.1, we apply Gaussian normalization separately to
every domain Dk with different action spaces and dynamics, and then discretize actions via binning.

Stage 2: Reference Model Training. Next, we train a discrete reference model πref on the uniform mixture
of domains D1,...,Dk, where each domain is weighted in proportion to its size. We select the final reference
model checkpoint by validation loss per Section 3.1, and use it to estimate the excess loss per domain.

Stage 3: Group Distributionally Robust Optimization. We learn the domain weights α via the following
robust optimization with a discrete policy πθ:

min
θ

max
α∈∆k

k∑︂
i=1

αi

⎡⎣ 1

|Di|
∑︂

(s,a)∈Di

(−logπθ(a|s)+logπref(a|s))

⎤⎦, (3)

which minimizes the worst case excess BC loss of the learned policy −logπθ(a|s)+logπref(a|s) over
all possible weightings of the domains α∈∆k. To update α, following [29], we perform one step of
exponentiated gradient ascent on α followed by domain-weighted gradient descent on θ at each training
step. Our resulting values of α upweight domains that we can still improve on, while downweighting
domains that are trivial or impossible to fit. This means that Re-Mix directly filters data based on actions,
unlike other techniques in vision and language that solely filter based on embeddings [59, 69]. We
optimized Eq. (3) for the same number of steps as the reference model.

Stage 4: Data Weighting for Policy Training. After robust optimization over the excess loss, we take the
average value of α over the course of training, which we denote by ᾱ. We can then use this value of ᾱ to
re-weight different domains, or even subset datasets for policy training. In practice, this means that we can
re-use the weights for several training runs with different configurations. For example, Re-Mix uses discrete
actions, but we train final policies with diffusion which has shown to perform well empirically [25, 30].

4 Experiments
We aim to answer the following questions: (1) Does Re-Mix effectively curate large robot datasets for down-
stream policy learning? (2) Can we use Re-Mix to heavily sub-sample robot datasets while retaining good
performance? (3) Which design decisions matter for effective automatic curation of large robot datasets?
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Figure 2: Results for curating the RT-X training mix. We test policies trained on different weightings of the data
mixture used by RT-X across two WidowX (left) and two Franka (right) tabletop manipulation tasks. We find that
the policy trained on the data mix curated with Re-Mix achieves strongest performance, even outperforming the
human-expert-curated data mix from RT-X [7]. Mean ± StdErr across 4 tasks, 10 evaluations each.

4.1 Experimental Setup

Datasets. We test Re-Mix curation on two widely-used, large-scale robot datasets: (1) the Bridge V2
Dataset [4], consisting of 50k diverse teleoperated demonstrations of single-arm manipulation tasks with a
WidowX 6 DoF robot arm, and (2) the datasets from the Open X-Embodiment dataset used to train RT-1-X
and RT-2-X models [7] which have third-person cameras, consisting of a total of 350k demonstrations
which span disparate embodiments and environments. We use “RT-X” to refer to this set of datasets. We
partition the Bridge V2 dataset into 32 domains based on the scenes the data was collected in. For OpenX,
we use each of the 11 datasets in the RT-X training set as a domain for our curation experiments. The
OpenX data mix is particularly challenging for effective curation due to its heterogeneous data sources. For
a detailed list of all datasets and partitions, see Appendix B. For simulation experiments see Appendix A.
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Figure 1: On Bridge V2 [4] there
is no notable difference between
uniform sampling vs. Re-Mix
when training on the full dataset.

Training and Evaluation Details. We aim to assess the quality of vari-
ous curated pre-training data mixtures for downstream policy learning. To
that end, we co-train generalist goal-conditioned policies on the curated
datasets. As we do not have access to the robot setups used to collect the
datasets we train on, we construct our own WidowX and Franka robot
evaluation setups. Unfortunately, policies trained on only the pre-training
data failed to zero-shot generalize to our out-of-distribution setups. To ad-
dress this, we follow prior works [3, 12, 46, 70] and co-train our policies
on a small amount of in-domain data (25 demonstrations each for 3 rep-
resentative tasks), added to the final training mixture at a small weight
of 5%. We then evaluate policies on tasks that are out-of-distribution
with respect to the co-training data to test generalization. As a result of
co-training, all policies achieve non-zero success rate. However, we note that the in-domain dataset is
small enough that the quality of the pre-training data mix still has significant impact on the evaluation
result, providing a good test bed for data curation approaches. All models are evaluated in the real world
with 10 trials per task totaling over 500 real-world trials cumulatively. For all policies we use a ResNet
50 image encoder [71]. For the Re-Mix reference model and Group DRO optimization, we use a discrete
MLP action head. For all final policies we use the diffusion head from [4, 25, 72] and train all models for
400,000 gradient steps.

