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Abstract

We introduce a new unsupervised pre-training method for reinforcement learning
called APT, which stands for Active Pre-Training. APT learns behaviors and
representations by actively searching for novel states in reward-free environments.
The key novel idea is to explore the environment by maximizing a non-parametric
entropy computed in an abstract representation space, which avoids challenging
density modeling and consequently allows our approach to scale much better in
environments that have high-dimensional observations (e.g., image observations).
We empirically evaluate APT by exposing task-specific reward after a long unsuper-
vised pre-training phase. In Atari games, APT achieves human-level performance
on 12 games and obtains highly competitive performance compared to canonical
fully supervised RL algorithms. On DMControl suite, APT beats all baselines in
terms of asymptotic performance and data efficiency and dramatically improves
performance on tasks that are extremely difficult to train from scratch.

1 Introduction

Reinforcement learning (RL) provides a general framework for solving challenging sequential
decision-making problems. When combined with function approximation, it has achieved remarkable
success in advancing the frontier of AI technologies. These landmarks include outperforming humans
in computer games [40, 51, 64, 5] and solving complex robotic control tasks [3, 1]. Despite these
successes, they have to train from scratch to maximize extrinsic reward for every encountered task.
This is in sharp contrast with how intelligent creatures quickly adapt to new tasks by leveraging
previously acquired behaviors. Unsupervised pre-training, a framework that trains models without
expert supervision, has obtained promising results in computer vision [43, 23, 14] and natural
language modeling [63, 16, 11]. The learned representation, when fine-tuned on the downstream
tasks, can solve them efficiently in a few-shot manner. With the models and datasets growing,
performance continues to improve predictably according to scaling laws.

Driven by the significance of massive unlabeled data, we consider an analogy setting of unsupervised
pre-training in computer vision where labels are removed during training. The goal of pre-training
is to have data efficient adaptation for some downstream task defined in the form of rewards. In
RL with unsupervised pre-training, the agent is allowed to train for a long period without access
to environment reward, and then only gets exposed to the reward during testing. We first test an
array of existing methods for unsupervised pre-training to identity which gaps and challenges exist,
we evaluate count-based bonus [10], which encourages the agent to visit novel states. We apply
count-based bonus to DrQ [33] which is current state-of-the-art RL for training from pixels. We
also evaluate ImageNet pre-trained representations. The results are shown in Figure 1. We can
see that count-based bonus fails to outperform train DrQ from scratch. We hypothesize that the
ineffectiveness stems from density modeling at the pixel level being difficult. ImageNet pre-training
does not outperform training from scratch either, which has also been shown in previous research
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in real world robotics [29]. We believe the reason is that neither of existing methods can provide
enough diverse data. Count-based exploration faces the difficult of estimating high dimensional data
density while ImageNet dataset is out-of-distribution for DMControl.
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Figure 1: Comparison of state-of-the-art pixel-
based RL with unsupervised pre-training. APT
(ours) and count-based bonus (both based on
DrQ [33]) are trained for a long unsupervised pe-
riod (5M environment steps) without access to en-
vironment reward, and then gets exposure to the en-
vironment reward during testing. APT significantly
outperform training DrQ from scratch, count-based
bonus, and ImageNet pre-trained model.

To address the issue of obtaining diverse data for
RL with unsupervised pre-training, we propose to
actively collect novel data by exploring unknown ar-
eas in the task-agnostic environment. The underlying
intuition is that a general exploration strategy has
to visit, with high probability, any state where the
agent might be rewarded in a subsequent RL task.
Concretely, our approach relies on the entropy maxi-
mization principle [27, 53]. Our hope is that by doing
so, the learned behavior and representation can be
trained on the whole environment while being as task
agnostic as possible. Since entropy maximization
in high dimensional state space is intractable as an
oracle density model is not available, we resort to
the particle-based entropy estimator [55, 8]. This
estimator is nonparametric and asymptotically un-
biased. The key idea is computing the average of
the Euclidean distance of each particle to its near-
est neighbors for a set of samples. We consider an
abstract representation space in order to make the
distance meaningful. To learn such a representation
space, we adapt the idea of contrastive representation learning [14] to encode image observations to a
lower dimensional space. Building upon this insight, we propose Unsupervised Active Pre-Training
(APT) since the agent is encouraged to actively explore and leverage the experience to learn behavior.

Our approach can be applied to a wide-range of existing RL algorithms. In this paper we consider
applying our approach to DrQ [33] which is a state-of-the-art visual RL algorithm. On the Atari 26
games subset, APT significantly improves DrQ’s data-efficiency, achieving 54% relative improvement.
On the full suite of Atari 57 games [40], APT significantly outperforms prior state-of-the-art, achieving
a median human-normalized score 3× higher than the highest score achieved by prior unsupervised
RL methods and DQN. On DeepMind control suite, APT beats DrQ and unsupervised RL in terms
of asymptotic performance and data efficiency and solving tasks that are extremely difficult to
train from scratch. The contributions of our paper can be summarized as: (i) We propose a new
approach for unsupervised pre-training for visual RL based a nonparametric particle-based entropy
maximization. (ii) We show that our pre-training method significantly improves data efficiency of
solving downstream tasks on DMControl and Atari suite.

