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Abstract

In recent years, federated self-supervised learning has achieved great progress in
the natural language processing and computer vision community. However, little
work is exploring self-supervised federated settings on single-cell data, especially
on scRNA-seq datasets across various cells. Although one previous work named
contrastive-sc on self-supervised single-cell clustering of independently and iden-
tically distributed (IID) scRNA-seq data is based on SimCLR-style contrastive
learning model, they cannot leverage decentralized unlabeled scRNA-seq data to
learn a generic representation with preserving data privacy. To bridge this gap, we
introduce a new non-IID scRNA-seq benchmark for federated self-supervised learn-
ing to perform single-cell clustering. Furthermore, we propose a novel federated
self-supervised learning framework for single-cell clustering, namely FedSC, that
can leverage unlabeled data from multiple sequencing platforms to learn scRNA-
seq representations while preserving data privacy. We conduct extensive exper-
iments on PBMC & Mouse bladder cells under both IID and non-IID settings.
The experimental results demonstrate the effectiveness of our proposed FedSC in
federated self-supervised clustering of scRNA-seq data.

1 Introduction
In bioinformatics, single-cell RNA sequencing (scRNA-seq) is a powerful technique for profiling the
transcriptomes [1] of individual cells, enabling the discovery of cellular subpopulations [2] and gene
expression patterns. The ability to extract crucial biological insights from scRNA-seq data has led to
a surge of interest among researchers in analyzing such data.

Figure 1: Comparison results (ARI and NMI) of the
proposed FedSC with state-of-the-art federated self-
supervised baselines (FedSimSiam [3], FedSimCLR [4],
FedMoCoV1 [5], FedMoCoV2 [6], and FedBYOL [7])
on mouse bladder cells [8] benchmarks from Microwell-
seq platform.

Early scRNA-seq data analysis approaches
relied on traditional machine learning tech-
niques, such as Principal Component Analysis
(PCA) [9], K-means [10], and Gaussian Mix-
ture Models [11], to conduct cellular subtypes
clustering. Due to the challenge of high di-
mensional and significantly sparse sequences
in the clustering analysis, the following meth-
ods [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] tried
to explore diverse frameworks to address this
challenge. Typically, CIDR [12] utilized an im-
plicit imputation stage based on a hierarchical
clustering before PCA to alleviate the effect of
dropouts. scRNA [14] used a large and well-annotated reference dataset with transferred knowledge
by non-negative matrix factorization for small disease-specific data. With the recent advance of deep
learning, deep neural networks, such as DCA [17] have been used to boost clustering performance.
A clustering layer was adopted in ScDeepCluster [18] on the embedding space learned from DCA
to enrich representations. ScziDesk [19] introduced a soft KMeans clustering to aggregate similar
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cells in the same cluster. However, those methods rely on well-annotated data and take as input
the expected number of clusters, which limits their generalization to all circumstances. In contrast,
we will solve them in our approach by training a self-supervised learning framework to extract
discriminative and compact representations from gene expression inputs of scRNA-seq data.

Recently, inspired by the success of self-supervised learning [5, 4, 6, 22, 23, 24] in image and text,
contrastive-sc [25] applied a contrastive loss on anchor and augmented sample outputs from an
encoder to extract representations for clustering scRNA-seq data. While the state-of-the-art baseline
achieved promising performance, they only focused on self-supervised single-cell clustering of
independently and identically distributed (IID) scRNA-seq data via a contrastive learning model
based on SimCLR [4], In this case, they cannot leverage decentralized unlabeled scRNA-seq data
to learn a generic representation with preserving data privacy. Although some recent federated
self-supervised learning frameworks [26, 27] were proposed to learn general representations from
images on multiple clients, little work is exploring self-supervised federated settings on single-cell
data, especially on scRNA-seq datasets across various cells.

