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Abstract

We present a simple model-agnostic textual
adversarial example detection scheme called
GRADMASK. It uses gradient signals to de-
tect adversarially perturbed tokens in an in-
put sequence and occludes such tokens by a
masking process. GRADMASK provides sev-
eral advantages over existing methods includ-
ing lower computational cost, improved detec-
tion performance, and a weak interpretation of
its decision. Extensive evaluations on widely
adopted natural language processing bench-
mark datasets demonstrate the efficiency and
effectiveness of GRADMASK. Code and mod-
els are available at <redacted>.

1 Introduction and Related Work

The advances in deep learning has revolutionized
natural language processing (NLP) with state-of-
the-art performance in practically every task. How-
ever, it has been shown that such systems are sig-
nificantly vulnerable to specifically crafted adver-
sarial attacks (Szegedy et al., 2014) at all stages
of development and deployment (Ebrahimi et al.,
2018; Alzantot et al., 2018; Zhang et al., 2020; Kr-
ishna et al., 2020; Tan et al., 2020, 2021). This is
quite troubling as there is little to no change in the
adversarially chosen test distributions compared to
the training distribution (Robin, 2020).

In response to the adversarial attacks, various
defense schemes have been proposed. These ap-
proaches can be grouped into three categories:
(i) adversarial training (Si et al., 2020; Maharana
and Bansal, 2020; Miyato et al., 2017; Zhu et al.,
2020), (ii) certified robustness (Jia et al., 2019;
Wang et al., 2021), and (iii) synonym substitution
based methods (Wang et al., 2019, 2020; Dong
et al., 2021; Zhou et al., 2021; Jones et al., 2020).

Originally introduced by Goodfellow et al.
(2015), the adversarial training methods aim to
train a target model on adversarial examples (in ad-
ditional to clean samples) until the model learns to
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Figure 1: An illustration of the detection process of GRAD-
MASK with a binary classification example. An attacker tries
to find an adversarial example x’ by searching for the best
perturbation (compel) that flips the original model prediction
(expressed as the dotted line). GRADMASK attempts to iden-
tify the candidate perturbations through the gradient signal
and masks one token (m;) at a time to generate a masked
sequence m;. The final decision is made by measuring the
largest difference in model’s confidence for x” and m;.

classify them correctly. However, adversarial train-
ing not only increases the training time but also
tends to hurt the standard task performance of the
model (Tsipras et al., 2019). For NLP, this cost is
even greater as many textual attack algorithms rely
on an extensive iterative search for potential candi-
dates with a large number of queries (Yuan et al.,
2018; Li et al., 2021, 2020; Garg and Ramakrish-
nan, 2020). In addition, the defense performance
largely depends on how well the crafted examples
represent the potential attack.

Another branch of adversarial defense scheme is
the certified robustness, which aims to provably
characterize the output of a model within a re-
stricted space around an input (Cohen et al., 2019).
However, certified robustness often requires strong
assumptions on the target model architecture. Typ-
ically, they have troubles in scaling to large net-
works such as Transformers (Vaswani et al., 2017).
Thus, prior studies (Jia et al., 2019; Wang et al.,
2021) mostly adopt recurrent architectures such as


<redacted>

LSTMs (Hochreiter and Schmidhuber, 1997) and
convolutional neural networks.

With a growing interest in synonym substitution-
based attacks (Garg and Ramakrishnan, 2020; Jin
et al., 2020; Ren et al., 2019; Alzantot et al., 2018),
there have been a number of studies on defense
schemes against such attacks. The goal of these
approaches is to encode input texts into a canonical
form or robust representation so that the model pre-
dictions do not change by synonym substitutions.
These methods have shown effectiveness against
token-level attacks, but it is unclear how synonym-
based defense approaches can protect the model
from attacks that perturb tokens aggressively. For
instance, synonym-based defense schemes are typi-
cally evaluated against token-level attacks such as
genetic attack (Alzantot et al., 2018) and PWWS
attack (Ren et al., 2019). These defense methods
typically construct a synonym set through GloVe
(Pennington et al., 2014) or WordNet (Fellbaum,
1998), which are also commonly adopted by the
token-level attack algorithms as a synonym-search
module (Dong et al., 2021; Zhou et al., 2021; Wang
et al., 2019). Thus, it is natural to extend our con-
cern towards a scenario in which these defense
schemes can be brittle for defending low-resourced
language NLP systems which have no synonym
resources, or even for deletion or sub-token pertur-
bation based attacks.