2 Problem Setting

Reinforcement Learning (RL) An agent interacts with its uncertain environment over discrete
timesteps and collects reward per action, modeled as a Markov Decision Process (MDP) [48], defined
by 〈S,A, T, ρ0, r, γ〉 where S ⊆ R

nS is a set of nS-dimensional states, A ⊆ R
nA is a set of nA-

dimensional actions, T : S ×A×S → [0, 1] is the state transition probability distribution. ρ0 : S →
[0, 1] is the distribution over initial states, r : S × A → R is the reward function, and γ ∈ [0, 1) is
the discount factor. At environment state s ∈ S, the agent take actions a ∈ A, in the (unknown)
environment dynamics defined by the transition probability T (s′|s, a), and the reward function yields
a reward immediately following the action at performed in state st. We define the discounted return
G(st, at) =

∑∞
l=0 γ

lr(st+l, at+l) as the discounted sum of future rewards collected by the agent. In
value-based reinforcement learning, the agent learns an estimate of the expected discounted return,
a.k.a, state-action value function Qπ(st, at) = Est+1,at+1,...

[
∑∞

l=0 γ
lr(st+l, at+l)

]

. A common
way of deriving a new policy from a state-action value function is to act ǫ-greedily with respect to the
action values (discrete) or to use policy gradient to maximize the value function (continuous).

Unsupervised Pre-Training RL In pretrained RL, the agent is trained in a reward-free MDP
〈S,S0,A, T,G〉 for a long period followed by a short testing period with environment rewards R
provided. The goal is to learn a pretrained agent that can quickly adapt to testing tasks defined
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by rewards to maximize the sum of expected future rewards in a zero-shot or few-shot manner.
This is also known as the two phases learning in unsupervised pretraining RL [20]. The current
state-of-the-art methods maximize the mutual information (I) between policy-conditioning variable
(w) and the behavior induced by the policy in terms of state visitation (s).

max I(s;w) = maxH(w)−H(w|s),

where w is sampled from a fixed distribution in practice as in DIAYN [17] and VISR [20]. The
objective can then be simplified as max−H(w|s). Due to it being intractable to directly maximize
this negative conditional entropy, prior work propose to maximize the variational lower bound of the
negative conditional entropy instead [7]. The training then amounts to learning a posterior of task
variable conditioning on states q(w|s).

−H(w|s) ≥ Es,w [log q(w|s)] .

Despite successful results in learning meaningful behaviors from reward-free interactions [e.g.
41, 18, 26, 17, 20], these methods suffer from insufficient exploration because they contain no explicit
exploration.

Another category considers the alternative direction of maximizing the mutual information [12].

max I(s;w) = maxH(s)−H(s|w).

This intractable quantity can be similarly lowered bound by a variational approximation [7].

I(s;w) ≥ Es,w [qθ(s|w)]− Es [log p(s)] ,

where Es [log p(s)] can then be approximated by a posterior of state given task variables
Es [log p(s)] ≈ Es,w [log q(s|w)]. Despite their successes, this category of methods do not ex-
plore sufficiently since the agent receives larger rewards for visiting known states than discovering
new ones as theoretically and empirically evidenced by Campos et al. [12]. In addition, they have
only been shown to work from explicit state-representations and it remains unclear how to modify to
learning from pixels.

In the next section, we introduce a new nonparametric unsupervised pre-training method for RL
which addresses these issues and outperforms prior state-of-the-arts on challenging visual-domain
RL benchmarks.

3 Unsupervised Active Pre-Training for RL

We want to incentivize the agent with a reward rt to maximize entropy in an abstract representation
space. Prior work on maximizing entropy relies on estimating density of states which is challenging
and non-trivial, instead, we take a two-step approach. First, we learn a mapping fθ : RnS → RnZ

that maps state space to an abstract representation space first. Then, we propose a particle-based
nonparametric approach to maximize the entropy by deploying state-of-the-art RL algorithms.

We introduce how to maximize entropy via particle-based approximation in Section 3.1, and describe
how to learn representation from states in Section 3.2

3.1 Particle-Based Entropy Maximization

Our entropy maximization objective is built upon the nonparametric particle-based entropy estimator
proposed by Singh et al. [55] and Beirlant [8] and has has been widely studied in statistics [28].
Its key idea is to measure the sparsity of the distribution by considering the distance between each
sampled data point and its k nearest neighbors. Concretely, assuming we have number of n data
points {zi}

n
i=1 from some unknown distribution, the particle-based approximation can be written as

Hparticle(z) = −
1

n

n
∑

i=1

log
k

nvki
+ b(k) ∝

n
∑

i=1

log vki , (1)

where b(k) is a bias correction term that only depends on the hyperparameter k, and vki is the volume

of the hypersphere of radius ‖zi − z
(k)
i ‖ between zi and its k-th nearest neighbor z

(k)
i . ‖ · ‖ is the

Euclidean distance.

vki =
‖zi − z

(k)
i ‖nZ · πnZ/2

Γ (nZ/2 + 1)
, (2)
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Figure 2: Diagram of the proposed method APT. On the left shows the objective of APT, which is to maximize
the expected reward and minimize the contrastive loss. The contrastive loss learns an abstract representation
from observations induced by the policy. We propose a particle-based entropy maximization based reward
function such that we can deploy state-of-the-art RL methods to maximize entropy in an abstraction space of the
induced by the policy. On the right shows the idea of our particle-based entropy, which measures the distance
between each data point and its k nearest neighbors.

where Γ is the gamma function. Intuitively, vki reflects the sparsity around each particle and equa-
tion (1) is proportional to the average of the volumes around each particle.

By substituting equation (2) into equation (1), we can simplify the particle-based entropy estimation
as a sum of the log of the distance between each particle and its k-th nearest neighbor.

Hparticle(z) ∝

n
∑

i=1

log ‖zi − z
(k)
i ‖nZ . (3)

Rather than using equation (3) as the entropy estimation, we find averaging the distance over all k
nearest neighbors leads to a more robust and stable result, yielding our estimation of the entropy.

