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Abstract

We present a simple model-agnostic textual001
adversarial example detection scheme called002
GRADMASK. It uses gradient signals to de-003
tect adversarially perturbed tokens in an in-004
put sequence and occludes such tokens by a005
masking process. GRADMASK provides sev-006
eral advantages over existing methods includ-007
ing lower computational cost, improved detec-008
tion performance, and a weak interpretation of009
its decision. Extensive evaluations on widely010
adopted natural language processing bench-011
mark datasets demonstrate the efficiency and012
effectiveness of GRADMASK. Code and mod-013
els are available at <redacted>.014

1 Introduction and Related Work015

The advances in deep learning has revolutionized016

natural language processing (NLP) with state-of-017

the-art performance in practically every task. How-018

ever, it has been shown that such systems are sig-019

nificantly vulnerable to specifically crafted adver-020

sarial attacks (Szegedy et al., 2014) at all stages021

of development and deployment (Ebrahimi et al.,022

2018; Alzantot et al., 2018; Zhang et al., 2020; Kr-023

ishna et al., 2020; Tan et al., 2020, 2021). This is024

quite troubling as there is little to no change in the025

adversarially chosen test distributions compared to026

the training distribution (Robin, 2020).027

In response to the adversarial attacks, various028

defense schemes have been proposed. These ap-029

proaches can be grouped into three categories:030

(i) adversarial training (Si et al., 2020; Maharana031

and Bansal, 2020; Miyato et al., 2017; Zhu et al.,032

2020), (ii) certified robustness (Jia et al., 2019;033

Wang et al., 2021), and (iii) synonym substitution034

based methods (Wang et al., 2019, 2020; Dong035

et al., 2021; Zhou et al., 2021; Jones et al., 2020).036

Originally introduced by Goodfellow et al.037

(2015), the adversarial training methods aim to038

train a target model on adversarial examples (in ad-039

ditional to clean samples) until the model learns to040
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Figure 1: An illustration of the detection process of GRAD-
MASK with a binary classification example. An attacker tries
to find an adversarial example x′ by searching for the best
perturbation (compel) that flips the original model prediction
(expressed as the dotted line). GRADMASK attempts to iden-
tify the candidate perturbations through the gradient signal
and masks one token (mt) at a time to generate a masked
sequence mt. The final decision is made by measuring the
largest difference in model’s confidence for x′ and mt.

classify them correctly. However, adversarial train- 041

ing not only increases the training time but also 042

tends to hurt the standard task performance of the 043

model (Tsipras et al., 2019). For NLP, this cost is 044

even greater as many textual attack algorithms rely 045

on an extensive iterative search for potential candi- 046

dates with a large number of queries (Yuan et al., 047

2018; Li et al., 2021, 2020; Garg and Ramakrish- 048

nan, 2020). In addition, the defense performance 049

largely depends on how well the crafted examples 050

represent the potential attack. 051

Another branch of adversarial defense scheme is 052

the certified robustness, which aims to provably 053

characterize the output of a model within a re- 054

stricted space around an input (Cohen et al., 2019). 055

However, certified robustness often requires strong 056

assumptions on the target model architecture. Typ- 057

ically, they have troubles in scaling to large net- 058

works such as Transformers (Vaswani et al., 2017). 059

Thus, prior studies (Jia et al., 2019; Wang et al., 060

2021) mostly adopt recurrent architectures such as 061
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LSTMs (Hochreiter and Schmidhuber, 1997) and062