The main challenge is that decentralized gene expression data are growing explosively, and the data
collected by multiple parties may not be centralized due to data privacy regulations in real-world
scenarios. Utilizing the decentralized unlabeled gene expression data to learn representations with
privacy guaranteed is more representative of single-cell clustering. In the meanwhile, previous
single-cell clustering approaches [9, 14, 18, 19, 25] are extremely dependent on the assumption
that data can be collected and stored in a centralized database, such as gene expression from the
sequencing platform. To address the aforementioned challenges, our key idea is to introduce a novel
non-IID scRNA-seq dataset for federated self-supervised learning to perform single-cell clustering
on the decentralized unlabeled gene expression data, which is different from existing clustering and
self-supervised methods. During training, we aim to learn compact representations from multiple
clients with decentralized gene expression data across various genes in each cell for discovering
potential cellular subtypes.

To this end, we propose a new non-IID scRNA-seq benchmark for federated self-supervised learning
to perform single-cell clustering. Furthermore, we present a novel and effective federated self-
supervised learning framework for single-cell clustering, namely FedSC, that can leverage unlabeled
data from multiple parties to learn general scRNA-seq representations while preserving data privacy.
Specifically, our FedSC leverages local self-supervised training on each client to update the server
with online communication and aggregation. After aggregation, the server updates the parameters
of online encoders in multiple clients. Compared to previous scRNA-seq clustering approaches,
our method can extract discriminative scRNA-se representations from decentralized unlabeled gene
expression data while preserving data privacy.

We conduct extensive experiments on 10 PBMC & mouse bladder cells under IID and non-IID settings.
The experimental results demonstrate the effectiveness of our proposed FedSC in federated self-
supervised clustering of scRNA-seq data against the previous centralized scRNA-seq clustering and
federated self-supervised learning baselines. Extensive ablation studies also validate the importance
of introducing predictor, Exponential Moving Average (EMA), and stop-gradient in federated self-
supervised frameworks for learning compact expression representations for federated single-cell
clustering of scRNA-seq data. Meanwhile, quantitative comparisons with various numbers of subtypes
for each client show the impact of different non-IID levels on federated scRNA-seq clustering.

Our main contributions can be summarized as follows:

• We introduce a new non-IID scRNA-seq benchmark for federated self-supervised learning
to perform single-cell clustering.

• We propose a novel federated self-supervised framework for single-cell clustering, namely
FedSC, to learn scRNA-seq representations from multiple sequencing platforms while
preserving data privacy.

• Extensive experiments on two real scRNA-seq benchmarks comprehensively demonstrate
the superiority of our FedSC against the previous centralized scRNA-seq clustering and
federated self-supervised learning baselines.
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2 Related Work

Federated Learning. Federated learning aims at enabling the training of models without centralizing
data, thus preserving user privacy. In federated learning, multiple client devices, such as cell phones
and laptops, collaboratively train models by utilizing their local data for training and then uploading
their local model updates to the central server for aggregation [28]. In recent years, federated learning
has received significant attention [28, 29, 30, 31, 32] and been explored in various application
scenarios, such as smartphone keyboard prediction [29], medical image recognition [33], and natural
language processing [34]. For instance, some scholars have proposed new aggregation algorithms to
improve the accuracy and efficiency of models [31]. Other studies have focused on privacy-preserving
techniques, including differential privacy and secure multi-party computation, to protect user data [35].
Furthermore, some studies explored the application of federated learning in specific scenarios, such
as mobile intelligence services [36] and edge computing [37]. However, these traditional federated
learning approaches rely on data labels, which can not transfer to federated self-supervised single-cell
clustering without annotations.

