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ABSTRACT

Pretrained large-language and vision-language models have demonstrated remark-
able capabilities over the years, but their ever-increasing size poses challenges for
deployment and accessibility. Model compression offers a path toward democ-
ratizing access, yet many existing approaches either require costly retraining or
result in substantial performance degradation. To address this, we introduce a fast
SVD-based truncation framework for compressing pretrained networks that en-
ables rapid compression of billion-parameter models without retraining. Unlike
existing SVD-based approaches that optimize only on the original inputs — ig-
noring distribution shifts from upstream compression and thus propagating errors
forward—or those that rely only on shifted inputs and risk drifting away from
the original outputs, our approach accounts for both. By anchoring each com-
pressed layer to the original outputs while explicitly modeling input distribution
shifts, our method identifies optimal low-rank approximations that maintain func-
tional equivalence with the uncompressed network, thereby preserving the behav-
ior of the full model. Experiments across language and vision-language mod-
els of varying scales demonstrate that our method not only achieves favorable
trade-offs between compression ratio and task accuracy, but also outperforms ex-
isting baselines particularly at low compression ratios—where the gap widens as
compression becomes more aggressive—offering a practical solution for efficient,
large-scale model deployment.

1 INTRODUCTION

The rapid progress of large-scale pretrained models has fundamentally transformed natural language
processing and multimodal learning. Modern large language models (LLMs) (Touvron et al., 2023;
Zhang et al., 2022; Achiam et al., 2023) and vision-language models (VLMs) (Radford et al., 2021;
Liu et al., 2023; Dosovitskiy et al., 2021) now routinely contain billions of parameters, enabling
strong generalization capabilities across a wide range of downstream tasks. However, this improve-
ment in performance has come at the cost of scale: training, fine-tuning, and inference with such
models often requires clusters of high-memory GPUs, making them prohibitively expensive to de-
ploy in resource-constrained or latency-sensitive settings. As model sizes continue to grow, practical
challenges around cost, efficiency, and accessibility become even more pressing Kaplan et al. (2020);
Patterson et al. (2021).

One promising direction is to move beyond ever-larger models toward smaller, more efficient ones.
Compact models can be trained from scratch for specialized tasks, but this approach sacrifices the
broad generalization ability of large pretrained networks. Alternatively, smaller models can be ob-
tained by distilling large networks into student models trained to mimic their behavior (Hinton et al.,
2015; Xu et al., 2024), or by applying post-training compression techniques such as pruning, quan-
tization, or low-rank factorization (Cheng et al., 2017; Zhu et al., 2024). While both approaches
reduce memory footprint and inference cost, distillation typically requires substantial retraining data
and compute (Jiao et al., 2020; Touvron et al., 2021), whereas post-training compression can often be
applied more rapidly to pretrained networks (Frantar et al., 2022; Dettmers et al., 2022; Wang et al.,
2025c), thereby offering a practical path towards democratizing deployment. These compressed
models can either be deployed directly for efficient inference, fine-tuned to adapt to downstream
tasks, or embedded within distributed systems that demand low-latency and high-throughput infer-
ence.
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A wide range of model compression techniques have been proposed, spanning distinct methodolog-
ical families. Pruning removes redundant weights or structures from neural networks, with early
work on unstructured sparsification (Han et al., 2015) and the lottery ticket hypothesis (Frankle
& Carbin, 2019) showing that smaller subnetworks can be retrained to match dense counterparts.
While effective, pruning often requires iterative retraining and specialized sparsity-aware hardware
to fully realize efficiency gains, though recent advances such as SparseGPT and its variants (Frantar
& Alistarh, 2023; Ma et al., 2023; Ashkboos et al., 2024; An et al., 2024) have enabled post-training
pruning of large language models. Quantization reduces numerical precision of weights and activa-
tions, thereby shrinking memory footprint and accelerating inference. Classic approaches demon-
strated the feasibility of quantized neural networks (Hubara et al., 2017), while modern methods
like LLM.int8() (Dettmers et al., 2022), QLoRA (Dettmers et al., 2023), and AWQ (Lin et al., 2024)
allow near-lossless compression of transformers. However, quantization methods may require care-
ful calibration and sometimes introduce instability for very low-bit settings. Another line of work
leverages the inherent low-rank structure of network weights: low-rank factorization decomposes
large matrices into compact representations, reducing both parameters and computation. Early ap-
plications in CNNs (Denton et al., 2014; Tai et al., 2015) demonstrated significant speedups, but
naı̈ve SVD truncation is known to degrade accuracy. More recent activation-aware approaches for
LLMs (Yuan et al., 2023; Wang et al., 2025d; Li et al., 2025; Wang et al., 2025a; Li et al., 2025) ex-
plicitly account for input activations, mitigating this limitation at the cost of additional computation.