convolutional neural networks.063

With a growing interest in synonym substitution-064

based attacks (Garg and Ramakrishnan, 2020; Jin065

et al., 2020; Ren et al., 2019; Alzantot et al., 2018),066

there have been a number of studies on defense067

schemes against such attacks. The goal of these068

approaches is to encode input texts into a canonical069

form or robust representation so that the model pre-070

dictions do not change by synonym substitutions.071

These methods have shown effectiveness against072

token-level attacks, but it is unclear how synonym-073

based defense approaches can protect the model074

from attacks that perturb tokens aggressively. For075

instance, synonym-based defense schemes are typi-076

cally evaluated against token-level attacks such as077

genetic attack (Alzantot et al., 2018) and PWWS078

attack (Ren et al., 2019). These defense methods079

typically construct a synonym set through GloVe080

(Pennington et al., 2014) or WordNet (Fellbaum,081

1998), which are also commonly adopted by the082

token-level attack algorithms as a synonym-search083

module (Dong et al., 2021; Zhou et al., 2021; Wang084

et al., 2019). Thus, it is natural to extend our con-085

cern towards a scenario in which these defense086

schemes can be brittle for defending low-resourced087

language NLP systems which have no synonym088

resources, or even for deletion or sub-token pertur-089

bation based attacks.090

While the above defense schemes aim to im-091

prove the adversarial robustness of NLP systems,092

adversarial example detection methods are de-093

signed to reject suspicious inputs although they094

share the same goal of defeating the adversarial at-095

tacks (Aldahdooh et al., 2021). Detection-based ap-096

proaches provide several advantages over defense097

schemes. The most obvious advantage is that they098

do not require to modify the target model architec-099

ture or the training procedure, because they typ-100

ically work as a separate module. Consequently,101

they do not compromise the model performance on102

clean datasets. Secondly, they are able to identify103

the intention (adversarial or not) of adversarial at-104

tacks, so users can take actions (reject or revise)105

accordingly. Finally, the detection algorithms may106

provide a better strategy for developing defense107

methods by informing us which parts of an input108

sequence are perturbed (Zhou et al., 2019).109

Unlike the other defense schemes, the textual110

adversarial detection has not been explored much.111

To our best knowledge, there are two prior studies112

trying to detect token-level adversarial attacks. The 113

very first work is the discriminate perturbations 114

(DISP) framework proposed by Zhou et al. (2019). 115

DISP consists of two BERT-BASE (Devlin et al., 116

2019) based perturbation discriminator and embed- 117

ding estimator. To provide supervising signals for 118

the discriminator, DISP randomly samples adver- 119

sarial examples and learns to discriminate clean 120

samples from the adversarial examples. In contrast, 121

a more recent textual adversarial example detec- 122

tion work, the frequency-guided word substitutions 123

(FGWS) approach proposed by Mozes et al. (2021), 124

does not need an additional training process. The 125

key assumption of FGWS is that adversarial attack 126

algorithms tend to exploit words that are rarely ex- 127

posed during a target model’s training. However, 128

as Mozes et al. (2021) mentioned, their approach is 129

limited to detection of only word-level attacks and 130

the effectiveness of FGWS against attacks that do 131

not rely on infrequent words is unclear. Especially, 132

our experiments with a constrained high-frequency 133

vocabulary show that attackers can still find suc- 134

cessful attacks by using frequent tokens (§4.1). 135

Our work in this paper, instead, deviates from 136

the word-frequency assumption by utilizing gradi- 137

ent signals as guidance. We harness the gradient 138

signal to detect adversarially perturbed tokens in 139

an input sequence by investigating the adversary 140

response, which, analogous to impulse response or 141

step response (Oppenheim et al., 1996), indicates 142

the network’s response to an adversarial input. The 143

identified tokens are subsequently occluded by a 144

mask token and fed to the model to measure the 145

change in model’s confidence with respect to the 146

original prediction. Fig. 1 provides an illustration 147

of our gradient-guided detection, GRADMASK. 148

The gradient-based attribution of neural system’s 149

prediction has been studied widely in deep learn- 150

ing (Sundararajan et al., 2017; Simonyan et al., 151

2014; Li et al., 2016). Some prior work in NLP 152

uses the gradient to identify important words (Li 153

et al., 2017; Murdoch et al., 2018). To the best of 154

our knowledge, this is the first work on detecting 155

textual adversarial attacks by attributing the model 156

prediction via gradient signal analysis. 157

GRADMASK has several advantages over the 158

previous methods. Firstly, it does not require any 159

additional modules for synonym search or frequent 160

word count. Secondly, our detection algorithm 161

works entirely without any prior knowledge about 162

potential attacks, which is a more practical setup. 163
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Thirdly, it works without any pre-training. Finally,164