While the above defense schemes aim to im-
prove the adversarial robustness of NLP systems,
adversarial example detection methods are de-
signed to reject suspicious inputs although they
share the same goal of defeating the adversarial at-
tacks (Aldahdooh et al., 2021). Detection-based ap-
proaches provide several advantages over defense
schemes. The most obvious advantage is that they
do not require to modify the target model architec-
ture or the training procedure, because they typ-
ically work as a separate module. Consequently,
they do not compromise the model performance on
clean datasets. Secondly, they are able to identify
the intention (adversarial or not) of adversarial at-
tacks, so users can take actions (reject or revise)
accordingly. Finally, the detection algorithms may
provide a better strategy for developing defense
methods by informing us which parts of an input
sequence are perturbed (Zhou et al., 2019).

Unlike the other defense schemes, the textual
adversarial detection has not been explored much.
To our best knowledge, there are two prior studies

trying to detect token-level adversarial attacks. The
very first work is the discriminate perturbations
(DISP) framework proposed by Zhou et al. (2019).
DISP consists of two BERT-BASE (Devlin et al.,
2019) based perturbation discriminator and embed-
ding estimator. To provide supervising signals for
the discriminator, DISP randomly samples adver-
sarial examples and learns to discriminate clean
samples from the adversarial examples. In contrast,
a more recent textual adversarial example detec-
tion work, the frequency-guided word substitutions
(FGWS) approach proposed by Mozes et al. (2021),
does not need an additional training process. The
key assumption of FGWS is that adversarial attack
algorithms tend to exploit words that are rarely ex-
posed during a target model’s training. However,
as Mozes et al. (2021) mentioned, their approach is
limited to detection of only word-level attacks and
the effectiveness of FGWS against attacks that do
not rely on infrequent words is unclear. Especially,
our experiments with a constrained high-frequency
vocabulary show that attackers can still find suc-
cessful attacks by using frequent tokens (§4.1).

Our work in this paper, instead, deviates from
the word-frequency assumption by utilizing gradi-
ent signals as guidance. We harness the gradient
signal to detect adversarially perturbed tokens in
an input sequence by investigating the adversary
response, which, analogous to impulse response or
step response (Oppenheim et al., 1996), indicates
the network’s response to an adversarial input. The
identified tokens are subsequently occluded by a
mask token and fed to the model to measure the
change in model’s confidence with respect to the
original prediction. Fig. 1 provides an illustration
of our gradient-guided detection, GRADMASK.

The gradient-based attribution of neural system’s
prediction has been studied widely in deep learn-
ing (Sundararajan et al., 2017; Simonyan et al.,
2014; Li et al., 2016). Some prior work in NLP
uses the gradient to identify important words (Li
et al., 2017; Murdoch et al., 2018). To the best of
our knowledge, this is the first work on detecting
textual adversarial attacks by attributing the model
prediction via gradient signal analysis.

GRADMASK has several advantages over the
previous methods. Firstly, it does not require any
additional modules for synonym search or frequent
word count. Secondly, our detection algorithm
works entirely without any prior knowledge about
potential attacks, which is a more practical setup.



Thirdly, it works without any pre-training. Finally,
it provides a weak interpretation of decision by
identifying adversarially perturbed tokens. The
main contributions of this work are:

* We propose GRADMASK, a novel gradient-
guided adversarial example detection method.

* We demonstrate that NLP systems can still be sig-
nificantly brittle to synynym-based adversaries in
a high-frequency constrained vocabulary setup,
a finding that deviates from the frequency-based
assumption of Mozes et al. (2021).

* We demonstrate the advantage of GRADMASK
over state-of-the-art adversarial example detec-
tion algorithm through extensive experiments.

2 Method

In this section, we present our proposed method.
We first establish the notations in §2.1.

2.1 Notations

We consider a standard text classification task for a
model fg(-) with parameters @ € IRP. The model
fo(+) is trained to fit a data distribution D over pairs
of an input sequence x = [x1, - - - , z7| of T tokens
and its corresponding label y € {1,...,C} with C
being the number of classes. We also assume a loss
function £(60,x,y) such as a cross-entropy loss.
The output of the model is a probability distribution
that satisfies: 0 < fg(x); < 1 and 220:1 fo(x); =
1, where i is the class index. We denote the fi-
nal prediction as ¢(x) = arg max; fg(x); and true
label as ¢*(x) = y*.

