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Abstract

Diffusion models have demonstrated competitive performance in missing data
imputation (MDI) task. However, directly applying diffusion models to MDI
produces suboptimal performance due to two primary defects. First, the sample
diversity promoted by diffusion models hinders the accurate inference of missing
values. Second, data masking reduces observable indices for model training,
obstructing imputation performance. To address these challenges, we introduce
Negative Entropy-regularized Wasserstein gradient flow for Imputation (NewImp),
enhancing diffusion models for MDI from a gradient flow perspective. To handle
the first defect, we incorporate a negative entropy regularization term into the
cost functional to suppress diversity and improve accuracy. To handle the second
defect, we demonstrate that the imputation procedure of NewImp, induced by the
conditional distribution-related cost functional, can equivalently be replaced by that
induced by the joint distribution, thereby naturally eliminating the need for data
masking. Extensive experiments validate the effectiveness of our method. Code is
available at https://github.com/JustusvLiebig/NewImp.

1 Introduction

Missing data is a pervasive problem for data analytics in diverse scenarios, including e-commerce [29,
30, 57], healthcare [51, 56], and process industry [33, 58]. For instance, in healthcare, patient
monitoring devices may fail or lose connection, leading to missing vital signs data. Similarly, in
industrial processes, sensor signals may be incomplete due to inevitable mechanical shock. These
incompletenesses hamper data integrity and impede subsequent analysis. Therefore, accurate missing
data imputation (MDI) is critical for enabling reliable analysis and decision in real-world applications.

Recently, diffusion models (DMs) have emerged as a powerful tool for MDI [66]. Specifically, these
models first estimate the (Stein) score function of the missing data conditioned on the observed data,
subsequently reformulating the imputation problem as a generative task grounded in the learned score
function. These works are initiated from [51] and evolve to incorporate crafted model architecture [33]
and learning objectives [38, 73] for enhancing the accuracy of score estimation [41]. Celebrated
for their advantageous capability to model data distributions and generate high-quality synthetic
data [41, 50, 65], diffusion models have been a prevalent approach to MDI.

Despite the successes of diffusion models, we argue that directly applying diffusion models to MDI
results in suboptimal performance due to two primary limitations. First, diffusion models perform

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



imputation by sampling from a learned score function, which inadvertently promotes diversity in the
imputed values. This increased diversity contradicts the accuracy required for precise imputation of
missing data [38]. Second, the training process involves masking a portion of the observed data as
labels. The selection of masking strategy significantly impacts imputation accuracy and is inherently
challenging to optimize [51]. Moreover, the masked data during training often differ in missing
mechanisms from those encountered during testing, resulting in a discrepancy between training and
inference phases that degrades performance. Consequently, diffusion models introduce unintended
diversity and impose data masking, both of which impede effective imputation.

To tackle these challenges, we introduce a novel DM-based MDI approach termed Negative Entropy-
regularized Wasserstein Gradient Flow Imputation (NewImp). Specifically, to handle the first issue,
we revisit DM-based MDI task within the Wasserstein Gradient Flow (WGF) framework, derive
the associated cost functionals, and identify that they implicitly promote diversity in the imputed
values. Building on this insight, we incorporate a negative entropy-regularized (NER) cost functional
to suppress imputation diversity and enhance accuracy. Furthermore, we derive a closed-form
imputation procedure based on the proposed cost functional within the reproducing kernel Hilbert
space (RKHS). After that, we further prove that within the WGF framework, the imputation procedure
of NewImp, induced from the cost functional associated with conditional distribution, can be induced
from another cost functional associated with joint distribution equivalently, within which we merely
need to estimate the joint distribution during the model training stage, thereby naturally eliminating
the need for data masking.

Contributions. The main contributions of this paper are summarized as follows:

• We demonstrate that directly applying diffusion models to MDI causes suboptimal performance, as
they prompt unintended diversity and require data masking, both impeding accurate imputation.

• We propose NewImp, a novel DM-based MDI approach under the WGF framework which intro-
duces an NER cost functional to suppress unintended diversity. Based on this, we further prove that
the imputation procedure of NewImp can be induced from an equivalent joint-distribution-related
functional, and consequently introduce an imputation procedure that sidesteps the data masking.

• We conduct various experiments over public numerical tabular datasets to demonstrate the superior-
ity of the NewImp method over prevalent baseline models.

2 Preliminaries

2.1 Problem Formulation

Suppose X (ideal) ∈ RN×D represents an ideal numerical tabular dataset without any missing entries,
where N and D denote the number of samples and features, respectively. The observed dataset is
expressed as: X (obs) = X(ideal)�M +NaN�(1N×D−M), where� denotes the Hadamard product,
1N×D is a matrix of ones of size N×D, and M ∈ {0, 1}N×D is a binary mask that indicates the
presence (1) or absence (0) of data in each entry. The task of MDI involves imputing the missing
entries in X (obs). This is achieved by constructing a matrix X̂ = X (obs)�M+X(imp)�(1N×D−M),
where X(imp) is the matrix containing the imputed values.

The missing mechanism can be classified into three categories [44]: Missing Completely at Random
(MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR) (Detailed information
about missing mechanisms is given in Appendix E.1). Notably, in the MNAR setting, it is generally
difficult to identify the missing data distribution without additional assumptions and constraints [22].
Hence, our discussion primarily focuses on numerical tabular data with MAR and MCAR settings.

2.2 Diffusion Models and Its Application for MDI Task

Diffusion models function by gradually corrupting data towards a tractable noise distribution, such as
a standard Gaussian, and subsequently reversing this corruption to generate samples [50]. Specifically,
the forward corruption process is modeled as a discretization of a stochastic differential equation
(SDE) over time τ : dXτ = f(Xτ )dτ+gτdWτ , where f(Xτ ) is drift term, gτ is volatility term, and
dWτ is standard Wiener process. The solution to this SDE creates a continuous trajectory of random
variables Xτ |Tτ=0. The density function qτ of Xτ adheres to the Fokker-Planck-Kolmogorov (FPK)
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equation: ∂qτ∂τ = −∇ · (qτf(Xτ)) + 1
2g

2
τ∇ · ∇qτ (see Theorem 5.4 in reference [47]). The reverse

process is governed by: dXτ = [f(Xτ ) − g2
τ∇log p(Xτ )]dτ + gτdWτ [3], where ∇log p(Xτ )

represents the score function, which is often parameterized by neural networks.

Diffusion models treat MDI as a conditional generation task. The score function, ∇log p(X), is
defined specifically for MDI as ∇X (miss) log p(X (miss)|X (obs)) [51], and the MDI task is executed
by generating samples based on this conditional score function. The key challenge is to obtain an
estimation ∇X (miss) log p̂(X (miss)|X (obs)) that approximates∇X (miss) log p(X (miss)|X (obs)). Given that
the true X (miss) is unknown, existing DM-based approaches utilize a mask matrix to drop some
observable data as labels. However, the specification of the mask mechanism, determining the
effectiveness of ∇ log p̂(X (miss)|X (obs)), is challenging since it should align with the data missing
mechanism in the testing dataset [51], which may be unknown in practice.

2.3 Wasserstein Gradient Flow

Wasserstein space P2(RD) is defined as the set of distributions with finite second-order moments.
Consider a cost functional Fcost : P2(RD)→ R; the celebrated Wasserstein gradient flow (WGF) is
an absolutely continuous trajectory (qτ )τ>0 in this space, which evolves over time τ to minimize
Fcost efficiently. This dynamic is governed by the continuity equation:

∂qτ
∂τ

= −∇ · (uτqτ ), uτ = −∇X
δFcost

δqτ
(1)

where uτ : RD → RD is a time-dependent velocity field [2], whose input is sample X ∈ RD; δFcost
δqτ

denotes the first variation of Fcost with respect to qτ . On this basis, the evolution of X over time τ in
P2(RD) can be modeled by the ordinary differential equation (ODE):

dX

dτ
= uτ (2)

However, simulating this ODE is challenging since uτ involves the estimation of qτ , which involves
solving the differential equation ∂qτ

∂τ = −∇ · (uτqτ ) that proves to be not analytically solvable [16].

3 Motivations

3.1 Diffusion Models Secretly Foster Diversity
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(b) Results by DM.

Figure 1: Comparison of the optimal point in green
triangle and the results obtained by diffusion mod-
els in white scatters. See details in Appendix B.

Based on the notations defined in Section 2.1,
we can first define the following cost functional
for MDI task according to the maximum like-
lihood estimation principle, where we want to
find the value with the highest probability:

X(imp) = arg max
X(miss)

log p̂(X(miss)|X(obs)), (3)

where p̂(X(miss)|X(obs)) is the estimation of
p(X(miss)|X(obs)) via neural network [52]. No-
tably, we can treat X(miss) as samples from a
‘proposal distribution’ r(X(miss)), and formu-
late the following optimization problem based
on variational inference [27, 70]:

arg max
r(X(miss))

Er(X(miss))[log p̂(X(miss)|X(obs))], (4)

where we aim to sample some X(miss) samples from proposal distribution r(X(miss)), realize the
maximum log-likelihood estimation over the sampled results, and ‘optimize’ the proposal distribution
r(X(miss)) that is represented by samples X(miss). Notably, in Eq. (4), we use the spirit from previous
references represented by [32], where optimizing the samples X(miss) is equivalent to optimizing the
distribution r(X(miss)).
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Referring to Eq. (4), it is observed that the MDI task can be formulated as an optimization problem.
This prompts a pertinent question: If the conditional distribution log p(X

(miss)
i |X(obs)

i ) is estimated
accurately, what would happen if we directly apply diffusion models to solve the optimization problem
corresponding to MDI task? To explore this, we consider a hypothetical scenario: Suppose we are
optimizing a cost functional related to a three-dimensional Dirichlet distribution on the simplex ∆2:

arg max
ah∈∆2

H∑
h=1

{log
Γ(
∑3
k=1 ρk)∏3

k=1 Γ(ρk)
+

3∑
k=1

(ρk − 1) logak,h},H = 8, ρ|3k=1 = [2.5, 2.5, 5.0],

where ah|H1 are variables, H is variable number, ρk|3k=1 is concentration parameter, and Γ(·) is
gamma function. We compare the analytically derived optimal value with the results from diffusion
models in Fig. 1. The diffusion model’s results tend to surround but do not exactly reach the
optimal value, suggesting that there might be implicit, diversity-encouraging terms integrated into the
diffusion models’ objectives that produce the observed inaccuracies. Identifying and modifying these
regularization terms is crucial for enhancing the efficacy of diffusion models for MDI tasks.

3.2 Negative Entropy Regularization Term for Diversity Suppression

In this section, we identify and refine the terms in diffusion models’ objectives that prompt unintended
diversity and impede accurate imputation. We observe that the inference process in diffusion models
adheres to the FPK equation, which is a specialized form of the continuity equation in WGF
(see Sections 2.2 and 2.3). This alignment inspires us to reframe diffusion models within the WGF
framework, enabling the derivation of their underlying cost functionals. By doing so, we can compare
these functionals with the objective functional for MDI in Eq. (4)2.
Proposition 3.1. Within WGF framework, DM-based MDI approaches can be viewed as finding the
imputed values X(imp) that maximize the following objective:

arg max
r(X(miss))

Er(X(miss))[log p̂(X(miss)|X(obs))] + ψ(X(miss)) + const, (5)

where ‘const’ is the abbreviation of constant, and ψ(X(miss)) is a scalar function determined by the
type of SDE underlying the diffusion models.

• VP-SDE: ψ(X(miss)) = 1
2H[r(X (miss))] + Er(X(miss)){ 1

4 [X (miss)]>[X (miss)]} ≥ 0

• VE-SDE: ψ(X(miss)) = 1
2H[r(X (miss))] ≥ 0

• sub-VP-SDE: ψ(X(miss)) = 1
2H[r(X (miss))] + Er(X(miss)){ 1

4γτ
[X (miss)]>[X (miss)]} ≥ 0,

where H[r(X (miss))] := −
∫
r(X (miss)) log r(X (miss))dX (miss) is the entropy term, γτ is determined

by noise scale βτ : γτ := (1− exp(−2
∫ τ

0
βsds)) > 0, 0 < β1 < · · · < βT < 1.

Proposition 3.1 reveals that diffusion models inherently optimize an objective functional that largely
aligns with (4), but they secretly include an additional term ψ(X(miss)) > 0. This term makes Eq. (5)
an upper bound on Eq. (4), i.e., maximizing the cost functional in Eq. (5) does not guarantee to
maximize the MDI objective in Eq. (4). Furthermore, the entropy term included in the models fosters
sample diversity, which may compromise the accuracy required in MDI tasks [53, 38]. To address
this issue, we propose incorporating a negative entropy term as ψ(X(miss)):

ψ(X(miss)) = −λH[r(X (miss))], (6)
where λ > 0 is a predefined regularization strength, and consequently we can define our NER cost
functional for MDI task as follows:

FNER := Er(X(miss))[log p̂(X(miss)|X(obs))]− λH[r(X (miss))]. (7)

The objective functional in Eq. (7) provides a lower bound of Eq. (4). Therefore, maximizing FNER
guarantees maximizing Eq. (4). Meanwhile, FNER effectively reduces the unintended diversity term,
contributing to an improvement in imputation accuracy.

2This paper primarily considers three types of stochastic differential equations (SDEs): variance preserving
(VP-SDE), variance exploding (VE-SDE), and sub-VP-SDE, which cover the majority of diffusion models
according to Song et al. [50]
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4 Implementation of the NewImp

4.1 Optimizing the FNER within WGF Framework

In this section, we aim to optimize FNER within the WGF framework [46, 69]. To this end, we
plug Eq. (7) into Eq. (1), producing the velocity field below that drives the ODE in Eq. (2):

u(X (miss)) = −∇X (miss)
δ(−FNER)

δr(X (miss))
= [∇X (miss) log p̂(X(miss)|X(obs)) + λ∇X (miss) log r(X (miss))],

However, as stated in Section 2.3, implementing this ODE in computer code is intricate due to
the intractability of the density function r(X (miss)). Fortunately, by restricting the velocity field
within the Reproducing Kernel Hilbert Space (RKHS) defined by the kernel function u(X (miss)) ∈
K(X (miss), X̃

(miss)
), an alternative ODE minimizing FNER can be implemented in Proposition 4.1 [35,

31] which sidesteps the intractable r(X (miss))3.

Proposition 4.1. Suppose u(X (miss)) is a velocity field regularized by the RKHS norm under the

following conditions: 1). The kernel function satisfies: lim‖X (miss)‖→∞K(X (miss), X̃
(miss)

) = 0.
2). The density r(X (miss)) is bounded. Then, the velocity field that minimizes the cost functional
FNER = Er(X(miss))[log p̂(X(miss)|X(obs))]− λH[r(X (miss))] can be given by:

u(X (miss)) = E
r(X̃

(miss)
)

−λ∇X̃
(miss)K(X(miss), X̃

(miss)
)

+ [∇
X̃

(miss) log p̂(X̃
(miss)|X(obs))]>K(X(miss), X̃

(miss)
)

 . (8)

where the expectation term E
r(X̃

(miss)
)

can be efficiently estimated using Monte Carlo approximation,

K(X, X̃) is set as the radial basis function (RBF) kernel.

4.2 Sidestepping Mask Matrix: Conditional Modeling via Joint Modeling

Simulating the ODE in Eq. (2) with Eq. (8) necessitates an accurate estimation of p(X(miss)|X(obs)).
However, this modeling is challenging due to the diverse choices of masking matrices. More
specifically, the accuracy of the estimated conditional distribution p(X(miss)|X(obs)) heavily relies
on the selection of these matrices, and these matrices should be consistent with the data missing
mechanism in the testing dataset, which may be unknown in practice [51]. To bypass this difficulty,
we suggest substituting the conditional distribution p(X(miss)|X(obs)) with the joint distribution
p(X(joint)), where X(joint) = (X(miss),X(obs)). Building on this substitution, the velocity field is
redefined based on the estimated joint distribution p̂(X (joint)) as follows:

u(X (joint)) = E
r(X̃

(joint)
)

−λ∇X̃
(miss)K(X (joint), X̃

(joint)
)

+ [∇
X̃

(miss) log p̂(X̃
(joint)

)]>K(X (joint), X̃
(joint)

)

 , (9)

where ∇
X̃

(miss) log p̂(X̃
(joint)

) can be obtained by masking the ∇X (joint) log p̂(X (joint)) with the missing
data indicator matrix M as follows:

∇
X̃

(miss) log p̂(X̃
(joint)

) = ∇
X̃

(joint) log p̂(X̃
(joint)

)� (1N×D −M) + 0×M , (10)

and the expression of kernel function term can be directly given based on the expression of RBF:

K(X (joint), X̃
(joint)

) = exp(−‖X
(joint) − X̃

(joint)‖2
2h2

), (11)

where h is the bandwidth, the values of X̃
(joint)

and X (joint) are identical, and the tilde notation on
X̃

(joint)
is merely used to distinguish the variable with respect to which the derivative is taken. On

3r(X (miss)) and u(X (miss)) are time-varying functions but do not explicitly involve the evolution time τ , thus
evolution time τ is omitted in the input variable.
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this basis, similar to Eq. (10), the gradient term∇
X̃

(miss)K(X (joint), X̃
(joint)

) can be given as follows:

∇
X̃

(miss)K(X (joint), X̃
(joint)

) = ∇
X̃

(joint)K(X (joint), X̃
(joint)

)� (1N×D −M) + 0×M , (12)

and since K(X (joint), X̃
(joint)

) is a smooth function, ∇
X̃

(joint)K(X (joint), X̃
(joint)

) can be easily com-
puted by automatic-differentiation-based deep learning backends like by PyTorch [42].

Proposition 4.2 demonstrates that the cost functional Fjoint-NER, associated with Eq. (10), and FNER
exhibit a constant gap, indicating that optimizing Fjoint-NER is equivalent to optimizing FNER.

Proposition 4.2. Assume that the proposal distribution r(X (joint)) is factorized by r(X (joint)) :=

r(X (miss))p(X (obs)). The cost functional associated with the joint distribution is defined as follows:

Fjoint-NER := Er(X (joint))[log p̂(X(joint))]− λH[r(X (joint))], (13)
which leads to the velocity field delineated in Eq. (9) and establishes Fjoint-NER as a lower bound for
FNER, with the difference being a constant (i.e., Fjoint-NER = FNER − const, const ≥ 0).

The detailed justification for the factorization r(X (joint)) := r(X (miss))p(X (obs)) is provided in Ap-
pendix C. Based on this proposition, the following corollary can be obtained:
Corollary 4.3. The following equation holds: u(X (joint)) = u(X (miss)).

So far, we know that u(X (joint)) can reduce FNER as effectively as possible, which indicates that the
velocity field defined in Eq. (9) can fully substitute for Eq. (8) in optimizing FNER without loss of
accuracy. Finally, the imputed value can be obtained by simulating the following ODE:

dX (miss)

dτ
= u(X (joint)). (14)

4.3 Estimating the Joint Distribution

The remaining problem is to determine the estimation of score function ∇X (joint) log p̂(X (joint)). To
achieve this, we employ Denoising Score Matching (DSM) [21, 52] to train the score function
∇X (joint) log p̂(X (joint)) parameterized by a neural network. Specifically, the learning objective is
designed to minimize the discrepancy between the actual score and the model’s predicted score after
introducing Gaussian noise to the clean X (joint) as X̂

(joint)
:

LDSM :=
1

2
E
qσ(X̂

(joint)|X (joint))
[‖∇

X̂
(joint) log p̂(X̂

(joint)
)−∇

X̂
(joint) log qσ(X̂

(joint)|X (joint))‖2]. (15)

Notably, σ is variance scale, X̂
(joint)

is obtained by X̂
(joint)

= X (joint) + ε, ε ∼ N (0, σ2I), and

∇
X̂

(joint) log qσ(X̂
(joint)|X (joint)) = − X̂

(joint)−X (joint)

σ2 . Once ∇X (joint) log p̂(X (joint)) is trained, we can
obtain the imputation value by simulating the ODE based on Eqs. (9) and (14).

4.4 Overall Workflow of NewImp

The computation workflow of NewImp is encapsulated in Algorithm 1. Specifically, we perform a
mean imputation to the incomplete matrix X (obs), producing a pre-imputed dataset denoted as X (imp)

(step 1). After that, we iteratively conduct DSM training and ODE simulation. In DSM training
(steps 3-5), we form X (joint) and conduct DSM on it to acquire a score estimator. In ODE simulation
(steps 6-8), we set the starting point and perform ODE simulation, where u is calculated with the
score estimator acquired in step 5. The endpoint is treated as the imputation results at the current
iteration. After completing T iterations of this process, the imputed dataset X̂ is calculated, where
we preserve the observed indices in X (obs) (step 10).