Hparticle(z) :=

n
∑

i=1

log






c+

1

k

∑

z
(j)
i

∈Nk(zi)

‖zi − z
(j)
i ‖nZ






, (4)

where Nk(·) denotes the k nearest neighbors around a particle, c is a constant for numerical stability
(fixed to 1 in all our experiments).

We can view the particle-based entropy in equation (4) as an expected reward with the reward function

being r(zi) = log
(

c+ 1
k

∑

z
(j)
i

∈Nk(zi)
‖zi − z

(j)
i ‖nZ

)

for each particle zi. This makes it possible to

deploy RL algorithms to maximize entropy, concretely, for a batch of transitions {(s, a, s′)} sampled
from the replay buffer. We consider the representation of each s′ as a particle in the representation
space and the reward function for each transition is given by

r(s, a, s′) = log



c+
1

k

∑

z(j)∈Nk(z=fθ(s))

‖fθ(s)− z(j)‖nZ



 (5)

In order to keep the rewards on a consistent scale, we normalize the intrinsic reward by dividing it by
a running estimate of the mean of the intrinsic reward. See Figure 2 for illustration of the formulation.

3.2 Learning Contrastive Representations

Our aforementioned entropy maximization is modular of the representation learning method we
choose to use, the representation learning part can be swapped out for different methods if necessary.
However, for entropy maximization to work, the representation needs to contain a compressed repre-
sentation of the state. Recent work, CURL [35], ATC [56] and SPR [52], show contrastive learning
(with data augmentation) helps learn meaningful representations in RL. We choose contrastive repre-
sentation learning since it maximally distinguishes an observation st1 from alternative observations
st2 according to certain distance metric in representation space, we hypothesize is helpful for learning
meaningful representations for our nearest neighbors based entropy maximization. Our contrastive
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learning is based on the contrastive loss from SimCLR [14], chosen for its simplicity. We also use
the same set of image augmentations as in DrQ [33] consisting of small random shifts and color
jitter. Concretely, we randomly sample a batch of states (images) from the replay buffer {si}

n
i=1. For

each state si, we apply random data augmentation and obtain two randomly augmented views of the
same state, denoted as key ski = aug(si) and query svi = aug(si). The augmented observations are
encoded into a small latent space using the encoder z = fθ(·) followed by a deterministic projection
hφ(·) where a contrastive loss is applied. The goal of contrastive learning is to ensure that after the

encoder and projection, ski is relatively more close to svi than any of the data points {skj , s
v
j}

n
j=1,j 6=i.

min
θ,φ

−
1

2n

n
∑

i=1

[

log
exp(hφ(fθ(s

k
i ))

Thφ(fθ(s
v
i )))

∑n
i=1 I[j 6=i](exp(hφ(fθ(s

k
i ))

Thφ(fθ(skj ))) + exp(hφ(fθ(ski ))
Thφ(fθ(svj ))))

]

.

Following DrQ, the representation encoder fθ(·) is implemented by the convolutional residual
network followed by a fully-connected layer, a LayerNorm and a Tanh non-linearity. We decrease
the output dimension of the fully-connected layer after the convnet from 50 to 15. We find it helps to
use spectral normalization [39] to normalize the weights and use ELU [15] as the non-linearity in
between convolutional layers.

Table 1 positions our new approach with respect to existing ones. Figure 2 shows the resulting model.
Training proceeds as in other algorithms maximizing extrinsic reward: by learning neural encoder f
and computing intrinsic reward r and then trying to maximize this intrinsic return by training the
policy. Algorithm 1 shows the pseudo-code of APT, we highlight the changes from DrQ to APT in
color.

Algorithm 1: Training APT

Randomly Initialize f encoder
Randomly Initialize π and Q networks
for e := 1,∞ do

for t := 1, T do
Receive observation st from environment
Take action at ∼ π(·|st), receive observation st+1 and ❩rt from environment

D ← D ∪ (st, at,❩rt , s
′

t)

{(si, ai,❩ri , s
′

i)}
N
i=1 ∼ D // sample a mini batch

Train neural encoder f on mini batch // representation learning
for each i = 1..N do

a′i ∼ π(·|s
′

i)

Q̂i = Qθ′(s
′

i, a
′

i)
Compute rAPT with equation (5) // particle-based entropy reward

yi ← rAPT + γQ̂i

end

lossQ =
∑

i
(Q(si, ai)− yi)

2

Gradient descent step on Q and π // standard actor-critic

end

end

Table 1: Methods for pre-training RL in reward-free setting. Exploration: the method can explore efficiently. Vi-
sual: the method works well in visual RL. Off-policy: the method is compatible with off-policy RL optimization.
⋆ means only in state-based RL. c(s) is count-based bonus. ψ(s, a): successor feature, φ(s): state representation.