Given a sequence X, a textual adversarial exam-
ple x’ can be defined as follows: for some semantic
dissimilarity measure d(x,x’), it has to be small
and ¢(x’) # ¢*(x) . These two conditions denote
that an adversarial example has to maintain seman-
tic meaning of the original input x but misguide
the model prediction (Athalye et al., 2018).

2.2 Gradient-guided Token Masking for
Adversarial Example Detection

GRADMAGSK first finds salient tokens that signifi-
cantly attribute to the model prediction, ¢(x); see
Fig. 1 for an illustration. A simple and widely em-
ployed approach is the gradient-based attribution
analysis (Ancona et al., 2018; Sundararajan et al.,
2017; Li et al., 2016). However, due to the dis-
crete nature of texts, we cannot directly exploit the

Algorithm 1 Gradient-based Masking for Adver-
sarial Example Detection.

Require: Input sequence x, target model fg
1: Initialize M = {} and K = |T X p]|.

2: Compute fg(x);, where i = ¢(x). > pred. for x
3 L:=A{llgill,-- - llgrll} viaEq. 1.

4: Sort L in descending order.

5: while £k < K do

6 llglle + L[N

Tomp= [ my, o]

8: M[k‘] = fg(mt)i > prediction for m,
9: end while

_
e

w = (fo(x); — ming M[k])?

gradient-based approach. In order to deviate the is-
sue, we compute a gradient of the word embedding
e; with regard to the loss function £, where e; is
a simple linear projection of a (subword) token x;.
The gradient can be expressed as follows:

gt = th‘C(aaXa C(X>) (1)

Note that the above loss is computed with respect
to the model’s final prediction ¢(x) and not the
ground truth y*.

Subsequently, we measure the amount of stimu-
lus of the input tokens toward the model prediction
by computing the Ly-norm of g;. The stimulus is
considered as a saliency score of the tokens and it is
determined in descending order of the magnitude of
||g||2 following Li et al. (2016). GRADMASK only
considers the top-p portion of the input tokens in x.
Specifically, the number of chosen K salient tokens
is | T x p|, where the brackets denote the floor op-
eration. The sampled K salient tokens are masked
individually one at a time to generate a masked
input sequence m; = [x1,...,my, ...,y witht
being the token position of a salient token, and m
is the mask token, [MASK].!

The rationale behind the masking approach is
based on two assumptions. The first assumption
is that adversarial examples are the result of so-
phisticated optimization algorithms rather than the
result of random perturbations (Goodfellow et al.,
2015; Galloway et al., 2018). Thus, we conjec-
ture that masking the suspicious tokens which are
carefully crafted can significantly drop the model
confidence. The second assumption is that NLP
systems are generally robust to weak-level of noise.

'In case of non-masked language model-based classifiers,
we adopted an unknown token.



The partial information loss in clean samples due to
masking can be offset by the overall context of the
input text (supported by our experiments in §4.1).

Each masked sequence my is then fed into the
target model to get a prediction fg(m;);, where
i = ¢(x). This process gives K such confidence
scores which are stored in M. We then compare
the minimum confidence value in M to the original
confidence score f(x);, and the confidence change
is squared to assign a stronger penalty to the higher
changes. More formally,

w = ( fo(x)i — mgnM[k]>2 )

The final decision is determined by an indicator
function Z(w, 7) defined as follows:

T(w,7) = {0 ifw<r 3)

1 else

where 7 is a pre-defined threshold. Alg. 1 presents
the overall process of GRADMASK.

3 Experiment Settings

In this section, we present our experiment settings:
the datasets, target models, adversarial example
generation and evaluation metrics.

3.1 Datasets

We evaluate the methods on three classification
tasks. We use the IMDB (Maas et al., 2011), AG-
NEWS (Zhang et al., 2015), and Stanford Sentiment
Treebank (SST) (Socher et al., 2013) datasets that
are widely adopted for benchmarking adversarial
robustness of NLP systems. The IMDB dataset
contains movie reviews labeled with positive or
negative sentiment labels. The AGNEWS dataset
contains news articles from more than 2,000 news
sources and the samples are categorized into the
four largest classes. The SST dataset provides
movie reviews with fine-grained sentiment labels.
We turn the labels into binary (SST-2) to follow
the setting of FGWS (Mozes et al., 2021). Table 1
gives an overview of the datasets.