it provides a weak interpretation of decision by165

identifying adversarially perturbed tokens. The166

main contributions of this work are:167

• We propose GRADMASK, a novel gradient-168

guided adversarial example detection method.169

• We demonstrate that NLP systems can still be sig-170

nificantly brittle to synynym-based adversaries in171

a high-frequency constrained vocabulary setup,172

a finding that deviates from the frequency-based173

assumption of Mozes et al. (2021).174

• We demonstrate the advantage of GRADMASK175

over state-of-the-art adversarial example detec-176

tion algorithm through extensive experiments.177

2 Method178

In this section, we present our proposed method.179

We first establish the notations in §2.1.180

2.1 Notations181

We consider a standard text classification task for a182

model fθ(·) with parameters θ ∈ Rp. The model183

fθ(·) is trained to fit a data distributionD over pairs184

of an input sequence x = [x1, · · · , xT ] of T tokens185

and its corresponding label y ∈ {1, . . . , C} with C186

being the number of classes. We also assume a loss187

function L(θ,x, y) such as a cross-entropy loss.188

The output of the model is a probability distribution189

that satisfies: 0 ≤ fθ(x)i ≤ 1 and
∑C

i=1 fθ(x)i =190

1, where i is the class index. We denote the fi-191

nal prediction as c(x) = argmaxi fθ(x)i and true192

label as c∗(x) = y∗.193

Given a sequence x, a textual adversarial exam-194

ple x′ can be defined as follows: for some semantic195

dissimilarity measure δ(x,x′), it has to be small196

and c(x′) 6= c∗(x) . These two conditions denote197

that an adversarial example has to maintain seman-198

tic meaning of the original input x but misguide199

the model prediction (Athalye et al., 2018).200

2.2 Gradient-guided Token Masking for201

Adversarial Example Detection202

GRADMASK first finds salient tokens that signifi-203

cantly attribute to the model prediction, c(x); see204

Fig. 1 for an illustration. A simple and widely em-205

ployed approach is the gradient-based attribution206

analysis (Ancona et al., 2018; Sundararajan et al.,207

2017; Li et al., 2016). However, due to the dis-208

crete nature of texts, we cannot directly exploit the209

Algorithm 1 Gradient-based Masking for Adver-
sarial Example Detection.

Require: Input sequence x, target model fθ
1: InitializeM = {} and K = bT × pc.
2: Compute fθ(x)i, where i = c(x). . pred. for x

3: L := {||g1||, · · · , ||gT ||} via Eq. 1.
4: Sort L in descending order.
5: while k ≤ K do
6: ||g||t ← L[k]
7: mt = [x1, · · · ,mt, · · · , xT ]
8: M[k] = fθ(mt)i . prediction for mt

9: end while
10: w = (fθ(x)i −minkM[k])2

gradient-based approach. In order to deviate the is- 210

sue, we compute a gradient of the word embedding 211

et with regard to the loss function L, where et is 212

a simple linear projection of a (subword) token xt. 213

The gradient can be expressed as follows: 214

gt = ∇etL(θ,x, c(x)) (1) 215

Note that the above loss is computed with respect 216

to the model’s final prediction c(x) and not the 217

ground truth y∗. 218

Subsequently, we measure the amount of stimu- 219

lus of the input tokens toward the model prediction 220

by computing the L2-norm of gt. The stimulus is 221

considered as a saliency score of the tokens and it is 222

determined in descending order of the magnitude of 223

||gt||2 following Li et al. (2016). GRADMASK only 224

considers the top-p portion of the input tokens in x. 225

Specifically, the number of chosenK salient tokens 226

is bT × pc, where the brackets denote the floor op- 227

eration. The sampled K salient tokens are masked 228

individually one at a time to generate a masked 229

input sequence mt = [x1, . . . ,mt, . . . , xT ] with t 230

being the token position of a salient token, and mt 231

is the mask token, [MASK].1 232

The rationale behind the masking approach is 233

based on two assumptions. The first assumption 234

is that adversarial examples are the result of so- 235

phisticated optimization algorithms rather than the 236

result of random perturbations (Goodfellow et al., 237

2015; Galloway et al., 2018). Thus, we conjec- 238

ture that masking the suspicious tokens which are 239

carefully crafted can significantly drop the model 240

confidence. The second assumption is that NLP 241

systems are generally robust to weak-level of noise. 242

1In case of non-masked language model-based classifiers,
we adopted an unknown token.
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The partial information loss in clean samples due to243

masking can be offset by the overall context of the244

input text (supported by our experiments in §4.1).245

Each masked sequence mt is then fed into the246

target model to get a prediction fθ(mt)i, where247

i = c(x). This process gives K such confidence248

scores which are stored inM. We then compare249

the minimum confidence value inM to the original250

confidence score f(x)i, and the confidence change251

is squared to assign a stronger penalty to the higher252

changes. More formally,253

w =
(
fθ(x)i −min

k
M[k]

)2
(2)254

The final decision is determined by an indicator255

function I(w, τ) defined as follows:256

I(w, τ) =

{
0 if w ≤ τ
1 else

(3)257

where τ is a pre-defined threshold. Alg. 1 presents258

the overall process of GRADMASK.259

3 Experiment Settings260

In this section, we present our experiment settings:261

the datasets, target models, adversarial example262

generation and evaluation metrics.263

3.1 Datasets264

We evaluate the methods on three classification265

tasks. We use the IMDB (Maas et al., 2011), AG-266

NEWS (Zhang et al., 2015), and Stanford Sentiment267

Treebank (SST) (Socher et al., 2013) datasets that268

are widely adopted for benchmarking adversarial269

robustness of NLP systems. The IMDB dataset270

contains movie reviews labeled with positive or271

negative sentiment labels. The AGNEWS dataset272

contains news articles from more than 2,000 news273

sources and the samples are categorized into the274

four largest classes. The SST dataset provides275

movie reviews with fine-grained sentiment labels.276

We turn the labels into binary (SST-2) to follow277

the setting of FGWS (Mozes et al., 2021). Table 1278

gives an overview of the datasets.279

3.2 Target Models280

We evaluate GRADMASK on three different se-281

quence modeling architectures, which have been282

widely employed in NLP. We first consider a large-283

scaled pre-trained Transformer-based language284

model, ROBERTA-BASE (Liu et al., 2019), which285

contains 124 million parameters. Subsequently, we286

Dataset Train / Test Avg. Len

IMDb 25k/25k 215
AG 120k/7.6k 43
SST-2 67k/1.8k 20

Table 1: A summary of the datasets used in our work.