Algorithm Objective Visual Exploration Off-policy Pre-Trained model

MaxEnt [22] maxH(s) ✗ ✓⋆ ✗ π(a|s)
CBB [10] maxEs [c(s)] ✗ ✓ ✓ π(a|s)
MEPOL [42] maxH(s) ✗ ✓⋆ ✗ π(a|s)
VISR [20] max−H(z|s) ✓ ✗ ✓ ψ(s, z), φ(s)
DIAYN [17] max−H(z|s) + H(a|z, s) ✗ ✓⋆ ✓ π(a|s, z)
DADS [54] maxH(s)−H(s|z) ✗ ✗ ✓ π(a|s, z), q(s′|s, z)
EDL [12] maxH(s)−H(s|z) ✗ ✓⋆ ✓ π(a|s, z)

APT maxH(s) ✓ ✓ ✓ π(a|s), Q(s, a)
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4 Related Work

State Space Entropy Maximization. Maximizing entropy of policy has been widely studied in
RL, from inverse RL [69] to optimal control [59, 60, 49] and actor-critic [19]. State space entropy
maximization has been recently used as an exploration method by estimating density of states and
maximizing entropy [22]. In Hazan et al. [22] they present provably efficient exploration algorithms
under certain conditions. VAE [32] based entropy estimation has been deployed in lower dimensional
observation space [36]. However, due to the difficulty of estimating density in high dimensional
space such as Atari games, such parametric exploration methods struggle to work in more challenging
visual domains. In contrast, our work turns to particle based entropy maximization in a contrastive
representation space. Maximizing particle-based entropy has been shown to improved data efficiency
in state-based RL as in MEPOL [42]. However, MEPOL’s entropy estimation depends on importance
sampling and the optimization based on on-policy RL algorithms, hindering further applications to
challenging visual domains. MEPOL also assumes having access to the semantic information of
the state, making it infeasible and not obvious how to modify it to work from pixels. In contrast,
our method is compatible with deploying state-of-the-art off-policy RL and representation learning
algorithms to maximize entropy. Nonparametric entropy maximization has been studied in goal
conditioned RL [66]. Pitis et al. [47] proposes maximizing entropy of achieved goals and demonstrates
significantly improved success rates in long horizon goal conditioned tasks. The work by Badia
et al. [6] also considers k-nearest neighbor based count bonus to encourage exploration, yielding
improved performance in Atari games. K-nearest neighbor based exploration is shown to improve
exploration and data efficiency in model-based RL [57]. Concurrently, it has been shown to be an
effective unsupervised pre-training objective for transferring learning in RL [13], their large scale
experiments further demonstrate the effectiveness of unsupervised pre-training.

Data Efficient RL. To improve upon the sample efficiency of deep RL methods, various methods
have been proposed: Kaiser et al. [30] introduce a model-based agent (SimPLe) and show that it
compares favorably to standard RL algorithms when data is limited. Hessel et al. [25], Kielak
[31], van Hasselt et al. [61] show combining existing RL algorithms (Rainbow) can boost data
efficiency. Data augmentation has also been shown to be effective for improving data efficiency
in vision-based RL [34, 33]. Temporal contrastive learning combined with model-based learning
has been shown to boost data efficiency [52]. Combining contrastive loss with RL has been shown
to improve data efficiency in CPC [24] despite only marginal gains. CURL [35] show substantial
data-efficiency gains while follow-up results from Kostrikov et al. [33] suggest that most of the
benefits come from its use of image augmentation. Contrastive loss has been shown to learn useful
pretrained representations when training on expert demonstration [56], however in our work the agent
has to explore the world itself and exploit collect experience.

Unsupervised Pre-Training RL. A number of recent works have sought to improve reinforcement
learning via the addition of an unsupervised pretraining stage, in which the agent improves its
representations prior to beginning learning on the target task. One common approach has been to
allow the agent a period of fully-unsupervised interaction with the environment during which the
agent is trained to learn a set of skills associated with different paths through the environment, as
in DIAYN [17], Proto-RL [67], MUSIC [68], APS [37], and VISR [20]. Others have proposed to
use self-supervised objectives to generate intrinsic rewards encouraging agents to visit new states,
e.g., Pathak et al. [46] use the disagreement between an ensemble of latent-space dynamics models.
However, our work is trained to maximize the entropy of the states induced by the policy. By visiting
any state where the agent might be rewarded in a subsequent RL task, our work performs better or
comparably well as other more complex and specialized state-of-the-art methods.

5 Results

We test APT in DeepMind Control Suite [DMControl; 58] and the Atari suite [9]. During the the
long period of pre-training with environment rewards removed, we use DrQ to maximize the entropy
maximization reward defined in equation (5). The pre-trained value function Q(s, a) is fine-tuned to
maximize task specific reward after being exposing to environment rewards during testing period.
For our DeepMind control suite and Atari games experiments, we largely follow DrQ, except we
perform two gradient steps per environment step instead of one. Our ablation studies confirm that
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these changes are not themselves responsible for our performance. Kornia [50] is used for efficient
GPU-based data augmentations. Our model is implemented in Numpy [21] and PyTorch [45].

APT outperforms prior from scratch SOTA RL on DMControl. We evaluate the performance of
different methods by computing the average success rate and episodic return at the end of training.
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Figure 3: Results of different methods in environments from DMControl. All curves are the average of three
runs with different seeds, and the shaded areas are standard errors of the mean.

The agent is allowed a long unsupervised pre-training phase (5M steps), followed by a short test
phase exposing to downstream reward, during which the pre-trained model is fine-tuned. We follow
the evaluation setting of DrQ and test APT on a subset of DMControl suite, which includes training
Walker, Cheetah, Hopper for various locomotion tasks. Models are pre-trained on Cheetah, Hopper,
and Walker, and subsequently fine-tuned on respective downstream tasks. We additionally design
more challenging sparse reward tasks where the robot is required to accomplish tasks guided only
by sparse feedback signal. The reason we opted to design new sparse reward tasks is to have more
diverse downstream tasks. As far as we know, there is only one Cartpole Swingup Sparse that is a
CartPole based sparse reward task. Due to its 2D nature being quite limited, we eventually decided to
design distinguishable downstream tasks based on a little bit more complex environment, e.g. Hopper
Jump etc. The details of the tasks are included in the supplementary material.