Comparisons. We compare the quality of Re-Mix’s curated data mixes to a naı̈ve baseline: sampling
uniformly from each domain according to the total number of state-action pairs (Uniform). For evaluations
on the OpenX datasets, we additionally compare to a human-expert-curated data mix, using the hand-crafted
weights from RT-X [7]. For Bridge there is no expert-curated data mix — uniform sampling is the norm.

4.2 How do Re-Mix weights impact performance?
In Fig. 2, we show results for weighing datasets from the RT-X mix according to different methods. For
the WidowX robot, we consider four tasks that test generalization to 1) unseen objects: “Carrot to Rack”,
“OOD Cup”, 2) unseen initial conditions: “Fork to Rack”, and 3) distractors at the goal location “Cube to
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Method αUR5 αCable Routing αBridge αJaco αKuka αRoboTurk αRT1 αTaco Play αTaco Extra αToto αViola
Uniform 1.01% 0.43% 22.7% 0.81% 24.9% 1.94% 40.9% 0.60% 2.46% 3.42% 0.80%
Human 1.22% 1.56% 27.5% 1.95% 25.1% 2.35% 26.8% 1.46% 5.94% 4.13% 1.90%
Re-Mix 2.37% 0.20% 19.9% 0.39% 12.1% 1.14% 42.5% 0.63% 3.04% 16.3% 1.51%

Table 2: Dataset mixture weights by different methods on the RT-X dataset mix [4, 6, 9, 10, 37, 73–76]. We color
relative increases of more than 25% from uniform green and relative decreases of more than 25% red.
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Figure 3: Results sub-setting datasets via different strategies until they reach 25% of their original size. We again use
10 evaluations per task, and show the Mean ± StdErr.

Plate”. Similarly, for the Franka Panda robot we consider two tasks that test generalization to 1) unseen
initial conditions “Pen in Cup” and 2) motions not seen in the RT-X data “Flip Bowl”. Additionally, our
Panda robot uses a Robotiq 2F-85 gripper, which was not present in any of the RT-X-datasets. Note that for
the RT-X mix, we co-train the same model on both the WidowX and Franka data. As expected, we find
that the domain weights selected by human experts for the RT-X models outperform the naı̈ve uniform
sampling baseline by 6% on average. More interestingly, we find that weighting datasets according to
Re-Mix outperforms uniform weighting by 38% on average, and surprisingly outperforms the human
curated weights by 32% on average. We find that Re-Mix generalizes better to unseen objects and locations
in Bridge. Re-Mix performs particularly performs well for the “Flip Bowl” tasks, which is potentially
because it up-weights the relatively small “Toto” dataset in OpenX that contains similar pouring motions to
the flip blow task, though performance in Pen-in-cup is similar across all models. We hypothesize this is
because it requires less generalization than the other tasks, and thus depends less on the pre-training mixes.
Fig. 1 shows results using Re-Mix weights versus uniform weighting over scenes in the Bridge dataset. We
find that performance in this setting is similar across both models. We posit that in the presence of the full
Bridge dataset, selecting weightings is less important as the model is able to fit every scene well.