5 Experiments

5.1 Experimental Setup

Datasets: We conduct the case study based on eight real-world datasets from the UCI repository. To
simulate missing data, we mask the dataset using a mask matrix, which is realized with a Bernoulli
random variable of fixed mean. More detailed information is provided in Appendix E.1.
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Algorithm 1 The overall workflow of NewImp approach

Input: observational data X (obs), mask matrix M .
Hyperparameter: loop time: T , simulation time: T, discretization step size η, bandwidth h, neural
network learning rate lr, training epoch E , neural network hidden unit HUscore.
Output: imputed data X̂ .

1: X (imp) ← Initialize(X (obs))� (1N×D −M) . Initialization
2: for t = 0 to T do
3: X (miss) ←X (imp)

4: X (joint) ←X (miss) � (1N×D −M) + X (obs) �M

5: ∇X (joint) log p̂(X (joint))← DSM(X (joint)) . see Algorithm 3
6: X (miss)

0 ←X (imp)

7: X (miss)
T ←X (miss)

0 +
∫ T

0
u(X (joint))dτ . ODE Simulation by Appendix D.1 with Eq. (9)

8: X (imp) ←X (miss)
T

9: end for
10: X̂ ←X (obs) �M + X(imp) � (1N×D −M)

Baselines: We compare NewImp with DM-based MDI models: CSDI for Tabular Data (CSDI_T) [51],
MissDiff [41]. In addition, we also select other well-known MDI models like Sinkhorn (Sink) [40],
Transform Distribution Matching (TDM) [72], Generative Adversarial Imputation Nets (GAIN) [67],
Missing Data Importance-Weighted Autoencoder (MIWAE) [39], Missing data Imputation Refine-
ment And Causal LEarning (MIRACLE) [28], and ReMasker [15]. Details concerning experimental
settings are given in Appendix E.2.

Implementation Details: In this study, we employ a two-layer multi-layer perceptron to model
∇X (joint) log p̂(X (joint)). Each layer is configured with 256 hidden units (HUscore), and the activation
function is set as the ‘Swish’ function [43]. For DSM training (step 5 of Algorithm 1), the variance
scale σ is set as 0.1, the network is trained by the Adam optimizer [26] with the learning rate of
1.0×10-3, and the batch size is dynamically set to dataset size N. Meanwhile, for the ODE simulation
part (step 7 of Algorithm 1), we specify a simulation time (T) of 500, a regularization strength of
(λ) 10.0, a step size of (η) 0.1, and a bandwidth (h) of 0.5. The loop time T for NewImp is set as
2. Since only missing indices are updated, the evaluation focuses exclusively on imputation errors
for these indices. To this end, we modify the mean absolute error (MAE) and squared Wasserstein-2
distance (WASS) according to reference [22] as follows:

MAE :=

∑N
i=1

∑D
j=1 [|X (ideal)

i,j − X̂i,j | � (1N×D −M)i,j ]∑N
i=1

∑D
j=1 (1N×D −M)i,j

,

WASS :=W2
2 [

1

m1

m1∑
i=1

∆[X̂M1
]i,:
,

1

m1

M1∑
i=1

∆[X (ideal)
M1

]i,:
],

whereW2
2 denotes the squared Wasserstein-2 distance, M1 := {i : ∃j,M i,j = 0} represents the

subset of M i,j with at least one missing value, m1 is the number of data points with at least one
missing value, and ∆X is the Dirac distribution (measure) concentrated on X .

5.2 Baseline Comparison Results

Table 1 presents the imputation quality of NewImp and other imputation approaches under the MAR
and MCAR scenarios. The primary observations are detailed as follows:

• Models with neural architectures such as MIRACLE, MIWAE, and TDM demonstrate superior
performance compared to models lacking such architectures. This observation suggests that
integrating neural networks into MDI tasks can significantly enhance model performance.

• DM-based imputation approaches generally perform worse than other MDI methods. This outcome
indicates that despite the incorporation of complex nonlinear neural architectures to boost perfor-
mance, employing diversity-oriented generative approaches may not align well with the precision
requirements of MDI tasks.
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Table 1: Overall performance of MAE and WASS metrics with 30% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 0.93 ∗ 3.44 ∗ 0.92 ∗ 18.20 ∗ 0.85 ∗ 2.82 ∗ 0.81 ∗ 3.86 ∗ 0.70 ∗ 16.86 ∗ 0.99 ∗ 15.86 ∗ 0.65 ∗ 20.10 ∗ 0.77 ∗ 4.13 ∗

MissDiff 0.85 ∗ 2.20 ∗ 0.91 ∗ 16.53 ∗ 0.87 ∗ 1.59 ∗ 0.83 ∗ 3.87 ∗ 0.72 ∗ 13.25 ∗ 0.92 ∗ 17.07 ∗ 0.63 ∗ 26.25 ∗ 0.75 ∗ 6.88 ∗

GAIN 0.75 ∗ 0.65 ∗ 0.54 ∗ 1.64 ∗ 0.75 ∗ 0.67 ∗ 0.68 ∗ 0.68 ∗ 0.56 ∗ 1.88 ∗ 0.59 ∗ 1.90 ∗ 0.65 ∗ 5.05 ∗ 0.68 ∗ 0.87 ∗

MIRACLE 0.62 ∗ 0.38 0.55 ∗ 1.92 ∗ 0.43 0.25 0.55 ∗ 0.46 ∗ 3.39 ∗ 35.06 ∗ 4.14 ∗ 34.07 ∗ 0.46 2.87 ∗ 0.51 ∗ 0.56
MIWAE 0.64 0.53 0.52 ∗ 1.54 ∗ 0.76 ∗ 0.64 ∗ 0.82 ∗ 0.92 ∗ 0.50 ∗ 1.87 ∗ 0.65 ∗ 1.98 ∗ 0.55 ∗ 5.05 ∗ 0.62 ∗ 0.75 ∗

Sink 0.87 ∗ 0.92 ∗ 0.92 ∗ 3.84 ∗ 0.88 ∗ 0.83 ∗ 0.84 ∗ 0.98 ∗ 0.75 ∗ 2.43 ∗ 0.94 ∗ 3.61 ∗ 0.65 ∗ 4.71 ∗ 0.76 ∗ 1.04 ∗

TDM 0.83 ∗ 0.89 ∗ 0.83 ∗ 3.47 ∗ 0.81 ∗ 0.73 ∗ 0.76 ∗ 0.85 ∗ 0.62 ∗ 1.96 ∗ 0.86 ∗ 3.36 ∗ 0.59 ∗ 4.46 ∗ 0.73 ∗ 0.99 ∗

ReMasker 0.52 0.52 0.48 ∗ 1.15 0.60 ∗ 0.43 ∗ 0.49 ∗ 0.37 ∗ 0.62 ∗ 2.23 ∗ 0.61 ∗ 1.59 ∗ 0.60 ∗ 3.81 0.51 ∗ 0.59 ∗

NewImp 0.52 0.38 0.34 0.82 0.35 0.25 0.31 0.20 0.39 1.31 0.44 1.21 0.45 3.50 0.46 0.55

MCAR

CSDI_T 0.73 ∗ 1.93 ∗ 0.73 ∗ 15.51 ∗ 0.85 ∗ 2.71 ∗ 0.83 ∗ 3.79 ∗ 0.76 ∗ 15.19 ∗ 0.72 ∗ 12.42 ∗ 0.57 ∗ 19.89 ∗ 0.78 ∗ 4.11 ∗

MissDiff 0.72 ∗ 1.62 ∗ 0.73 ∗ 14.39 ∗ 0.84 ∗ 1.23 ∗ 0.82 ∗ 3.31 ∗ 0.75 ∗ 13.01 ∗ 0.71 ∗ 14.12 ∗ 0.56 ∗ 19.67 ∗ 0.76 ∗ 4.95 ∗

GAIN 0.72 ∗ 0.39 ∗ 0.38 ∗ 1.41 ∗ 0.78 ∗ 0.73 ∗ 0.72 ∗ 0.99 ∗ 0.57 ∗ 3.72 ∗ 0.46 ∗ 1.70 0.42 ∗ 3.62 0.73 ∗ 1.14 ∗

MIRACLE 0.52 0.15 ∗ 0.44 ∗ 1.94 ∗ 0.53 ∗ 0.35 0.61 ∗ 0.72 ∗ 2.99 ∗ 52.92 ∗ 3.38 ∗ 42.78 ∗ 0.35 2.71 ∗ 0.56 ∗ 0.75
MIWAE 0.58 ∗ 0.24 0.50 ∗ 2.55 ∗ 0.76 ∗ 0.69 ∗ 0.83 ∗ 1.24 ∗ 0.64 ∗ 4.95 ∗ 0.51 ∗ 2.05 ∗ 0.48 ∗ 5.87 ∗ 0.67 ∗ 0.95 ∗

Sink 0.73 ∗ 0.48 ∗ 0.75 ∗ 4.39 ∗ 0.84 ∗ 0.85 ∗ 0.82 ∗ 1.27 ∗ 0.75 ∗ 4.94 ∗ 0.74 ∗ 3.36 ∗ 0.61 ∗ 5.92 ∗ 0.76 ∗ 1.25 ∗

TDM 0.68 ∗ 0.42 ∗ 0.63 ∗ 3.57 ∗ 0.77 ∗ 0.75 ∗ 0.77 ∗ 1.15 ∗ 0.66 ∗ 4.20 ∗ 0.64 ∗ 2.89 ∗ 0.52 ∗ 5.34 ∗ 0.74 ∗ 1.20 ∗

ReMasker 0.46 ∗ 0.11 0.39 ∗ 1.69 ∗ 0.55 ∗ 0.37 0.56 ∗ 0.64 ∗ 0.54 ∗ 4.01 ∗ 0.48 ∗ 1.71 ∗ 0.45 ∗ 3.94 0.57 ∗ 0.76
NewImp 0.48 0.18 0.25 0.80 0.47 0.34 0.42 0.44 0.44 3.05 0.32 1.01 0.34 3.66 0.53 0.76

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the results
that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

Table 2: Ablation results with 30% missing rate.

Scenario NER Joint BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

% % 0.96∗ 3.82∗ 1.05∗ 20.2∗ 1.04∗ 5.47∗ 0.86∗ 5.81∗ 0.67∗ 20.2∗ 1.06∗ 15.6∗ 0.72∗ 22.5∗ 0.79∗ 6.49∗

% ! 0.54 0.42 0.34 0.82 0.61∗ 0.40∗ 0.58∗ 0.47∗ 0.43∗ 1.34 0.46∗ 1.25∗ 0.47∗ 3.56∗ 0.55∗ 0.64∗

! % 0.96∗ 3.83∗ 1.05∗ 20.3∗ 1.04∗ 5.49∗ 0.86∗ 5.83∗ 0.67∗ 20.2∗ 1.06∗ 15.6∗ 0.72∗ 22.5∗ 0.79∗ 6.51∗

! ! 0.52 0.38 0.34 0.82 0.35 0.25 0.31 0.20 0.39 1.31 0.44 1.21 0.45 3.50 0.46 0.55

MCAR

% % 0.72∗ 2.11∗ 0.74∗ 16.7∗ 0.85∗ 3.72∗ 0.83∗ 5.22∗ 0.74∗ 18.4∗ 0.71∗ 12.7∗ 0.58∗ 20.1∗ 0.76∗ 5.57∗

% ! 0.52∗ 0.17∗ 0.25 0.79 0.62∗ 0.46∗ 0.61∗ 0.71∗ 0.46 3.05 0.34 1.09 0.36∗ 3.74∗ 0.58∗ 0.82∗

! % 0.72∗ 2.12∗ 0.73∗ 16.8∗ 0.86∗ 3.73∗ 0.83∗ 5.24∗ 0.74∗ 18.4∗ 0.71∗ 12.7∗ 0.58∗ 20.1∗ 0.76∗ 5.60∗

! ! 0.48 0.18 0.25 0.80 0.47 0.34 0.42 0.44 0.44 3.05 0.32 1.01 0.34 3.66 0.53 0.76

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the results
that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

• Our proposed NewImp method consistently ranks as the best or second-best across most compar-
isons under most of the scenarios and datasets. Notably, NewImp significantly outperforms other
DM-based MDI approaches, underscoring the effectiveness of our analytical enhancements and
innovations in Sections 3.1, 3.2 and 4.2.

5.3 Ablation Study Results

In this section, we conduct the ablation study to assess the contributions of two key components
in NewImp: the NER term and the joint modeling strategy (referred to as ‘Joint’). The results of
this study are detailed in Table 2. Analysis of the data between the second and last rows of Table 2
reveals that, for most cases, in the absence of the NER, the proposal distribution r(X (miss)) may
become pathological, leading to diminished model performance. Additionally, when comparing
results from the first, third, and last rows, it becomes evident that modeling the joint distribution
directly, rather than inferring it from the conditional distribution, significantly enhances model
performance. This finding underscores the effectiveness of the strategies we have implemented, as
discussed in Section 4.2. Overall, the ablation study underscores the critical roles of both the NER
term and the joint distribution learning strategy in promoting the performance of NewImp.

5.4 Sensitivity Analysis Results

In this section, we analyze the impact of key hyperparameters within the NewImp approach, including
the bandwidth h of the RBF kernel function, the hidden units HUscore in the score network, the weight
λ of the NER term, and the discretization step size η for simulating the ODE defined in Eq. (9).
The profound influence of these hyperparameters on learning objectives and overall performance is
substantiated by the experimental results presented in Fig. 2. Initially, we explore the effects of varying
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(a) MAR with 30% missing rate at CC dataset.

0.1 0.25 0.5 1.0 2.0 5.0 10.0
h

0.4
0.6
0.8
1.0

WASS MAE

32 64 128 256 512
HUscore

0.35
0.40
0.45
0.50

WASS MAE

1.0 2.0 5.0 10.0 15.0 20.0
λ

0.35

0.40
WASS MAE

0.005 0.05 0.1 0.2 0.5
η

0.35

0.40

WASS MAE
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Figure 2: Parameter sensitivity of NewImp on bandwidth for kernel function (h), hidden unit of score
network HUscore, NER weight λ, and discretization step η for Eq. (9) on CC dataset. Mean values
and one standard deviation from mean are represented by scatters and shaded area, respectively.

the bandwidth h. We observe that an increase in bandwidth correlates with a decrease in imputation
accuracy. For instance, as the bandwidth increases from 0.5 to 2.0, the MAE and WASS escalate
from 0.35 and 0.25 to 0.82 and 0.74, respectively. This trend suggests that excessive bandwidth
can lead to an over-smoothed velocity field, expanding the exploration space of the distribution
r(X (joint)) excessively and failing to adequately ‘concentrate’ this distribution, ultimately diminishing
performance. Subsequently, we examine changes in the score network’s hidden units. Increasing
the hidden units from 256 to 512 appears to decrease imputation accuracy, likely due to overfitting
issues associated with larger neural networks. Next, we adjust the strength of the NER term and
find that increasing its intensity generally improves imputation accuracy. This supports the necessity
of the NER term, further validating its effectiveness. Lastly, we investigate the discretization step
size for the ODE. We find that accuracy initially increases with smaller step sizes but then decreases.
This pattern is consistent with ODE simulation behavior, where smaller step sizes require longer to
converge, potentially resulting in lower accuracy within a predefined time. Conversely, larger step
sizes increase discretization errors, adversely affecting accuracy as well.

6 Related Works

6.1 Diffusion Models for Missing Data Imputation

The impressive ability of diffusion models to synthesize data [54, 76, 7] has inspired extensive
research into their application for MDI tasks [59, 66]. Among the pioneering efforts, the Conditional
Score-based Diffusion models for Imputation (CSDI) [51] was the first to adapt diffusion models
for time-series MDI, substituting the score function with a conditional distribution and pioneering
a novel model training strategy by masking parts of the observational data. Building on this, to
address categorical data in tabular datasets, CSDI_T [73] introduced an embedding layer within
the feature extractor. To enhance inference efficiency, the conditional Schrödinger bridge method
for probabilistic time series imputation proposed modeling the diffusion process as a Schrödinger
bridge [10]. Meanwhile, MissDiff [41] utilizes the missing data information as the mask matrix to
improve the model training procedure.

Despite these advancements from the perspective of feature extraction module [1, 64], loss func-
tion [41], and model inference approach [60], as pointed out by reference [38], the reconciliation
of the inherent diversity-seeking nature of diffusion models’ generative processes and the accuracy-
centric demands of MDI task remains underexplored. To our knowledge, this paper is the first to
elucidate the relationship between diffusion models’ generative processes and MDI tasks from an
optimization perspective (Sections 3.1 and 3.2), which has not been discovered by previous refer-
ence [38]. Based on these insights, we further propose our NewImp approach by designing the NER
term to prioritize the MDI accuracy (Section 3.2).
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6.2 Modeling Conditional Distribution by Joint Distribution

Modeling conditional distribution as joint distribution remains an opening question and has a broad
potential for application [68, 8, 25]. Conditional sliced WGF [14] first empirically validated that the
velocity field of joint distribution and conditional distribution are identical when choosing sliced
Wasserstein distance as cost functional. After that, reference [25] extended this relationship and
derived the relationship between conditional and joint distribution in various discrepancy metrics like
f -divergence, Wasserstein distance, and integral probability metrics. On this basis, reference [19]
further theoretically proved the equivalence of velocity fields for conditional and joint distribution.

However, the objective of NewImp does not belong to any kind of discrepancy metric [25]. The most
similar discrepancy metric is negative KL divergence. Notably, negative KL divergence contains
diversity-encouraging ‘positive’ entropy as the regularization term, and the regularization term in our
study is diversity-discouraging ‘negative’ entropy, and thus more than directly applying these results
to our research is needed. On this basis, our theoretical contribution proves that this joint distribution
modeling approach can still be applied when the functional is regularized by the negative entropy.

6.3 Wasserstein Gradient Flow for Generative Modeling

WGF [2, 46] has been extensively employed in various domains of machine learning, including
generative modeling [17, 12, 74, 63], posterior distribution sampling [55, 35, 32, 34], and domain
adaptation [75, 36, 37, 71]. In generative modeling [4, 11, 18], the problem is framed as an op-
timization task, with the objective functional comprising an f -divergence term that measures the
discrepancy between the proposal distribution and the data distribution, alongside an entropy term
that promotes diversity in generative results.

WGF is then utilized to address the optimization of this cost functional, with models being constructed
during the solution process. However, as indicated by our illustrative example (Section 3.1), and
further supported by our theoretical analysis (Section 3.2), pursuing diversity in accuracy-oriented
tasks such as MDI may not be appropriate. Our analysis reveals that the inclusion of an entropy term
in the cost functional makes the direct application of diffusion models to MDI tasks unsuitable. Based
on these insights, one of our major contributions is demonstrating that WGF can be effectively used
to analyze and improve the appropriateness of applying diffusion models to non-generative tasks.

7 Conclusions

This work demonstrated that directly applying diffusion models to MDI resulted in suboptimal
performance due to unintended diversity and the requirement for data masking, both of which impeded
accurate imputation. To counteract this, we proposed NewImp, a novel diffusion model-based MDI
approach within the Wasserstein gradient flow framework, designed to suppress unintended diversity.
We developed an easy-to-implement form for realizing NewImp in computer code by constraining
the velocity field within the reproducing kernel Hilbert space. Furthermore, we proved that the
imputation procedure of NewImp could be derived from an equivalent joint-distribution-related
functional, thereby obviating the need for data masking. Finally, extensive experiments demonstrated
that NewImp effectively mitigates these issues and outperforms prevalent baseline models.
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Appendix A Detailed Preliminaries of Wasserstein Gradient Flow

In this section, we want to introduce the WGF framework and its application scenarios to better
understand this paper. Before introduction, the following concepts are listed to better understand the
WGF framework:

1. Wasserstein Metric: Let P2(RD) represent the space of probability measures on RD that possess
finite second moments. Formally, this is expressed as P2(RD) = {µ ∈M(RD) |

∫
‖x‖2dµ(x) <

∞}, where M(RD) denotes the set of all probability measures on RD. Considering any two
probability measures µ, ν ∈ P2(RD), we define the Wasserstein-p distance between µ and ν as
follows:

Wp =

{
inf

π∈Γ(µ,ν)

∫
RD×RD

‖x− y‖pdπ(x, y)

} 1
p

. (A.1)

Here, Γ(µ, ν) represents the collection of all joint distributions (couplings) between µ and ν.
For every joint distribution π ∈ Γ(µ, ν), it holds that µ(x) =

∫
RD π(x, y) dy and ν(y) =∫

RD π(x, y) dx. The integral on the right-hand side encapsulates the transportation cost in the
optimal transport (OT) problem, framed by Kantorovich’s formulation, where π∗ denotes the
optimal transportation plan.
Furthermore, leveraging Jensen’s inequality facilitates demonstrating the monotonicity of the
Wasserstein-p distance, affirming that for 1 ≤ p ≤ q, the relationship Wp(µ, ν) ≤ Wq(µ, ν)
invariably holds. Building on this principle, we can articulate the inner product within the
measurable space (P2(RD),W) as delineated below:

〈µ, ν〉µτ =

∫
RD

〈µ, ν〉RDdµτ (A.2)

2. Gradient Flow in Wasserstein Space: Consider a functional F associated with µ ∈ P2(RD).
Our objective is to identify the optimal µ that minimizes F :

min
µ∈P2(RD)

F(µ) + const. (A.3)

To facilitate the decrease of F(µ), we introduce a velocity field uµ : RD → RD designed to
expedite the reduction of F(µ) as µ evolves under this field. Utilizing the chain rule yields:

dF(µ)

dτ
=

∫ 〈
∇δF(µ)

δµ
, uµ

〉
dµ, (A.4)

where δ represents the first variation operator. To ensure the decrease of F(µ), i.e., dF(µ)
dτ ≤ 0,

the velocity field is defined as:

uµ = −∇δF(µ)

δµ
. (A.5)

The decline of F(µ) aligns with the following partial differential equation (PDE) called the
continuity equation:

∂µ

∂τ
= −∇ · (µuµ). (A.6)

Hence, the continuity equation Eq. (A.6), coupled with the velocity field articulated in Eq. (A.5),
is recognized as the Wasserstein Gradient Flow, delineating the steepest descent direction of cost
functional F(µ) in the Wasserstein space.