3.2 Target Models

We evaluate GRADMASK on three different se-
quence modeling architectures, which have been
widely employed in NLP. We first consider a large-
scaled pre-trained Transformer-based language
model, ROBERTA-BASE (Liu et al., 2019), which
contains 124 million parameters. Subsequently, we

Dataset Train/Test Avg. Len
IMDb 25k/25k 215
AG 120k/7.6k 43
SST-2 67k/1.8k 20

Table 1: A summary of the datasets used in our work.

MODEL DATASET AcCC (%)
IMDB 93.36
ROBERTA SST-2 91.98
AG 95.3
IMDB 93.71
ROBERTA-LONG SST.2 38.60
IMDB 90.57
DISTILBERT SST-2 91.21
AG 94.37
IMDB 87.27
LSTM SST-2 83.53

Table 2: A summary of the target models and their
clean testset performance.

also evaluate on a relatively smaller Transformer-
based model called DISTILBERT-BASE (Sanh
et al., 2020), which has approximately 40% fewer
parameters than ROBERTA-BASE. Finally, we con-
sider the LSTM, which used to be the dominant
architecture before the arrival of Transformers.

Table 2 shows the standard task performance
of the models on the three datasets. To train
the models, we followed the hyperparameter set-
tings provided by Mozes et al. (2021). The
TRANSFORMER based models are optimized by
AdamW (Loshchilov and Hutter, 2019) with a lin-
ear adaptive learning rate scheduler. For LSTM,
the initial word embeddings are initialized with
GloVe (Pennington et al., 2014). The texts in
IMDB are comparatively longer than those in
AGNEWS and SST-2. For the IMDB classifi-
cation task, the maximum sequence lengths for
ROBERTA, DISTILBERT and LSTM are set to
256, 256, and 200, respectively, and ROBERTA-
LONG is trained with a longer sequence (400 to-
kens) than the standard one. The details of model
architectures are provided in the supplementary ma-
terial. All of the experiments are conducted on an
Intel Xeon Gold 5218R CPU-2.10GHz processor
with a single Quadro RTX 6000 GPU.

3.3 Adversarial Example Generation

We generated adversarial examples against the se-
lected target models via four different attack al-
gorithms. They include two baseline attacks and



two widely adopted synonym substitution-based
token-level attacks, as used in previous work

e Random is a simple word replacement-based
baseline attack algorithm. It randomly selects a
synonym of a token in the original input text. Syn-
onyms are identified via WordNet.

e Prioritized attack is also based on word replace-
ment, but it puts a higher priority on a synonym that
maximizes the target model’s prediction confidence
change.

e Genetic attack (GA) was proposed by Alzantot
et al. (2018). It adopts the crossover and mutation
operations in genetic algorithms to generate adver-
sarial examples. GA searches synonyms based on
the GloVe word embedding space with a language
model (Radford et al., 2019).2

o PWWS or Probability weighted word saliency
(Ren et al., 2019) is a greedy word substitution-
based attack algorithm. The word replacement or-
der is determined by a word saliency score com-
puted through the model’s confidence change. The
word synonym is searched via WordNet.

3.4 Evaluation Metrics

The main interest of this work lies in an evalua-
tion of the detection performance of our proposed
method GRADMASK. FGWS (Mozes et al., 2021)
was mainly evaluated via F1 score, but we follow
the standards from the out-of-distribution (OOD)
sample detection literature (Zheng et al., 2020;
Hendrycks et al., 2019; Ouyang et al., 2021) for
better understanding of the methods.

The adversarial example detection can be con-
sidered as a binary classification problem of ver-
ifying positive (adversarial) vs. negative (clean)
class. We evaluate a ratio of true positive samples
so-called true positive rate (TPR or recall) against
false positive rate (FPR) defined as:

1
TPR=— ZI(w*, ) 4)

1 _
FPR=— zijz(w T, (5)

where the superscripts + and — denote the positive
and the negative classes, respectively. Based on
these two rates, we evaluate the methods with the
following evaluation metrics:

>We adopted the modified implementation provided by
Mozes et al. (2021) for a fair comparison. The details are
provided in the supplementary material.

e AUROC stands for the area under receiver op-
erating characteristic curve. For each operational
setting of 7 from 0 to 1, TPR and FPR can be
plotted. This curve is called receiver operating
characteristic curve (ROC curve).

o FPRYS5 refers to a FPR at 95 TPR. FPR95 quan-
tifies how many clean samples have to be rejected
to detect 95% of the adversarial examples. FPR is
a very important metric for evaluating detection al-
gorithms (Aldahdooh et al., 2021). A lower FPR95
score is often required for systems that require a
high level of system safety or security.

o AUPR denotes area under precision-recall (PR)
curves. There exists an imbalance of data distribu-
tion between positive class and negative class. To
deal with the data distribution skew, we evaluate
AUPR scores for each class.