The learning process of RL agents becomes highly inefficient in sparse supervision tasks when relying
on standard exploration techniques. This issue can be alleviated by introducing intrinsic motivation,
i.e., denser reward signals that can be automatically computed, one approach that works well in high
dimensional setting is count-based exploration [38, 44, 38].

The results are presented in Figure 3, APT significantly outperforms SOTA training from scratch
(DrQ from scratch) and SOTA exploration method (count-based bonus) on every task. With only
a few number of environment interactions, APT quickly adapt to downstream tasks and achieves
higher return much more quicker than prior state-of-the-art RL algorithms. Notably, on the sparse
reward tasks that are extremely difficult for training from scratch, APT yields significantly higher
data efficiency and asymptotic performance.

APT outperforms from scratch SOTA RL in Atari. We test APT on the sample-efficient Atari
setting [30, 61] which consists of the 26 easiest games in the Atari suite (as judged by above random
performance for their algorithm).

We follow the evaluation setting in VISR, agents are allowed a long unsupervised training phase
(250M steps) without access to rewards, followed by a short test phase with rewards. The test phase
contains 100K environment steps – equivalent to 400k frames, or just under two hours – compared to
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the typical standard of 500M environment steps, or roughly 39 days of experience. We normalize the
episodic return with respect to expert human scores to account for different scales of scores in each
game, as done in previous works. The human-normalized scores (HNS) of an agent on a game is

calculated as
agent score−random score

human score−random score
and aggregated across games by mean or median.

A full list of scores and aggregate metrics on the Atari 26 subset is presented in Table 2. The
results on the full 57 Atari games suite is presented in supplementary material. For consistency
with previous works, we report human and random scores from [25]. In the data-limited setting,
APT achieves super-human performance on eight games and achieves scores higher than previous
state-of-the-arts. In the full suite setting, APT achieves super-human performance on 15 games,
compared to a maximum of 12 for any previous methods and achieves scores significantly higher
than any previous methods.

Table 2: Performance of different methods on the 26 Atari games considered by [30] after 100K environment
steps. The results are recorded at the end of training and averaged over 10 random seeds for APT. APT
outperforms prior methods on all aggregate metrics, and exceeds expert human performance on 7 out of 26
games while using a similar amount of experience. Prior work has reported different numbers for some of the
baselines, particularly SimPLe and DQN. To be rigorous, we pick the best number for each game across the
tables reported in van Hasselt et al. [61] and Kielak [31].

Game Random Human SimPLe DER CURL DrQ SPR VISR APT (ours)

Alien 227.8 7127.7 616,9 739.9 558.2 771.2 801.5 364.4 2614.8
Amidar 5.8 1719.5 88.0 188.6 142.1 102.8 176.3 186.0 211.5
Assault 222.4 742.0 527.2 431.2 600.6 452.4 571.0 12091.1 891.5
Asterix 210.0 8503.3 1128.3 470.8 734.5 603.5 977.8 6216.7 185.5
Bank Heist 14.2 753.1 34.2 51.0 131.6 168.9 380.9 71.3 416.7
BattleZone 2360.0 37187.5 5184.4 10124.6 14870.0 12954.0 16651.0 7072.7 7065.1
Boxing 0.1 12.1 9.1 0.2 1.2 6.0 35.8 13.4 21.3
Breakout 1.7 30.5 16.4 1.9 4.9 16.1 17.1 17.9 10.9
ChopperCommand 811.0 7387.8 1246.9 861.8 1058.5 780.3 974.8 800.8 317.0
Crazy Climber 10780.5 23829.4 62583.6 16185.2 12146.5 20516.5 42923.6 49373.9 44128.0
Demon Attack 107805 35829.4 62583.6 16185.3 12146.5 20516.5 42923.6 8994.9 5071.8
Freeway 0.0 29.6 20.3 27.9 26.7 9.8 24.4 -12.1 29.9
Frostbite 65.2 4334.7 254.7 866.8 1181.3 331.1 1821.5 230.9 1796.1
Gopher 257.6 2412.5 771.0 349.5 669.3 636.3 715.2 498.6 2590.4
Hero 1027.0 30826.4 2656.6 6857.0 6279.3 3736.3 7019.2 663.5 6789.1
Jamesbond 29.0 302.8 125.3 301.6 471.0 236.0 365.4 484.4 356.1
Kangaroo 52.0 3035.0 323.1 779.3 872.5 940.6 3276.4 1761.9 412.0
Krull 1598.0 2665.5 4539.9 2851.5 4229.6 4018.1 2688.9 3142.5 2312.0
Kung Fu Master 258.5 22736.3 17257.2 14346.1 14307.8 9111.0 13192.7 16754.9 17357.0
Ms Pacman 307.3 6951.6 1480.0 1204.1 1465.5 960.5 1313.2 558.5 2827.1
Pong -20.7 14.6 12.8 -19.3 -16.5 -8.5 -5.9 -26.2 -8.0
Private Eye 24.9 69571.3 58.3 97.8 218.4 -13.6 124.0 98.3 96.1
Qbert 163.9 13455.0 1288.8 1152.9 1042.4 854.4 669.1 666.3 17671.2
Road Runner 11.5 7845.0 5640.6 9600.0 5661.0 8895.1 14220.5 6146.7 4782.1
Seaquest 68.4 42054.7 683.3 354.1 384.5 301.2 583.1 706.6 2116.7
Up N Down 533.4 11693.2 3350.3 2877.4 2955.2 3180.8 28138.5 10037.6 8289.4

Mean HNS 0.000 1.000 44.3 28.5 38.1 35.7 70.4 64.31 69.55
Median HNS 0.000 1.000 14.4 16.1 17.5 26.8 41.5 12.36 47.50

# Superhuman 0 N/A 2 2 2 2 7 6 7

Unsupervised pre-training on top of DrQ leads a significant increase in performance(a 54% increase
in median score, a 73% increase in mean score, and 5 more games with human-level performance),
surpassing DQN which trained on hundreds of millions of sampling steps.