3. Simulation of WGF & Sampling: There are primarily two discretization techniques for the
WGF: the forward scheme and the backward scheme.
• Forward Scheme: The forward scheme applies gradient descent within the Wasserstein space

to identify the direction of the steepest descent. For an energy functional F(µ) with a specified
step size η, the update rule in the forward scheme is formulated as:

µτ+1 = (Id−∇δF(µ)

δµ
)#µτ , (A.7)

facilitating an intuitive and direct update mechanism that emulates the gradient flow in the
Euclidean space but transposed into the Wasserstein space.
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• Backward Scheme: Conversely, the backward scheme, often referred to as the Jordan-
Kinderlehrer-Otto scheme [23], represents a more implicit discretization approach. It defines
the subsequent distribution µτ+1 by solving an optimization problem that balances the energy
decrease and the transportation cost. This scheme is mathematically denoted as:

µτ+1 = arg min
µ∈P2(RD)

F(µ) +
1

2η
W2

2 (µ, µτ ), (A.8)

thereby integrating the energy minimization and transport efficiency into a single variational
problem that reflects the inherent structure of the Wasserstein space.

These schemes provide distinct yet complementary approaches to discretizing the dynamics
defined by WGFs, offering different perspectives and tools for the analysis and computation of
these flows.

Leveraging the WGF framework, if we designate the functional F to be the KL divergence, it yields
a particular formulation for the velocity field.

uµ = −∇δDKL(µ‖p)
δµ

= ∇ log p−∇ logµ. (A.9)

On this basis, plug Eq. (A.9) into Eq. (A.6), we can get the following PDE:
∂µ

∂τ
= −∇ · (µ∇ log p) +∇ · ∇µ. (A.10)

According to Theorem 5.4 in reference [47], denote the random sample from distribution p as x, we
can obtain the following stochastic differential equation (SDE) called Langevin equation [62] for
implementing this gradient flow easily:

dx = ∇log p(x)dτ +
√

2dWτ , (A.11)
where dWτ is the standard Wiener process (also known as Brownian motion).

Appendix B Detailed Information for Toy Cases in Section 3.1

To investigate what would happen if we directly applied diffusion models to MDI tasks, we consider
the following optimization problem:

arg max
ah∈∆2

H∑
h=1

log
Γ
(∑3

k=1 ρk

)
∏3
k=1 Γ(ρk)

+

3∑
k=1

(ρk − 1) logak,h

︸ ︷︷ ︸
:=FDir

,H = 8, ρk|3k=1 = [2.5, 2.5, 5.0],

(B.1)
which corresponds to the density function of a Dirichlet distribution, Dir([2.5, 2.5, 5.0]), where ah
lies on the three-dimensional standard simplex ∆2. The optimal value of FDir is given by:[

ρ1 − 1∑3
k=1 ρk − 1

,
ρ2 − 1∑3
k=1 ρk − 1

,
ρ3 − 1∑3
k=1 ρk − 1

]
≈ [0.214, 0.214, 0.571] . (B.2)

To optimize this cost functional, we employ the Langevin equation as presented in Eq. (A.11):

dah = ∇ahFDirdτ +
√

2dWτ , (B.3)
and compare the results to Eq. (B.2) to evaluate effectiveness. Additionally, since the support is
on a three-dimensional standard simplex ∆2, to ensure the well-definedness of our approach, we
use the mirror descent technique [48, 20], where the Bregman function is defined as ψ(ah) =∑3
k=1 ah,k logah,k − ah,k. Moreover, the optimization of ah,k|Hh=1|3k=1 is conducted by simulating

the Langevin equation, which is discretized by the Euler-Maruyama method as follows:
âτ+1
h = aτh × exp

(
η∇ahFDir|ah=aτh

× η
√

2ε
)
, ε ∼ N (0, I3×3)

aτ+1
h,k =

âτ+1
h,k∑3

k=1 â
τ+1
h,k

. (B.4)

With the step size η set to 5.0× 10−3, we repeatedly execute Eq. (B.4) 100 times, culminating in the
results depicted in Fig. 1 (b).
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Appendix C Theoretical Analysis

C.1 Implementation Difficulty of Velocity Field

To the best of our knowledge, the difficulty of implementing the velocity field can be given from two
perspectives, namely ODE-based implementation and SDE-based implementation. In this section, we
want to discuss these two implementation approaches in detail.

ODE-based Implementation:

1. WGF framework: According to the continuity equation, we can obtain the following velocity
field:

dX (miss)

dτ

(i)
= u(X (miss))

(ii)
= −[∇X (miss) log p̂(X(miss)|X(obs)) + λ∇X (miss) log r(X (miss))], (C.1)

where (i) is based on Section 2.3, and (ii) is based on Section 4.1. The expression of the velocity
field involves the computation of density term r(X (miss)) [31, 9], which is intractable during
practice as we stated in Section 2.3. Based on this, we conclude that implementing this velocity
field within the WGF framework is difficult.

2. Probability flow ODE: According to reference [50], if we directly plug Eq. (8) into the FPK
equation, we can get the following PDE:

∂r(X (miss))

∂τ

=−∇ · (u(X (miss))r(X (miss)))

=−
[
∇X (miss) log p̂(X(miss)|X(obs))r(X (miss))

]
− λ∇ · ∇r(X (miss))

=

−[∇X (miss) log p̂(X(miss)|X(obs))r(X (miss))]− λ∇ · ∇r(X (miss))

+
1

2
σ2
τ∇ · ∇r(X (miss))− 1

2
σ2
τ∇ · ∇r(X (miss))︸ ︷︷ ︸

=0

=
−
{[
∇X (miss) log p̂(X(miss)|X(obs)) + (λ+

1

2
σ2
τ )∇ log r(X (miss))

]
r(X (miss))

}
+

1

2
σ2
τ∇ · ∇r(X (miss)).

(C.2)

When we set στ as 0, we can find that the corresponding ODE is Eq. (C.1), where we are obliged
to compute the intractable density r(X (miss)).

SDE-based Implementation:
If we plug Section 4.1 into the FPK equation, the corresponding PDE can be given as follows:

∂r(X (miss))

∂τ

=−∇ · (u(X (miss))r(X (miss)))

=−
[
∇X (miss) log p̂(X(miss)|X(obs))r(X (miss))

]
− λ∇ · ∇r(X (miss)),

(C.3)

where the coefficient before the Laplacian operator ∇ · ∇ is −1. To the best of our knowledge, this
structure makes deriving a corresponding SDE impossible by current approaches.

C.2 Proof & Discussions of Concerning Propositions and Corollaries

Proposition (3.1). Within WGF framework, DM-based MDI approaches can be viewed as finding
the imputed values X(imp) that maximize the following objective:

arg max
r(X(miss))

Er(X(miss))[log p̂(X(miss)|X(obs))] + ψ(X(miss)) + const, (C.4)

where ‘const’ is the abbreviation of constant, and ψ(X(miss)) is a scalar function determined by the
type of SDE underlying the DMs.
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• VP-SDE: ψ(X(miss)) = 1
2H[r(X (miss))] + Er(X(miss)){ 1

4 [X (miss)]>[X (miss)]} ≥ 0

• VE-SDE: ψ(X(miss)) = 1
2H[r(X (miss))] ≥ 0

• sub-VP-SDE: ψ(X(miss)) = 1
2H[r(X (miss))] + Er(X(miss)){ 1

4γτ
[X (miss)]>[X (miss)]} ≥ 0,

where H[r(X (miss))] := −
∫
r(X (miss)) log r(X (miss))dX (miss) is the entropy term, γτ is determined

by noise scale βτ : γτ := (1− exp(−2
∫ τ

0
βsds)) > 0, 0 < β1 < · · · < βT < 1.

Proof. Since there are various approaches for reversing the sampling procedure of DMs, for simplicity,
as we emphasized in Section 3.2, we mainly consider the VP-SDE, VE-SDE, and sub-VP-SDE as
analysis objects in this paper.

• VP-SDE: According to reference [50], the density evolution of the generative process for VP-SDE
can be delineated by the following PDE:

∂r(X (miss))

∂τ
=−∇X (miss) ·

{
r(X (miss)) [βτ ]

[
1

2
X (miss) +∇X (miss) log p̂(X (miss)|X (obs))

]}
+
βτ
2
∇X (miss) · ∇X (miss)r(X (miss))

(C.5)

where βτ ∈ (0, 1) is the time-varying noise scale. On this basis, according to [24], by changing the
variable as dτ := βτ

2 dτ , we can get the following equation:

∂r(X (miss))

∂τ
= −∇X (miss) ·


r(X (miss))[

1

2
X (miss) +∇X (miss) log p̂(X (miss)|X (obs))

− 1

2
∇X (miss) log r(X (miss))]

 . (C.6)

Comparing Eq. (C.6) with Eqs. (A.5) and (A.6), the cost functional to be minimized of this
simulation procedure can be given as follows:

FVP-SDE = −
∫
r(X (miss))


1

4
[X (miss)]>[X (miss)] + log p̂(X (miss)|X (obs))

− 1

2
log r(X (miss)) + const

dX (miss)

= −Er(X (miss))


1

4
[X (miss)]>[X (miss)] + log p̂(X (miss)|X (obs))

− 1

2
log r(X (miss)) + const

 .

(C.7)

Note that 1
4 [X (miss)]>[X (miss)] ≥ 0 and − 1

2

∫
r(X (miss)) log r(X (miss))dX (miss) ≥ 0 hold, and thus

the proposition for VP-SDE is proved by taking the negative of the abovementioned equation.

• VE-SDE: Similarly, based on reference [50], the following PDE can be given to delineate the
density evolution of the generative process for VE-SDE:

∂r(X (miss))

∂τ
= −∇X (miss) ·

{
r(X (miss))

[
−dσ2

τ

dτ

]
∇X (miss) log p̂(X (miss)|X (obs))

}
+

1

2

dσ2
τ

dτ
∇X (miss) · ∇X (miss)r(X (miss)),

(C.8)

where σ2
τ is a time varying noise scale.

As such, by chaning the variable as dτ :=

[
dσ2

τ

dτ

]
dτ [24], Eq. (C.8) can be reformulated as

follows:

∂r(X (miss))

∂τ
= −∇X (miss) ·

{
r(X (miss))

[
∇X (miss) log p̂(X (miss)|X (obs))− 1

2
∇X (miss) log r(X (miss))

]}
.

(C.9)
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Comparing Eq. (C.9) with Eqs. (A.5) and (A.6), the cost functional to be minimized of this
simulation procedure can be given as follows:

FVE-SDE =

∫
r(X (miss))

{
1

2
log r(X (miss))− log p̂(X (miss)|X (obs)) + const

}
dX (miss)

= −Er(X (miss))

{
−1

2
log r(X (miss)) + log p̂(X (miss)|X (obs)) + const

}
.

(C.10)

Note that the entropy function − 1
2

∫
r(X (miss)) log r(X (miss))dX (miss) ≥ 0 holds, and thus the

proposition for VE-SDE is proved by taking the negative of the abovementioned equation.

• sub-VP-SDE: Based on reference [50], the following PDE can be given to delineate the density
evolution of the generative process for sub-VP-SDE:

∂r(X (miss))

∂τ
=−∇X (miss) ·

{
r(X (miss)) [βτ ]

[
1

2
X (miss) + γτ∇X (miss) log p̂(X (miss)|X (obs))

]}
+
βτ
2
γτ∇X (miss) · ∇X (miss)r(X (miss)),

(C.11)
where γτ := (1− exp(−2

∫ τ
0
βsds)) > 0. On this basis, by chaning the variable as dτ := βτ

2 dτ ,
we can get the following equation:

∂r(X (miss))

∂τ
= −∇X (miss) ·


r(X (miss))[

1

2
X (miss) + γτ∇X (miss) log p̂(X (miss)|X (obs))

− γτ
2
∇X (miss) log r(X (miss))]

 . (C.12)

Comparing Eq. (C.12) with Eqs. (A.5) and (A.6), the cost functional to be minimized of this
simulation procedure can be given as follows:

Fsub-VP-SDE = −
∫
r(X (miss))


1

4
[X (miss)]>[X (miss)] + γτ log p̂(X (miss)|X (obs))

− γτ
2

log r(X (miss)) + const

dX (miss)

= −Er(X (miss))


1

4
[X (miss)]>[X (miss)] + γτ log p̂(X (miss)|X (obs))

− γτ
2

log r(X (miss)) + const


= −Er(X (miss))


1

4γτ
[X (miss)]>[X (miss)] + log p̂(X (miss)|X (obs))

− 1

2
log r(X (miss)) + const

 .

(C.13)
Note that 1

4γτ
[X (miss)]>[X (miss)] ≥ 0 and − 1

2

∫
r(X (miss)) log r(X (miss))dX (miss) ≥ 0 hold, and

thus the proposition for sub-VP-SDE is proved by taking the negative of the abovementioned
equation.

In summary, the regularization term ψ(X(miss)) for VP-SDE is Er(X (miss)){ 1
4 [X (miss)]>[X (miss)]} +

1
2H[r(X (miss))], for VE-SDE is 1

2H(r(X (miss))), and for sub-VP-SDE is
Er(X (miss)){ 1

4γτ
[X (miss)]>[X (miss)]}+ 1

2H[r(X (miss))].

Before proving Proposition 4.1, we want to introduce the following lemma to delineate the evolution
of cost functional FNER along time τ :
Lemma C.1. The evolution of FNER along time τ can be characterized by the following ODE,
assuming that the boundary condition limX (miss)→∞[u(X (miss))r(X (miss))] = 0 is satisfied:

dFNER

dτ
= Er(X(miss))[u

>(X (miss))∇X(miss) log p̂(X(miss)|X(obs))− λ∇X(miss) · u(X (miss))]. (C.14)

This boundary condition is achievable, for instance, when r(X(miss)) is bounded, and the limit of the
velocity field as the norm of X(miss) approaches infinity is zero (lim‖X (miss)‖→∞ u(X (miss)) = 0).
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Proof. Before proving this lemma, we should recognize that the evolution of X(miss) should promise
the probability density function r(X(miss)) unchanged. In other words, the following continuity
equation should be satisfied during the optimization of r(X(miss)):

∂r(X(miss))

∂τ
= −∇X(miss) · [r(X(miss))u(X (miss))]. (C.15)

On this basis, the evolution of FNER along time τ , dFNER
dτ , can be given as follows based on the chain

rule:
dFNER

dτ

=

∫
∂r(X(miss))

∂τ

[
log p̂(X(miss)|X(obs)) + λ log r(X(miss)) + λ

]
dX(miss)

=

∫
−{∇X(miss) · [r(X(miss))u(X (miss))]}[log p̂(X(miss)|X(obs)) + λ log r(X(miss)) + λ]dX(miss)

(i)
=

∫
[r(X(miss))u(X (miss))]>∇X(miss) [log p̂(X(miss)|X(obs)) + λ log r(X(miss)) + λ]dX(miss)

=

∫
[r(X(miss))u(X (miss))]>{∇X(miss) [log p̂(X(miss)|X(obs)) + λ log r(X(miss))]}dX(miss)

=

∫
[u(X (miss))]>[r(X(miss))∇X(miss) log p̂(X(miss)|X(obs)) + λr(X(miss))∇X(miss) log r(X(miss))]dX(miss)

=

∫
[u(X (miss))]>[r(X(miss))∇X(miss) log p̂(X(miss)|X(obs)) + λ∇X(miss)r(X(miss))]dX(miss)

(ii)
=

∫
r(X(miss))[u>(X (miss))∇X(miss) log p̂(X(miss)|X(obs))− λ∇X(miss) · u(X (miss))]dX(miss)

=Er(X(miss))[u
>(X (miss))∇X(miss) log p̂(X(miss)|X(obs))− λ∇X(miss) · u(X (miss))],

(C.16)
where (i) and (ii) are based on integration by parts. More specifically, when condition
limX (miss)→∞[u(X (miss))r(X (miss))] = 0 is satisfied, for example, r(X(miss)) is bounded, and the limit
of the velocity field as the norm of X(miss) approaches infinity is zero (lim‖X (miss)‖→∞ u(X (miss)) = 0),
we can get the following result [35, 32]:∫

∇X (miss) · [r(X (miss))u(X (miss))]dX (miss) = 0,

where the left-hand-side can be further decomposed as follows based on the integration by parts:∫
∇X (miss) · [r(X (miss))u(X (miss))]dX (miss) =

∫
u>(X (miss))∇X (miss)r(X (miss))dX (miss)

+

∫
[∇X (miss) · u(X (miss))]r(X (miss))dX (miss).

Based on Lemma C.1, we can now start proving Proposition 4.1:

Proposition (4.1). Suppose u(X (miss)) is a velocity field regularized by the RKHS norm under the

following conditions: 1). The kernel function satisfies: lim‖X (miss)‖→∞K(X (miss), X̃
(miss)

) = 0.
2). The density r(X (miss)) is bounded. Then, the velocity field that minimizes the cost functional
FNER = Er(X(miss))[log p̂(X(miss)|X(obs))]− λH[r(X (miss))] can be given by:

u(X (miss)) = E
r(X̃

(miss)
)

−λ∇X̃
(miss)K(X(miss), X̃

(miss)
)

+ [∇
X̃

(miss) log p̂(X̃
(miss)|X(obs))]>K(X(miss), X̃

(miss)
)

 .

(C.17)
where the expectation term E

r(X̃
(miss)

)
can be efficiently estimated using Monte Carlo approximation.
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Proof. When the velocity is regularized by the RKHS norm, we can first reformulate Eq. (8) as
follows to find the steepest direction for the sake of improving FNER:

u∗(X (miss)) = arg max
u(X (miss))∈H

{Er(X(miss))[u
>(X (miss))∇X(miss) log p̂(X(miss)|X(obs))

− λ∇X(miss) · u(X (miss))]} − 1

2
‖u(X (miss))‖2H.

(C.18)

Based on this, assume we have a map function φ(x), the kernel function can be given as follows:
K(x, y) = 〈φ(x), φ(y)〉H . (C.19)

Hence, the regularization term that control the magnitude of u(X (miss)) can be given by
1
2‖u(X (miss))‖2H, and the spectral decomposition of kernel function can be given as follows:

K(x, y) =

∞∑
i=1

ξiφi(x)φi(y), (C.20)

where φi(·) indicates the orthonormal basis and ξi is the corresponding eigen-value. For any function
u(X (miss)) ∈ H, the following decomposition is given:

u(X (miss)) =

∞∑
i=1

ui
√
ξiφi(X

(miss)), (C.21)

where ui and
∑∞
i=1 ‖ui‖2 <∞.

The learning objective defined in Eq. (8) can be reformulated as follows:

u∗(X (miss))

= arg max
u(X (miss))∈H

{Er(X(miss))[u
>(X (miss))∇X(miss) log p̂(X(miss)|X(obs))

− λ∇X(miss) · u(X (miss))]} − 1

2
‖u(X (miss))‖2H,

(i)
= arg max
u(X (miss))∈H

{E
r(X̃

(miss)
)
[

∞∑
i=1

√
ξi∇X̃

(miss) log p̂(X̃
(miss)|X(obs))>uiφi(X̃

(miss)
)

− λ∇
X̃

(miss) ·
∞∑
i=1

ui
√
ξiφi(X̃

(miss)
)]} − 1

2

∞∑
i=1

‖ui‖2,

(C.22)

Take the right-hand-side of (i) with-respect-to ui, and set it to 0, we can get:√
ξi{Er(X̃(miss)

)
[[∇

X̃
(miss) log p̂(X̃

(miss)|X(obs))]>φi(X̃
(miss)

)− λ∇
X̃

(miss)φi(X̃
(miss)

)]} − ui = 0.