MODEL DATASET ACC (%)

ROBERTA
IMDB 93.36
SST-2 91.98

AG 95.3

ROBERTA-LONG
IMDB 93.71
SST-2 88.69

DISTILBERT
IMDB 90.57
SST-2 91.21

AG 94.37

LSTM IMDB 87.27
SST-2 83.53

Table 2: A summary of the target models and their
clean testset performance.

also evaluate on a relatively smaller Transformer- 287

based model called DISTILBERT-BASE (Sanh 288

et al., 2020), which has approximately 40% fewer 289

parameters than ROBERTA-BASE. Finally, we con- 290

sider the LSTM, which used to be the dominant 291

architecture before the arrival of Transformers. 292

Table 2 shows the standard task performance 293

of the models on the three datasets. To train 294

the models, we followed the hyperparameter set- 295

tings provided by Mozes et al. (2021). The 296

TRANSFORMER based models are optimized by 297

AdamW (Loshchilov and Hutter, 2019) with a lin- 298

ear adaptive learning rate scheduler. For LSTM, 299

the initial word embeddings are initialized with 300

GloVe (Pennington et al., 2014). The texts in 301

IMDB are comparatively longer than those in 302

AGNEWS and SST-2. For the IMDB classifi- 303

cation task, the maximum sequence lengths for 304

ROBERTA, DISTILBERT and LSTM are set to 305

256, 256, and 200, respectively, and ROBERTA- 306

LONG is trained with a longer sequence (400 to- 307

kens) than the standard one. The details of model 308

architectures are provided in the supplementary ma- 309

terial. All of the experiments are conducted on an 310

Intel Xeon Gold 5218R CPU-2.10GHz processor 311

with a single Quadro RTX 6000 GPU. 312

3.3 Adversarial Example Generation 313

We generated adversarial examples against the se- 314

lected target models via four different attack al- 315

gorithms. They include two baseline attacks and 316
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two widely adopted synonym substitution-based317

token-level attacks, as used in previous work318

• Random is a simple word replacement-based319

baseline attack algorithm. It randomly selects a320

synonym of a token in the original input text. Syn-321

onyms are identified via WordNet.322

• Prioritized attack is also based on word replace-323

ment, but it puts a higher priority on a synonym that324

maximizes the target model’s prediction confidence325

change.326

• Genetic attack (GA) was proposed by Alzantot327

et al. (2018). It adopts the crossover and mutation328

operations in genetic algorithms to generate adver-329

sarial examples. GA searches synonyms based on330

the GloVe word embedding space with a language331

model (Radford et al., 2019).2332

• PWWS or Probability weighted word saliency333

(Ren et al., 2019) is a greedy word substitution-334

based attack algorithm. The word replacement or-335

der is determined by a word saliency score com-336

puted through the model’s confidence change. The337

word synonym is searched via WordNet.338

3.4 Evaluation Metrics339

The main interest of this work lies in an evalua-340

tion of the detection performance of our proposed341

method GRADMASK. FGWS (Mozes et al., 2021)342

was mainly evaluated via F1 score, but we follow343

the standards from the out-of-distribution (OOD)344

sample detection literature (Zheng et al., 2020;345

Hendrycks et al., 2019; Ouyang et al., 2021) for346

better understanding of the methods.347

The adversarial example detection can be con-348

sidered as a binary classification problem of ver-349

ifying positive (adversarial) vs. negative (clean)350

class. We evaluate a ratio of true positive samples351

so-called true positive rate (TPR or recall) against352

false positive rate (FPR) defined as:353

TPR =
1

n+

∑
i

I(w+, τ) (4)354

FPR =
1

n−

∑
i

I(w−, τ), (5)355

where the superscripts + and − denote the positive356

and the negative classes, respectively. Based on357

these two rates, we evaluate the methods with the358

following evaluation metrics:359

2We adopted the modified implementation provided by
Mozes et al. (2021) for a fair comparison. The details are
provided in the supplementary material.