These methods differ in their retraining requirements, their dependence on large datasets versus
small calibration samples, the efficiency with which compression can be applied to pretrained net-
works, the degree to which downstream accuracy is preserved, and the extent to which the resulting
compressed structure aligns with modern accelerators (Cheng et al., 2018). Among these, SVD-
based methods are especially appealing: they exploit the inherent low-rank structure of neural net-
work weights, yielding compressed models without the need for expensive retraining (Denton et al.,
2014; Jaderberg et al., 2014). A straightforward approach is to directly truncate weight matrices
by retaining only the top singular components, but this often leads to severe degradation because it
treats all input directions equally and discards information that is important for the actual distribu-
tion of activations (Denil et al., 2013; Chen et al., 2021; Wang et al., 2025d). This limitation has
been repeatedly observed in large-scale networks, where naı̈ve low-rank truncation fails to preserve
task accuracy and generalization. To address this, activation-aware approaches have been developed
that tailor the factorization to the input distribution, thereby retaining the directions most relevant to
the network’s operation. However, existing activation-aware SVD methods often optimize low-rank
approximations using only the original input distribution (Yuan et al., 2023; Wang et al., 2025d; Li
et al., 2025; Wang et al., 2025a), ignoring the shift introduced by upstream compression, which can
propagate errors and degrade downstream performance. Conversely, methods that rely exclusively
on shifted inputs, such as DobiSVD (Wang et al., 2025a), risk deviating from the original network
behavior, introducing instability and loss of fidelity.

In this work, we present AA-SVD, a fast SVD-based truncation framework for compressing pre-
trained networks. Unlike existing SVD truncation or activation-aware methods that only consider
a single input distribution, our approach accounts for both the original outputs and the distribution
shifts caused by upstream compression. This design yields compressed layers that more faithfully
preserve the functional behavior of the uncompressed model, enabling effective post-training com-
pression of billion-parameter networks without retraining. Our contributions can be summarized as
follows:

• A fast compression method that improves upon prior SVD-based approaches, with neg-
ligible overhead compared to optimization-heavy baselines such as DobiSVD Wang et al.
(2025a).

• A novel objective formulation that anchors compressed layers to the original outputs
while explicitly modeling input distribution shifts, thereby better preserving functional
equivalence to the uncompressed model.

• Comprehensive evaluation across large-scale language models, demonstrating favorable
trade-offs between compression ratio and accuracy, and outperforming existing SVD-based
baselines.
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2 RELATED WORK

Low-rank factorization, e.g., via singular value decomposition (SVD), has emerged as a promising
direction for compressing large pretrained models. Compared to pruning or quantization, SVD-
based methods offer several practical advantages. First, factorizing a weight matrix into low-rank
components yields a structured representation that reduces both parameters and compute. The fac-
torized form enables commuting multiplications— (UV ⊤)X = U(V ⊤X)—which reduces memory
requirement and can be implemented efficiently on existing accelerators. Second, unlike pruning,
which often introduces irregular sparsity, or quantization, which requires specialized kernels for
speedup, SVD-based methods produce dense but smaller matrices that integrate seamlessly with
standard linear algebra libraries. Finally, they can be applied post-training with only small calibra-
tion samples (often a few hundred), making them particularly attractive for compressing billion-
parameter models where retraining is infeasible. Recent methods such as ASVD (Yuan et al., 2023),
SVD-LLM (Wang et al., 2025d), AdaSVD (Li et al., 2025), SVD-LLM V2 (Wang et al., 2025b) and
Dobi-SVD (Wang et al., 2025a) have demonstrated the viability of this approach at scale in large
language models.