Self-supervised Learning. Self-supervised learning has been addressed in many previous works [4,
38, 22, 5, 6, 3] to learn discriminative representations from internal characteristics of data without
any label. Such learnable and transferrable features are beneficial to many downstream tasks, such as
image classification [4, 38, 22, 39, 40], object detection [5, 6, 3, 41, 42], semantic textual similarity
tasks [23, 24, 43, 44, 45], protein structure prediction [46, 47, 48], and transcription factor binding
sites prediction [49, 50, 51]. In the past years, contrastive learning has shown its effectiveness in
self-supervised learning, where various instance-wise contrastive learning frameworks [4, 22, 7,
5, 6, 52, 53, 54, 3] and prototype-level contrastive methods [55, 40, 56, 41, 42] were proposed.
The general idea of instance-wise contrastive learning is to close the distance of the embedding of
different views from the same instance while pushing embeddings of views from different instances
away. One common way is to use a large batch size to accumulate positive and negative pairs in the
same batch. For instance, Chen et al. [4] proposed a simple framework with a learnable nonlinear
projection head and a large batch size to improve the quality of the pre-trained representations.
Without involving negative instances, BOYL [7] trains the online network from an augmented view of
an image to predict the target network representation of the same image under a different augmented
view (positive instance). Another broadly-used approach [5] in the self-supervised learning literature
is to apply a momentum encoder to update negative instances from a large and consistent dictionary
on the fly. In this work, our main focus is to leverage a self-supervised training framework to learn
compact gene expression representations from scRNA-seq data for identifying potential cell clusters
in federated settings, which is more challenging than the tasks listed above.

Federated Self-supervised Learning. Federated self-supervised learning aims to learn general
representations from unlabeled decentralized data while preserving data privacy. In recent years,
researchers [57, 58, 26, 27] have tried to explore diverse pipelines to learn discriminative visual
representations from decentralized images. For example, FedU [26] utilized a self-supervised
framework based on BYOL [7] with a straightforward communication protocol to upload only the
weights of online encoders for server aggregation and update them with the aggregated weights.
Following up, FedEMA [27] leveraged a divergence-aware decay rate to update the local networks of
clients adaptively using the Exponential Moving Average (EMA) of the global network. However,
these federated self-supervised learning methods imposed potential privacy leakage risks by directly
gathering features and data distribution from clients. Meanwhile, they mainly focused on federated
self-supervised learning for image classification. In contrast, we target to address an important but
overlooked problem, that is, learn scRNA-seq representations from unlabeled gene expression data
from multiple sequencing platforms while preserving data privacy.

Single-cell Clustering. Single-cell clustering of scRNA-seq data is a challenging problem that
predicts cellular subtype clusters from gene expression data of diverse cells. Early methods applied
classical Principal Component Analysis (PCA) [9], K-means [10], and Gaussian Mixture Models [11]
to cluster cell subpopulations from gene expression data directly. Because of the high dimensionality
and sparsity of gene expression sequences, the following work [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
explored diverse pipelines to tackle with this issue. For instance, hierarchical clustering with an
implicit imputation stage was introduced in CIDR [12] before PCA to address the dropout problem.
In order to classify both pure and transitional cells, SOUP [15] utilized the expression similarity
matrix to estimate soft membership for cell-type cluster centers. In recent years, deep neural networks,
such as DCA [17] have been widely used for extracting expression representations before clustering.
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Figure 2: Illustration of the proposed FedSC for federated self-supervised single-cell clustering of scRNA-seq
data. Each client k takes as input two views of gene expression sequences from random masking augmentation,
and conduct local self-supervised training with an online network W o

k , a predictor W p
k and an EMA-updated

target network W t
k on unlabeled data Dk. During local training, a stop-gradient operator is applied to the

output of the target encoder W t
k , while the distance between features from the predictor and target encoders is

minimized. After local self-supervised training, each client k uploads the trained online models W o
k and W p

k
to the server and updates it with the global networks W o

g and W p
g after aggregation. Finally, the aggregated

global encoder W o
g is used to extract representations of the whole gene expression data to perform single-cell

clustering.

Typically, ScDeepCluster [18] used a clustering layer on the embedding space from DCA to enrich
embeddings for boosting the clustering performance. ScziDesk [19] proposed a soft self-training
KMeans clustering to aggregate similar cells in the same cluster. However, those scRNA-seq
clustering baselines mainly rely on well-annotated data, which limits their generalization and violates
the fundamental goal of discovering potential cell subtype clusters.