(C.23)
On this basis, u∗i can be given as follows:

u∗i =
√
ξi{Er(X̃(miss)

)
[[∇

X̃
(miss) log p̂(X̃

(miss)|X(obs))]>φi(X
(miss))− λ∇

X̃
(miss)φi(X̃

(miss)
)]},
(C.24)

and hence, u(X (miss)) can be given as follows:

u∗(X (miss))

=

∞∑
i=1

√
ξiu
∗
iφi(X

(miss))

=E
r(X̃

(miss)
)

−λ∇X̃
(miss)K(X(miss), X̃

(miss)
)

+ [∇
X̃

(miss) log p̂(X̃
(miss)|X(obs))]>K(X(miss), X̃

(miss)
)

 .
(C.25)

Proposition (4.2). Assume that the proposal distribution r(X (joint)) is factorized by r(X (joint)) :=

r(X (miss))p(X (obs)). The cost functional associated with the joint distribution is defined as follows:

Fjoint-NER := Er(X (joint))[log p̂(X(joint))]− λH[r(X (joint))], (C.26)
which leads to the velocity field delineated in Eq. (9) and establishes Fjoint-NER as a lower bound for
FNER, with the difference being a constant (i.e., Fjoint-NER = FNER − const, const ≥ 0).
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Before proving this proposition, we want to first clarify the justification of the assumption that
r(X (joint)) := r(X (miss))r(X (obs)) = r(X (miss))p(X (obs)). In this part, we set r(X (obs)) = p(X (obs)).
Before stating the justification, we should come to the following agreements:

1. Throughout the imputation procedure, X (obs) remains invariant regardless of any modifications to
X (miss).

2. Given this invariance, it is justified to state that r(X (obs)) remains constant from the per-
spective of particle variational inference represented by reference [35, 34], and consequently
r(X (obs)|X (miss)) = r(X (obs)), reflecting the independence of X (obs) from X (miss).

Based on this, we want to show that within the WGF framework, the factorizations r(X (miss))r(X (obs))

and r(X (miss)|X (obs))r(X (obs)) are equivalent. To this end, let us write down the evolu-
tion of r(X (obs),X (miss)) along time τ as follows when r(X (obs),X (miss)) is factorized by
r(X (obs),X (miss)) = r(X (miss)|X (obs))r(X (obs)):

∂r(X (obs),X (miss))

∂τ
=
∂r(X (miss)|X (obs))r(X (obs))

∂τ

= r(X (obs))
∂r(X (miss)|X (obs))

∂τ︸ ︷︷ ︸
r(X (miss)|X (obs))=

r(X(obs)|X(miss))r(X(miss))
r(X(obs))

+ r(X (miss)|X (obs))
∂r(X (obs))

∂τ︸ ︷︷ ︸
0

,

where the first underbrace is the Bayesian formula, and the second underbrace is based on the
abovementioned Agreement 2. Consequently, we can further obtain the following results:

∂r(X (obs),X (miss))

∂τ
=
r(X (obs))

r(X (obs))

∂r(X (obs)|X (miss))r(X (miss))

∂τ︸ ︷︷ ︸
r(X (obs)|X (miss))=r(X (obs))

=r(X (obs))
∂r(X (miss))

∂τ

(C.27)

Similarly, when we factorize r(X (obs),X (miss)) by r(X (obs),X (miss)) = r(X (miss))r(X (obs)), we can
get the following result:

∂r(X (obs),X (miss))

∂τ
=
∂r(X (obs))r(X (miss))

∂τ

=r(X (obs))
∂r(X (miss))

∂τ
.

(C.28)

Comparing Eq. (C.28) to Eq. (C.27), we can demonstrate our justification of the factorization
r(X (obs),X (miss)) = r(X (miss))r(X (obs)). Finally, we would like to conclude with a metaphor to
further illustrate the plausibility of this mean-filed factorization, which has been widely applied in
variational inference [5]:

1. Consider r as an actor in a play, capable of being molded and shaped. Initially, the actor may not
fully embody the role, akin to r(X (miss)) not containing information about X (obs).

2. However just as a director shapes an actor’s performance through guidance and rehearsal, all we
need to do is ensure that r(X (miss)) is appropriately molded by the directorial guidance (mirrors
the continuity equation ∂r

∂τ = −∇ · (ur)) of the velocity field u and the script provided by the
critic p(X (obs),X (miss))/p(X (obs)|X (miss)).

3. As long as r can adapt based on this feedback (akin to the WGF framework), it can overcome the
limitations of its initial portrayal (akin to r(X (joint)) = r(X (miss))r(X (obs)) ).

Based on the abovementioned analysis, we can now start the proof of Proposition 4.2:

Proof. Our proof will be divided into two parts namely ‘velocity field derivation’ and ‘upper bound
acquirement’.
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Velocity Field Derivation:

the following continuity equation should be satisfied during the optimization of r(X(miss)):

∂r(X(miss))

∂τ
= −∇X(miss) · [r(X(miss))u(X (miss))]

⇒∂r(X(miss))

∂τ
× p(X (obs)) = −∇X(miss) · [r(X(miss))u(X (miss))]× p(X (obs))

(i)⇒∂r(X(joint))

∂τ
= −∇X(miss) · [r(X(joint))u(X (joint))],

(C.29)

where (i) is based on the fact that X (obs) remains unchanged during the imputation process. Thus,
according to Eq. (C.16), the evolution of Fjoint-NER along time τ , dFjoint-NER

dτ , can be given as follows
based on the chain rule:

dFjoint-NER

dτ

=

∫
∂r(X(joint))

∂τ

[
log p̂(X(joint)) + λ log r(X(joint)) + λ

]
dX(joint)

=

∫
−{∇X(miss) · [r(X(joint))u(X (joint))]}[log p̂(X(joint)) + λ log r(X(joint)) + λ]dX(joint)

(i)
=

∫
[r(X(joint))u(X (joint))]>∇X(miss) [log p̂(X(joint)) + λ log r(X(joint)) + λ]dX(joint)

=

∫
[r(X(joint))u(X (joint))]>{∇X(miss) [log p̂(X(joint)) + λ log r(X(joint))]}dX(joint)

=

∫
[u(X (joint))]>[r(X(joint))∇X(miss) log p̂(X(joint)) + λr(X(joint))∇X(miss) log r(X(joint))]dX(joint)

=

∫
[u(X (joint))]>[r(X(joint))∇X(miss) log p̂(X(joint)) + λ∇X(miss)r(X(joint))]dX(joint)

(ii)
=

∫
r(X(joint))[u>(X (joint))∇X(miss) log p̂(X(joint))− λ∇X(miss) · u(X (joint))]dX(joint)

=Er(X(joint))[u
>(X (joint))∇X(miss) log p̂(X(joint))− λ∇X(miss) · u(X (joint))],

(C.30)
where (i) and (ii) are based on integration by parts. More specifically, when condition
limX (joint)→∞[u(X (joint))r(X (joint))] = 0 is satisfied, for example, r(X(joint)) is bounded, and the limit
of the velocity field as the norm of X(joint) approaches infinity is zero (lim‖X (joint)‖→∞ u(X (joint)) = 0),
we can get the following result [35, 32]:

∫
∇X (miss) · [r(X (joint))u(X (joint))]dX (joint) = 0,

where we omit the gradient operator with respect to the observed variables X (obs), denoted as∇X (obs) ,
because X (obs) remains constant during the imputation process. This constancy implies that the
divergence∇X (obs) · [r(X (joint))u(X (joint))] = 0. Consequently, the left-hand-side of this equation can
be further decomposed as follows based on the integration by parts:

∫
∇X (miss) · [r(X (joint))u(X (joint))]dX (joint) =

∫
u>(X (joint))∇X (miss)r(X (joint))dX (joint)

+

∫
[∇X (miss) · u(X (joint))]r(X (joint))dX (joint).
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Similar to the proof of proposition 4.1, we can restrict the velocity field in RKHS and find the steepest
gradient boosting direction as follows according to Eqs. (C.19) to (C.21):

u∗(X (joint))

= arg max
u(X (joint))∈HD

{Er(X(joint))[u
>(X (joint))∇X(miss) log p̂(X(joint))

− λ∇X(miss) · u(X (miss))]} − 1

2
‖u(X (joint))‖2HD ,

(i)
= arg max
u(X (joint))∈HD

{E
r(X̃

(joint)
)
[

∞∑
i=1

√
ξi∇X̃

(miss) log p̂(X̃
(joint)

)>uiφi(X̃
(joint)

)

− λ∇
X̃

(miss) ·
∞∑
i=1

ui
√
ξiφi(X̃

(joint)
)]} − 1

2

∞∑
i=1

‖ui‖2,

(C.31)

Take the right-hand-side of (i) with-respect-to ui, and set it to 0, we can get:

√
ξi{Er(X̃(joint)

)
[[∇

X̃
(miss) log p̂(X̃

(joint)
)]>φi(X̃

(joint)
)− λ∇

X̃
(miss)φi(X̃

(joint)
)]} − ui = 0. (C.32)

On this basis, u∗i can be given as follows:

u∗i =
√
ξi{Er(X̃(joint)

)
[[∇

X̃
(miss) log p̂(X̃

(joint)
)]>φi(X̃

(joint)
)− λ∇

X̃
(miss)φi(X̃

(joint)
)]}, (C.33)

and hence, u(X (joint)) can be given as follows:

u(X (joint))

=

∞∑
i=1

√
ξiu
∗
iφi(X

(joint))

=Er(X(joint))

−λ∇X̃
(miss)K(X(joint), X̃

(joint)
)

+∇
X̃

(miss) log p̂(X̃
(joint)

)K(X(miss), X̃
(miss)

)

 .
(C.34)

Lower Bound Acquirement:

Before starting the proving of this part, we should notice that given the unchanged observational
data X (obs), the distribution p(X (obs)) is a constant. On this basis, consider the definition of FNER
(right-hand-side of Eq. (7)), the first term and the second term are denoted by ‘term 1’ and ‘term 2’
for simplicity:

Er(X(miss))[log p̂(X(miss)|X(obs))]︸ ︷︷ ︸
:=term 1

+λ×

−H[r(X(miss))]︸ ︷︷ ︸
:=term 2

 . (C.35)
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For term 1, we can obtain the following derivation:∫
r(X(miss)) log p̂(X(miss)|X(obs))dX(miss)

≥
∫
r(X(miss)) log p̂(X(miss)|X(obs))dX(miss) +

∫
p(X (obs)) log p(X (obs))dX (obs)︸ ︷︷ ︸

negative entropy (negative constant)

=

∫∫
p(X(obs))r(X(miss)) log p̂(X(miss)|X(obs))dX(miss)dX(obs)

+

∫
p(X (obs)) log p(X (obs))dX (obs)︸ ︷︷ ︸

negative constant

=

∫∫
p(X(obs))r(X(miss)) log p̂(X(miss)|X(obs))dX(miss)dX(obs)

+

∫∫
r(X(miss))p(X (obs)) log p(X (obs))dX(miss)dX (obs)︸ ︷︷ ︸

negative constant

=

∫∫
p(X(obs))r(X(miss))︸ ︷︷ ︸

r(X(miss),X(obs))

[log p̂(X(miss)|X(obs)) + log p(X(obs))︸ ︷︷ ︸
log p̂(X(miss),X(obs))

]dX(miss)dX(obs)

=Er(X(miss),X(obs))[log p̂(X(miss),X(obs))].

(C.36)

Similarly, the term 2 can be reformulated as follows:

−H[r(X(miss))]

≥−H[r(X(miss))] +

∫
p(X (obs)) log p(X (obs))dX (obs)︸ ︷︷ ︸

negative entropy (negative constant)

=

∫∫
p(X(obs))r(X(miss)) log r(X(miss))dX(miss)dX(obs)

+

∫∫
p(X(obs))r(X(miss)) log p(X (obs))dX(miss)dX(obs)︸ ︷︷ ︸

negative entropy (negative constant)

=

∫∫
p(X(obs))r(X(miss))︸ ︷︷ ︸

r(X(obs),X(miss))

[log r(X(miss)) + log p(X (obs))︸ ︷︷ ︸
r(X(obs),X(miss))

]dX(miss)dX(obs)

=−H[r(X(obs),X(miss))].

(C.37)

Combine Eqs. (C.36) and (C.37), we can obtain the following relationship:

FNER − const = Fjoint-NER, (C.38)

and constant const is greater than 0.

Corollary (4.3). The following equation holds: u(X (joint)) = u(X (miss)).

Proof. This corollary can be easily proven by according to Eq. (C.38):

FNER = Fjoint-NER + const

⇒∇X (miss)
δFNER

δr(X (miss))
= ∇X (miss)

δFjoint-NER + const
δr(X (miss))

⇒∇X (miss)
δFNER

δr(X (miss))
= ∇X (miss)

δFjoint-NER

δr(X (miss))
.

(C.39)
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Plugging Eq. (C.39) into Eqs. (A.5) and (A.6), we can see that the velocity fields for X (miss) within
functional FNER and Fjoint-NER are identical.

Appendix D Detailed Explanation for the Workflow of NewImp Approach

In this section, we intend to provide detailed information about the implementation of the NewImp
approach in Algorithm 1. We will focus on two primary aspects: 1) the numerical implementation of
ODE simulation, and 2) the DSM algorithm.

D.1 Forward Euler’s Method for ODE Simulation

During step 7 of Algorithm 1, we involve the simulation of the ODE defined by Eqs. (9) and (14). To
simulate this ODE we use the forward Euler’s method [6] in this paper for simplicity. Specifically,
suppose we have the following ODE:

dxτ
dτ

= f(xτ ), (D.1)

and the initial value at τ = 0 is given x0 = xinit, the value at time η can be derived as follows:

xη = x0 +

∫ η

0

f(xτ )dτ . (D.2)

To alleviate the intergal term, the forward Euler’s method attempts to approximate the integral term
to summation term as follows:

xη ≈ x0 + f(xτ )× (η − 0). (D.3)

On this basis, the value at time T can be obtained by repeating Eq. (D.3) from τ = 0 to τ = T, which
is the forward Euler’s method.

Algorithm 2 Algorithm for Forward Euler’s Method
1: Input: ODE f(xτ ); start point 0; end point T; step size η; initial value x0.
2: Output: Predicted value xT at τ = T.
3: j ← T−0

η . Calculate the Number of Steps
4: for τ = 0 + η, 0 + 2η, . . . , 0 + jη do
5: xτ ← xτ−η + f(xτ−η)× η
6: end for

D.2 Detailed Information for DSM

During step 5 of Algorithm 1, we involve the training of∇X (joint) log p̂(X (joint)) using the DSM function.
In this subsection, we aim to further elaborate on the detailed algorithm for the DSM function to
uphold the completeness of this manuscript. As mentioned in Section 2.2, the score function
∇X (joint) log p̂(X (joint)) is typically parameterized by a neural network. For simplicity, we denote the
parameter set of∇X (joint) log p̂(X (joint)) by θ.
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Algorithm 3 DSM for ∇X (joint) log p̂(X (joint)) Training

1: Input: joint data X (joint).
2: Hyperparameters: neural network learning rate lr, training epoch E , and neural network hidden

unit HUscore.
3: for e = 1 to E do
4: X̂

(joint) ←X (joint) + ε, ε ∼ N (0, σ2I) . Data Noising

5: ∇
X̂

(joint) log qσ(X̂
(joint)|X (joint))← −X̂

(joint) −X (joint)

σ2

6: LDSM ← Eq. (15)
7: θ ← ApplyGradient(∇θLDSM, lr) . Apply the Gradient with Learning Rate lr
8: end for

Appendix E Detailed Information for Experiments

E.1 Background & Simulation of Missing Data

Table E.1: Detailed dataset descriptions, where ‘Dimension’ denotes the variate number of each
dataset. ‘Numer’ denotes the total number of item.

Abbreviation Dataset Name Numer (N) Dimension (D)

BT Blood Transfusion 748 4
BCD Breast Cancer Diagnostic 569 30
CC Concrete Compression 1030 7
CBV Connectionist Bench Vowel 990 10
IS Ionosphere 351 34
PK Parkinsons 195 23
QB QSAR Biodegradation 1055 41
WQW Wine Quality White 4898 11

In this paper, we consider the datasets listed in Table E.1 as our experimental datasets. Based on this,
according to reference [44], missing data can be classified into three categories: Missing at Random
(MAR), where the likelihood of missing data depends solely on observed data; Missing Completely at
Random (MCAR), where the absence of data is completely unrelated to any observed or unobserved
variables; and Missing Not at Random (MNAR), where missingness is influenced by unobserved data.
In the cases of MCAR and MAR, the patterns of missing data are considered ‘ignorable’ because it is
unnecessary to explicitly model the distribution of the missing values. Conversely, MNAR scenarios,
where missing data can introduce significant biases that are not easily corrected without imposing
domain-specific assumptions, constraints, or parametric forms on the missingness mechanism, present
more complex challenges [40, 22]. Therefore, our discussion is primarily focused on numerical
tabular data within the MCAR and MAR contexts.

To simulate missing data, we adopt the methodologies outlined in reference [22]:

• MAR: Initially, a random subset of features is selected to remain non-missing. The masking of the
remaining features is conducted using a logistic model, which employs the non-missing features as
predictors. This model is parameterized with randomly selected weights, and the bias is adjusted to
achieve the desired missingness rate.

• MCAR: For each data point, the masking variable is generated from a Bernoulli distribution with a
predetermined fixed mean, ensuring that the probability of missingness is the same across all data
points.

• MNAR: Although MNAR scenarios are not the primary focus of this manuscript, we include
experiments in this context. Missingness is introduced either by additional masking of the MAR-
selected features using a Bernoulli process with a fixed mean, or through direct self-masking of
values using interval-censoring techniques. In this paper, we mainly consider the former strategy. In
other words, the mechanism of MNAR we used in this paper is identical to the previously described
MAR mechanism, but the inputs of the logistic model are then masked by an MCAR mechanism.
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E.2 Hyperparameter Setting of Baseline Models

In this subsection, we want to report the baseline models’ hyperparameter settings to ensure the
reproducibility of our paper:

• Batch-Size-Related: The batch size for ReMasker is set to 64. For other baseline models, it is
uniformly set at 512. (Notably, for Sink and TDM, if N < 512, the batch size is set to 2b

N
2 c. )

• Hidden-Unit-Related:
– The MIWAE model features a latent dimension of 16 and 32 hidden units.
– The TDM model includes 16 hidden units per layer with the number of layers set to 2.
– MIRACLE’s hidden units are set to 32.
– For ReMasker, the embedding dimension is 32, depth is 6, mask ratio is 0.5, encoder depth is

6, decoder depth is 4, number of heads is 4, and the multi-layer perceptron ratio is 4.0.
– For MissDiff and CSDI_T, the channel size is set as 16, the embedding dimension is set to

128, and the layer number is set as 2.
– For the GAIN model, for both the generator and the discriminator, the hidden size is set to

2×D, and the number of hidden layers is set to 3.
• Diffusion-Hyperparameters-Related: The diffusion step is set at 100 and the particle number at

50 for MissDiff and CSDI_T.

30



Appendix F Additional Empirical Evidence

F.1 Toy Case Experiments
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Figure F.1: Contours of Various Distributions’ Density Value.

Table F.1: NewImp Performance with Missing Rate at 30%, and 1000 samples are generated.

Scenario Distribution Type MAE WASS

MAR

Gaussian 0.769±0.030 0.481±0.026
Student’s-t 0.737±0.053 0.513±0.048
Gaussian Mixture 0.763±0.097 0.419±0.104
Skewed-Gaussian 0.422±0.253 0.492±0.025

MCAR

Gaussian 0.769±0.013 0.287±0.014
Student’s-t 0.698±0.030 0.307±0.014
Gaussian Mixture 0.824±0.017 0.391±0.023
Skewed-Gaussian 0.417±0.140 0.210±0.026

MNAR

Gaussian 0.778±0.034 0.309±0.030
Student’s-t 0.715±0.028 0.323±0.019
Gaussian Mixture 0.807±0.042 0.380±0.050
Skewed-Gaussian 0.421±0.111 0.202±0.006

To demonstrate the effectiveness of the NewImp method vary different type of distributions, we
evaluate it across four distinct toy cases, each characterized by different distributions:

• Standard Gaussian: X (ideal) ∼ N (0, I2×2).

• Student’s-t (a heavy-tailed distribution): X (ideal) ∼ St-t(0,
[

1 0.5
0.5 1

]
).