4 Results & Analysis

We first investigate the relationship between the
adversarial robustness of NLP classification mod-
els and the word frequency in the adversarial ex-
amples (§4.1). We then analyze the adversarially
perturbed token detection performance of GRAD-
MaAsK (8§4.2). In §4.3, we evaluate GRADMASK
on widely employed NLP benchmarks. Finally,
we investigate GRADMASK’s potential against a
non-synonym based (character-level) attack §4.4.

4.1 Word Frequency and Adversarial
Robustness of NLP Systems

According to Mozes et al. (2021), the brittleness of
NLP systems against adversarial examples would
be attributed to the distribution of word frequency
in a training set. However, one of the widely ac-
cepted explanations about the existence of adversar-
ial examples insists that adversarial examples are a
result of the standard optimization rather than data
distribution (Ilyas et al., 2019). We investigated
how the word frequency can affect the model’s ro-
bustness via a series of experiments. Consequently,
we find that deep NLP systems can still be fooled
by adversarial examples with words that are fre-
quently exposed during their training stage.

To validate this claim, we trained the victim mod-
els with a word frequency constraint. Specifically,
we built a new vocabulary set V/ to be comprised
of only the top-10% frequently used words from
the original vocabulary set V. The vocabulary-
constrained models are designed to block all infre-
quent words that are out of ¥/ in an input sequence



Model Dataset Acc-V  Acc-V' | 2/ € V! AAce
DistLBERT _ MDb 9298 9217 | 7173 104
AG 9437 9078 | 6892 156
ROBERTA IMDb 9533 9515 | 6738 7.6
AG 9522 9487 | 4426 308

Table 3: Word frequency and adversarial robustness.
Acc-V and Acc-V’ refer to accuracies of the model
with the original vocabulary V' and constrainted vocab-
ulary V', respectively. 2’ € V' denotes a ratio of per-
turbed tokens that are part of V'. AAcc denotes an un-
der attack accuracy of the model with V.

by masking those tokens. We first evaluated the
model performance to observe how the vocabu-
lary constraint affects the model performance. As
shown in Table 3, the standard task performance
of the victim models under the constraint (Acc-V")
only marginally decreases (about 1 - 4%) compared
to the original accuracy (Acc-V'). These results
show that masking infrequent tokens does not hurt
the model performance significantly.

Next, we generated 1,000 pairs of samples via
the PWWS attack algorithm (Ren et al., 2019)
against the word frequency constrained models.’
Each sample pair consists of a clean example and
its corresponding adversarial example that success-
fully fools the target model.

According to the infrequent word assumption
(Mozes et al., 2021), the models trained on V' are
expected to be robust against adversarial attacks.
However, from the results in Table 3, we notice that
they showed significant brittleness against adversar-
ial attacks. The attack algorithms deviate from the
masking strategy by using frequent words that are
within V' (2’ € V). For instance, 71.7% adversar-
ially perturbed tokens in the adversarial examples
against DISTILBERT model are in the constrained
vocabulary set V/. DISTILBERT models show ap-
proximately 10% accuracies for both datasets when
under attack (AAcc). Similarly, ROBERTA models
show under attack accuracies of 7.6% and 30.8%
for AGNEWS and IMDB, respectively. Thus, we
claim that the vulnerabilities of NLP systems can-
not only be attributed to the infrequent words.

4.2 Adversarial Token Detection

We now analyze how our gradient-based approach
GRADMASK attributes the model prediction on ad-

3We adopted TextAttack framework (Morris et al., 2020)
to attack the victim models. Their implementation difference
is provided in the supplementary material.
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Figure 2: Adversarially perturbed token detection rates
at top-1, top-2 and top-5 for GRADMASK.

versarial examples. Fig. 2 shows perturbed token
detection rates of two Transformer-based models,
DI1STILBERT and ROBERTA, on two datasets,
IMDB and AGNEWS. We report detection rates
at top-1, top-3, and top-5, which refers to the total
number of adversarially perturbed tokens identified
within the top-/V values of w in Eq. (2). In case
of DISTILBERT, it shows 48.17% and 31.82% de-
tection rates for IMDB and AGNEWS within the
top-5 predictions, respectively. On the other hand,
ROBERTA shows 72.04% and 48.85% detection
rates for IMDB and AGNEWS within the top-5 pre-
dictions. Another notable observation is that for the
IMDB classification task, top-1 predictions detect
the adversarial tokens with 49% and 78% probabil-
ity for DISTILBERT and ROBERTA, respectively.
For AGNEWS, their top-1 predictions show 45%
and 67% detection probability, respectively.