4.3 Analyzing Re-Mix Weights
Table 2 shows the weights produced by different methods on the RT-X dataset mix in comparison to the uni-
form mixture, which corresponds to sampling each datapoint with equal probability or equivalently weight-
ing each domain by its total size (as fraction of the total number of datapoints). The human-expert-designed
weights largely down-weight RT-1 [6], while up-weighting some of the smaller datasets like Routing [73],
and Taco [9], perhaps to ensure they were sampled often enough to not be ignored. On the other hand, Re-
Mix largely down-weights the Kuka dataset [76]. This dataset was autonomously collected and then filtered
by success, making it of potentially lower action quality. Re-Mix also down-weights some smaller domains
that are easy to fit; for example, Cable Routing has no gripper actions and Jaco [74] only has three possible
actions. Surprisingly, Re-Mix up-weights the Toto dataset [77] by more than 4x. We posit that this is because
Toto has a particularly multi-modal action distribution which deviates far from a standard Gaussian even after
normalization and thus may be more challenging to fit. See Appendix A for a plot of its action distribution.

4.4 How well does Re-Mix subset datasets?
Though co-training on diverse data is important for performance [3, 70], doing so is often expensive given
that modern robot datasets like the OpenX dataset encompass TBs of data. In this section, we evaluate
how well Re-Mix can be used to subset datasets. The key idea: if Re-Mix weights are proportional to
the importance of the data in each domain, we can use them to effectively sub-set the dataset by removing
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data from domains that Re-Mix assigns low weight. We subset the base datasets according to Re-Mix
and baselines by first computing the target size of the entire data mix after sub-setting, in our case 25%
of |D|. Then, we remove datapoints according to the mixture weights ᾱ. If a small dataset is upweighted
too much (i.e. if domain i is 1% of |D| but is upweighted to ᾱi=5%), there might not be enough data
to exactly match ᾱ from subsetting alone. Thus, after subsetting we sample the remaining points uniformly
until we reach the target size. During training we still weight datasets according to the exact ᾱ.

The goal of subsetting is to retain performance when data is removed. We compare performance
of subsetting with the Re-Mix weights to using the naı̈ve uniform and human expert weights. For
Bridge, where no expert weighting exists, we additionally compare to a vision subsetting method called
“Self-Supervised Prototypes” (SSP) [69] which runs k-means on image embeddings and discards data
closest to each centroid to encourage diversity. We average CLIP embeddings across each trajectory and
use k=32, matching the number of domains used by Re-Mix. To provide a more extensive evaluation
on Bridge, we add two additional tasks. See Appendix B for details.

Subsetting results are shown in Fig. 3. Overall, we find that subsetting exacerbates the difference between
methods, as the weights directly affect dataset composition. On the RT-X datasets (Fig. 3 top row) with only
25% of the data Re-Mix retains performance while human weights drop over 10%. This is likely because
as shown in Table 2, Re-Mix places higher weights on some of the smaller datasets and down-weights
some of the larger datasets such as the Kuka dataset from [40]. For example, when using domain weights
for subsetting Re-Mix retains 72% of the UR5 Dataset but only 12% of the Kuka dataset, while the expert
human weights retain only 30% of the UR5 Dataset but 24% of Kuka which is from suboptimal learned
policies. Generally, the human weights do not down-weight datasets that are potentially uninteresting or not
useful for training. On Bridge (Fig. 3 bottom row), Re-Mix also outperforms baseline methods. Overall SSP
performs poorly, likely since robot trajectories may be out-of-distribution for vision models such as CLIP.

4.5 What matters in Re-Mix?

In this section, we ablate several design choices used in Re-Mix (see Section 3.1), including action
discretization and early stopping. We run all ablations in the 25% subset setting (see Section 4.4), since
subsetting further amplifies the effects of the domain weights. In Fig. 4, we first analyze the effects of
choosing a reference model checkpoint for Group DRO that is overfit to the training dataset. Empirically,
we find that choosing a checkpoint just 50K steps after early stopping decreases performance by over
15% on average, likely because the reference model baseline used to determine the domain weights is
less meaningful once it overfits. On the right half of Fig. 4, we show performance on Bridge when using
continuous (Cont.) actions in Re-Mix instead of discrete for estimating α. We find that continuous actions
lead to significantly worse performance, as their loss functions fail to fit outliers or multi-modal actions.

5 Limitations and Future Work
In this work we present Re-Mix, a method for automatically curating robotics datasets using distributionally
robust optimization.