More recently, contrastive-sc [25] introduced the same self-supervised framework as SimCLR [4]
to extract embeddings of a short gene expression sequence by an InfoNCE-based contrastive loss.
Different from them, we develop a novel multimodal self-supervised framework to learn compact and
discriminative representations by reconstructing sequence-level features of masked gene expression
matrices for scRNA-seq clustering. However, they cannot leverage decentralized unlabeled scRNA-
seq data to learn a generic representation while preserving data privacy. Different from them, we
develop a fully novel federated self-supervised learning framework to aggregate unsupervised scRNA-
seq representations from the input decentralized gene expression data. To the best of our knowledge,
we are the first to introduce new non-IID scRNA-seq benchmarks for federated self-supervised
learning to perform single-cell clustering. Our experiments in Section 4.2 also demonstrate the
effectiveness of the proposed FedSC in these challenging non-IID settings.

3 Method

Given a set of decentralized gene expression data from scRNA-seq, our target is to learn a global
gene expression encoder from multiple clients to extract gene expression embeddings for scRNA-
seq clustering. In this work, we propose a federated self-supervised framework for single-cell
clustering framework named FedSC for extracting compact and discriminative representations from
decentralized single-cell data, which mainly consists of two modules, Local Self-supervised Training
for each client in Section 3.2 and Online Communication and Global Aggregation for the server in
Section 3.3.
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3.1 Preliminaries

In this section, we first describe the problem setup and notations and then revisit contrastive-sc [25],
the state-of-the-art baselines for scRNA-seq clustering.

Problem Setup and Notations. Given a set of gene expression data with m genes from n cells,
our goal is to learn a discriminative global gene expression feature from m genes in each cell.
Note that m,n denote the number of genes and cells, respectively. D denotes the dimension of
embeddings. The goal is to learn a generalized representation W from multiple decentralized parties
for single-cell clustering. We denote each party as a client k containing unlabeled data Dk = {Xk}.
The global objective of federated self-supervised single-cell clustering from multiple parties is
minω L(ω) :=

∑K
k=1

Nk

N Lk(ω), where N =
∑K

k=1 Nk denotes the total datasize, and K is the
number of clients. For each client k, Lk(ω) := Exk∈Pk

[L̃k(ω;xk))] is the expected object over the
gene expression data distribution Pk, where xk is the gene expression data and L̃k(ω;xk)) denotes
the objective function to train local models from each client.

Revisit contrastive-sc. To solve the single-cell representation learning problem, contrastive-sc [25]
first extracted a sequence-level embedding s ∈ Rs×D with a length of s from a gene expression
encoder, and then concatenated all m/s sequences as the whole feature for m genes. During training,
they utilized a self-supervised framework similar to SimCLR [4] with an InfoNCE-based contrastive
loss to close the distance between the anchor and augmented embeddings of one sequence in the
same cell, which is denoted as:

Lcontrastive-sc =
1

B

B∑
i=1

− log
exp

(
1
τ sim(si, ŝi)

)∑B
j=1 exp

(
1
τ sim(si, ŝj)

) (1)

where si, ŝi ∈ R1×D denote the anchor and augmented embeddings for ith sample in a mini-batch.
B is the batch size. sim(si, ŝi) = sTi ŝi/(∥si∥∥ŝi∥) is the cosine similarity, and τ is the temperature
parameter. B2 −B negative sequences are created within a training batch. By optimizing this loss,
they successfully extracted discriminative representations of each short sequence in the same cell.

However, this sequence-level contrastive learning framework can not leverage decentralized unlabeled
scRNA-seq data to learn a generic representation while preserving data privacy as their framework
was trained on centralized gene expression data. To address this issue, we propose a novel federated
self-supervised learning framework to learn scRNA-seq representations from decentralized unlabeled
data to preserve data privacy, as shown in Figure 2.

3.2 Local Self-supervised Training

In order to explicitly learn unsupervised representation from decentralized gene expression data in
different clients, we introduce local self-supervised training on unlabeled data Dk based on the same
global models W o

g and W p
g downloaded from the server.