• Gaussian Mixture: X (ideal) ∼ 1
3 ×N ([1, 2],

[
0.5 0
0 0.5

]
) + 1

3 ×N ([−1,−2],

[
0.5 0.1
0.1 0.5

]
) + 1

3 ×

N ([2,−2],

[
0.3 0
0 0.3

]
).

• Skewed Gaussian (via exponential transformation): X (ideal) = exp(ε), where ε ∼ N (0, I2×2).

Based on this, we display the contours of their density values in Fig. F.1, and we list the imputation
accuracy comparisons for MAR, MCAR, and MNAR scenarios with a 30% missing rate in Table F.1.
The results indicate that our NewImp approach generally performs better on non-standard Gaussian
type data, underscoring its universality and applicability. This enhanced performance is attributable
to our modeling strategy, which involves modeling the score function of the data [52, 50], which
eliminates the need for normalization, and consequently results in the NewImp approach can perform
well on complex data distributions, including skewed, heavy-tailed, and mixture distributions.

F.2 Additional Experimental Results with MNAR Scenario

In this section, we expand upon the results presented in Table 1 by including the MNAR scenario,
as detailed in Table F.2. Additionally, we report on the outcomes of an ablation study and sensi-
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tivity analysis in Tables F.4 and F.5 and Fig. F.2. These extended results lead to several pertinent
observations:

• Across three different missing data scenarios, the models consistently exhibit the poorest perfor-
mance under the MNAR condition. For instance, in the MNAR scenario, nearly all models show a
significant decrease in imputation accuracy and an increase in standard deviation. This supports the
assertion made in Appendix E.1 that addressing the MNAR scenario requires the incorporation of
relevant domain knowledge to mitigate biases introduced by the pattern of missing data.

• The findings from the ablation study under the MNAR scenario are consistent with those observed
in both MAR and MCAR scenarios in Section 5.3. This consistency underscores the importance of
including the NER term and adopting the joint distribution modeling approach.

• Similarly, the results from the sensitivity analysis under the MNAR scenario align with those from
MAR and MCAR scenarios in Section 5.4. This alignment reinforces our interpretations of model
performance across different groups of hyperparameters under MAR and MCAR scenarios.

Table F.2: Performance of MAE and WASS metrics at 30% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 0.93 ∗ 3.44 ∗ 0.92 ∗ 18.20 ∗ 0.85 ∗ 2.82 ∗ 0.81 ∗ 3.86 ∗ 0.70 ∗ 16.86 ∗ 0.99 ∗ 15.86 ∗ 0.65 ∗ 20.10 ∗ 0.77 ∗ 4.13 ∗

MissDiff 0.85 ∗ 2.20 ∗ 0.91 ∗ 16.53 ∗ 0.87 ∗ 1.59 ∗ 0.83 ∗ 3.87 ∗ 0.72 ∗ 13.25 ∗ 0.92 ∗ 17.07 ∗ 0.63 ∗ 26.25 ∗ 0.75 ∗ 6.88 ∗

GAIN 0.75 ∗ 0.65 ∗ 0.54 ∗ 1.64 ∗ 0.75 ∗ 0.67 ∗ 0.68 ∗ 0.68 ∗ 0.56 ∗ 1.88 ∗ 0.59 ∗ 1.90 ∗ 0.65 ∗ 5.05 ∗ 0.68 ∗ 0.87 ∗

MIRACLE 0.62 ∗ 0.38 0.55 ∗ 1.92 ∗ 0.43 0.25 0.55 ∗ 0.46 ∗ 3.39 ∗ 35.06 ∗ 4.14 ∗ 34.07 ∗ 0.46 2.87 ∗ 0.51 ∗ 0.56
MIWAE 0.64 0.53 0.52 ∗ 1.54 ∗ 0.76 ∗ 0.64 ∗ 0.82 ∗ 0.92 ∗ 0.50 ∗ 1.87 ∗ 0.65 ∗ 1.98 ∗ 0.55 ∗ 5.05 ∗ 0.62 ∗ 0.75 ∗

Sink 0.87 ∗ 0.92 ∗ 0.92 ∗ 3.84 ∗ 0.88 ∗ 0.83 ∗ 0.84 ∗ 0.98 ∗ 0.75 ∗ 2.43 ∗ 0.94 ∗ 3.61 ∗ 0.65 ∗ 4.71 ∗ 0.76 ∗ 1.04 ∗

TDM 0.83 ∗ 0.89 ∗ 0.83 ∗ 3.47 ∗ 0.81 ∗ 0.73 ∗ 0.76 ∗ 0.85 ∗ 0.62 ∗ 1.96 ∗ 0.86 ∗ 3.36 ∗ 0.59 ∗ 4.46 ∗ 0.73 ∗ 0.99 ∗

ReMasker 0.52 0.52 0.48 ∗ 1.15 0.60 ∗ 0.43 ∗ 0.49 ∗ 0.37 ∗ 0.62 ∗ 2.23 ∗ 0.61 ∗ 1.59 ∗ 0.60 ∗ 3.81 0.51 ∗ 0.59 ∗

NewImp 0.52 0.38 0.34 0.82 0.35 0.25 0.31 0.20 0.39 1.31 0.44 1.21 0.45 3.50 0.46 0.55

MCAR

CSDI_T 0.73 ∗ 1.93 ∗ 0.73 ∗ 15.51 ∗ 0.85 ∗ 2.71 ∗ 0.83 ∗ 3.79 ∗ 0.76 ∗ 15.19 ∗ 0.72 ∗ 12.42 ∗ 0.57 ∗ 19.89 ∗ 0.78 ∗ 4.11 ∗

MissDiff 0.72 ∗ 1.62 ∗ 0.73 ∗ 14.39 ∗ 0.84 ∗ 1.23 ∗ 0.82 ∗ 3.31 ∗ 0.75 ∗ 13.01 ∗ 0.71 ∗ 14.12 ∗ 0.56 ∗ 19.67 ∗ 0.76 ∗ 4.95 ∗

GAIN 0.72 ∗ 0.39 ∗ 0.38 ∗ 1.41 ∗ 0.78 ∗ 0.73 ∗ 0.72 ∗ 0.99 ∗ 0.57 ∗ 3.72 ∗ 0.46 ∗ 1.70 0.42 ∗ 3.62 0.73 ∗ 1.14 ∗

MIRACLE 0.52 0.15 ∗ 0.44 ∗ 1.94 ∗ 0.53 ∗ 0.35 0.61 ∗ 0.72 ∗ 2.99 ∗ 52.92 ∗ 3.38 ∗ 42.78 ∗ 0.35 2.71 ∗ 0.56 ∗ 0.75
MIWAE 0.58 ∗ 0.24 0.50 ∗ 2.55 ∗ 0.76 ∗ 0.69 ∗ 0.83 ∗ 1.24 ∗ 0.64 ∗ 4.95 ∗ 0.51 ∗ 2.05 ∗ 0.48 ∗ 5.87 ∗ 0.67 ∗ 0.95 ∗

Sink 0.73 ∗ 0.48 ∗ 0.75 ∗ 4.39 ∗ 0.84 ∗ 0.85 ∗ 0.82 ∗ 1.27 ∗ 0.75 ∗ 4.94 ∗ 0.74 ∗ 3.36 ∗ 0.61 ∗ 5.92 ∗ 0.76 ∗ 1.25 ∗

TDM 0.68 ∗ 0.42 ∗ 0.63 ∗ 3.57 ∗ 0.77 ∗ 0.75 ∗ 0.77 ∗ 1.15 ∗ 0.66 ∗ 4.20 ∗ 0.64 ∗ 2.89 ∗ 0.52 ∗ 5.34 ∗ 0.74 ∗ 1.20 ∗

ReMasker 0.46 ∗ 0.11 0.39 ∗ 1.69 ∗ 0.55 ∗ 0.37 0.56 ∗ 0.64 ∗ 0.54 ∗ 4.01 ∗ 0.48 ∗ 1.71 ∗ 0.45 ∗ 3.94 0.57 ∗ 0.76
NewImp 0.48 0.18 0.25 0.80 0.47 0.34 0.42 0.44 0.44 3.05 0.32 1.01 0.34 3.66 0.53 0.76

MNAR

CSDI_T 0.83 ∗ 2.29 ∗ 0.82 ∗ 15.68 ∗ 0.85 ∗ 2.78 ∗ 0.83 ∗ 3.83 ∗ 0.74 ∗ 15.54 ∗ 0.84 ∗ 12.20 ∗ 0.62 ∗ 19.77 ∗ 0.78 ∗ 4.09 ∗

MissDiff 0.78 ∗ 1.43 ∗ 0.81 ∗ 14.89 ∗ 0.84 ∗ 1.27 ∗ 0.83 ∗ 3.53 ∗ 0.72 ∗ 13.31 ∗ 0.81 ∗ 16.02 ∗ 0.61 ∗ 21.62 ∗ 0.76 ∗ 4.70 ∗

GAIN 0.77 ∗ 0.57 ∗ 0.62 ∗ 3.94 ∗ 0.78 ∗ 0.79 ∗ 0.78 ∗ 1.15 ∗ 0.71 ∗ 4.85 ∗ 0.70 ∗ 4.20 ∗ 0.76 ∗ 10.53 ∗ 0.75 ∗ 1.23 ∗

MIRACLE 0.63 0.35 0.60 ∗ 4.26 ∗ 0.52 ∗ 0.35 0.63 ∗ 0.77 ∗ 3.10 ∗ 55.56 ∗ 3.49 ∗ 44.76 ∗ 0.52 ∗ 5.61 0.58 ∗ 0.80
MIWAE 0.66 ∗ 0.42 0.56 ∗ 3.31 ∗ 0.74 ∗ 0.68 ∗ 0.85 ∗ 1.30 ∗ 0.59 ∗ 4.33 ∗ 0.60 ∗ 3.06 ∗ 0.53 ∗ 7.21 ∗ 0.67 ∗ 0.97 ∗

Sink 0.79 ∗ 0.68 ∗ 0.83 ∗ 5.90 ∗ 0.83 ∗ 0.89 ∗ 0.84 ∗ 1.36 ∗ 0.75 ∗ 4.86 ∗ 0.84 ∗ 5.02 ∗ 0.64 ∗ 7.23 ∗ 0.77 ∗ 1.33 ∗

TDM 0.76 ∗ 0.64 ∗ 0.74 ∗ 5.18 ∗ 0.76 ∗ 0.77 ∗ 0.79 ∗ 1.24 ∗ 0.64 ∗ 4.02 ∗ 0.76 ∗ 4.54 ∗ 0.57 ∗ 6.45 0.74 ∗ 1.23 ∗

ReMasker 0.53 0.28 0.42 ∗ 1.91 ∗ 0.54 ∗ 0.39 ∗ 0.59 ∗ 0.68 ∗ 0.51 ∗ 3.59 ∗ 0.63 ∗ 3.06 ∗ 0.47 5.02 0.56 0.77
NewImp 0.60 0.35 0.32 1.46 0.44 0.34 0.46 0.52 0.40 2.68 0.39 1.56 0.42 5.57 0.55 0.81

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the results
that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.
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Table F.3: Standard deviation of MAE and WASS metrics at 30% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 4.8E-2 2.9E-1 5.9E-2 2.6E0 2.7E-2 1.4E-1 2.0E-2 9.2E-2 2.1E-2 2.0E0 3.9E-2 3.1E0 2.0E-2 8.3E-1 1.8E-2 7.7E-2
MissDiff 4.0E-2 4.9E-1 3.1E-2 2.6E0 3.4E-2 2.6E-1 1.9E-2 1.2E0 5.4E-2 5.6E-1 3.0E-2 2.4E0 1.8E-2 4.9E0 1.6E-2 1.3E0
GAIN 1.0E-1 1.6E-1 4.3E-2 2.3E-1 3.4E-2 8.9E-2 1.9E-2 4.0E-2 5.8E-2 3.4E-1 5.4E-2 3.7E-1 6.9E-2 8.4E-1 3.9E-2 5.6E-2
MIRACLE 2.0E-2 6.3E-2 5.1E-2 4.0E-1 1.1E-2 2.0E-2 1.8E-2 2.1E-2 6.7E-1 1.2E1 4.2E-1 5.6E0 1.6E-2 1.9E-1 1.3E-2 2.8E-2
MIWAE 6.5E-2 1.5E-1 5.2E-2 2.5E-1 6.1E-2 1.2E-1 2.4E-2 4.6E-2 5.3E-2 1.8E-1 2.7E-2 1.8E-1 3.8E-2 2.8E-1 1.9E-2 2.7E-2
Sink 4.6E-2 1.2E-1 3.2E-2 1.6E-1 2.6E-2 7.4E-2 2.4E-2 5.5E-2 5.0E-2 2.0E-1 1.7E-2 9.3E-2 1.7E-2 7.6E-2 2.2E-2 4.4E-2
TDM 4.5E-2 1.2E-1 1.9E-2 8.2E-2 3.4E-2 8.6E-2 2.6E-2 5.2E-2 6.2E-2 2.1E-1 2.7E-2 1.7E-1 1.1E-2 8.1E-2 2.1E-2 4.7E-2
ReMasker 1.1E-1 2.4E-1 6.1E-2 2.0E-1 7.5E-2 8.4E-2 2.6E-2 3.0E-2 9.2E-2 4.8E-1 5.2E-2 1.8E-1 2.3E-2 3.6E-1 1.5E-2 2.2E-2
NewImp 2.0E-2 4.0E-2 2.7E-2 1.1E-1 5.6E-2 6.4E-2 1.6E-2 2.2E-2 1.9E-2 1.1E-1 1.1E-2 8.8E-2 1.9E-2 2.7E-1 1.6E-2 3.3E-2

MCAR

CSDI_T 1.0E-2 1.5E-1 8.7E-3 5.7E-1 8.7E-3 8.2E-2 4.6E-3 4.6E-2 4.6E-3 3.6E-1 1.1E-2 8.7E-1 3.7E-3 3.1E-1 1.2E-2 5.0E-2
MissDiff 6.4E-3 3.3E-1 8.2E-3 8.3E-1 3.5E-3 2.3E-1 5.9E-3 8.4E-1 7.1E-3 1.8E-1 4.6E-3 2.5E0 6.2E-3 2.4E0 4.1E-3 6.5E-1
GAIN 6.1E-2 1.0E-1 7.9E-3 2.6E-2 2.4E-2 5.2E-2 1.4E-2 3.4E-2 1.8E-2 1.8E-1 4.5E-2 3.8E-1 3.7E-3 1.8E-1 2.0E-2 5.5E-2
MIRACLE 2.6E-2 8.4E-3 1.6E-2 1.9E-1 1.7E-2 1.5E-2 5.2E-3 1.4E-2 4.3E-2 1.2E0 4.6E-2 1.1E0 1.0E-2 1.7E-1 1.1E-3 5.5E-3
MIWAE 3.1E-2 3.9E-2 4.8E-3 4.9E-2 7.6E-3 1.3E-2 1.6E-2 4.3E-2 9.4E-3 1.3E-1 1.0E-2 7.8E-2 9.1E-3 2.7E-1 4.1E-3 9.5E-3
Sink 7.3E-3 3.4E-2 4.6E-3 2.5E-2 7.0E-3 6.6E-3 4.5E-3 4.5E-3 4.2E-3 1.4E-1 1.0E-2 5.9E-2 3.3E-3 1.9E-1 3.9E-3 1.2E-2
TDM 4.9E-3 2.8E-2 8.7E-3 3.1E-2 9.8E-3 6.6E-3 6.9E-3 7.9E-3 1.0E-3 1.9E-3 3.3E-3 3.6E-2 9.3E-3 1.5E-1 5.1E-3 1.3E-2
ReMasker 1.5E-3 1.7E-2 2.0E-2 9.7E-2 3.2E-2 2.9E-2 1.7E-2 3.1E-2 9.3E-3 1.4E-1 3.8E-2 3.1E-1 4.8E-2 3.9E-1 7.6E-3 1.7E-2
NewImp 3.3E-3 3.7E-3 1.9E-3 4.6E-2 1.1E-2 1.8E-2 4.1E-3 1.8E-2 5.7E-3 1.1E-1 6.4E-3 3.7E-2 4.8E-3 1.7E-1 2.2E-3 1.1E-2

MNAR

CSDI_T 2.9E-2 2.2E-1 8.7E-3 7.8E-1 2.2E-2 1.3E-1 7.4E-3 7.4E-2 1.0E-2 5.9E-1 2.2E-2 1.8E0 2.6E-3 4.6E-1 2.4E-3 2.5E-2
MissDiff 3.7E-2 3.7E-1 2.4E-3 9.7E-1 5.9E-3 2.4E-1 5.5E-3 8.2E-1 1.4E-2 3.3E-1 1.0E-2 2.1E0 8.7E-3 3.3E0 4.0E-3 5.2E-1
GAIN 4.9E-2 1.2E-1 6.2E-2 6.9E-1 5.3E-2 8.6E-2 4.1E-2 9.3E-2 5.5E-3 4.8E-2 2.5E-2 4.7E-1 5.0E-2 1.2E0 4.0E-2 1.0E-1
MIRACLE 6.6E-2 9.5E-2 1.9E-2 4.7E-1 1.3E-2 1.3E-2 4.0E-3 1.7E-2 9.9E-2 3.5E0 6.9E-2 1.6E0 1.7E-2 1.7E-1 7.5E-3 1.2E-2
MIWAE 3.3E-2 6.4E-2 8.3E-3 3.7E-2 2.4E-2 3.5E-2 3.0E-2 8.7E-2 6.6E-3 7.2E-2 2.3E-2 3.2E-1 1.2E-2 1.5E-1 9.1E-3 2.0E-2
Sink 1.9E-2 6.2E-2 1.4E-2 1.4E-1 1.0E-2 6.3E-3 1.3E-2 3.9E-2 7.2E-3 5.1E-2 1.8E-2 3.5E-1 6.9E-3 1.6E-1 4.6E-3 2.9E-2
TDM 2.2E-2 6.8E-2 1.4E-2 1.2E-1 9.4E-3 8.3E-3 1.5E-2 3.8E-2 2.0E-2 7.7E-2 1.8E-2 3.7E-1 3.9E-3 1.8E-1 7.1E-3 2.1E-2
ReMasker 4.9E-2 5.0E-2 2.2E-2 1.0E-1 1.4E-2 1.7E-2 7.5E-3 9.9E-3 1.4E-2 9.5E-2 3.8E-2 1.7E-1 2.5E-2 4.0E-1 1.0E-2 7.5E-3
NewImp 2.5E-2 1.0E-1 3.9E-3 1.3E-1 1.9E-2 2.9E-2 8.4E-3 1.2E-2 9.0E-3 1.3E-1 8.5E-3 5.0E-2 7.1E-3 6.8E-1 5.8E-3 1.6E-2

Table F.4: Ablation study results at 30% missing rate.

Scenario NER Joint BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

% % 0.96∗ 3.82∗ 1.05∗ 20.2∗ 1.04∗ 5.47∗ 0.86∗ 5.81∗ 0.67∗ 20.2∗ 1.06∗ 15.6∗ 0.72∗ 22.5∗ 0.79∗ 6.49∗

% ! 0.54 0.42 0.34 0.82 0.61∗ 0.40∗ 0.58∗ 0.47∗ 0.43∗ 1.34 0.46∗ 1.25∗ 0.47∗ 3.56∗ 0.55∗ 0.64∗

! % 0.96∗ 3.83∗ 1.05∗ 20.3∗ 1.04∗ 5.49∗ 0.86∗ 5.83∗ 0.67∗ 20.2∗ 1.06∗ 15.6∗ 0.72∗ 22.5∗ 0.79∗ 6.51∗

! ! 0.52 0.38 0.34 0.82 0.35 0.25 0.31 0.20 0.39 1.31 0.44 1.21 0.45 3.50 0.46 0.55

MCAR

% % 0.72∗ 2.11∗ 0.74∗ 16.7∗ 0.85∗ 3.72∗ 0.83∗ 5.22∗ 0.74∗ 18.4∗ 0.71∗ 12.7∗ 0.58∗ 20.1∗ 0.76∗ 5.57∗

% ! 0.52∗ 0.17∗ 0.25 0.79 0.62∗ 0.46∗ 0.61∗ 0.71∗ 0.46 3.05 0.34 1.09 0.36∗ 3.74∗ 0.58∗ 0.82∗

! % 0.72∗ 2.12∗ 0.73∗ 16.8∗ 0.86∗ 3.73∗ 0.83∗ 5.24∗ 0.74∗ 18.4∗ 0.71∗ 12.7∗ 0.58∗ 20.1∗ 0.76∗ 5.60∗

! ! 0.48 0.18 0.25 0.80 0.47 0.34 0.42 0.44 0.44 3.05 0.32 1.01 0.34 3.66 0.53 0.76

MNAR

% % 0.81∗ 2.47∗ 0.89∗ 18.2∗ 0.87∗ 3.85∗ 0.85∗ 5.26∗ 0.69∗ 17.6∗ 0.87∗ 13.0∗ 0.64∗ 20.6∗ 0.77∗ 5.71∗

% ! 0.62 0.37 0.32 1.47 0.61∗ 0.47∗ 0.64∗ 0.79∗ 0.44 2.79 0.43∗ 1.88∗ 0.44∗ 5.65 0.60∗ 0.87∗

! % 0.82∗ 2.57∗ 0.89∗ 18.3∗ 0.87∗ 3.86∗ 0.85∗ 5.28∗ 0.69∗ 17.7∗ 0.88∗ 13.5∗ 0.64∗ 20.7∗ 0.77∗ 5.73∗

! ! 0.60 0.35 0.32 1.46 0.44 0.34 0.46 0.52 0.40 2.68 0.39 1.56 0.42 5.57 0.55 0.81

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the
results that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

Table F.5: Standard deviation of Ablation Study Results with missing rate at 30%.