Evaluation. While we train on large, diverse robot datasets, the need for real world trials makes it difficult
to exhaustively evaluate trained generalist policies on many robot embodiments and setups. While our
evaluations capture two widely used robot arms from prior works [4, 7, 25], WidowX and Franka, future
work should extend to more embodiments, perhaps via simulated environments [68].

Abnormal Action Distributions. We have noticed that Re-Mix upweights datasets with abnormal action
distributions such as the Toto dataset. While resulting data mixes performed well, such up-weighting is not
necessarily desirable. We hope to achieve less sensitivity to such irregularities in future work.

Computational Cost. Using our pre-computed weights can significantly reduce the compute required to
train generalist policies. However, our approach for computing Re-Mix weights requires training policies
on the full data twice, once for the reference model and once for Group DRO optimization. Future work
can instead strive to curate datasets “on-the-fly”within one run.

Scaling Up. While we have demonstrated improvements on two large datasets, Bridge V2 and RT-X,
scaling up to even larger ones such as the entire OpenX dataset [7] (>2M episodes) is an exciting extension.
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Gomez, A. Morisot, S. Farquhar, and Y. Gal. Prioritized training on points that are learnable, worth
learning, and not yet learnt. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pages 15630–15649. PMLR, 17–23 Jul 2022.
URL https://proceedings.mlr.press/v162/mindermann22a.html.

[61] A. H. Jiang, D. L.-K. Wong, G. Zhou, D. G. Andersen, J. Dean, G. R. Ganger, G. Joshi, M. Kaminksy,
M. Kozuch, Z. C. Lipton, et al. Accelerating deep learning by focusing on the biggest losers. arXiv
preprint arXiv:1910.00762, 2019.

[62] M. Paul, S. Ganguli, and G. K. Dziugaite. Deep learning on a data diet: Finding important examples
early in training. Advances in Neural Information Processing Systems, 34:20596–20607, 2021.

[63] Y. Oren, S. Sagawa, T. B. Hashimoto, and P. Liang. Distributionally robust language modeling. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
4227–4237, 2019.

[64] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan. Theoretically principled trade-off
between robustness and accuracy. In International conference on machine learning, pages 7472–7482.
PMLR, 2019.

[65] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. Robustness may be at odds with
accuracy. arXiv preprint arXiv:1805.12152, 2018.

[66] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[67] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and S. Levine.
Bridge data: Boosting generalization of robotic skills with cross-domain datasets. arXiv preprint
arXiv:2109.13396, 2021.

[68] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu, I. Lunawat, I. Sieh, S. Kirmani,
S. Levine, J. Wu, C. Finn, H. Su, Q. Vuong, and T. Xiao. Evaluating real-world robot manipulation
policies in simulation. arXiv preprint arXiv:2405.05941, 2024.

[69] B. Sorscher, R. Geirhos, S. Shekhar, S. Ganguli, and A. Morcos. Beyond neural scaling laws: beating
power law scaling via data pruning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 19523–
19536. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/

paper/2022/file/7b75da9b61eda40fa35453ee5d077df6-Paper-Conference.pdf.

13

https://arxiv.org/abs/2402.00159
https://proceedings.neurips.cc/paper_files/paper/2023/file/a8f8cbd7f7a5fb2c837e578c75e5b615-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a8f8cbd7f7a5fb2c837e578c75e5b615-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.mlr.press/v162/mindermann22a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/7b75da9b61eda40fa35453ee5d077df6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7b75da9b61eda40fa35453ee5d077df6-Paper-Conference.pdf


[70] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with low-cost
whole-body teleoperation. In arXiv, 2024.

[71] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[72] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. Idql: Implicit q-learning as an
actor-critic method with diffusion policies, 2023.

[73] J. Luo, C. Xu, X. Geng, G. Feng, K. Fang, L. Tan, S. Schaal, and S. Levine. Multi-stage cable routing
through hierarchical imitation learning. arXiv pre-print, 2023. URL https://arxiv.org/abs/

2307.08927.

[74] S. Dass, J. Yapeter, J. Zhang, J. Zhang, K. Pertsch, S. Nikolaidis, and J. J. Lim. Clvr jaco play dataset,
2023. URL https://github.com/clvrai/clvr_jaco_play_dataset.