Based on the optimization objective, SVD-based compression methods can be grouped into the
following categories :

Input-agnostic (direct) SVD. The simplest approach applies a truncated singular value decom-
position to the weight matrix W , replacing it by a rank-r approximation W ′ constructed from its
top singular components (Halko et al., 2011; Sainath et al., 2013). This method is appealing for its
simplicity and minimal data dependence. However, direct SVD treats all input directions uniformly,
ignoring the fact that in deep networks, the actual input activations X lie in a highly anisotropic
subspace. In such settings, the singular vectors preserved by SVD may not align with the task-
relevant activation patterns or the dominant subspace of X , leading to suboptimal approximations.
Indeed, empirical studies in neural network compression consistently find that direct SVD often un-
derperforms data-aware variants tuned to activation statistics (e.g. Chen et al. (2021); Idelbayev &
Carreira-Perpinán (2020)). More broadly, analyses of neural anisotropy directions suggest that deep
models naturally concentrate representation into narrow subspaces, reinforcing why input-agnostic
approximations are misaligned with the true geometry of activations Ortiz-Jiménez et al. (2020).

Activation-aware factorization. To incorporate the geometry of the inputs actually seen by the
network, activation-aware methods optimize the reconstruction

min
W ′:rank(W ′)=r

∥WX −W ′X∥2F ,

where X are activations collected from the original, uncompressed model. Examples include
Drone (Chen et al., 2021), ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2025d), AdaSVD (Li
et al., 2025), and SVD-LLM V2 (Wang et al., 2025b). By preserving the action of W on its occupied
input subspace, these approaches are often more faithful than direct SVD. However, their perfor-
mance hinges on the representativeness of the calibration set used to obtain X . If calibration data
are narrow or unaligned with downstream usage, compressed models may overfit to the sampled
geometry and fail to generalize. Related activation-matching objectives also appear in structured
pruning frameworks, such as FLAP (An et al., 2024), which similarly leverage activation statistics
to guide parameter removal.

Shift-aware factorization. A key limitation of activation-aware approaches is that they optimize
with respect to the original activations X , even though, in a sequentially compressed model, later
layers actually receive shifted inputs X ′. To account for this, shift-aware methods, e.g. Dobi-
SVD (Wang et al., 2025a), optimize

min
W ′:rank(W ′)=r

∥WX ′ −W ′X ′∥2F ,

using activations from the partially compressed network. By aligning the approximation to the dis-
tribution the layer truly encounters, these methods can mitigate error propagation through the stack.
Their drawback, however, is that when upstream compression has already degraded representations,
anchoring solely to X ′ risks amplifying divergence from the original mapping. In addition, batch-
based surrogates for X ′ are often noisy or unrepresentative, which can introduce instability into the
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approximation. As a result, shift-aware objectives alone provide only a partial solution. Related
ideas also appear implicitly in earlier CNN low-rank factorization (Denton et al., 2014; Jaderberg
et al., 2014), where activations were collected after partial compression, and in layer-wise distilla-
tion methods (e.g., TinyBERT (Jiao et al., 2020)), where the compressed model is aligned to the
teacher using its own inputs.

Beyond the choice of approximation objective, the effectiveness of low-rank factorization depends
critically on how ranks are distributed across layers. Uniform allocation ignores heterogene-
ity in both compressibility and functional importance. Adaptive strategies such as AdaSVD (Li
et al., 2025) leverage layer-importance signals to allocate more rank where needed, in line with
importance-based pruning approaches such as ShortGPT (Men et al., 2024). SVD-LLM V2 (Wang
et al., 2025b) instead proposed a heuristic that reallocates rank based on the truncation loss
∥WX − W ′X∥2F observed after uniform compression. Earlier work on CNNs has also explored
learning per-layer ranks directly via group sparsity regularization over singular values (Idelbayev
& Carreira-Perpinán, 2020), showing clear gains over uniform allocation. Differentiable allocation
schemes have also been explored (e.g., in Dobi-SVD (Wang et al., 2025a)), but these typically re-
quire costly optimization and rely on unstable batch-level statistics. Collectively, these advances
highlight that compression quality depends not only on the local objective but also on where and
how rank is assigned.