• AUROC stands for the area under receiver op- 360

erating characteristic curve. For each operational 361

setting of τ from 0 to 1, TPR and FPR can be 362

plotted. This curve is called receiver operating 363

characteristic curve (ROC curve). 364

• FPR95 refers to a FPR at 95 TPR. FPR95 quan- 365

tifies how many clean samples have to be rejected 366

to detect 95% of the adversarial examples. FPR is 367

a very important metric for evaluating detection al- 368

gorithms (Aldahdooh et al., 2021). A lower FPR95 369

score is often required for systems that require a 370

high level of system safety or security. 371

• AUPR denotes area under precision-recall (PR) 372

curves. There exists an imbalance of data distribu- 373

tion between positive class and negative class. To 374

deal with the data distribution skew, we evaluate 375

AUPR scores for each class. 376

4 Results & Analysis 377

We first investigate the relationship between the 378

adversarial robustness of NLP classification mod- 379

els and the word frequency in the adversarial ex- 380

amples (§4.1). We then analyze the adversarially 381

perturbed token detection performance of GRAD- 382

MASK (§4.2). In §4.3, we evaluate GRADMASK 383

on widely employed NLP benchmarks. Finally, 384

we investigate GRADMASK’s potential against a 385

non-synonym based (character-level) attack §4.4. 386

4.1 Word Frequency and Adversarial 387

Robustness of NLP Systems 388

According to Mozes et al. (2021), the brittleness of 389

NLP systems against adversarial examples would 390

be attributed to the distribution of word frequency 391

in a training set. However, one of the widely ac- 392

cepted explanations about the existence of adversar- 393

ial examples insists that adversarial examples are a 394

result of the standard optimization rather than data 395

distribution (Ilyas et al., 2019). We investigated 396

how the word frequency can affect the model’s ro- 397

bustness via a series of experiments. Consequently, 398

we find that deep NLP systems can still be fooled 399

by adversarial examples with words that are fre- 400

quently exposed during their training stage. 401

To validate this claim, we trained the victim mod- 402

els with a word frequency constraint. Specifically, 403

we built a new vocabulary set V ′ to be comprised 404

of only the top-10% frequently used words from 405

the original vocabulary set V . The vocabulary- 406

constrained models are designed to block all infre- 407

quent words that are out of V ′ in an input sequence 408
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Model Dataset Acc-V Acc-V ′ x′ ∈ V ′ AAcc

DISTILBERT
IMDb 92.98 92.17 71.73 10.4

AG 94.37 90.78 68.92 15.6

ROBERTA
IMDb 95.33 95.15 67.38 7.6

AG 95.22 94.87 44.26 30.8

Table 3: Word frequency and adversarial robustness.
Acc-V and Acc-V ′ refer to accuracies of the model
with the original vocabulary V and constrainted vocab-
ulary V ′, respectively. x′ ∈ V ′ denotes a ratio of per-
turbed tokens that are part of V ′. AAcc denotes an un-
der attack accuracy of the model with V ′.

by masking those tokens. We first evaluated the409

model performance to observe how the vocabu-410

lary constraint affects the model performance. As411

shown in Table 3, the standard task performance412

of the victim models under the constraint (Acc-V ′)413

only marginally decreases (about 1 - 4%) compared414

to the original accuracy (Acc-V ). These results415

show that masking infrequent tokens does not hurt416

the model performance significantly.417

Next, we generated 1,000 pairs of samples via418

the PWWS attack algorithm (Ren et al., 2019)419

against the word frequency constrained models.3420

Each sample pair consists of a clean example and421

its corresponding adversarial example that success-422

fully fools the target model.423

According to the infrequent word assumption424

(Mozes et al., 2021), the models trained on V ′ are425

expected to be robust against adversarial attacks.426

However, from the results in Table 3, we notice that427

they showed significant brittleness against adversar-428

ial attacks. The attack algorithms deviate from the429

masking strategy by using frequent words that are430

within V ′ (x′ ∈ V ′). For instance, 71.7% adversar-431

ially perturbed tokens in the adversarial examples432

against DISTILBERT model are in the constrained433

vocabulary set V ′. DISTILBERT models show ap-434

proximately 10% accuracies for both datasets when435

under attack (AAcc). Similarly, ROBERTA models436

show under attack accuracies of 7.6% and 30.8%437

for AGNEWS and IMDB, respectively. Thus, we438

claim that the vulnerabilities of NLP systems can-439

not only be attributed to the infrequent words.440

4.2 Adversarial Token Detection441

We now analyze how our gradient-based approach442

GRADMASK attributes the model prediction on ad-443

3We adopted TextAttack framework (Morris et al., 2020)
to attack the victim models. Their implementation difference
is provided in the supplementary material.
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Figure 2: Adversarially perturbed token detection rates
at top-1, top-2 and top-5 for GRADMASK.