Compared with SPR [52] which is a recent state-of-the-art model-based data-efficient algorithm, APT
achieves comparable mean and median scores. The SPR is based on Rainbow which combines more
advances than DrQ which is significantly simpler. While the representation of SPR is also learned by
contrastive learning, it trains a model-based dynamic to predict its own latent state representations
multiple steps into the future. This temporal representation learning, as illustrated in the SPR paper,
contributes to its impressive results compared with standard contrastive representation learning. We
believe that it is possible to combine temporal contrastive representation learning of SPR with the
effective nonparametric entropy maximization of APT, which is an interesting future direction.

APT outperforms prior unsupervised RL. Despite there being many different proposed unsuper-
vised RL methods, their successes are only demonstrated in simple state based environments. Prior
works train the agent for a period of fully-unsupervised interaction with the environment, during
which the agent is trained to learn a set of skills associated with different paths through the environ-
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ment, as in DIAYN [17] and VIC [18], or to maximize the diversity of the states it encounters, as
in MEPOL [42] and Hazan et al. [22]. Until recently, VISR [20] achieves improved results in Atari
games using pixels as input based using a successor feature based approach. In order to compare
with prior unsupervised RL methods, we choose DIAYN due to it being based on mutual information
maximization and its reported high performance in state-based RL, and MEPOL due to it being
based on entropy maximization. We implement them to take pixels as input in Atari games. Our
implementation was checked against publicly available code and we made a best effort attempt to
tune the algorithms in Atari games. We test two variants of DIAYN and MEPOL, using or not using
contrastive representation learning as in APT. In order to ensure a fair comparison, we test a variant
of APT without contrastive representation learning.

Table 3: Evaluation in Atari games. The amount
of RL interaction utilized is 100K. Mdn is the me-
dian of human-normalized scores, M is the mean
and> H is the number of games with human-level
performance. CL denotes training representation
encoder using contrastive learning and data aug-
mentation. On each subset, we mark as bold the
highest score.

26 Game Subset Full 57 Games
Algorithm Mdn M >H Mdn M >H

CBB 1.23 21.94 3 – – –
MEPOL 0.34 17.94 2 – – –
DIAYN 1.34 25.39 2 2.95 23.90 6
CBB w/ CL 1.78 17.34 2 – – –
MEPOL w/ CL 1.05 21.78 3 – – –
DIAYN w/ CL 1.76 28.44 2 3.28 25.14 6
VISR 9.50 128.07 7 6.81 102.31 11
APT w/o CL 21.23 28.12 3 28.65 41.12 9
APT 47.50 69.55 7 33.41 47.73 12

The aggregated results are presented in Table 3, APT
significantly outperforms prior state-based unsuper-
vised RL algorithms DIAYN and MEPOL. Both base-
lines benefit from contrastive representation learn-
ing, but their scores are still significantly lower than
APT’s score, confirming that the effectiveness of the
off-policy entropy maximization in APT. Compared
with the state-of-the-art method in Atari VISR, APT
achieves significantly higher median score despite
having a lower mean score. From the scores break-
down presented in supplementary file, APT performs
significantly better than VISR in hard exploration
games, while VISR achieves higher scores in dense
reward games. We attribute this to that maximiz-
ing state entropy leads to more exploratory behavior
while successor features enables quicker adaptation
for dense reward feedback. It is possible to combine
VISR and APT to have the best of both worlds, which
we leave as a future work.

Ablation study. We conduct several ablation studies to measure the contribution of each
component in our method. We test two variants of APT that use the same number of gra-
dient steps per environment step and use the same activation function as in DrQ. Another
variant of APT is based on randomly selected neighbors to compute particle-based entropy.

Table 4: Scores on the 26 Atari games under
consideration for variants of APT. Scores are
averaged over 3 random seeds. All variants listed
here use data augmentation.

Variant Human-Normalized Score
median mean

APT 47.50 69.55

APT w/o optim change 41.50 60.10
APT w/o arch change 45.71 67.82
APT w/ rand neighbor 20.80 24.97
APT w/ fixed encoder 33.24 41.08

We also test a variant of APT that use a fixed randomly
initialized encoder to study the impact of representation
learning. Table 4 shows the performance of each vari-
ant of APT. Increasing gradient steps of updating value
function from 1 to 2 and using ELU activation function
yield higher scores. Using k-nearest neighbors is cru-
cial to high scores, we believe the reason is randomly
selected neighbors do not provide necessary incentive
to explore. Using randomly initialized convolutional
encoder downgrades performance significantly but still
achieve higher score than DrQ, indicating our particle-
based entropy maximization is robust and powerful.

Contrastive learning representation has
been shown to have the “uniformity on the hypersphere” property [65], this leads
to the question that whether maximum entropy exploration in state space is impor-
tant. To study this question, we have a variant of APT “Pos Reward APT” which
receives a simple positive do not die signal but no particle-based entropy reward.
We ran the experiments on MsPacman, we reduced the pretraining phase to 5M steps to reduce
computation cost. The evaluation metrics are the number of ram states visited using [2] and the
downstream zero shot performance on Atari game. APT visits nearly 27 times more unique ram states
than “Pos Reward APT”, showing that the entropy intrinsic reward is indispensable for exploration.
In downstream task evaluation over 3 random seeds, “Pos Reward APT@0” achieves reward 363.7,
“APT@0” achieves reward 687.1, showing that the “do not die” signal is insufficient for exploration
or learning pretrained behaviors and representations.
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Table 5: Scores on 5 Atari games under consideration for different variants of
fine-tuning. Scores are averaged over 3 random seeds.