[75] L. Y. Chen, S. Adebola, and K. Goldberg. Berkeley UR5 demonstration dataset.
https://sites.google.com/view/berkeley-ur5/home.

[76] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan,
V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In
Conference on robot learning, pages 651–673. PMLR, 2018.

[77] G. Zhou, V. Dean, M. K. Srirama, A. Rajeswaran, J. Pari, K. Hatch, A. Jain, T. Yu, P. Abbeel,
L. Pinto, et al. Train offline, test online: A real robot learning benchmark. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9197–9203. IEEE, 2023.

[78] Tensorflow. TensorFlow Datasets, a collection of ready-to-use datasets. https://www.tensorflow.
org/datasets.

[79] J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The surprising effectiveness of representa-
tion learning for visual imitation, 2021.

[80] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

14

https://arxiv.org/abs/2307.08927
https://arxiv.org/abs/2307.08927
https://github.com/clvrai/clvr_jaco_play_dataset
https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets


A Additional Results

A.1 Ablations
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Figure 4: Ablations for design choices in Re-Mix. We ablate the effects of left: reference model overfitting by selecting
a checkpoint once validation loss starts increasing at 150K steps and right: using continuous actions for Re-Mix. For
ablations, we remove the “Flip Bowl” and ‘Cube to Plate” tasks as all Re-Mix variants achieved 100% success.

A.2 10% Bridge Sub-setting

Here we include results for 10% subsetting of the bridge dataset as described in Section 4.4. In the
supplemental material we include videos of rollouts from our experiments.
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Figure 5: Bridge 10% subsetting.

A.3 Simulation Experiments

We additinally run simulation experiments on the Robomimic NutAssemblySquare task from images
[20]. We chose Robomimic because it was collected using human operators like real world datasets. We
divided the 300 multi-human demonstrations into six domains by operator, which have “better”, “okay”,
and “worse” labels. We run Re-Mix with the same architecture as described in all other experiments, but
train Conditional UNet Diffusion Policies [30] since they performed far better on this benchmark. We
evaluate checkpoints for 100 episodes after 400K training steps. The results are included in Table 3 and
learned Re-Mix weights are shown in Table 4. We can see that the Re-Mix determined weights outperform
uniform weights at both 50% and 25% subsetting. This is likely because Re-Mix up-weights the “better”
operators and comparatively down-weights the “worse” ones. Note that the natural or uniform domain
weights are not even across all operators. This is because some of the operators take longer to complete the
task than others.

Method 50% Subsetting 25% Subsetting
ReMix 77/100 59/100

Uniform 53/100 39/100
Table 3: Performance on the RoboMimic NutAssemblySquare task, divided by operator.

Method Better 1 Better 2 Okay 1 Okay 2 Worse 1 Worse 2
ReMix 22.8% 20.0% 11.9% 14.6% 18.0% 12.7%

Uniform 9.6% 13.6% 18.7% 14.4% 20.0% 23.7%
Table 4: Domain weights used by Re-Mix in comparison to the natural uniform domain weights.
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A.4 Action Distributions

In Fig. 7 we show the action distribution for the BridgeV2 d ataset and in Fig. 8 we show the action
distribution for the ToTo dataset, both in log-scale. The BridgeV2 dataset’s action distribution is far more
normal and symmetric than the ToTo action distribution, which is heavily multi-modal and skew. Robust
optimization appears to be more well-behaved on the more normally distributed datasets.

B Dataset Details

B.1 OpenX RTX Subset

We use a subset of the OpenX Embodiment datast similar to that used to train the RT-X models [7]. First, we
use the RLDS dataset modification repository (https://github.com/kpertsch/rlds_dataset_mod)
used by Octo Model Team et al. [25] to preprocess the raw datasets downloaded from Tensor Flow
Datasets [78]. Specifically, we resize all images to 256×256, and filter the Kuka dataset [76] by an
included success key. Note that this does warp images. We use the updated version of the Bridge dataset,
available at https://rail.eecs.berkeley.edu/datasets/bridge_release/data/tfds/. The
specific composition of the dataset is listed in Table 2. Note that we only train on the primary third-person
camera in each dataset. For this reason, we omit the NYU Reacher-grabber dataset [79] which only inlcudes
wrist cameras. We align all action spaces by converting them to delta cartesian and delta euller angle and
binarize all gripper actions.