versarial examples. Fig. 2 shows perturbed token 444

detection rates of two Transformer-based models, 445

DISTILBERT and ROBERTA, on two datasets, 446

IMDB and AGNEWS. We report detection rates 447

at top-1, top-3, and top-5, which refers to the total 448

number of adversarially perturbed tokens identified 449

within the top-N values of w in Eq. (2). In case 450

of DISTILBERT, it shows 48.17% and 31.82% de- 451

tection rates for IMDB and AGNEWS within the 452

top-5 predictions, respectively. On the other hand, 453

ROBERTA shows 72.04% and 48.85% detection 454

rates for IMDB and AGNEWS within the top-5 pre- 455

dictions. Another notable observation is that for the 456

IMDB classification task, top-1 predictions detect 457

the adversarial tokens with 49% and 78% probabil- 458

ity for DISTILBERT and ROBERTA, respectively. 459

For AGNEWS, their top-1 predictions show 45% 460

and 67% detection probability, respectively. 461

4.3 Adversarial Example Detection 462

For adversarial example detection, we compare 463

the performance of GRADMASK with that of 464

FGWS (Mozes et al., 2021). The hyperparameter 465

settings of FGWS is tuned as provided by Mozes 466

et al. (2021).4 The overall experimental results 467

are presented in Table 4. Note that AUPR-C and 468

AUPR-A represent the AUPR score of clean sam- 469

ples (negative class) and that of adversarial samples 470

(positive class), respectively. 471

As shown in Table 4, GRADMASK tends to show 472

better AUROC, FPR95, and AUPR-C scores in 473

most of the evaluation measures. Particularly, it sig- 474

nificantly outperforms FGWS for all Transformer- 475

based systems (ROBERTA, ROBERTA-LONG, 476

and DISTILBERT) in terms of the FPR95 score, 477

4https://github.com/maximilianmozes/
fgws
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MODEL DATASET # SAMPLES ATTACK AUROC (%) FPR95 (%) AUPR-C (%) AUPR-A (%) K
TN TP FGWS GM FGWS GM FGWS GM FGWS GM

ROBERTA

IMDB

2000 147 RANDOM 86.06 94.97 84.98 14.25 98.46 99.62 51.55 43.5 1
2000 995 PRIORITIZED 92.67 95.55 68.31 11.1 95.06 98.12 89.2 84.89 1
2000 1042 GENETIC 89.88 95.69 78.53 11.4 92.89 98.17 86.72 85.04 1
2000 1016 PWWS 85.85 95.38 85.17 13.15 90.47 98 83 84.92 1

SST-2

1821 148 RANDOM 75.4 81.43 90.54 52.39 97.17 98.18 37.62 20.37 1
1821 479 PRIORITIZED 83.57 82.09 84.69 54.26 94.23 94.65 65.35 46.95 1
1821 968 GENETIC 74.6 79.19 90.82 56.89 84.22 90.97 66.55 61.33 1
1821 736 PWWS 77.72 82.73 65.06 51.29 88.66 92.44 66.05 58.51 1

ROBERTA-LONG

IMDB

2000 190 RANDOM 81.05 94.50 89.77 16.70 97.26 99.46 58.84 52.65 1
2000 1037 PRIORITIZED 93.08 94.75 68.20 16.00 95.02 97.60 90.70 85.41 1
2000 888 GENETIC 89.05 95.51 80.96 13.60 93.24 98.25 85.38 85.34 1
2000 1129 PWWS 87.10 95.01 84.38 15.70 90.26 97.44 86.38 88.35 1

SST-2

1821 176 RANDOM 76.42 75.72 89.34 60.35 96.94 96.97 35.15 18.24 1
1821 527 PRIORITIZED 79.80 77.73 87.06 60.08 92.71 92.78 62.95 43.31 1
1821 960 GENETIC 68.18 73.55 92.15 69.80 82.55 84.89 61.46 53.11 1
1821 772 PWWS 75.54 78.57 90.05 57.50 87.83 90.41 66.44 54.38 1

DISTILBERT

IMDB

2000 212 RANDOM 83.36 87.66 86.98 37.30 97.46 98.56 59.59 33.33 1
2000 1182 PRIORITIZED 93.20 89.66 62.85 31.70 94.79 94.50 91.88 76.09 1
2000 1202 GENETIC 90.28 90.23 75.59 22.80 92.50 95.27 89.25 74.41 1
2000 1335 PWWS 86.56 88.74 83.06 36.64 88.9 92.93 86.95 79.10 1

SST-2

1821 171 RANDOM 83.17 77.78 84.42 59.69 87.77 97.32 37.23 18.40 1
1821 614 PRIORITIZED 84.29 78.87 84.36 58.70 92.97 92.34 70.36 46.86 1
1821 1105 GENETIC 74.74 78.06 90.97 49.81 82.27 88.18 69.36 57.32 1
1821 860 PWWS 80.30 78.87 71.56 54.31 88.25 89.93 71.56 54.41 1