4.3 Adversarial Example Detection

For adversarial example detection, we compare
the performance of GRADMASK with that of
FGWS (Mozes et al., 2021). The hyperparameter
settings of FGWS is tuned as provided by Mozes
et al. (2021).* The overall experimental results
are presented in Table 4. Note that AUPR-C and
AUPR-A represent the AUPR score of clean sam-
ples (negative class) and that of adversarial samples
(positive class), respectively.

As shown in Table 4, GRADMASK tends to show
better AUROC, FPR95, and AUPR-C scores in
most of the evaluation measures. Particularly, it sig-
nificantly outperforms FGWS for all Transformer-
based systems (ROBERTA, ROBERTA-LONG,
and DISTILBERT) in terms of the FPR95 score,

*https://github.com/maximilianmozes/
fgws
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MODEL DATASET # SAMPLES ATTACK AUROC (%) FPRY5 (%) AUPR-C (%) AUPR-A (%) K
TN TP FGWS GM FGWS GM FGWS GM FGWS GM
2000 147 RANDOM 86.06 94.97 8498 14.25 9846 99.62 51.55 435 1
IMDB 2000 995  PRIORITIZED  92.67 95.55 68.31 11.1 95.06  98.12 89.2 84.89 1
2000 1042 GENETIC 89.88  95.69 78.53 11.4 92.89 98.17 86.72 85.04 1
ROBERTA 2000 1016 PWWS 85.85 95.38 85.17 13.15 9047 98 83 8492 1
1821 148 RANDOM 75.4 81.43 90.54 52.39 97.17 98.18 37.62 2037 1
SST-2 1821 479 PRIORITIZED 83.57 82.09 84.69 54.26 94.23 94.65 65.35 46.95 1
1821 968 GENETIC 74.6 79.19 90.82 56.89 84.22 90.97 6655 6133 1
1821 736 PWWS 77.72 8273 65.06 51.29 88.66 92.44 66.05 58.51 1
2000 190 RANDOM 81.05 94.50 89.77 16.70 97.26 99.46 58.84 52.65 1
IMDB 2000 1037  PRIORITIZED 93.08 94.75 68.20 16.00 95.02 97.60  90.70 85.41 1
2000 888 GENETIC 89.05 95.51 80.96 13.60 93.24 98.25 85.38 8534 1
ROBERTA-LONG 2000 1129 PWWS 87.10 95.01 84.38 15.70 90.26 97.44 86.38 88.35 1
1821 176 RANDOM 76.42 7572 89.34 60.35 96.94 96.97 3515 1824 1
SST-2 1821 527  PRIORITIZED 79.80 77.73 87.06 60.08 92.71 92.78 62.95 43.31 1
1821 960 GENETIC 68.18 73.55 92.15 69.80 82.55 84.89 6146 53.11 1
1821 772 PWWS 75.54 78.57 90.05 57.50 87.83 90.41 66.44 5438 1
2000 212 RANDOM 83.36 87.66 8698 37.30 97.46 98.56 59.59 3333 1
IMDB 2000 1182 PRIORITIZED 93.20 89.66 62.85 31.70  94.79 9450 91.88 76.09 1
2000 1202 GENETIC 90.28 90.23  75.59 22.80 92.50 9527 89.25 7441 1
DISTILBERT 2000 1335 PWWS 86.56 88.74 83.06 36.64 88.9 9293 86.95 79.10 1
1821 171 RANDOM 83.17 77.78 84.42 59.69 87.77 97.32 37.23 18.40 1
SST-2 1821 614  PRIORITIZED  84.29 78.87 84.36 58.70 9297 9234 70.36 46.86 1
1821 1105 GENETIC 74.74 78.06 90.97 49.81 82.27 88.18 69.36 57.32 1
1821 860 PWWS 80.30 78.87 71.56 54.31 88.25 89.93 71.56 5441 1
2000 198 RANDOM 77.82  84.22 89.64 37.55 96.90 98.31 4447 24.87 20
IMDB 2000 1451 PRIORITIZED 88.34 86.64 78.68 30.50 89.66  92.41 88.66 73.90 20
2000 1548 GENETIC 77.47 86.59 89.73 30.50 81.04 92.00 78.92 7450 20
LSTM 2000 1735 PWWS 80.53 86.99 88.85 30.90 81.47 91.45 83.85 7843 20
1821 238 RANDOM 79.14 58.45 86.35 98.13 96.36  90.22 36.37 13.35 20
SST-2 1821 669  PRIORITIZED 74.97 68.45 89.89 95.18 88.73 84.33 57.21 36.24 20
1821 1186 GENETIC 71.37 66.74 91.28 96.00 80.08 72.67 66.55 51.55 20
1821 1013 PWWS 74.68 69.59 90.28 95.51 83.96 7851 66.46 4826 20