Scenario NER Joint BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

% % 6.1E-2 4.1E-1 4.8E-2 6.8E-1 1.1E-1 5.6E-1 4.6E-2 4.5E-1 4.4E-2 3.8E0 1.4E-1 3.9E0 7.2E-2 2.4E0 5.0E-2 4.1E-1
% ! 6.9E-2 1.2E-1 2.7E-2 1.1E-1 2.8E-2 4.7E-2 2.5E-2 3.8E-2 2.7E-2 1.3E-1 1.0E-2 9.0E-2 1.8E-2 2.6E-1 2.8E-2 5.6E-2
! % 6.1E-2 4.1E-1 4.8E-2 6.8E-1 1.1E-1 5.6E-1 4.6E-2 4.5E-1 4.4E-2 3.8E0 1.4E-1 3.9E0 7.2E-2 2.4E0 5.0E-2 4.1E-1
! ! 2.0E-2 4.0E-2 2.6E-2 1.1E-1 5.6E-2 6.4E-2 1.6E-2 2.2E-2 1.9E-2 1.1E-1 1.1E-2 8.8E-2 1.9E-2 2.7E-1 1.6E-2 3.3E-2

MCAR

% % 9.9E-3 5.8E-2 1.0E-2 2.3E-1 3.6E-3 6.0E-2 3.2E-3 2.0E-2 9.5E-3 4.2E-1 1.5E-2 2.3E-1 1.1E-2 1.0E0 4.0E-3 1.4E-2
% ! 5.0E-3 5.9E-3 2.8E-3 4.6E-2 1.2E-2 1.5E-2 9.4E-3 1.7E-2 6.3E-3 1.2E-1 1.0E-2 1.2E-1 7.3E-3 1.9E-1 9.3E-4 3.9E-3
! % 1.0E-2 5.7E-2 1.0E-2 2.3E-1 3.6E-3 6.0E-2 3.2E-3 2.1E-2 9.5E-3 4.2E-1 1.5E-2 2.3E-1 1.0E-2 1.0E0 4.0E-3 1.4E-2
! ! 3.3E-3 3.7E-3 1.9E-3 4.6E-2 1.1E-2 1.8E-2 4.1E-3 1.8E-2 5.7E-3 1.1E-1 6.4E-3 3.7E-2 4.7E-3 1.7E-1 2.2E-3 1.1E-2

MNAR

% % 4.2E-2 1.5E-1 2.3E-2 8.5E-1 3.2E-2 1.8E-1 1.2E-2 5.3E-2 6.9E-3 1.2E-1 3.2E-2 9.6E-1 1.7E-2 8.3E-1 1.4E-2 1.0E-1
% ! 4.0E-2 1.4E-1 3.4E-3 1.3E-1 1.8E-2 2.1E-2 4.8E-3 1.7E-2 1.0E-2 1.3E-1 1.1E-2 1.7E-1 8.0E-3 7.0E-1 7.7E-3 1.3E-2
! % 4.8E-2 1.4E-1 2.4E-2 8.5E-1 3.3E-2 1.8E-1 1.2E-2 5.3E-2 6.9E-3 1.2E-1 1.9E-2 2.6E-1 1.6E-2 8.3E-1 1.4E-2 1.0E-1
! ! 2.5E-2 1.0E-1 3.9E-3 1.3E-1 1.9E-2 2.9E-2 8.4E-3 1.2E-2 9.0E-3 1.3E-1 8.5E-3 5.0E-2 7.2E-3 6.8E-1 5.7E-3 1.7E-2
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(a) MAR with 30% missing rate at CC dataset.
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Figure F.2: Parameter sensitivity of NewImp on bandwidth for kernel function (h), hidden unit of
score network HUscore, NER weight λ, and discretization step η for Eq. (9) on CC dataset. Mean
values and one standard deviation from mean are represented by scatters and shaded area, respectively.

F.3 Empirical Evidence for Selecting RBF Function

In our derivation process, we specifically selected the RBF kernel to satisfy the ‘zero boundary condi-
tion’: limX (joint)→∞K(X (joint), X̃

(joint)
) = 0 for the sake of avoiding the explicit density estimation of

the intractable proposal distribution r(X (joint)). This selection prompts an additional inquiry: What
if we replaced the RBF kernel with another that does not fulfill the ‘zero boundary condition’? To
maintain the rigor of our analysis, we compared the performance of the NewImp with alternative
kernel functions under identical settings. Consequently, we consider the following types of kernel
functions:

• linear kernel function (linear): K(X (joint), X̃
(joint)

) = [X (joint)][X̃
(joint)

]>

• polynomial kernel function (poly): K(X (joint), X̃
(joint)

) = {[X (joint)][X̃
(joint)

]>}2

• sigmoid kernel function (sigmoid): K(X (joint), X̃
(joint)

) = tanh{[X (joint)][X̃
(joint)

]>}

• cosine similarity kernel function (cos): K(X (joint), X̃
(joint)

) = { [X (joint)]
‖[X (joint)]‖}{

[X̃
(joint)

]

‖[X̃ (joint)
]‖
}>

• sine kernel function (sin): K(X (joint), X̃
(joint)

) = sin(|X (joint) − X̃
(joint)|22)

The experimental results are detailed in Table F.6 (For completeness, we also report the results
under the MNAR scenario). From the results, it is evident that other kernel functions, which do
not meet the ‘zero boundary condition’, perform significantly worse compared to the RBF kernel.
This demonstrates the critical importance of selecting the appropriate kernel function for achieving
accurate imputation results, thereby validating the choice of the RBF kernel for our NewImp approach.
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Table F.6: Imputation accuracy vary different kernels at 30% missing rate.

Scenario Kernel BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

linear 0.77 0.73 0.83 ∗ 3.36 ∗ 0.85 ∗ 0.77 ∗ 0.83 ∗ 0.97 ∗ 0.72 ∗ 2.42 ∗ 0.80 ∗ 2.50 ∗ 0.70 ∗ 4.58 ∗ 0.76 ∗ 1.02 ∗

poly 1.12 ∗ 1.40 ∗ 1.44 ∗ 8.36 ∗ 1.06 ∗ 1.16 ∗ 1.08 ∗ 1.55 ∗ 1.07 ∗ 5.93 ∗ 1.33 ∗ 5.93 ∗ 1.28 ∗ 14 ∗ 1.02 ∗ 1.76 ∗

sigmoid 0.89 ∗ 1.02 ∗ 1.44 ∗ 11 ∗ 0.82 0.74 ∗ 0.81 ∗ 0.93 ∗ 1.17 ∗ 13 1.30 ∗ 9.87 ∗ 1.02 ∗ 7.19 ∗ 0.77 ∗ 1.04 ∗

cos 0.68 0.53 0.80 ∗ 3.14 ∗ 0.82 ∗ 0.73 ∗ 0.81 ∗ 0.92 ∗ 0.71 ∗ 2.37 ∗ 0.78 ∗ 2.37 ∗ 0.74 4.56 0.74 ∗ 0.98 ∗

sin 8.62 ∗ 95 8.74 ∗ 291 ∗ 15 ∗ 282 ∗ 18 ∗ 493 ∗ 11 ∗ 456 ∗ 10 ∗ 307 ∗ 8.00 ∗ 314 ∗ 15 ∗ 387 ∗

RBF 0.52 0.38 0.34 0.82 0.35 0.25 0.31 0.20 0.39 1.31 0.44 1.21 0.45 3.50 0.46 0.55

MCAR

linear 0.71 ∗ 0.45 ∗ 0.87 ∗ 5.87 ∗ 0.83 ∗ 0.84 ∗ 0.81 ∗ 1.28 ∗ 0.81 ∗ 5.65 ∗ 0.83 ∗ 4.14 ∗ 0.62 ∗ 6.31 ∗ 0.76 ∗ 1.25 ∗

poly 0.94 ∗ 0.88 ∗ 1.31 ∗ 12 ∗ 0.98 ∗ 1.21 ∗ 0.99 ∗ 1.85 ∗ 1.11 ∗ 9.94 ∗ 1.27 ∗ 8.64 ∗ 1.11 ∗ 19 ∗ 0.92 ∗ 1.95 ∗

sigmoid 0.74 ∗ 0.48 ∗ 0.97 ∗ 8.00 ∗ 0.81 ∗ 0.82 ∗ 0.80 ∗ 1.23 ∗ 0.92 ∗ 7.36 ∗ 0.94 ∗ 6.54 ∗ 0.76 ∗ 7.62 ∗ 0.77 ∗ 1.28 ∗

cos 0.70 ∗ 0.42 ∗ 0.84 ∗ 5.51 ∗ 0.81 ∗ 0.81 ∗ 0.80 ∗ 1.24 ∗ 0.80 ∗ 5.48 ∗ 0.81 ∗ 3.96 ∗ 0.63 ∗ 6.01 ∗ 0.74 ∗ 1.20 ∗

sin 9.76 ∗ 95 ∗ 7.77 ∗ 435 ∗ 14 ∗ 332 ∗ 12 ∗ 353 ∗ 8.27 ∗ 542 ∗ 8.62 ∗ 385 ∗ 7.36 ∗ 468 ∗ 11 ∗ 289 ∗

RBF 0.48 0.18 0.25 0.80 0.47 0.34 0.42 0.44 0.44 3.05 0.32 1.01 0.34 3.66 0.53 0.76

MNAR

linear 0.76 ∗ 0.60 0.90 ∗ 6.36 ∗ 0.82 ∗ 0.88 ∗ 0.83 ∗ 1.32 ∗ 0.79 ∗ 5.36 ∗ 0.86 ∗ 4.62 ∗ 0.65 ∗ 7.26 ∗ 0.76 ∗ 1.29 ∗

poly 0.92 ∗ 0.87 ∗ 1.26 ∗ 11 ∗ 0.98 ∗ 1.26 ∗ 1.01 ∗ 1.90 ∗ 1.09 ∗ 9.55 ∗ 1.19 ∗ 7.71 ∗ 1.14 ∗ 19 ∗ 0.92 ∗ 2.09 ∗

sigmoid 0.77 ∗ 0.59 1.01 ∗ 8.86 ∗ 0.80 ∗ 0.85 ∗ 0.82 ∗ 1.27 ∗ 0.91 ∗ 7.71 ∗ 0.99 ∗ 7.38 ∗ 0.83 ∗ 9.27 ∗ 0.77 ∗ 1.31 ∗

cos 0.73 ∗ 0.55 0.88 ∗ 6.19 ∗ 0.81 ∗ 0.84 ∗ 0.82 ∗ 1.27 ∗ 0.79 ∗ 5.26 ∗ 0.87 ∗ 4.77 ∗ 0.68 ∗ 7.17 ∗ 0.75 ∗ 1.24 ∗

sin 8.89 ∗ 84 ∗ 7.31 ∗ 362 ∗ 13 ∗ 300 ∗ 12 ∗ 338 ∗ 8.64 ∗ 571 ∗ 8.34 ∗ 362 ∗ 7.27 ∗ 469 ∗ 11 ∗ 300 ∗

RBF 0.60 0.35 0.32 1.46 0.44 0.34 0.46 0.52 0.40 2.68 0.39 1.56 0.42 5.57 0.55 0.81

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the
results that RBF kernel significantly outperform with p-value< 0.05 over paired samples t-test.

Table F.7: Standard deviation of MAE and WASS metrics vary different kernels at 30% missing rate.

Scenario Kernel BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

linear 1.5E-1 2.4E-1 4.5E-2 4.3E-1 2.0E-2 3.0E-2 2.0E-2 5.0E-2 3.4E-2 1.7E-1 2.8E-2 3.2E-1 3.5E-2 2.6E-1 2.1E-2 3.7E-2
poly 3.9E-2 7.8E-2 8.5E-3 2.4E-1 3.0E-2 7.8E-2 2.6E-2 4.6E-2 5.6E-2 5.0E-1 5.2E-2 6.1E-1 6.6E-2 5.7E-1 4.7E-2 6.6E-2
sigmoid 4.1E-2 3.1E-1 4.1E-2 1.4E0 1.7E-2 6.7E-3 2.1E-2 5.4E-2 9.5E-2 9.9E0 1.2E-1 4.1E0 1.9E-2 1.7E-1 2.0E-2 6.2E-2
cos 1.3E-1 2.6E-1 5.5E-2 5.1E-1 1.6E-2 1.1E-2 2.0E-2 4.8E-2 3.7E-2 1.9E-1 1.2E-2 2.3E-1 2.1E-2 8.7E-2 1.4E-2 4.1E-2
sin 2.2E0 5.9E1 5.6E-1 4.7E1 2.8E0 1.0E2 2.5E0 1.4E2 2.5E-1 2.9E1 2.6E-1 1.1E1 2.0E-1 4.2E0 1.4E0 5.8E1
RBF 2.0E-2 4.0E-2 2.6E-2 1.1E-1 5.6E-2 6.4E-2 1.6E-2 2.2E-2 1.9E-2 1.1E-1 1.1E-2 8.8E-2 1.9E-2 2.7E-1 1.6E-2 3.3E-2

MCAR

linear 3.1E-2 2.5E-2 8.1E-3 2.2E-1 7.9E-3 1.7E-2 4.6E-3 2.1E-2 1.2E-2 2.0E-1 3.2E-2 2.8E-1 8.2E-3 1.2E-1 6.4E-3 1.7E-2
poly 3.2E-2 1.2E-1 9.0E-3 2.4E-1 8.2E-3 2.4E-2 8.5E-3 3.6E-2 2.2E-2 4.3E-1 1.6E-2 2.7E-1 1.1E-2 1.7E-1 9.2E-3 2.0E-2
sigmoid 2.1E-2 3.3E-2 3.5E-3 1.6E-1 7.7E-3 1.1E-2 5.3E-3 2.3E-2 4.1E-3 1.7E-1 1.2E-2 7.0E-1 7.7E-3 1.5E-1 6.7E-3 1.8E-2
cos 2.8E-2 4.5E-2 1.0E-2 2.5E-1 8.4E-3 1.7E-2 4.8E-3 2.1E-2 1.4E-2 2.0E-1 2.1E-2 2.1E-1 1.1E-2 1.3E-1 6.9E-3 1.9E-2
sin 1.3E0 2.2E1 3.4E-1 3.1E1 1.1E0 5.7E1 1.0E0 7.6E1 1.4E-1 1.3E1 4.2E-1 4.4E1 2.6E-1 2.2E1 1.3E0 9.4E1
RBF 3.3E-3 3.7E-3 1.9E-3 4.6E-2 1.1E-2 1.8E-2 4.1E-3 1.8E-2 5.7E-3 1.1E-1 6.4E-3 3.7E-2 4.7E-3 1.7E-1 2.2E-3 1.1E-2

MNAR

linear 3.0E-2 1.1E-1 2.5E-2 3.0E-1 2.3E-2 5.1E-2 2.1E-3 1.9E-2 2.3E-2 3.0E-1 4.4E-2 3.5E-1 1.2E-2 4.7E-1 4.2E-3 1.3E-2
poly 1.6E-2 9.5E-2 1.4E-2 3.2E-1 2.6E-2 5.4E-2 1.2E-2 6.2E-2 1.6E-2 2.0E-1 1.9E-2 1.5E-1 6.8E-3 5.3E-1 5.1E-3 8.4E-2
sigmoid 3.4E-2 1.4E-1 1.8E-2 2.2E-1 3.2E-2 6.8E-2 8.0E-4 1.6E-2 2.5E-2 6.8E-1 3.0E-3 1.7E-1 1.4E-2 4.5E-1 5.7E-3 1.1E-2
cos 4.3E-2 1.3E-1 2.9E-2 3.4E-1 2.6E-2 5.8E-2 1.8E-3 1.6E-2 2.5E-2 3.4E-1 4.2E-2 3.6E-1 8.0E-3 5.4E-1 4.6E-3 1.1E-2
sin 1.0E0 2.2E1 2.3E-1 1.8E1 1.4E0 8.7E1 5.5E-1 5.0E1 3.6E-1 1.8E1 1.7E-1 1.8E1 2.8E-1 3.3E1 1.2E0 7.1E1
RBF 2.5E-2 1.0E-1 3.9E-3 1.3E-1 1.9E-2 2.9E-2 8.4E-3 1.2E-2 9.0E-3 1.3E-1 8.5E-3 5.0E-2 7.2E-3 6.8E-1 5.7E-3 1.7E-2

F.4 Time Complexity Analysis

In this section, we present an analysis of the complexity of time for our NewImp approach. The
complexity analysis is based on the algorithms described in Algorithm 1. We begin by estimating
the time complexity of the score function ∇X (joint) log p̂(X (joint)). Assuming the number of layers
in the neural network that parameterize ∇X (joint) log p̂(X (joint)) is L and each layer has an equal
number of hidden units denoted as HUscore, the time complexity for the imputation algorithm defined
in Algorithm 1 is detailed as follows:

1. DSM Training Part (step 5): Building on the previous item, the time complexity for the DSM
training algorithm defined in Algorithm 3 is given as:

O
[
4×N×

(
D× HUscore + (L− 1)× HU2

score

)]
, (F.1)

where the factor of 4 comprises three distinct components: backward propagation (1), forward
propagation (1), and the acquisition of the sample-wise score function (2). Note that the network
parameter size is substantially smaller than the number of data points, thereby making the forward
computation of the score function the primary factor in time complexity.

2. Imputation Part (step 7):
• Score function computation: The time complexity for computing the score function is ex-

pressed as:
O
[
2×N×

(
D× HUscore + (L− 1)× HU2

score

)]
, (F.2)

where the factor 2 accounts for the backward propagation needed during the score function
computation.
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Figure F.3: Average computation time, where ‘Estimate’ indicates the ‘DSM Training Algorithm’ (step
5 of Algorithm 1), and ‘Impute’ indicates the imputation algorithm (step 7 of Algorithm 1). The
scatters and shaded areas indicate the mean and one standard deviation from the mean, respectively.

• Kernel function and its gradient: Employing the RBF kernelK(X, X̃) := exp
(
−‖X−X̃‖

2

2h2

)
,

the gradient with respect to X̃ is analytically determined as:

[∇X̃K(X, X̃)][:, j] = − 1

h2

[K(X, X̃)× X̃][:, j] + X̃[:, j]�
D∑
j=1

K(X, X̃)[:, j]

 .

(F.3)
The time complexities for calculating the kernel function and its gradient are specified
in Eqs. (F.4) and (F.5):

O
[
N2 ×D + N2

]
, (F.4)

O
[
N2 ×D + N2 + N×D

]
. (F.5)

Based on the abovementioned analysis, we explore how computational complexity varies with
different dataset sizes N and the number of features D, as shown in Figs. F.3 (a) and (b), respectively.
From these figures, it is evident that computational time increases with the dataset size N. However,
changes in the number of features D do not significantly affect the computation time. This observation
underscores that the primary determinant of computational complexity in our context is the dataset
size, aligning with our theoretical analysis, which indicates a quadratic relationship between time
complexity and the size of the dataset N for the ‘Imputation’ part, and N� D for the ‘DSM Training’
part, aligning with our theoretical analysis.

Moreover, the data reveals that the total computational time is predominantly governed by ‘Estimation’
part of our NewImp approach. This suggests that the training of the score function represents a
critical bottleneck in the efficiency of the NewImp algorithm. Therefore, accelerating the NewImp
algorithm crucially hinges on reducing the computational demands of the ‘Estimation’ part.

F.5 Convergence Analysis

In this section, we want to discuss the convergence of the proposed NewImp approach, prior to
delving into this discussion, it is essential to establish a clear definition of convergence:

Definition F.1. A sequence {F1,F2, ...,FT} is said to be convergent if there exists a real number G
such that for any given positive number ε (ε > 0), there exists a positive integer N , such that for all
indices n greater than N , the corresponding terms Fn, n ≥ N satisfy the inequality |Fn − G| < ε.