With two views of gene expression sequences from random masking augmentation, we first feed
them into each client k with an online network W o

k , a predictor W p
k and an EMA-updated target

network W t
k. During local training, a stop-gradient operator is also applied to the output of the target

encoder W t
k for avoiding the local model collapsing problem. Then, the online models are optimized

to minimize the distance across output representations from the predictor and target encoders for each
client k are minimized as:

L =
1

B

B∑
i=1

2− 2 ∗ sim(spi , s
t
i) (2)

where spi , s
t
i are gene expression embeddings from the predictor and target encoder for ith sample

in a mini-batch. sim(spi , s
t
i) = (spi )

T sti/(∥s
p
i ∥∥sti∥) is the cosine similarity. Optimizing the loss for

each client k will promote the local online encoder to capture discriminative features of unsupervised
gene expression data across different genes for each cell.

3.3 Online Communication and Global Aggregation

With the benefit of local self-supervised learning in each client k, we propose a simple yet effective
protocol for online communication and global aggregation between the server and clients. From the
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Table 1: Comparison results (%) on 10 PBMC cells and mouse bladder cells benchmarks. ↑ denotes that a large
value is better.

Method PBMC cells mouse bladder cells
ARI (↑) NMI (↑) Silhouette (↑) ARI (↑) NMI (↑) Silhouette (↑)

FedSimCLR 51.51 66.30 31.25 25.07 50.85 26.31
FedMoCoV1 51.58 62.62 52.22 27.62 51.68 26.53
FedMoCoV2 55.11 64.99 52.92 28.83 53.70 26.46
FedSimSiam 49.95 60.76 31.99 24.66 48.27 24.89
FedBYOL 59.70 69.27 53.12 29.24 56.21 27.56
FedSC (ours) 62.57 68.35 54.70 34.35 57.84 29.58
PCA (Centralized) 19.00 31.21 40.24 17.28 43.94 21.46
scRNA (Centralized) 47.15 52.91 23.27 23.78 47.68 24.32
contrastive-sc (Centralized) 76.03 76.42 54.96 44.51 69.03 37.72

client to the server, each client k uploads the trained online encoders W o
k and predictor W p

k to the
server. After aggregation from all clients, the server updates the online encoders W o

k and predictor
W p

k for each client k with the global model W o
g and predictor W p

g .

During training, the online encoder and predictor of each client k at training round r are updated
using the EMA of the global network from the server as:

W o,r
k = µkW

o,r−1
k + (1− µk)W

o,r
g

W p,r
k = µkW

p,r−1
k + (1− µk)W

p,r
g

(3)

where W o,r
k and W p,r

k are the parameters of online encoder and predictor of client k at training round
r. W o,r

g ,W p,r
g are the global encoder and predictor of the server. µk is the decay rate for each client

k that is measured by the divergence between the global W o,r
g and online encoder W o,r

k .

Inspired by the insight that retaining local knowledge of non-IID data helps improve performance in
a recent federated self-supervised learning framework [27] on decentralized images, we propose to
update online networks in each client using different levels of decay rates measured by ℓ2-norm of
the global and online encoders defined as:

µk = min

(
α

∥W o,r
g −W o,r−1

k ∥
, 1

)
(4)

where α ∈ [0, 1] is a scalar hyper-parameter to control the magnitude of µ at round r. We use α = 0.7
in our experiments. Intuitively, we want to retain more local knowledge when the divergence between
global and online encoders is large and incorporate more global knowledge when the divergence is
small. During inference, we use the global encoder W o

g to extract gene expression features from
input gene expression data for single-cell clustering to generate cellular subtype clusters.