3 AA-SVD

In this section we present our compression framework, AA-SVD (Anchored and Adaptive SVD).
The central idea is to construct low-rank approximations of each linear transformation in a pretrained
network such that the compressed model remains locally faithful to the original network, while
simultaneously adapting to the distributional shifts induced by upstream compression.

Formally, we denote a weight matrix at layer ℓ by W ∈ Rm×n, with input activations X ∈ Rn×k

and outputs WX ∈ Rm×k, where k is the number of calibration samples. After compressing earlier
layers, the same layer instead receives shifted activations X ′ ∈ Rn×k, producing outputs W ′X ′. Our
objective is to replace W with a rank-constrained approximation W ′ ∈ Rm×n, where rank(W ′) =
r ≪ min(m,n), such that W ′X ′ remains close to WX . In this way, AA-SVD enforces that the
compressed layer continues to behave like the original one in the local neighborhood defined by its
actual inputs, while still anchored to the outputs of the uncompressed model.

3.1 OBJECTIVE

Our goal is to compress each linear transformation while ensuring that the resulting network remains
locally faithful to the original model under the inputs it will actually encounter. Concretely, for a
weight matrix W ∈ Rm×n with original inputs X ∈ Rn×k and shifted inputs X ′ ∈ Rn×k (after
upstream compression), we seek a low-rank approximation W ′ ∈ Rm×n that solves

min
W ′:rank(W ′)=r

∥WX −W ′X ′∥2F .

This objective enforces that the compressed outputs W ′X ′ stay close to the original outputs WX ,
anchoring the compressed network to the behavior of the uncompressed one while simultaneously
adapting to the shifted input distribution. By explicitly constraining rank(W ′) = r, the problem is
well-posed as a low-rank regression: we seek the best rank–r approximation of the mapping from
X ′ to WX .
Theorem 3.1 (Low-rank approximation with upstream-modified inputs). Let W ∈ Rm×d be a fixed
weight matrix and X,X ′ ∈ Rd×N be two sets of input activations (columns are samples). Define

A := XX ′⊤ ∈ Rd×d, B := X ′X ′⊤ ∈ Rd×d.

Fix a target rank k ∈ N. Consider the optimization problem

min
rank(W ′)≤k

∥∥WX −W ′X ′ ∥∥2
F
. (1)

Let B = R⊤R be a Cholesky factorization with R upper triangular, and define M := WAR−1. If
M = UΣV ⊤ is a thin singular value decomposition, then an optimal solution to equation 1 is

W ′⋆ =
(
UkΣkV

⊤
k

)
R−1,

4
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Algorithm 1 AA-SVD Low-rank compression

Require: Weight matrix W ∈ Rm×d, original inputs X ∈ Rd×N , current inputs X ′ ∈ Rd×N ,
target rank k

1: Compute covariances A = XX ′⊤ and B = X ′X ′⊤

2: Cholesky factorization: B = R⊤R
3: Compute M = WAR−1

4: Truncated SVD: M ≈ UkΣkV
⊤
k

5: Return W ′ = (UkΣkV
⊤
k )R−1 or factorized matrices U = UkΣk and V = V ⊤

k R−1

where Uk,Σk, Vk are the top-k blocks of the SVD. The minimum objective value is

∥WX∥2F − ∥M∥2F +
∑
i>k

σi(M)2,

where σi(M) are the singular values of M .

Proof. Expanding the squared Frobenius norm gives

∥WX −W ′X ′∥2F = tr(W ′BW ′⊤)− 2 tr(WAW ′⊤) + ∥WX∥2F .

Since B = R⊤R, the first term is ∥W ′R∥2F . Completing the square yields

∥W ′R−WAR−1∥2F − ∥WAR−1∥2F + ∥WX∥2F .

Thus minimizing equation 1 is equivalent to minimizing ∥W ′R−M∥2F subject to rank(W ′R) ≤ k,
where M = WAR−1. Because R is invertible, rank(W ′R) = rank(W ′). By the Eckart–Young–
Mirsky theorem, the optimal approximation is UkΣkV

⊤
k , yielding

W ′⋆ = (UkΣkV
⊤
k )R−1,

and the minimal value as claimed.