Based on Definition F.1, if a sequence is either monotonically increasing or monotonically decreasing
and bounded (either bounded above or bounded below), then it is guaranteed to converge according
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to the celebrated monotone convergence theorem (Section 3.14 in reference [45]). Based on this,
the convergence of the ‘Imputation’ part (step 7 of Algorithm 1) and DSM training part (step 5
of Algorithm 1) are proposed in the proceeding parts.
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Figure F.4: Evolution of evaluation metrics along iteration time τ under MAR scenario at 30%
missing rate. The shaded area indicates the ± 1.0 standard deviation uncertainty interval.

F.5.1 Convergence Analysis of the Imputation Part

In this section, we explore the convergence of the imputation part as defined in step 7 of Algorithm 1
within our NewImp approach. Based on this, we first prove the following proposition for the
convergence in the ‘Imputation’ part:

Proposition F.1. The convergence of the imputation part can be guaranteed, given that the discretiza-
tion step size η is small enough.
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Figure F.5: Evolution of evaluation metrics along iteration time τ under MCAR scenario at 30%
missing rate. The shaded area indicates the ± 1.0 standard deviation uncertainty interval.

Proof. First, let us reformulate the velocity field as follows:

u(X (joint))

=E
r(X̃

(joint)
)

−λ∇X̃
(miss)K(X (joint), X̃

(joint)
)

+ [∇
X̃

(miss) log p̂(X̃
(joint)

)]>K(X (joint), X̃
(joint)

)


(i)
=E

r(X̃
(joint)

)

λ[∇
X̃

(miss) log r(X̃
(joint)

)]>K(X (joint), X̃
(joint)

)

+ [∇
X̃

(miss) log p̂(X̃
(joint)

)]>K(X (joint), X̃
(joint)

)


=

∫
r(X̃

(joint)
)

λ∇X̃
(miss) log r(X̃

(joint)
)

+∇
X̃

(miss) log p̂(X̃
(joint)

)


>

K(X (joint), X̃
(joint)

)dX̃
(joint)

=

∫ λ∇X̃
(miss) log r(X̃

(joint)
)

+∇
X̃

(miss) log p̂(X̃
(joint)

)


>

K(X (joint), X̃
(joint)

)dr(X̃
(joint)

),

(F.6)

where (i) is based on integration by parts.
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Based on this reformulation, the inner product can be given as follows:

dFjoint-NER

dτ

=

∫ 〈
∇X (miss)

δFjoint-NER

δr(X (joint))
, u(X (joint))

〉
dr(X (miss))

=

∫∫
λ∇X̃

(miss) log r(X̃
(joint)

)

+∇
X̃

(miss) log p̂(X̃
(joint)

)


>

K(X (joint), X̃
(joint)

)×

{
λ∇X (miss) log r(X (joint))

+∇X (miss) log p̂(X (joint))

}
dr(X̃

(joint)
)dr(X (joint))

(i)
≥0,

(F.7)

where the (i) is predicated on the requirement that the kernel function,K(·, ·), is semi-positive definite.
Consequently, according to the abovementioned derivation, we can conclude that the evolution of
Fjoint-NER is monotonic increasing along τ . Furthermore, Fjoint-NER satisfies the following inequality:

Fjoint-NER

≤Fjoint-NER − (λ+ 1)Er(X (joint))[log r(X (joint))]

=− DKL
[
r(X (joint))‖p̂(X (joint))

]
≤0,

(F.8)

which indicates that Fjoint-NER is upper-bounded by 0.

According to Eqs. (F.7) and (F.8), the cost functional Fjoint-NER, driven by the velocity field u(X (joint))
along τ , converges. Building on this, employing a smaller step size η results in the iteration curve of
Fjoint-NER more closely approximating the ODE defined in Eq. (F.7). Consequently, a smaller η leads
to a sequence where Fjoint-NER monotonically increases, aligning with the theoretical expectations of
the ODE behavior.

Unfortunately, directly obtaining Fjoint-NER is intractable. Nevertheless, we can still observe the
changes in WASS and MAE across iteration time τ to demonstrate the convergence of the ’Impute’
part. To this end, we present the convergence trends along τ in Figs. F.4 to F.6. These figures illustrate
that both MAE and WASS generally decrease as the iteration epochs increase and eventually stabilize
after τ = 250. This observed behavior supports our theoretical findings regarding the convergence of
the ‘Imputation’ part.
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Figure F.6: Evolution of evaluation metrics along iteration time τ under MNAR scenario at 30%
missing rate. The shaded area indicates the ± 1.0 standard deviation uncertainty interval.

F.5.2 Convergence Analysis of the DSM Training

Similarly, we can also give the proposition of the DSM training algorithm located in step 5 of Algo-
rithm 1, and summarized in Algorithm 3:

Proposition F.2. The convergence of the DSM training algorithm can be guaranteed, given that the
learning rate lr is small enough.

Proof. In the beginning, let us reformulate the parameter learning procedure of the DSM training
algorithm as follows:

θτ+1 = θτ − lr ×∇θLDSM|θ=θτ , (F.9)

which can be further reformulated as follows:

θτ+1 − θτ
lr

= −∇θLDSM|θ=θτ

⇒ lim
lr→0

θτ+1 − θτ
lr

= −∇θLDSM|θ=θτ

⇒dθ

dτ
= −∇θLDSM

(F.10)

Meanwhile, note that:
dLDSM

dτ
=

〈
∇θLDSM,

dθ

dτ

〉
. (F.11)

Plugging Eq. (F.10) into Eq. (F.11), we can get the following result:

dLDSM

dτ
= −〈∇θLDSM,∇θLDSM〉 ≤ 0, (F.12)

which indicates that the iterative procedure for LDSM is monotonic decreasing along τ .
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Finally, recall Eq. (15), we can know that the following condition holds:

LDSM ≥ 0. (F.13)

Building on this, employing a smaller step size lr results in the iteration curve of LDSM more closely
approximating the ODE defined in Eq. (F.11). Consequently, a smaller lr leads to a sequence where
LDSM monotonically decreases, aligning with the theoretical expectations of the ODE behavior.

Based on this proposition, we plot the evolution of LDSM along time τ in Fig. F.7. These figures
illustrate that the LDSM generally decreases as the iteration epochs increase. This observed behavior
supports our theoretical findings regarding the convergence of the DSM training algorithm.
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Figure F.7: Evolution of LDSM, the loss function of ‘Estimation’ part along iteration time τ at 30%
missing rate. The shaded area indicates the ± 1.0 standard deviation uncertainty interval. The results
of LDSM are smoothed by exponential moving average with α = 0.60.
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F.6 Downstream Task Comparison

To further substantiate the rigor of our manuscript and demonstrate the efficacy of the proposed
NewImp approach, we conduct downstream task comparisons as detailed in this subsection. Initially,
we evaluate the classification performance on imputed data using the following protocol: 1) Selection
of datasets with non-binary labels. 2) Post-imputation, we train a support vector machine equipped
with an RBF kernel and an automatic kernel coefficient. We assess the model’s performance using
5-fold cross-validation, reporting both the mean and standard deviation of the accuracies across 10
runs with different random seeds. In this procedure, we select classification accuracy as our evaluation
metric. 3) Additionally, we include the accuracy of ground-truth data for reference. The comparative
results are presented in Table F.8. From Table F.8, it can be seen that the NewImp approach generally
has the best performance among all baseline models, this phenomenon reflects the superiority of the
proposed NewImp approach in a further way.

Table F.8: Classification accuracy results at 30% missing rate.

Scenario Model BCD CBV IS QB WQW

MAR

CSDI_T 0.677∗
±1.39E-17 0.069∗

±0.00E0 0.603∗
±1.39E-17 0.640∗

±0.00E0 0.441∗
±1.39E-17

MissDiff 0.839∗
±4.93E-17 0.406∗

±2.47E-17 0.900∗
±3.70E-17 0.783∗

±4.93E-17 0.490∗
±1.85E-17

GAIN 0.971∗
±1.23E-17 0.519∗

±1.85E-17 0.941±4.93E-17 0.794∗
±3.70E-17 0.512±6.17E-17

MIRACLE 0.966∗
±4.93E-17 0.579±3.70E-17 0.827∗

±2.47E-17 0.798∗
±2.47E-17 0.488∗

±3.08E-17
MIWAE 0.968∗

±6.94E-17 0.567∗
±2.08E-17 0.939∗

±5.55E-17 0.858±8.33E-17 0.482∗
±2.78E-17

Sink 0.958∗
±0.00E0 0.499∗

±1.39E-17 0.891∗
±4.16E-17 0.798∗

±6.94E-17 0.477∗
±1.39E-17

TDM 0.969∗
±4.16E-17 0.581∗

±5.55E-17 0.938∗
±4.16E-17 0.796∗

±5.55E-17 0.505∗
±4.86E-17

ReMasker 0.973∗
±2.78E-17 0.517∗

±2.08E-17 0.935∗
±0.00E0 0.859±4.16E-17 0.489∗

±1.85E-17
NewImp 0.974±6.17E-17 0.595±6.17E-17 0.947±4.93E-17 0.860±3.70E-17 0.513±4.86E-17

MCAR

CSDI_T 0.593∗
±1.39E-17 0.066∗

±2.60E-18 0.609∗
±1.39E-17 0.656∗

±0.00E0 0.441∗
±1.39E-17

MissDiff 0.756∗
±3.70E-17 0.327∗

±3.70E-17 0.883∗
±6.17E-17 0.732∗

±7.40E-17 0.478∗
±3.08E-17

GAIN 0.964∗
±7.40E-17 0.489±3.08E-17 0.929∗

±2.47E-17 0.837±6.17E-17 0.491±3.70E-17
MIRACLE 0.923∗

±6.17E-17 0.450∗
±2.47E-17 0.709∗

±7.40E-17 0.770∗
±0.00E0 0.474∗

±3.08E-17
MIWAE 0.957∗

±6.94E-17 0.451∗
±1.39E-17 0.917∗

±5.55E-17 0.831∗
±4.16E-17 0.492±2.08E-17

Sink 0.950∗
±0.00E0 0.446∗

±2.08E-17 0.877∗
±6.94E-17 0.768∗

±0.00E0 0.462∗
±2.08E-17

TDM 0.961∗
±8.33E-17 0.486∗

±3.47E-17 0.922∗
±5.55E-17 0.836±5.55E-17 0.489∗

±2.78E-17
ReMasker 0.965∗

±5.55E-17 0.468∗
±1.39E-17 0.922∗

±1.85E-17 0.762∗
±1.39E-17 0.479∗

±1.85E-17
NewImp 0.967±4.93E-17 0.494±4.32E-17 0.934±4.93E-17 0.839±2.47E-17 0.495±2.08E-17

MNAR

CSDI_T 0.658∗
±4.16E-17 0.078∗

±5.20E-18 0.608∗
±0.00E0 0.647∗

±0.00E0 0.440∗
±6.94E-18

MissDiff 0.800∗
±2.47E-17 0.322∗

±2.47E-17 0.884∗
±3.70E-17 0.749∗

±4.93E-17 0.480∗
±1.85E-17

GAIN 0.963∗
±6.17E-17 0.475±1.85E-17 0.925∗

±3.70E-17 0.837∗
±6.17E-17 0.493±2.47E-17

MIRACLE 0.930∗
±4.93E-17 0.457∗

±3.08E-17 0.721∗
±3.70E-17 0.777∗

±4.93E-17 0.481∗
±1.85E-17

MIWAE 0.961∗
±4.16E-17 0.437∗

±6.94E-18 0.917∗
±2.78E-17 0.839±1.39E-17 0.495±1.39E-17

Sink 0.946∗
±1.39E-17 0.427∗

±4.16E-17 0.882∗
±6.94E-17 0.781∗

±1.39E-17 0.469∗
±2.78E-17

TDM 0.962∗
±6.94E-17 0.469∗

±2.08E-17 0.927∗
±2.78E-17 0.773∗

±4.16E-17 0.489∗
±3.47E-17

ReMasker 0.965∗
±2.78E-17 0.458±3.47E-17 0.929∗

±5.55E-17 0.771∗
±2.78E-17 0.478∗

±2.78E-17
NewImp 0.969±4.93E-17 0.482±2.47E-17 0.943±4.93E-17 0.847±3.70E-17 0.497±4.86E-17

Ground Truth 0.985±9.87E-17 0.700±1.23E-17 0.989±0.00E0 0.908±1.23E-17 0.566±2.78E-17

Kindly Note: The best results are bolded and the second best results are underliend. “*”
marks the results that NewImp significantly outperform with p-value< 0.05 over paired
samples t-test.

Moreover, we also conduct downstream regression task comparisons as detailed in this subsection.
Initially, we evaluate the regression performance on imputed data using the following protocol: 1)
Selection of datasets with continuous outcome variables. 2) After imputation, we train a support
vector regression model equipped with an RBF kernel and an automatic kernel coefficient. We assess
the model’s performance using 5-fold cross-validation. In this procedure, we report both the mean
and standard deviation of the mean squared errors (MSE) and mean absolute error (MAE) across 10
runs with different random seeds. 3) Additionally, we include the MSE and MAE on ground-truth
data for reference. The comparative results are presented in Table F.9. As indicated in these results,
the NewImp approach consistently outperforms most of the baseline models, further validating its
superiority.
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Table F.9: Comparison results on the regression task with 30% missing rate.

Model
CC

MAR MCAR MNAR

MAE MSE MAE MSE MAE MSE

CSDI_T 1.41E1∗
±0.00E0 3.07E2∗

±5.60E2 1.41E1∗
±0.00E0 3.07E2∗

±5.64E2 1.41E1∗
±0.00E0 3.07E2∗

±5.59E2
MissDiff 1.25E1∗

±5.92E-16 2.31E2∗
±3.53E2 1.27E1∗

±5.92E-16 2.44E2∗
±3.88E2 1.27E1∗

±3.95E-16 2.45E2∗
±3.90E2

GAIN 1.23E1±7.89E-16 2.24E2±3.60E2 1.26E1∗
±3.95E-16 2.40E2∗

±3.90E2 1.68E1∗
±3.95E-16 2.38E2±3.95E2

MIRACLE 1.59E1∗
±5.92E-16 3.51E2∗

±3.51E2 1.60E1∗
±5.92E-16 3.71E2∗

±3.71E2 1.64E1∗
±7.89E-16 3.80E2∗

±3.80E2
MIWAE 1.23E1±2.22E-16 2.23E2∗

±3.63E2 1.27E1∗
±2.22E-16 2.43E2∗

±3.98E2 1.27E1±2.22E-16 2.42E2±4.05E2
Sink 1.58E1∗

±2.22E-16 3.48E2∗
±3.48E2 1.65E1∗

±8.88E-16 3.85E2∗
±3.85E2 1.66E1∗

±4.44E-16 3.87E2∗
±3.87E2

TDM 1.58E1±4.44E-16 2.19E2±3.49E2 1.26E1∗
±6.66E-16 2.38E2∗

±3.89E2 1.66E1±6.66E-16 2.37E2±3.86E2
ReMasker 1.58E1∗

±2.22E-16 3.44E2∗
±3.44E2 1.62E1∗

±4.44E-16 3.69E2∗
±3.69E2 1.64E1∗

±8.88E-16 3.72E2∗
±3.72E2

NewImp 1.22E1±1.18E-15 2.37E2±3.49E2 1.24E1±3.95E-16 2.37E2±3.78E2 1.26E1±7.89E-16 2.37E2±3.93E2

Ground Truth 1.01E1±5.92E-16 1.57E2±3.44E2 9.83E0±1.97E-16 1.55E2±4.23E2 1.04E1±1.97E-16 1.68E2±4.27E2

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the results
that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

F.7 Baseline Comparison Vary Different Missing Rates and Scenarios

In this section, we further present the extended analysis of model performance across varying missing
data rates, as detailed in Tables G.1, G.3, G.5 and G.7, and the corresponding standard deviation
error results are presented in Tables G.2, G.4, G.6 and G.8. From the comparison results, it can be
seen that our NewImp approach generally perform well compared to most of baseline models. This
phenomenon reflects that the proposed NewImp approach is robust to various missing rates, and
further proves its applicability.

Appendix G Limitations & Future Directions and Broader Impact

G.1 Limitations & Future Directions

The limitations and future research directions of this work can be summarized as follows:

• Utilization of Kernel Function: During the derivation of the velocity field, we employ RKHS
to ensure implementation easiness. However, this regularization term may impose restrictions on
the velocity field’s direction, potentially limiting imputation accuracy in high-dimensional settings.
Additionally, the computational complexity tends to scale quadratically with dataset size increases.
Exploring alternative regularization terms [13] to replace RKHS presents a promising direction.

• Training of Score Function: As discussed in Section F.4, the runtime of NewImp is predominantly
governed by the DSM function. Investigating techniques to reduce the training costs of this part,
such as employing sliced score matching [49], represents an intriguing area for future exploration.

• Wasserstein Gradient Flow Framework: The WGF framework currently operates as a first-order
system where each sample is equally weighted. A critical advancement would be the incorporation
of second-order systems, such as Hamiltonian dynamics [55, 61], and other gradient flows like
Fisher-Rao gradient flow [69] that assign variable weights to samples. These adaptations aim to
decrease computational times inherently.

• RD Support Assumption: In our manuscript, for ease of derivation, we assume that the distribution
we model has support on the real number domain RD, which limits the direct application of NewImp
to tabular data with categorical variables. This limitation can be alleviated by employing the mirror
descent approach. Specifically, for a categorical variable with D categories, the distribution belongs
to the Dirichlet distribution whose support lies on the simplex ∆D−1. On this basis, we can define
the Bregman function as the entropy function: Ψ(X) :=

∑D
j=1 (Xj logXj −Xj) and apply

mirror descent using this Bregman function to handle the categorical domain effectively. Notably,
similar approaches have been successfully applied in works focusing on constrained domain
sampling, as exemplified in [48]. We have implemented a comparable scheme in Section 3.1 and
Appendix B.
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G.2 Broader Impact Statement

MDI and DMs are pivotal areas within machine learning, each boasting a wide array of real-world
applications. While numerous applications exist, this paper does not single out any specific ones;
instead, it focuses on addressing fundamental challenges in these fields. This study significantly
advances the application of DMs for MDI by tackling prevalent issues such as inaccurate imputation
and challenging training processes. We believe that the insights garnered here can be applied to
related domains, such as probabilistic time-series forecasting and image inpainting, where accuracy is
often more critical than diversity in results. A common challenge across these domains is the nuanced
need for precision over variety, which can lead to overlooked opportunities in model application
and development. Our proposed method provides a fresh perspective on these tasks through an
optimization lens. It evaluates the appropriateness of directly applying existing diffusion models to
these tasks and, where necessary, proposes the derivation of novel algorithms. This approach not only
enhances the understanding of the underlying mechanisms but also paves the way for more targeted
and effective solutions in the future.