LSTM

IMDB

2000 198 RANDOM 77.82 84.22 89.64 37.55 96.90 98.31 44.47 24.87 20
2000 1451 PRIORITIZED 88.34 86.64 78.68 30.50 89.66 92.41 88.66 73.90 20
2000 1548 GENETIC 77.47 86.59 89.73 30.50 81.04 92.00 78.92 74.50 20
2000 1735 PWWS 80.53 86.99 88.85 30.90 81.47 91.45 83.85 78.43 20

SST-2

1821 238 RANDOM 79.14 58.45 86.35 98.13 96.36 90.22 36.37 13.35 20
1821 669 PRIORITIZED 74.97 68.45 89.89 95.18 88.73 84.33 57.21 36.24 20
1821 1186 GENETIC 71.37 66.74 91.28 96.00 80.08 72.67 66.55 51.55 20
1821 1013 PWWS 74.68 69.59 90.28 95.51 83.96 78.51 66.46 48.26 20

Table 4: Adversarial example detection results of FGWS and GRADMASK (GM). AUPR-C and AUPR-A denote
AUPR of clean example and adversarial example classes, respectively.

which is an important metric for systems with high478

security requirements. In addition, GRADMASK479

achieves notably better AUPR-C scores in most of480

the experiment scenarios. This tendency is well481

presented in Fig. 3, which shows ROC curves of482

FGWS and GRADMASK for ROBERTA model.483

The ROC curves of FGWS tend to increase steeply484

and remain stable. However, as TPR increases,485

FGWS significantly compromises FPR score. Es-486

pecially, at some point, TPR and FPR show a linear487

trend. In contrast, GRADMASK tends to reach 95%488

TPR at lower FPR scores and shows larger AUROC489

scores.490

On the other hand, GRADMASK shows lower491

performance scores in all metrics on SST-2 with the492

LSTM model as shown in Table 4. Nevertheless,493

the overall detection performance of GRADMASK494

tends to improve proportionally to the model size495

and the standard performance. Another notable ob-496

servation is that GRADMASK achieves these results497

with a single token masking except for the LSTM498

model (K in Table 4). These results may imply499

that NLP systems are largely robust to a partial loss500

of information resulting from the masking strategy501

on clean samples, but there is a significant change502

in the adversary response caused by a salient to-503

ken masking. Also, our gradient-based masking 504

strategy occasionally detects adversarial examples 505

through masking a clean token as presented in §4.2 506

and Fig. 2. This result implies that the hidden repre- 507

sentation of adversarial tokens significantly affects 508

that of clean tokens. 509

Moreover, GRADMASK shows consistently bet- 510

ter performance in detecting strong attacks such as 511

genetic attack and PWWS attack which are more 512

aggressive than the others. We conjecture that 513

stronger attacks select and engineer the crucial to- 514

kens more carefully, so masking these tokens would 515

hugely reduce the effectiveness of these attacks. 516

We also observe that GRADMASK underper- 517

forms FGWS in terms of AUPR-A. A possible 518

explanation may be related to the nature of the syn- 519

onym substitution strategy. We hypothesize that 520

FGWS tends to transform an input sequence aggres- 521

sively. This view can be supported by their FPR95 522

scores and precision-recall (PR) curves. Firstly, the 523

ROC curves of FGWS typically show high FPRs at 524

high TPRs (Fig. 3). Secondly, from the PR curves 525

of FGWS shown in Fig. 4, the precision scores 526

drop significantly as the recall scores increase. We 527

provide PR curves for 6 other scenarios in the sup- 528

plementary material. 529
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MODEL DATASET # SAMPLES ATTACK AUROC FPR95 AUPR-C AUPR-A
TN TP MASK MASK MASK MASK

ROBERTA IMDB 691 691 CHARACTER 79.68 67.44 78.75 75.8

DISTIL IMDB 897 897 CHARACTER 80.42 63.76 81.02 75.07

Table 5: Adversarial example detection results against a character-level attack.
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Figure 3: ROC curves of FGWS and GRADMASK with
the ROBERTA model. The horizontal red line is at the
95% TPR and the vertical lines at the FPRs of two al-
gorithms, respectively (best viewed in color).