Table 4: Adversarial example detection results of FGWS and GRADMASK (GM). AUPR-C and AUPR-A denote
AUPR of clean example and adversarial example classes, respectively.

which is an important metric for systems with high
security requirements. In addition, GRADMASK
achieves notably better AUPR-C scores in most of
the experiment scenarios. This tendency is well
presented in Fig. 3, which shows ROC curves of
FGWS and GRADMASK for ROBERTA model.
The ROC curves of FGWS tend to increase steeply
and remain stable. However, as TPR increases,
FGWS significantly compromises FPR score. Es-
pecially, at some point, TPR and FPR show a linear
trend. In contrast, GRADMASK tends to reach 95%
TPR at lower FPR scores and shows larger AUROC
scores.

On the other hand, GRADMASK shows lower
performance scores in all metrics on SST-2 with the
LSTM model as shown in Table 4. Nevertheless,
the overall detection performance of GRADMASK
tends to improve proportionally to the model size
and the standard performance. Another notable ob-
servation is that GRADMASK achieves these results
with a single token masking except for the LSTM
model (K in Table 4). These results may imply
that NLP systems are largely robust to a partial loss
of information resulting from the masking strategy
on clean samples, but there is a significant change
in the adversary response caused by a salient to-

ken masking. Also, our gradient-based masking
strategy occasionally detects adversarial examples
through masking a clean token as presented in §4.2
and Fig. 2. This result implies that the hidden repre-
sentation of adversarial tokens significantly affects
that of clean tokens.

Moreover, GRADMASK shows consistently bet-
ter performance in detecting strong attacks such as
genetic attack and PWWS attack which are more
aggressive than the others. We conjecture that
stronger attacks select and engineer the crucial to-
kens more carefully, so masking these tokens would
hugely reduce the effectiveness of these attacks.

We also observe that GRADMASK underper-
forms FGWS in terms of AUPR-A. A possible
explanation may be related to the nature of the syn-
onym substitution strategy. We hypothesize that
FGWS tends to transform an input sequence aggres-
sively. This view can be supported by their FPR95
scores and precision-recall (PR) curves. Firstly, the
ROC curves of FGWS typically show high FPRs at
high TPRs (Fig. 3). Secondly, from the PR curves
of FGWS shown in Fig. 4, the precision scores
drop significantly as the recall scores increase. We
provide PR curves for 6 other scenarios in the sup-
plementary material.



MODEL DATASET  # SAMPLES ATTACK AUROC FPRY95 AUPR-C AUPR-A
TN TP MASK  MASK MASK MASK

ROBERTA IMDB 691 691 CHARACTER 79.68 67.44 78.75 75.8

DisTIL IMDB 897 897 CHARACTER 80.42 63.76 81.02 75.07

Table 5: Adversarial example detection results against a character-level attack.
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Figure 3: ROC curves of FGWS and GRADMASK with
the ROBERTA model. The horizontal red line is at the
95% TPR and the vertical lines at the FPRs of two al-
gorithms, respectively (best viewed in color).

4.4 Character-Level Attack Detection

To investigate the potential of GRADMASK against
non-synonym based attacks, we conduct an ad-
ditional experiment with a character-level attack
(Pruthi et al., 2019) from the TextAttack library
(Morris et al., 2020). Even though character-level
attacks are known to be relatively simple to defend
at a preprocessing stage with a spell or a grammar
checker (Pruthi et al., 2019), our motivation for
this experiment is to demonstrate the potential of
GRADMASK against non-synonym based attacks.