4 Experiments

4.1 Experimental Setup

Datasets. Following scDeepCluster [18], we apply 10 PBMC cells [59] from 10x genomic platform
and mouse bladder cell [8] from Microwell-seq for experiments. We use the same split in [25] for
training and testing, where the number of cells varies from 870 to 9552, and 4-16 cellular subtype
clusters are annotated for evaluation. The 10 PBMC cells [59] dataset with 8 subtype clusters contains
4271 cells and 16653 genes for each cell, while the mouse bladder cells benchmark with 16 subtype
clusters includes 2746 cells and 20670 genes per cell.

Evaluation Metrics. Following previous work [25, 18, 19], we apply Adjusted Rand Index
(ARI) [60], Normalized Mutual Information (NMI) [61], and Silhouette [62] score for evaluation.
ARI score calculates the ratio of sample pairs assigned to the correct cluster labels. NMI score
measures the agreement of the ground truth and predicted cluster assignments. A larger value of ARI
and NMI is better, which means that the predicted cluster matches the ground-truth cluster. Silhouette
score measures the compactness of the generated clusters, and a higher score means that the predicted
clusters are denser and better separated.
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Table 2: Ablation studies on main components (predictor, EMA, stop-gradient) of federated self-supervised
frameworks. Note that FedBYOL is used as the default model.

predictor EMA stop-gradient ARI (↑) NMI (↑) Silhouette (↑)

✓ ✗ ✗ 38.16 49.87 37.25
✓ ✓ ✗ 43.57 (+5.41) 51.08 (+1.21) 42.13 (+4.88)
✓ ✗ ✓ 46.21 (+8.05) 55.36 (+5.49) 45.16 (+7.91)
✗ ✓ ✓ 57.63 (+19.47) 67.12 (+17.25) 51.35 (+14.10)
✓ ✓ ✓ 59.70 (+21.54) 69.27 (+19.40) 53.12 (+15.87)

Implementation. Our implementation is based on PyTorch [63] framework. For online and target
encoders, the gene expression encoder is composed of 3 linear layers of [200, 40, 60] neurons. The
predictor is one linear layer with the output dimension of 128. The model is trained with the SGD
optimizer with a learning rate of 0.032, and hyper-parameters with momentum of 0.5 and weight
decay of 5e-4. The model is trained for 300 rounds with a batch size of 128, K = 4 clients, E = 5
local epochs. We use non-IID data with 2 subtype clusters per client for the 10 PBMC benchmark
and 4 subtype clusters per client for the Mouse bladder cells dataset. After self-supervised training,
we use the K-means algorithm [10] in the scikit-learn package for evaluation to perform clustering on
gene expression representations.

4.2 Comparison to prior work

In this work, we propose a novel and effective federated self-supervised training framework for
scRNA-seq clustering. To demonstrate the effectiveness of the proposed FedSC, we comprehensively
compare it to previous centralized scRNA-seq clustering and federated self-supervised learning
baselines: 1) PCA [9]: a traditional machine learning approach with raw gene expression sequence
as input to extract principal components; 2) scRNA [14]: a baseline based on non-negative matrix
factorization by using transferred knowledge from large and well-annotated data for reference; 3)
contrastive-sc [25]: the state-of-the-art self-supervised framework with InfoNCE-based contrastive
loss to extract embeddings from sequences only for scRAN-seq clustering; 4) FedSimCLR [4]: a
self-supervised baseline with identical encoders and without predictors; 5) FedMoCoV1 [5]: a vanilla
self-supervised approach using an online encoder and an EMA-updated target encoder based on
memory bank and stop-gradient; 6) FedMoCoV2 [6]: an MoCoV1 improved method by adding a
predictor to the online encoder; 7) FedSimSiam [3]: a self-supervised baseline using predictors and
stop-gradient; 8) FedBYOL [7]: a strong baseline based on an online encoder with predictors and an
EMA-updated target encoder with stop-gradient.