Corollary 3.2 (Classical whitening as a special case). If X ′ = X , then A = B and M = WB1/2 =
WR⊤. The solution reduces to

W ′⋆ = (WB1/2)k B
−1/2,

the standard whitening-based low-rank regression solution.

Remark 3.3 (Rank-deficient X ′). If B ⪰ 0 is singular, the Cholesky factorization does not exist.
In this case replace R−1 by the Moore–Penrose factor B+1/2, or equivalently use a Tikhonov-
regularized factorization B + εI = R⊤

ε Rε and let ε → 0+. The same argument then shows that

W ′⋆ =
(
UkΣkV

⊤
k

)
B+1/2, M := WAB+1/2,

is a minimum-norm optimizer, with minimal value given by the same formula.

Theorem 3.1 establishes that the optimal rank-k compressed operator is obtained by whitening the
modified inputs X ′ via their covariance, projecting the cross-term WA into this whitened space,
applying truncated SVD, and mapping back. This closed-form solution generalizes the classical
whitening construction (X ′ = X) and can be implemented efficiently with a Cholesky factorization.
Importantly, our formulation operates only on the covariance matrices XX ′⊤ and X ′X ′⊤ rather than
the raw activations themselves. This is especially advantageous when the number of samples is large
(e.g. in our setting with 256 samples of length 2048, corresponding to over half a million effective
columns), since the covariance matrices are fixed-size d × d regardless of the batch length. For
clarity, Algorithm 1 summarizes the procedure.

4 EXPERIMENTS

We empirically evaluate our method on large-scale language models from the LLaMA family, fo-
cusing primarily on LLaMA-7B and extending to larger variants to assess scalability. Our goals are
threefold: (i) to compare against existing SVD-based and low-rank baselines in terms of perplexity

5
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Table 1: Comparison of AA-SVD with SOTA methods for SVD-based compression of Llama-7B
on two language modeling tasks and six common sense reasoning datasets (zero-shot evaluation).
Best performance is marked in bold. † uses LoRA fine-tuning, while ‡ uses dynamic or non-uniform
ratio allocation.

Ratio Method PPL (↓) Accuracy (↑)

Wiki2 PTB Openb. ARC e ARC c WinoG. PIQA MathQA

1.0 Baseline 5.68 8.79 0.34 0.75 0.42 0.69 0.79 0.27

0.8
ASVD 11.14 16.55 0.25 0.53 0.27 0.64 0.68 0.24
SVD-LLM† 7.94 16.22 0.22 0.58 0.29 0.63 0.69 0.24
Dobi-SVD‡ 8.54 14.83 0.26 0.59 0.31 0.66 0.70 0.23
AA-SVD 7.67 16.11 0.29 0.64 0.33 0.65 0.69 0.24

0.6
ASVD 1407 3292 0.13 0.28 0.22 0.48 0.55 0.19
SVD-LLM† 13.11 63.75 0.19 0.42 0.25 0.58 0.60 0.21
Dobi-SVD‡ 13.54 46.38 0.22 0.41 0.27 0.58 0.61 0.23
AA-SVD 12.19 35.32 0.19 0.46 0.23 0.59 0.60 0.23

0.4
ASVD 57057 45218 0.12 0.26 0.21 0.49 0.53 0.18
SVD-LLM† 53.74 438.58 0.14 0.28 0.22 0.50 0.55 0.21
Dobi-SVD‡ 46.18 238.91 0.15 0.31 0.20 0.52 0.54 0.22
AA-SVD 29.54 214.84 0.15 0.32 0.20 0.50 0.54 0.22

0.2
SVD-LLM† 1349 − 0.07 0.03 − 0.04 0.07 0.01
AA-SVD 144.03 394.52 0.14 0.28 0.22 0.51 0.52 0.22

and downstream reasoning accuracy, (ii) to quantify efficiency improvements in memory footprint
and inference cost, and (iii) to analyze the contribution of different design choices, including calibra-
tion set size, dynamic rank allocation, and post-compression refinements. Unless noted otherwise,
all compression methods use a calibration set of 256 samples drawn from the WikiText2 dataset,
following prior work. Performance is evaluated using two complementary metrics: (i) language
modeling perplexity, measured on standard corpora including WikiText2 (Merity et al., 2016), and
PTB (Marcinkiewicz, 1994); and (ii) accuracy on commonsense reasoning, measured on bench-
marks such as Winogrande (Sakaguchi et al., 2020), PIQA (Bisk et al., 2020), MathQA (Amini
et al., 2019), ARC-Easy and ARC-Challenge (Clark et al., 2018), and OpenBookQA (Mihaylov
et al., 2018).