We generated adversarial examples against
ROBERTA-BASE and DISTIL-BASE without any

FGWS  wmm= GradMask

10 10

08 10
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Precision
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o4 [
Recall
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Figure 4: Precision-Recall curves of FGWS and GRAD-
MASK on IMDB with the ROBERTA model against
the PWWS and genetic attacks.

maximum text length limitation. From the results
in Table 5, we see that our method shows promising
results with AUROC scores of 79.68% and 80.42%
for ROBERTA-BASE and DISTIL-BASE, respec-
tively. It would be interesting to see how GRAD-
MASK performs for other kinds of non-synonym
attacks such as syntactically controlled paraphrase
networks (SCPNs) (Lyyer et al., 2018) or univer-
sal adversarial attack (Song et al., 2021) which we
leave as future work.

5 Conclusion

We have proposed a simple model-agnostic ad-
versarial example detection scheme, GRADMASK,
which is designed to utilize gradient signals as a
guidance to detect adversarially perturbed tokens.
This guidance additionally provides a weak inter-
pretation about its decision. The experimental re-
sults show that GRADMASK is a promising ap-
proach as a textual adversarial attack detection algo-
rithm for NLP classification systems. Particularly,
it shows significantly low FPR95 scores, which is
a highly desirable property for NLP systems with
high-security requirements. In addition, GRAD-
MASK does not require an additional module or
a strong assumption about potential attacks which
are more realistic in practice. Finally, we have
shown that adversarial perturbations with frequent
words can successfully fool the NLP classification
systems. In conclusion, our detection strategy can
serve as a useful tool for identifying adversarial at-
tacks for protecting the text classification systems.
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Table 6: Parameter settings of target models. AL
and MAXLEN denote the adaptive linear learning rate
scheduler and maximum sequence length, respectively.

MODEL PARAMETERS
OPTIMIZER ADAMW
BATCH S1ZE (IMDB/SST-2) 16/32
EPOCHS 10
ROBERTA LEARNINGRATE 1075
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 256/128
OPTIMIZER ADAMW
BatcH S1zE (IMDB/SST-2) 16/32
EPOCHS 10
ROBERTA-LONG | b ¢ NINGRATE 1075
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 400/256
OPTIMIZER ADAMW
BATCH S1ZE (IMDB/SST-2) 16/32
EPOCHS 10
DISTILBERT LEARNINGRATE 1075
LEARNINGRATE SCHEDULER AL
MAXLEN (IMDB/SST-2) 256/128
OPTIMIZER ADAM
BATCH Si1ZE (IMDB/SST-2) 100/100
HIDDEN S1ZE 128
DroprOUT 0.1
LST™M EMBEDDING GLOVE
EPOCHS 20
LEARNINGRATE 1073
MAXLEN (IMDB/SST-2) 200/50

A  Model Parameters

Table 6 summarizes the parameter settings of the
target models used for adversarial example detec-
tion experiments. We follow the model settings
of (Mozes et al., 2021) except ROBERTA-LONG
which is trained on a longer maximum sequence
length setting.

B Adversarial Attack Implementation

For adversarial example detection experiments
(§4.3), we adopted the implementation provided
by Mozes et al. (2021). According to Mozes
et al. (2021), they replaced Google language model
(Chelba et al., 2013) in genetic attack with GPT-2
language model (Radford et al., 2019) for compu-
tational efficiency.

Note that for word-frequency analysis (§4.1) and
adversarial token detection (§4.2) experiments we
employed the publicly available TextAttack library
(Morris et al., 2020) for PWWS attack (Ren et al.,
2019). The main difference from the original imple-
mentation is PWWS attack in TextAttack does not
include the named entity (NE) adversarial swap, be-
cause it requires NE labels of input sequences that
are not available in practice (Morris et al., 2020).
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Figure 5: PR curves of FGWS and GRADMASK on
IMDB and SST-2 ROBERTA models against four dif-
ferent attacks.

C Precision-Recall Curve of ROBERTA
Model

Fig. 5 presents PR curves of FGWS and GRAD-
MASK ROBERTA models trained on IMDB and
SST-2 against four different attacks. As mentioned
in §4.3, we observe the tendency that the overall
precision scores of the FGWS algorithm drop at
high recall scores. However, our method maintains
high precision scores at high recall scores.