Table 1 reports the quantitative comparison results on 10 PBMC cells and mouse bladder cells datasets.
As can be seen, we achieve the best performance in terms of most metrics compared to previous
federated self-supervised learning baselines on 10 PBMC cells benchmark. In particular, the proposed
FedSC significantly outperforms scRNA [14], the centralized baseline based on non-negative matrix
factorization, by 15.42 ARI, 15.44 NMI, and 31.43 Silhouette. Moreover, we achieve superior
performance gains of 11.06 ARI, 2.05 NMI, and 23.45 Silhouette compared to FedSimCLR [4],
which indicates the importance of predictors and EMA for learning discriminative representations
from target encoders in federated self-supervised single-cell clustering. Meanwhile, our FedSC
outperforms FedBYOL [7], the current state-of-the-art federated self-supervised approach for scRNA-
seq clustering, where we achieve the performance gains of 2.87 ARI and 1.58 Silhouette. These
significant improvements demonstrate the superiority of our method in learning compact embeddings
from decentralized gene expression data for clustering.

In addition, significant gains in mouse bladder cells benchmark can be observed in Table 1. Compared
to FedSimSiam [3], the self-supervised baseline based on predictors and stop-gradient, we achieve
the results gains of 9.69 ARI, 9.57 NMI, and 4.69 Silhouette. Furthermore, when evaluated on
this challenging benchmark with more cellular subtypes, the proposed approach still outperforms
FedBYOL [7] by 5.11 ARI, 1.63 NMI, and 2.02 Silhouette. We also achieve highly better results
against FedMoCoV2 [6], the improved MoCoV1 baseline with a predictor added to the online encoder.
These results validate the effectiveness of our approach in learning discriminative features from gene
expression data in multiple clients for each cellular subtype.
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Figure 3: Effect of total rounds and local epochs on the final performance of federated scRNA-seq clustering.
FedBYOL achieves the best results at total rounds of 300 and local epochs of 50.

4.3 Experimental analysis

In this section, we performed ablation studies to demonstrate the benefit of introducing three main
components (predictor, EMA, stop-gradient) in federated self-supervised frameworks for single-cell
clustering. We also conducted extensive experiments to explore the effect of total rounds and local
epochs on federated scRNA-seq clustering. Furthermore, we analyze the impact of different non-IID
levels on our proposed FedSC method for scRNA-seq clustering.

Ablation on main components (predictor, EMA, stop-gradient). To demonstrate the effectiveness
of the introduced predictor, EMA, and stop-gradient for federated self-supervised single-cell cluster-
ing, we ablate the necessity of each module and report the quantitative comparison results in Table 2.
We can observe that adding EMA to the vanilla baseline with only predictor highly raises the results
of scRNA-seq clustering by 5.41 ARI, 1.21 NMI, and 4.88 Silhouette, which validates the benefit of
EMA in aggregating local knowledge from online encoders for target encoders to learn discriminative
expression representations for discovering accurate cellular subtypes. Meanwhile, introducing the
stop-gradient for target encoders in the baseline also increases the clustering performance of all
metrics. This indicates that online and target encoders are significantly different during pre-training
for scRNA-seq clustering. More importantly, incorporating EMA and stop-gradient for local target
encoders together into the baseline significantly raises the performance by 21.54 ARI, 19.40 NMI, and
15.87 Silhouette. Furthermore, we can observe a performance drop without the predictor attached to
the local online encoders for feature prediction. These improving results demonstrate the importance
of predictor, EMA, and stop-gradient for federated self-supervised learning frameworks in learning
discriminative representations from decentralized gene expression data.

Effect of total rounds and local epochs. The number of total rounds and local epochs used
in the federated self-supervised learning approach affect the extracted expression representations
from gene expression in multiple clients for scRNA-seq clustering. To explore such effects more
comprehensively, we ablated the number of total rounds from {100, 200, 300, 400, 500} and varied
the local epochs from {5, 10, 25, 50, 100}. The comparison results of federated scRNA-seq clustering
are shown in Figure 3. When the number of total rounds is 300 and the number of local epochs
is 50, we achieve the best overall clustering performance. With the increase of total rounds from
100 to 300, we can consistently raise results, which shows the importance of training longer time
for the server to aggregate compact representation from decentralized gene expression data in each
cell. However, increasing the number of total rounds from 300 to 400 and 500 will not continually
improve the results of ARI and Silhouette. In particular, a drastic drop can be observed in the NMI
score, which means that the generated clusters are not matching with the ground-truth clusters. This
might be caused by the high sparsity of non-zero values in the gene expression data. In this case,
federated self-supervised single-cell clustering without discriminating this sparsity will deteriorate
the quality of representations pre-trained from many zero entries in the input decentralized data.