4.1 MAIN RESULTS

We evaluate the performance of AA-SVD with compression ratios ranging from 20% to 80%. Ta-
ble 1 reports perplexity on two language modeling corpora (WikiText2 and PTB) and accuracy
across six common sense reasoning benchmarks, under varying compression ratios. We compare
against other SVD-based compression methods - ASVD, SVD-LLM, and DoBi-SVD.

At a high compression ratio of 0.8, AA-SVD already improves over all baselines in terms of average
accuracy while maintaining perplexity close to the best-performing methods. For instance, AA-SVD
yields the lowest perplexity of 7.67 and higher reasoning accuracy than DoBi-SVD on four out of
six tasks, demonstrating robustness across both metrics.

As compression becomes more aggressive, the gap between AA-SVD and competing methods
widens. At ratio 0.6, AA-SVD reduces perplexity substantially (WikiText2: 12.19 vs. 13.54 for
DoBi-SVD, while PTB: 35.32 vs. 46.38), while either matching or outperforming in reasoning ac-
curacy. At ratio 0.4, AA-SVD achieves a perplexity reduction of nearly 20% over DoBi-SVD and
consistently ranks among the top two methods on all reasoning tasks.

The advantage is most pronounced at the extreme ratio of 0.2. Here, competing approaches collapse,
with SVD-LLM reporting almost degenerate results. In contrast, AA-SVD remains functional, pre-
serving non-trivial accuracy (e.g., PIQA: 0.51, ARC c: 0.22) and maintaining perplexities below
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Figure 1: Impact of calibration set size on compression performance. Performance is measured by
perplexity on WikiText2 and PTB, and average accuracy across six commonsense reasoning tasks.

400. This indicates that the combination of shift anchoring and dynamic rank allocation stabilizes
compression even in highly resource-constrained regimes.

Overall, these results highlight that AA-SVD offers the best trade-off between language modeling
fidelity and downstream reasoning ability, especially when compression is aggressive. Notably, our
method avoids the collapse observed in prior SVD-based approaches at low ranks, underscoring the
importance of accounting for both original outputs and shifted inputs.

4.2 MEMORY AND SPEEDUP

Low-rank factorization reduces both parameter count and compute cost by replacing a dense matrix
with the product of two thin factors. Consider a linear layer W ∈ Rm×n. The original layer
requires mn parameters and O(mn) FLOPs per forward pass. A rank-r factorization stores mr+nr
parameters and incurs O(mr + nr) FLOPs, which is cheaper whenever r ≪ min(m,n). The
effective compression ratio is

ρ =
mr + nr

mn
.

For example, with m = n = 4096 and r = 512 (ρ = 0.125), the parameter count drops from 16.8M
to 4.2M (a 4× reduction), and FLOPs per forward pass reduce by the same factor.

Beyond weights and FLOPs, low-rank factorization can also reduce the memory footprint of the
key–value (KV) cache during autoregressive inference. Since attention projections are compressed,
the activations stored in the cache scale with r rather than n, yielding proportional savings in both
memory and bandwidth. As highlighted in SVD-LLM (Wang et al., 2025d) and follow-up works,
this reduction is crucial for long-context inference where KV-cache dominates memory usage.

Our method (AA-SVD) preserves this structural efficiency: the cost of computing compressed
weights is incurred once during compression, while inference cost and KV-cache size match those
of standard low-rank layers. Thus, AA-SVD offers the same runtime and memory benefits as prior
SVD-based methods, with its main advantage lying in improved approximation quality under ag-
gressive compression.