B.2 Bridge V2 Dataset

For experiments on bridge-only, we split the bridge dataset into 32 domains. First, we re-downloaded
the raw bridge dataset and converted it to RLDS using the DLimp convertor (https://github.com/
kvablack/dlimp/). We then partitioned the bridge dataset by domain using the file path metadata field
that lists which setting demonstrations were collected in e.g. “toy-kitchen 1“ or “toy-sink-3”. We then
manually group the domains into 32 categories. We omitted data that was collected by a scripted policy, as
it did not contain the scene information in the filepath metadata. This means we ended up with around
45,000 training trajectories, instead of the 60K used in the full bridge dataset. In Table 5 we list the
natural weights of each of these domains and the learned weights by Re-Mix. We can see that Re-Mix
down-weights some of the largest domains and places their weight on smaller domains.

B.3 Co-Training Datasets.

Below we describe our co-training data and evaluation procedure for the real-world tasks on the WidowX
250 and Franka Panda robots.

WidowX Tasks We evaluate on a 6-DoF WidowX 250 robot on several new pick place tasks in a toy
kitchen setting. Our setup is similar to Bridge V2 [4] with a fixed side camera and a blocking controller.
Following Walke et al. [4] we use a blocking controller during evaluation. We collect teleoperated
demonstrations using an Oculus Quest Headset for motion tracking and co-train on 25 demonstrations for
each of the three tasks “Move Cube out of Sink”, “Move Cup into Sink”, and “Move Fork from Sink to
Rack.”

During evaluation, we examine generalization on various axes. The “Carrot to Rack” task tests generaliza-
tion to picking up a new type of target object, “Fork to Rack” tests new unseen object positions, “OOD
Cup” tests an object with different shape, “Cube to Plate” and “Cube to Cup” test generalization to new
containers, and “Carrot to Right” tests generalization to both a new target object and a new motion. For
each of these tasks, we first take a goal image and then evaluate our policies with fixed object locations for
up to 100 seconds, stopping early if the robot or objects reach unrecoverable states. For “Carrot to Rack”
we do five trials with the carrot facing down and five trials with it facing upwards. For “Fork to Rack” we
use an unseen initial position to the right side of the sink and rotate the fork left 45 degrees for five episodes
and to the right 45 degrees for the other five. We also tested on an additional “Cube Distractor“ task in
which the robot has to move the cube to the sink with a distractor object present. We ommited this task
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Domain Uniform Weight ReMix Weight
0 toykitchen2 0.18728751 0.0961817
1 datacol2 tabletop dark wood 0.094527 0.04846529
2 toykitchen1 0.069307 0.07683
3 toykitchen6 0.06940527 0.0573625
4 datacol2 toykitchen7 0.07133783 0.06905
5 datacol2 toykitchen2 0.0432927 0.03651583
6 toykitchen7 0.032803 0.03538789
7datacol2 folding table 0.038522 0.0809778049
8 datacol1 toykitchen6 0.03606622 0.037404168
9 datacol2 robot desk 0.025810027 0.034152
10 datacol2 toykitchen6 0.02394393 0.02740302
11 deepthought folding table 0.0272809 0.013906823
12 datacol2 laundry machine laundry machine 0.02582954 0.0396389
13 datacol2 toykitchen5, toykitchen5 0.0337366 0.049943
14 deepthought toykitchen2 0.0253313 0.013434348
15 deepthought robot desk 0.01978364 0.032410502
16 tabletop dark wood 0.0219985 0.024691
17 datacol2 toysink2 toysink2 bww 0.0225748 0.0198516
18 toykitchen2 room8052 0.01083554 0.0295857
19 deepthought toykitchen1, datacol1 toykitchen1 0.01868 0.04047
20 datacol2 foldtable tray, minsky foldtable tray, datacol2 toykitchen7 tray 0.037856699 0.0484
21 toysink3 bww, toysink3 0.01235829 0.014877
22 datacol2 toykitchen1 0.01155453 0.02194
23 toysink1 room8052 toysink1 0.00979455 0.01831014
24 tool chest 0.00471524 0.00878
25 toysink5 0.00405418 2.78E-05
26 whiteboard 0.006774 0.0129337
27 toykitchen4 0.00371938 0.00537445
28 toysink4 0.00289793 1.80E-05
29 toykitchen3 0.00124406 2.72E-05
30 realkitchen1 dishwasher 0.00202648 0.000541
31 tabletop light wood, tabletop white, realkitchen1 counter 0.004647549 0.005079152