In terms of local epochs, the performance of the Silhouette score climbs with the increase of the
local epochs from 5 to 50. Compared to the Silhouette score, there are no significant changes in
ARI and NMI. This interesting trend could be due to the self-property of these metrics. Higher ARI
and NMI indicate that the predicted cluster assignment matches the ground-truth cluster assignment,
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Table 3: Exploration studies on non-IID levels of federated self-supervised single-cell clustering on mouse
bladder cells. Note that our proposed FedSC is used as the default model.

# Subtype Clusters ARI (↑) NMI (↑) Silhouette (↑)
Per Client

1 19.57 32.73 14.09
2 30.43 54.01 26.18
4 34.35 57.84 29.58
8 39.83 62.45 36.05

while a larger value of the Silhouette score refers to denser and better-separated clusters. The
former metrics can not measure the quality of expression embeddings extracted from the pre-trained
gene expression encoder, but the latter is a strict metric for measuring the compactness of learned
expression representations for scRNA-seq clustering. Meanwhile, when the number of local epochs
is increased to 100, all metrics drop significantly, which might be caused by the limited model
capacity of MLP-based encoders for each client to gain more knowledge with more local epochs. For
federated self-supervised learning, we are the first to explore such an effect on the server and clients
for extracting discriminative features from decentralized gene expression data to conduct clustering.

Impact of non-IID levels. To explore the impact of different non-IID levels on the final performance
of federated self-supervised single-cell clustering, we ablated the number of subtype clusters for
each client from {1, 2, 4, 8}. Table 3 reports the comparison results of federated self-supervised
scRNA-seq clustering. When the number of non-IID levels is 8, we achieve the best clustering
performance in terms of all metrics. With the increase of non-IID levels from 1 to 8, we can
consistently raise results, which shows the importance of adding more data in each client for the
server to aggregate compact representation from decentralized gene expression data in each cell. This
increasing trend is also observed in the recent federated self-supervised learning approaches [27] for
image classification. Therefore, how balancing the number of subtype clusters for each client during
federated self-supervised single-cell clustering will consistently affect the quality of representations
learned from the decentralized gene expression data.

5 Conclusion

In this work, we introduce a novel non-IID scRNA-seq benchmark for federated self-supervised
single-cell clustering. Furthermore, we present FedSC, a new federated self-supervised learning
framework for single-cell clustering. Our FedSC leverages local self-supervised training on unlabeled
data from multiple clients to update the server with online communication and aggregation for
learning scRNA-seq representations while preserving data privacy. Extensive experiments on 10
PBMC and Mouse bladder cells demonstrate the effectiveness of our proposed FedSC in federated
self-supervised clustering of scRNA-seq data.

Limitation. Although the proposed FedSC achieves superior results on federated single-cell clustering
of scRNA-seq data, the performance of non-IID data is a bit far from centralized results. One possible
reason is that our model easily overfits the pretext task of federated self-supervised learning during
pre-training, and the solution is to incorporate centralized distillation and momentum global encoders
together for contrastive expression modeling. The future work could add more decentralized gene
expression data for training each client or incorporate continual learning with contrastive expression
modeling to increase the compactness of generated clusters.

Broader Impact. The proposed approach successfully learns discriminative representations of
decentralized gene expression data across different genes for each cell from manually-collected
datasets, which might cause the model to learn internal biases in the data. For instance, the model
could fail to discover unseen but crucial cellular subtypes. Therefore, these issues should be addressed
for the deployment of real applications in open-world problems.
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