4.4 Character-Level Attack Detection530

To investigate the potential of GRADMASK against531

non-synonym based attacks, we conduct an ad-532

ditional experiment with a character-level attack533

(Pruthi et al., 2019) from the TextAttack library534

(Morris et al., 2020). Even though character-level535

attacks are known to be relatively simple to defend536

at a preprocessing stage with a spell or a grammar537

checker (Pruthi et al., 2019), our motivation for538

this experiment is to demonstrate the potential of539

GRADMASK against non-synonym based attacks.540

We generated adversarial examples against541

ROBERTA-BASE and DISTIL-BASE without any542

IMDb-Genetic IMDb-PWWS(a) (b)
Recall

Pr
ec

isi
on

Recall

Pr
ec

isi
on

FGWS GradMask

Figure 4: Precision-Recall curves of FGWS and GRAD-
MASK on IMDB with the ROBERTA model against
the PWWS and genetic attacks.

maximum text length limitation. From the results 543

in Table 5, we see that our method shows promising 544

results with AUROC scores of 79.68% and 80.42% 545

for ROBERTA-BASE and DISTIL-BASE, respec- 546

tively. It would be interesting to see how GRAD- 547

MASK performs for other kinds of non-synonym 548

attacks such as syntactically controlled paraphrase 549

networks (SCPNs) (Iyyer et al., 2018) or univer- 550

sal adversarial attack (Song et al., 2021) which we 551

leave as future work. 552

5 Conclusion 553

We have proposed a simple model-agnostic ad- 554

versarial example detection scheme, GRADMASK, 555

which is designed to utilize gradient signals as a 556

guidance to detect adversarially perturbed tokens. 557

This guidance additionally provides a weak inter- 558

pretation about its decision. The experimental re- 559

sults show that GRADMASK is a promising ap- 560

proach as a textual adversarial attack detection algo- 561

rithm for NLP classification systems. Particularly, 562

it shows significantly low FPR95 scores, which is 563

a highly desirable property for NLP systems with 564

high-security requirements. In addition, GRAD- 565

MASK does not require an additional module or 566

a strong assumption about potential attacks which 567

are more realistic in practice. Finally, we have 568

shown that adversarial perturbations with frequent 569

words can successfully fool the NLP classification 570

systems. In conclusion, our detection strategy can 571

serve as a useful tool for identifying adversarial at- 572

tacks for protecting the text classification systems. 573
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Table 6: Parameter settings of target models. AL
and MAXLEN denote the adaptive linear learning rate
scheduler and maximum sequence length, respectively.

MODEL PARAMETERS

ROBERTA

OPTIMIZER ADAMW
BATCH SIZE (IMDB/SST-2) 16/32
EPOCHS 10
LEARNINGRATE 10−5
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 256/128

ROBERTA-LONG

OPTIMIZER ADAMW
BATCH SIZE (IMDB/SST-2) 16/32
EPOCHS 10
LEARNINGRATE 10−5
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 400/256

DISTILBERT

OPTIMIZER ADAMW
BATCH SIZE (IMDB/SST-2) 16/32
EPOCHS 10
LEARNINGRATE 10−5
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 256/128

LSTM

OPTIMIZER ADAM
BATCH SIZE (IMDB/SST-2) 100/100
HIDDEN SIZE 128
DROPOUT 0.1
EMBEDDING GLOVE
EPOCHS 20
LEARNINGRATE 10−3
MAXLEN (IMDB/SST-2) 200/50

A Model Parameters921

Table 6 summarizes the parameter settings of the922

target models used for adversarial example detec-923

tion experiments. We follow the model settings924

of (Mozes et al., 2021) except ROBERTA-LONG925

which is trained on a longer maximum sequence926

length setting.927

B Adversarial Attack Implementation928

For adversarial example detection experiments929

(§4.3), we adopted the implementation provided930

by Mozes et al. (2021). According to Mozes931

et al. (2021), they replaced Google language model932

(Chelba et al., 2013) in genetic attack with GPT-2933

language model (Radford et al., 2019) for compu-934

tational efficiency.935

Note that for word-frequency analysis (§4.1) and936

adversarial token detection (§4.2) experiments we937

employed the publicly available TextAttack library938

(Morris et al., 2020) for PWWS attack (Ren et al.,939

2019). The main difference from the original imple-940

mentation is PWWS attack in TextAttack does not941

include the named entity (NE) adversarial swap, be-942

cause it requires NE labels of input sequences that943

are not available in practice (Morris et al., 2020).944
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Figure 5: PR curves of FGWS and GRADMASK on
IMDB and SST-2 ROBERTA models against four dif-
ferent attacks.

C Precision-Recall Curve of ROBERTA 945

Model 946

Fig. 5 presents PR curves of FGWS and GRAD- 947

MASK ROBERTA models trained on IMDB and 948

SST-2 against four different attacks. As mentioned 949

in §4.3, we observe the tendency that the overall 950

precision scores of the FGWS algorithm drop at 951

high recall scores. However, our method maintains 952

high precision scores at high recall scores. 953
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