Table 5: Learned weights by Re-Mix on the Bridge V2 dataset.

from Fig. 2 as no baselines were able to complete the task, which heavily skewed performance. We include
results for this task in Appendix B.3.

Method ReMix Human Uniform
Success Rate 7/10 0/10 0/10

Figure 6: Performance on the cube Distractor task. Right: Depiction of the Cube Distractor task.

B.4 Franka Tasks

We evaluate on a Franka Panda robot on several pick place tasks on a tabletop. We use a fixed over the
shoulder camera We co-train on 25 teleoperated demonstrations for each of the tasks “Pen into Cup,” where
we put a pen into a cup from 5 different start locations, and “Flip Bowl,” where a bowl is flipped into a
drying rack. For the “Pen into Cup” task we use a different pen than in co-training. However, because our
franka embodiment with the Robotiq 2F-85 is not found in our pre-training datasets, we evaluate the same
tasks as we co-trained on. We evaluate each start location of the pen twice from a new set of predifined
positions. As in the WidowX evaluations, we take a goal image for each task and evaluate for up to 100
seconds using a 10Hz controller without blocking control.
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RTX Bridge
Batch Size 512 384
Action Chunk 4 2
Image Resolution 224×224 224×288

Table 6: Hyperparameters

C Training Details

Architecture. We borrow our architecture from [4] with a few minor changes. Our policies takes as
input a history of two consecutive frames and a single goal image and output a sequence of actions via
DDPM [80].

First, we preprocess all images to fit between -1 and 1. Then, we channel-wise concatenate both the goal
image and a grid containing the position of each pixel in (x,y) space also normalized between -1 and 1.
Images are then fed to a ResNet 50 encoder, which employs global average pooling on the output to obtain
a 512 dimension representation for each image. Both image representations are then concatenated and fed
to a diffusion action prediction head.

Hyperparameters. We use a cosine decay learning rate schedule with an initial learning rate of 0.0002.
We train all models for 400K steps and evaluate the final checkpoint, except for Bridge 10% subsetting,
which we found to perform better after 200K steps. More detailed hyperparameters are found in Table 6.
Note that there are some differences between bridge and RTX which were made for computational reasons
– we iterated faster on the bridge dataset before scaling to RTX. We also did maintained aspect ratio for
bridge, hence the different image input size, but did not for RTX follow Octo Model Team et al. [25]. We
apply data augmentation to all images consistently across the time horizon and goal image (meaning that
the goal image and all past images of each example have the same augmentation applied). We use random
resize cropping, brightness, contrast, and hue randomization. For k-means in SSP for Bridge we set k=32,
equal to the number of domains used for Re-Mix.
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Figure 7: Action distributions for Bridge.
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Figure 8: Action distributions for Toto.

20


	Introduction
	Related Work
	Re-weighing Robotic Dataset Mixtures with Minimax Optimization
	The Challenges of Applying Robust Optimization in Robotics
	Re-weighing Robotic Dataset Mixtures with Minimax Optimization

	Experiments
	Experimental Setup
	How do Re-Mix weights impact performance?
	Analyzing Re-Mix Weights
	How well does Re-Mix subset datasets?
	What matters in Re-Mix?

	Limitations and Future Work
	Additional Results
	Ablations
	10% Bridge Sub-setting
	Simulation Experiments
	Action Distributions

	Dataset Details
	OpenX RTX Subset
	Bridge V2 Dataset
	Co-Training Datasets.
	Franka Tasks

	Training Details