Mean Reward (3 seeds) Alien Freeway Qbert Private Eye MsPacman

APT (pretrained head) 2614.8 29.9 17671.2 96.1 2827.1
APT (random head) 1755.0 15.2 2138.3 61.3 1724.9

We consider a variant
of APT that re-initialize
the head of pretrained
actor-critic. We have run
experiments in five differ-
ent Atari games, as shown
in Table 5, pretrained heads
perform better than randomly initialized heads in 4 out of 5 games. The experiments demonstrate
that finetuning from a pretrained actor-critic head accelerates learning. However, we believe that
which one of the two is better depends on the alignment between downstream reward and intrinsic
reward. It would be interesting to study how to better leverage downstream reward to finetune the
pretrained model.

6 Discussion

Limitation: The fine-tuning strategy employed here (when combined with a value function) works
best when the intrinsic and extrinsic rewards being of a similar scale. We believe the discrepancy
between intrinsic reward scale and downstream reward scale possibly explain the suboptimal perfor-
mance of APT in dense reward games. This is an interesting future direction to further improve APT,
we hypothesize that reinitializing behaviors part (actor-critic heads) might be useful if the downstream
reward scale is very different from pretraining reward scale. One of the principled ways could be
adaptive normalization [62], it is an interesting future direction. One challenge of our method is the
non-stationarity of the intrinsic reward, being non additive reward poses an interesting challenge
for reinforcement learning methods. While our method outperforms training from scratch and prior
works, we believe designing better optimization RL methods for maximizing our intrinsic reward can
lead to more significant improvement.

Conclusion: A new unsupervised pre-training method for RL is introduced to address reward-free
pre-training for visual RL, allowing the same task-agnostic pre-trained model to successfully tackle
a broad set of RL tasks. Our major contribution is introducing a practical intrinsic reward derived
from particle-based entropy maximization in abstract representation space. Empirical study on
DMControl suite and Atari games show our method dramatically improves performance on tasks that
are extremely difficult for training from scratch. Our method achieves the results of fully supervised
canonical RL algorithms using a small fraction of total samples and outperforms data-efficient
supervised RL methods.

For future work, there are a few ways in which our method can be improved. The long pre-training
phase in our work is computationally intensive, since the exhaustive search and exploration is of high
sample complexity. One way to remedy this is by combining our method with successful model-based
RL and search approaches to reduce sample complexity. Furthermore, fine-tuning the whole pre-
trained model can make it prone to catastrophic forgetting. As such, it is worth studying alternative
methods to leverage the pre-trained models such as keeping the pretrained model unchanged and
combine it with a randomly initialized model.

7 Acknowledgment

This research was supported by DARPA Data-Driven Discovery of Models (D3M) program. We
would like to thank Misha Laskin, Olivia Watkins, Qiyang Li, Lerrel Pinto, Kimin Lee and other
members at RLL and BAIR for insightful discussion and giving constructive comments. We would
also like to thank anonymous reviewers for their helpful feedback for previous versions of our work.

References

[1] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[2] A. Anand, E. Racah, S. Ozair, Y. Bengio, M. Côté, and R. D. Hjelm. Unsupervised state
representation learning in atari. In Advances in Neural Information Processing Systems 32:

10



Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 8766–8779, 2019.

[3] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 5048–5058, 2017.

[4] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[5] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo, and C. Blundell.
Agent57: Outperforming the atari human benchmark. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 507–517. PMLR, 2020.

[6] A. P. Badia, P. Sprechmann, A. Vitvitskyi, D. Guo, B. Piot, S. Kapturowski, O. Tieleman,
M. Arjovsky, A. Pritzel, A. Bolt, and C. Blundell. Never give up: Learning directed exploration
strategies. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[7] D. Barber and F. V. Agakov. The im algorithm: A variational approach to information maxi-
mization. In Advances in neural information processing systems, 2003.

[8] J. Beirlant. Nonparametric entropy estimation: An overview. International Journal of the
Mathematical Statistics Sciences, 6:17–39, 1997.

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

[10] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 1471–1479, 2016.

[11] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[12] V. Campos, A. Trott, C. Xiong, R. Socher, X. Giró-i-Nieto, and J. Torres. Explore, discover and
learn: Unsupervised discovery of state-covering skills. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 1317–1327. PMLR, 2020.

[13] V. Campos, P. Sprechmann, S. S. Hansen, A. Barreto, C. Blundell, A. Vitvitskyi, S. Kapturowski,
and A. P. Badia. Coverage as a principle for discovering transferable behavior in reinforcement
learning, 2021.

[14] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive
learning of visual representations. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 1597–1607. PMLR, 2020.

[15] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). In 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

11



[17] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[18] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. arXiv preprint
arXiv:1611.07507, 2016.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 1856–1865.
PMLR, 2018.

[20] S. Hansen, W. Dabney, A. Barreto, D. Warde-Farley, T. V. de Wiele, and V. Mnih. Fast task infer-
ence with variational intrinsic successor features. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[21] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al. Array programming with numpy. Nature, 585
(7825):357–362, 2020.

[22] E. Hazan, S. M. Kakade, K. Singh, and A. V. Soest. Provably efficient maximum entropy
exploration. In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 2681–2691. PMLR, 2019.