4.3 ABLATIONS AND ANALYSIS

Impact of Number of Calibration Samples. Figure 1 illustrates the impact of calibration set size
on compression performance. We report perplexity on WikiText2 (Fig. 1a) and PTB (Fig. 1b), as
well as the average accuracy across six reasoning tasks (Fig. 1c), for compression ratios 0.6 and 0.4.
Performance improves steadily with additional samples, but perplexity quickly saturates beyond
∼64 examples. Notably, even with as few as 64 samples, AA-SVD remains stable and delivers
competitive results, indicating that only a modest calibration set is required. For commonsense
reasoning, particularly at the higher compression ratio, larger calibration sets provide incremental
gains, suggesting room for further improvement in more data-rich settings.

Error Evolution Across Layers. To better understand how compression affects the internal rep-
resentations, we track the discrepancy between the original and compressed models across depth.
Figure 2 plots layerwise cosine distance between original and compressed features (WX vs. W ′X ′;
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Figure 2: Layerwise error evolution. Top row: relative norm difference ∥WX−W ′X ′∥F /∥WX∥F .
Bottom row: cosine distance between WX and W ′X ′. Results are shown separately for query (Q)
projections, MLP down-projections, and block outputs.

lower is better) alongside the relative norm error ∥WX−W ′X ′∥F /∥WX∥F . We compress Llama-
7B model at 60% compression ratio with AA-SVD and compare it with naive SVD as well as
SVD-LLM. We use only 64 calibration samples from WikiText2 for each method. We show re-
sults for output projections, MLP down-projections, and transformer layer/block outputs. Across
all methods, AA-SVD consistently achieves the lowest cosine distance and lowest relative norm
error, while direct SVD exhibits the largest divergences, especially in deeper layers where error ac-
cumulates. SVD-LLM lies in between but still shows increasing gap with depth. This reduction
in layerwise error directly translates into stronger end-task performance. For example, AA-SVD
achieves a perplexity of 12.92 on WikiText2 and 57.02 on PTB, compared to (14.38 / 77.71) for
SVD-LLM and (50714 / 60103) with naive SVD (indicating catastrophic degradation). These re-
sults confirm that stabilizing error growth across depth is critical for preserving downstream accu-
racy. Anchoring to both original outputs and shifted inputs curbs error growth and preserves feature
geometry throughout the network.

5 CONCLUSION

We introduced a fast, post-training framework for compressing large language and vision-language
models using rank-constrained SVD. Unlike prior approaches that rely exclusively on original inputs
or shifted activations, our method unifies both perspectives: it anchors each compressed layer to the
outputs of the uncompressed network while adapting to the inputs that arise after upstream compres-
sion. This leads to closed-form solutions with a rank constraint, efficient to compute from a small
calibration set. Extensive experiments on the LLaMA family and commonsense reasoning bench-
marks show that our approach consistently outperforms direct and activation-aware SVD methods,
as well as shift-only approaches such as DobiSVD. At low compression ratios, our method preserves
accuracy with negligible loss, while under aggressive compression it widens the gap to baselines.
Overall, our study demonstrates that careful design of the compression objective and rank alloca-
tion strategy enables billion-parameter models to be compressed quickly and effectively without
retraining. We hope this work contributes toward practical, accessible deployment of large-scale
pretrained models, and inspires further exploration of hybrid objectives and allocation schemes for
efficient model compression.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Qinsi Wang, Jinghan Ke, Masayoshi Tomizuka, Yiran Chen, Kurt Keutzer, and Chenfeng Xu. Dobi-
svd: Differentiable svd for llm compression and some new perspectives. In ICLR, 2025a.

X. Wang et al. Svd-llm v2: Optimizing singular value truncation for llm compression. In NAACL
Long, 2025b.

Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing singu-
lar value truncation for large language model compression. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4287–4296, 2025c.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular
value decomposition for large language model compression. In International Conference on
Learning Representations (ICLR), 2025d. URL https://openreview.net/forum?id=
LNYIUouhdt.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv
preprint arXiv:2402.13116, 2024.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
for large language models. Transactions of the Association for Computational Linguistics, 12:
1556–1577, 2024.

11

https://openreview.net/forum?id=LNYIUouhdt
https://openreview.net/forum?id=LNYIUouhdt

	Introduction
	Related Work
	AA-SVD
	Objective

	Experiments
	Main Results
	Memory and Speedup
	Ablations and Analysis

	Conclusion