[23] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick. Momentum contrast for unsupervised
visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 9726–9735. IEEE, 2020.
doi: 10.1109/CVPR42600.2020.00975.

[24] O. J. Hénaff. Data-efficient image recognition with contrastive predictive coding. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 4182–4192. PMLR,
2020.

[25] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. G. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 3215–3222. AAAI Press, 2018.

[26] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck, and P. Abbeel. VIME: variational
information maximizing exploration. In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 1109–1117, 2016.

[27] E. T. Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

[28] J. Jiao, W. Gao, and Y. Han. The nearest neighbor information estimator is adaptively near
minimax rate-optimal. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 3160–3171, 2018.

[29] R. Julian, B. Swanson, G. S. Sukhatme, S. Levine, C. Finn, and K. Hausman. Never stop
learning: The effectiveness of fine-tuning in robotic reinforcement learning. arXiv e-prints,
pages arXiv–2004, 2020.

[30] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, D. Erhan,
C. Finn, P. Kozakowski, S. Levine, A. Mohiuddin, R. Sepassi, G. Tucker, and H. Michalewski.
Model based reinforcement learning for atari. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[31] K. Kielak. Do recent advancements in model-based deep reinforcement learning really improve
data efficiency? arXiv preprint arXiv:2003.10181, 2020.

[32] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014.

12



[33] I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[34] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learming
with augmented data. arXiv:2004.14990, 2020.

[35] M. Laskin, A. Srinivas, and P. Abbeel. CURL: contrastive unsupervised representations for
reinforcement learning. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 5639–5650. PMLR, 2020.

[36] L. Lee, B. Eysenbach, E. Parisotto, E. Xing, S. Levine, and R. Salakhutdinov. Efficient
exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

[37] H. Liu and P. Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pages 6736–6747. PMLR, 2021.

[38] M. C. Machado, M. G. Bellemare, and M. Bowling. Count-based exploration with the successor
representation. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 5125–5133. AAAI Press, 2020.

[39] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative
adversarial networks. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[41] S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically motivated
reinforcement learning. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 2125–2133, 2015.

[42] M. Mutti, L. Pratissoli, and M. Restelli. A policy gradient method for task-agnostic exploration.
arXiv preprint arXiv:2007.04640, 2020.

[43] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[44] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos. Count-based exploration
with neural density models. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 2721–2730. PMLR, 2017.

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035, 2019.

[46] D. Pathak, D. Gandhi, and A. Gupta. Self-supervised exploration via disagreement. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 5062–5071. PMLR, 2019.

[47] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba. Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. In International Conference on Machine Learning,
pages 7750–7761. PMLR, 2020.

[48] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley &amp; Sons, 2014.

[49] K. Rawlik, M. Toussaint, and S. Vijayakumar. On stochastic optimal control and reinforcement
learning by approximate inference. Proceedings of Robotics: Science and Systems VIII, 2012.

13



[50] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 3674–3683, 2020.

[51] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. arXiv preprint arXiv:1911.08265, 2019.

[52] M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman. Data-efficient
reinforcement learning with self-predictive representations. In International Conference on
Learning Representations, 2021.

[53] C. E. Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423, 1948.

[54] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[55] H. Singh, N. Misra, V. Hnizdo, A. Fedorowicz, and E. Demchuk. Nearest neighbor estimates of
entropy. American journal of mathematical and management sciences, 23(3-4):301–321, 2003.

[56] A. Stooke, K. Lee, P. Abbeel, and M. Laskin. Decoupling representation learning from
reinforcement learning. arXiv preprint arXiv:2009.08319, 2020.

[57] R. Y. Tao, V. François-Lavet, and J. Pineau. Novelty search in representational space for sample
efficient exploration. arXiv preprint arXiv:2009.13579, 2020.

[58] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez,
T. Lillicrap, and N. Heess. dm_control: Software and tasks for continuous control. arXiv
preprint arXiv:2006.12983, 2020.

[59] E. Todorov. General duality between optimal control and estimation. In 2008 47th IEEE
Conference on Decision and Control, pages 4286–4292. IEEE, 2008.

[60] M. Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the
26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec,
Canada, June 14-18, 2009, volume 382 of ACM International Conference Proceeding Series,
pages 1049–1056. ACM, 2009. doi: 10.1145/1553374.1553508.

[61] H. van Hasselt, M. Hessel, and J. Aslanides. When to use parametric models in reinforcement
learning? In Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 14322–14333, 2019.

[62] H. P. van Hasselt, A. Guez, M. Hessel, V. Mnih, and D. Silver. Learning values across many
orders of magnitude. Advances in Neural Information Processing Systems, 29:4287–4295,
2016.

[63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5998–6008, 2017.

[64] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[65] T. Wang and P. Isola. Understanding contrastive representation learning through alignment
and uniformity on the hypersphere. In International Conference on Machine Learning, pages
9929–9939. PMLR, 2020.

[66] D. Warde-Farley, T. V. de Wiele, T. D. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih. Unsuper-
vised control through non-parametric discriminative rewards. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[67] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Reinforcement learning with prototypical
representations. arXiv preprint arXiv:2102.11271, 2021.

14



[68] R. Zhao, Y. Gao, P. Abbeel, V. Tresp, and W. Xu. Mutual information state intrinsic control.
arXiv preprint arXiv:2103.08107, 2021.

[69] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

15


	Introduction
	Problem Setting
	Unsupervised Active Pre-Training for RL
	Particle-Based Entropy Maximization
	Learning Contrastive Representations

	Related Work
	Results
	Discussion
	Acknowledgment