Table G.1: Performance of MAE and WASS metrics at 10% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 1.22 ∗ 6.09 ∗ 1.04 ∗ 23.73 ∗ 0.93 ∗ 3.43 ∗ 0.83 ∗ 4.06 ∗ 0.70 ∗ 16.73 ∗ 1.36 ∗ 23.27 ∗ 0.76 ∗ 24.16 ∗ 0.83 ∗ 5.06 ∗

MissDiff 1.08 ∗ 3.53 ∗ 1.02 ∗ 22.26 ∗ 0.92 ∗ 1.55 ∗ 0.84 ∗ 5.74 ∗ 0.70 ∗ 12.43 ∗ 1.25 ∗ 21.05 ∗ 0.74 ∗ 28.80 ∗ 0.82 ∗ 7.58 ∗

GAIN 0.97 ∗ 1.11 ∗ 0.51 ∗ 0.87 ∗ 0.84 ∗ 0.64 ∗ 0.71 ∗ 0.50 ∗ 0.43 0.56 0.66 1.31 0.55 1.69 ∗ 0.70 ∗ 0.63 ∗

MIRACLE 0.65 ∗ 0.41 0.52 ∗ 0.93 ∗ 0.35 ∗ 0.14 0.50 ∗ 0.26 ∗ 3.87 ∗ 19.88 ∗ 4.46 ∗ 23.51 ∗ 0.45 ∗ 1.23 ∗ 0.46 ∗ 0.33 ∗

MIWAE 0.74 ∗ 0.87 ∗ 0.60 ∗ 1.18 ∗ 0.74 ∗ 0.51 ∗ 0.83 ∗ 0.67 ∗ 0.45 ∗ 0.80 ∗ 0.76 ∗ 1.78 ∗ 0.63 2.84 0.61 ∗ 0.56 ∗

Sink 1.09 ∗ 1.60 ∗ 1.00 ∗ 2.53 ∗ 0.92 ∗ 0.67 ∗ 0.84 ∗ 0.67 ∗ 0.71 ∗ 1.03 ∗ 1.25 ∗ 3.52 ∗ 0.75 ∗ 2.69 0.82 ∗ 0.81 ∗

TDM 1.02 ∗ 1.49 ∗ 0.89 ∗ 2.22 ∗ 0.78 ∗ 0.54 ∗ 0.73 ∗ 0.54 ∗ 0.57 ∗ 0.78 1.14 ∗ 3.26 ∗ 0.68 ∗ 2.61 0.77 ∗ 0.75 ∗

ReMasker 0.61 1.00 0.64 ∗ 1.04 ∗ 1.02 ∗ 0.85 ∗ 0.47 ∗ 0.23 ∗ 0.65 ∗ 1.01 ∗ 0.77 ∗ 1.29 0.76 ∗ 2.31 ∗ 0.51 ∗ 0.41 ∗

NewImp 0.40 0.17 0.31 0.43 0.23 0.11 0.22 0.07 0.33 0.50 0.46 0.74 0.56 3.30 0.37 0.29

MCAR

CSDI_T 0.71 ∗ 1.99 ∗ 0.72 ∗ 16.40 ∗ 0.86 ∗ 2.58 ∗ 0.81 ∗ 3.69 ∗ 0.75 ∗ 16.01 ∗ 0.73 ∗ 12.20 ∗ 0.56 ∗ 20.77 ∗ 0.78 ∗ 4.02 ∗

MissDiff 0.70 ∗ 1.67 ∗ 0.72 ∗ 14.87 ∗ 0.86 ∗ 1.31 ∗ 0.81 ∗ 3.57 ∗ 0.74 ∗ 13.37 ∗ 0.72 ∗ 17.05 ∗ 0.56 ∗ 19.35 ∗ 0.76 ∗ 5.44 ∗

GAIN 0.66 ∗ 0.24 ∗ 0.36 ∗ 0.44 ∗ 0.76 ∗ 0.47 ∗ 0.69 ∗ 0.54 ∗ 0.53 ∗ 1.14 0.38 ∗ 0.40 0.39 ∗ 1.06 0.73 ∗ 0.61 ∗

MIRACLE 0.44 ∗ 0.10 0.36 ∗ 0.43 ∗ 0.38 ∗ 0.16 ∗ 0.53 ∗ 0.33 ∗ 3.68 ∗ 26.51 ∗ 3.78 ∗ 18.22 ∗ 0.29 ∗ 0.66 ∗ 0.47 ∗ 0.33 ∗

MIWAE 0.49 ∗ 0.13 ∗ 0.46 ∗ 0.83 ∗ 0.71 ∗ 0.43 ∗ 0.79 ∗ 0.68 ∗ 0.60 ∗ 1.81 ∗ 0.50 ∗ 0.74 ∗ 0.43 ∗ 1.81 ∗ 0.63 ∗ 0.51 ∗

Sink 0.70 ∗ 0.30 ∗ 0.75 ∗ 1.60 ∗ 0.83 ∗ 0.53 ∗ 0.81 ∗ 0.72 ∗ 0.75 ∗ 1.69 ∗ 0.75 ∗ 1.24 ∗ 0.59 ∗ 1.94 ∗ 0.76 ∗ 0.66 ∗

TDM 0.62 ∗ 0.24 ∗ 0.60 ∗ 1.22 ∗ 0.70 ∗ 0.43 ∗ 0.71 ∗ 0.59 ∗ 0.62 ∗ 1.36 ∗ 0.62 ∗ 0.99 ∗ 0.48 ∗ 1.60 ∗ 0.72 ∗ 0.61 ∗

ReMasker 0.39 0.11 0.46 ∗ 0.68 ∗ 1.04 ∗ 0.83 ∗ 0.48 ∗ 0.28 ∗ 0.70 ∗ 1.74 ∗ 0.55 ∗ 0.80 ∗ 0.69 ∗ 2.94 0.53 ∗ 0.39 ∗

NewImp 0.38 0.09 0.19 0.18 0.27 0.11 0.23 0.10 0.42 1.01 0.25 0.28 0.30 1.06 0.40 0.30

MNAR

CSDI_T 0.95 ∗ 3.52 ∗ 0.88 ∗ 17.87 ∗ 0.86 ∗ 2.93 ∗ 0.83 ∗ 3.97 ∗ 0.75 ∗ 16.50 ∗ 1.01 ∗ 13.26 ∗ 0.68 ∗ 21.44 ∗ 0.79 ∗ 4.28 ∗

MissDiff 0.91 ∗ 2.47 ∗ 0.88 ∗ 16.20 ∗ 0.85 ∗ 1.19 ∗ 0.84 ∗ 3.70 ∗ 0.75 ∗ 13.39 ∗ 0.99 ∗ 19.32 ∗ 0.66 ∗ 23.29 ∗ 0.77 ∗ 5.95 ∗

GAIN 0.86 ∗ 0.61 ∗ 0.42 ∗ 0.70 ∗ 0.79 ∗ 0.55 ∗ 0.69 ∗ 0.54 ∗ 0.51 ∗ 1.08 0.51 ∗ 0.92 ∗ 0.47 ∗ 1.69 0.73 ∗ 0.70 ∗

MIRACLE 0.55 ∗ 0.21 ∗ 0.45 ∗ 1.29 0.37 ∗ 0.16 ∗ 0.53 ∗ 0.34 ∗ 3.82 ∗ 28.83 ∗ 4.19 ∗ 23.82 ∗ 0.39 ∗ 1.26 ∗ 0.49 ∗ 0.40 ∗

MIWAE 0.65 ∗ 0.42 0.53 ∗ 1.16 ∗ 0.69 ∗ 0.46 ∗ 0.79 ∗ 0.70 ∗ 0.53 1.39 ∗ 0.62 ∗ 1.33 ∗ 0.54 ∗ 2.94 ∗ 0.64 ∗ 0.60 ∗

Sink 0.87 ∗ 0.76 ∗ 0.88 ∗ 2.48 ∗ 0.86 ∗ 0.62 ∗ 0.82 ∗ 0.75 ∗ 0.73 ∗ 1.62 ∗ 0.99 ∗ 2.70 ∗ 0.68 ∗ 3.29 ∗ 0.78 ∗ 0.75 ∗

TDM 0.80 ∗ 0.71 ∗ 0.75 ∗ 2.11 ∗ 0.74 ∗ 0.50 ∗ 0.73 ∗ 0.63 ∗ 0.59 ∗ 1.24 ∗ 0.86 ∗ 2.39 ∗ 0.59 ∗ 2.63 0.73 ∗ 0.71 ∗

ReMasker 0.49 0.30 0.53 ∗ 0.98 ∗ 1.02 ∗ 0.88 ∗ 0.48 ∗ 0.29 ∗ 0.66 ∗ 1.61 ∗ 0.67 ∗ 1.25 ∗ 0.64 ∗ 2.72 0.56 ∗ 0.48 ∗

NewImp 0.45 0.17 0.24 0.35 0.26 0.12 0.24 0.10 0.39 0.94 0.37 0.61 0.43 2.27 0.42 0.37

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the results
that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

Table G.2: Standard deviation of MAE and WASS metrics at 10% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 8.40E-2 4.70E-1 5.73E-2 4.03E0 7.79E-2 2.05E-1 2.22E-2 1.96E-1 2.97E-2 1.43E0 6.85E-2 3.39E0 4.30E-2 3.83E-1 2.67E-2 1.08E-1
MissDiff 4.34E-2 3.24E-1 5.70E-2 4.26E0 3.51E-2 3.77E-1 3.71E-2 1.50E0 4.67E-2 7.05E-1 3.18E-2 3.35E0 3.96E-2 7.29E0 2.87E-2 1.59E0
GAIN 1.44E-1 3.32E-1 5.59E-2 1.85E-1 3.78E-2 4.78E-2 1.18E-2 2.58E-2 5.25E-2 7.59E-2 1.57E-1 7.22E-1 2.44E-2 1.92E-1 1.25E-2 2.19E-2
MIRACLE 6.55E-2 1.12E-1 1.19E-2 1.38E-1 1.46E-2 1.27E-2 1.49E-2 1.95E-2 1.90E-1 1.52E0 1.99E-1 1.30E0 1.08E-2 7.11E-2 2.12E-3 1.85E-2
MIWAE 8.87E-2 2.19E-1 2.99E-2 1.77E-1 4.67E-2 4.99E-2 5.67E-2 9.82E-2 1.96E-2 5.08E-2 8.45E-2 4.42E-1 4.26E-2 2.86E-1 2.15E-2 3.69E-2
Sink 5.28E-2 1.26E-1 5.66E-2 2.93E-1 3.16E-2 5.04E-2 2.83E-2 5.79E-2 4.53E-2 8.88E-2 4.67E-2 2.93E-1 3.38E-2 1.84E-1 3.13E-2 4.13E-2
TDM 8.42E-2 1.98E-1 3.66E-2 2.21E-1 4.75E-2 6.48E-2 2.51E-2 5.68E-2 3.65E-2 7.34E-2 5.81E-2 2.97E-1 3.28E-2 1.90E-1 3.16E-2 3.87E-2
ReMasker 2.33E-1 8.46E-1 5.57E-2 2.07E-1 1.83E-1 2.35E-1 2.64E-2 1.98E-2 8.75E-2 1.61E-1 1.19E-1 3.01E-1 5.70E-2 1.46E-1 3.16E-2 3.40E-2
NewImp 5.63E-2 5.33E-2 2.25E-2 9.03E-2 2.36E-2 2.73E-2 9.44E-3 8.75E-3 1.22E-2 2.57E-2 4.05E-2 1.34E-1 2.90E-2 5.76E-1 1.70E-2 1.39E-2

MCAR

CSDI_T 6.90E-2 4.06E-1 1.58E-2 1.65E0 1.51E-2 9.41E-2 2.33E-2 3.58E-2 9.82E-3 1.01E0 1.31E-2 1.53E0 9.31E-3 8.50E-1 1.03E-2 2.82E-2
MissDiff 4.96E-2 7.60E-1 6.70E-3 1.04E0 2.50E-2 3.11E-1 2.36E-2 1.15E0 1.57E-2 1.69E-1 2.17E-2 4.25E0 8.41E-3 3.11E0 5.96E-3 8.13E-1
GAIN 4.38E-2 4.20E-2 8.76E-3 5.12E-2 1.41E-2 1.22E-2 2.65E-2 2.09E-2 1.92E-2 5.98E-2 2.05E-2 3.80E-2 3.98E-3 5.01E-2 2.27E-2 2.88E-2
MIRACLE 3.17E-2 2.13E-2 1.59E-2 6.51E-2 1.63E-2 1.03E-2 8.49E-3 1.19E-2 3.40E-2 1.47E-1 3.42E-2 8.95E-1 4.42E-3 6.60E-2 3.87E-3 7.14E-3
MIWAE 6.09E-2 1.90E-2 1.18E-2 8.69E-2 1.70E-2 2.15E-2 4.14E-2 6.57E-2 2.40E-2 1.98E-1 1.92E-2 6.49E-2 1.49E-2 8.14E-2 7.89E-3 1.34E-2
Sink 3.16E-2 2.47E-2 2.29E-2 1.47E-1 6.26E-3 8.34E-3 1.84E-2 2.20E-2 8.12E-3 4.84E-2 2.87E-2 1.23E-1 8.64E-3 7.37E-2 5.37E-3 1.77E-2
TDM 3.21E-2 2.86E-2 2.17E-2 1.37E-1 6.99E-3 1.19E-2 1.53E-2 2.11E-2 8.58E-3 4.32E-2 2.43E-2 9.17E-2 6.84E-3 5.71E-2 5.76E-3 6.96E-3
ReMasker 4.99E-2 2.79E-2 3.02E-2 1.24E-1 1.78E-1 2.20E-1 1.39E-2 1.17E-2 4.38E-2 1.14E-1 6.17E-2 1.34E-1 1.89E-1 1.37E0 3.40E-2 2.15E-2
NewImp 2.82E-2 2.16E-2 7.19E-3 2.94E-2 7.99E-3 8.76E-3 9.89E-3 1.11E-2 1.05E-2 6.14E-2 4.15E-3 2.23E-2 8.38E-3 1.33E-1 1.01E-3 6.86E-3

MNAR

CSDI_T 1.47E-1 4.94E-1 1.71E-2 2.27E0 3.58E-2 1.73E-1 1.79E-2 1.50E-1 1.23E-2 1.89E0 7.42E-2 2.65E0 1.32E-2 4.92E-1 1.43E-2 1.19E-1
MissDiff 1.19E-1 2.63E-1 2.16E-2 2.32E0 1.80E-2 1.81E-1 2.77E-2 9.92E-1 1.54E-2 6.34E-1 5.43E-2 4.20E0 6.09E-3 4.98E0 1.64E-2 8.58E-1
GAIN 7.02E-2 2.01E-1 1.90E-2 6.29E-2 4.72E-2 6.21E-2 3.69E-2 6.55E-2 2.32E-2 5.24E-2 2.17E-2 6.10E-2 1.39E-2 2.34E-1 3.08E-2 3.76E-2
MIRACLE 5.13E-2 7.64E-2 4.21E-2 8.97E-1 9.90E-3 6.04E-3 8.72E-3 1.04E-2 1.76E-1 1.36E0 9.38E-2 1.00E0 7.89E-3 1.91E-1 6.14E-3 2.36E-2
MIWAE 1.03E-1 2.46E-1 1.31E-2 8.95E-2 1.94E-2 3.61E-2 4.34E-2 7.25E-2 4.83E-2 8.55E-2 2.57E-2 1.70E-1 4.28E-2 3.40E-1 1.16E-2 2.48E-2
Sink 1.10E-1 3.22E-1 1.49E-2 7.35E-2 2.26E-2 3.63E-2 2.57E-2 5.42E-2 9.10E-3 4.04E-2 3.37E-2 1.57E-1 9.34E-3 2.04E-1 1.77E-2 3.95E-2
TDM 1.28E-1 3.40E-1 1.25E-2 6.81E-2 2.76E-2 3.32E-2 2.76E-2 5.37E-2 1.66E-2 2.48E-2 2.62E-2 1.15E-1 2.01E-2 1.93E-1 9.26E-3 2.65E-2
ReMasker 2.41E-2 5.68E-2 6.82E-2 1.70E-1 1.07E-1 1.70E-1 2.33E-2 3.57E-2 2.46E-2 7.26E-2 1.42E-2 9.66E-2 1.93E-2 3.59E-1 3.33E-2 2.70E-2
NewImp 5.64E-2 7.75E-2 4.16E-3 2.50E-2 9.49E-3 1.32E-2 1.18E-2 1.16E-2 9.58E-3 3.64E-2 2.08E-2 9.91E-2 1.70E-2 3.24E-1 9.42E-3 2.73E-2

44



Table G.3: Performance of MAE and WASS metrics at 20% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 0.99 ∗ 4.07 ∗ 0.98 ∗ 19.69 ∗ 0.89 ∗ 2.97 ∗ 0.86 ∗ 4.09 ∗ 0.69 ∗ 16.70 ∗ 1.07 ∗ 13.54 ∗ 0.70 ∗ 20.67 ∗ 0.78 ∗ 4.36 ∗

MissDiff 0.91 ∗ 2.19 ∗ 0.96 ∗ 18.37 ∗ 0.87 ∗ 1.37 ∗ 0.87 ∗ 5.71 ∗ 0.70 ∗ 13.36 ∗ 1.05 ∗ 17.50 ∗ 0.69 ∗ 24.45 ∗ 0.78 ∗ 6.64 ∗

GAIN 1.02 ∗ 1.11 0.53 ∗ 1.35 ∗ 0.74 ∗ 0.58 ∗ 0.71 ∗ 0.63 ∗ 0.48 ∗ 1.01 0.55 ∗ 1.07 0.59 ∗ 3.02 0.75 ∗ 0.82 ∗

MIRACLE 0.69 ∗ 0.46 0.47 ∗ 1.14 ∗ 0.38 ∗ 0.18 ∗ 0.54 ∗ 0.37 ∗ 3.80 ∗ 30.49 ∗ 3.99 ∗ 23.48 ∗ 0.45 ∗ 1.91 ∗ 0.51 ∗ 0.48
MIWAE 0.68 ∗ 0.61 0.56 ∗ 1.51 ∗ 0.68 ∗ 0.52 ∗ 0.84 ∗ 0.82 ∗ 0.51 ∗ 1.39 ∗ 0.67 ∗ 1.56 ∗ 0.59 ∗ 3.81 ∗ 0.65 ∗ 0.67 ∗

Sink 0.93 ∗ 1.10 ∗ 0.96 ∗ 3.45 ∗ 0.88 ∗ 0.72 ∗ 0.88 ∗ 0.89 ∗ 0.73 ∗ 1.68 ∗ 1.04 ∗ 3.21 ∗ 0.70 ∗ 3.49 ∗ 0.78 ∗ 0.89 ∗

TDM 0.88 ∗ 1.06 ∗ 0.87 ∗ 3.07 ∗ 0.77 ∗ 0.61 ∗ 0.78 ∗ 0.74 ∗ 0.59 ∗ 1.31 ∗ 0.95 ∗ 2.95 ∗ 0.63 ∗ 3.32 ∗ 0.75 ∗ 0.84 ∗

ReMasker 0.51 0.42 0.52 ∗ 1.16 ∗ nan nan 0.50 ∗ 0.32 ∗ 0.60 ∗ 1.49 ∗ 0.65 ∗ 1.39 ∗ 0.76 3.98 0.53 ∗ 0.51 ∗

NewImp 0.55 0.53 0.31 0.68 0.28 0.16 0.27 0.13 0.35 0.83 0.42 0.78 0.51 2.91 0.45 0.46

MCAR

CSDI_T 0.74 ∗ 2.05 ∗ 0.73 ∗ 16.83 ∗ 0.85 ∗ 2.63 ∗ 0.82 ∗ 3.73 ∗ 0.76 ∗ 15.93 ∗ 0.74 ∗ 11.85 ∗ 0.57 ∗ 20.29 ∗ 0.78 ∗ 4.03 ∗

MissDiff 0.73 ∗ 1.64 ∗ 0.74 ∗ 14.08 ∗ 0.84 ∗ 1.25 ∗ 0.82 ∗ 3.71 ∗ 0.74 ∗ 13.09 ∗ 0.73 ∗ 16.22 ∗ 0.56 ∗ 22.27 ∗ 0.76 ∗ 5.46 ∗

GAIN 0.70 ∗ 0.31 ∗ 0.36 ∗ 0.86 ∗ 0.77 ∗ 0.60 ∗ 0.69 ∗ 0.72 ∗ 0.53 ∗ 2.27 ∗ 0.39 ∗ 0.76 ∗ 0.41 ∗ 2.13 0.71 ∗ 0.82 ∗

MIRACLE 0.48 ∗ 0.12 0.40 ∗ 1.05 ∗ 0.44 ∗ 0.23 ∗ 0.56 ∗ 0.50 ∗ 3.37 ∗ 44.75 ∗ 3.60 ∗ 31.60 ∗ 0.32 1.46 ∗ 0.52 ∗ 0.53 ∗

MIWAE 0.53 ∗ 0.18 0.48 ∗ 1.68 ∗ 0.73 ∗ 0.55 ∗ 0.81 ∗ 0.95 ∗ 0.62 ∗ 3.18 ∗ 0.48 ∗ 1.26 ∗ 0.47 ∗ 3.92 ∗ 0.65 ∗ 0.73 ∗

Sink 0.73 ∗ 0.40 ∗ 0.75 ∗ 2.99 ∗ 0.84 ∗ 0.68 ∗ 0.82 ∗ 0.97 ∗ 0.75 ∗ 3.30 ∗ 0.73 ∗ 2.14 ∗ 0.60 ∗ 3.81 ∗ 0.76 ∗ 0.94 ∗

TDM 0.67 ∗ 0.35 ∗ 0.62 ∗ 2.37 ∗ 0.74 ∗ 0.56 ∗ 0.75 ∗ 0.84 ∗ 0.64 ∗ 2.73 ∗ 0.61 ∗ 1.72 ∗ 0.50 ∗ 3.31 ∗ 0.73 ∗ 0.88 ∗

ReMasker 0.42 0.10 0.41 ∗ 1.22 ∗ nan nan 0.50 ∗ 0.41 ∗ 0.62 ∗ 2.87 ∗ 0.51 ∗ 1.36 ∗ 0.56 ∗ 4.09 0.54 ∗ 0.55
NewImp 0.44 0.14 0.22 0.44 0.36 0.20 0.31 0.22 0.41 1.92 0.28 0.59 0.32 2.27 0.47 0.50

MNAR

CSDI_T 0.85 ∗ 2.50 ∗ 0.86 ∗ 17.08 ∗ 0.84 ∗ 2.70 ∗ 0.83 ∗ 3.84 ∗ 0.74 ∗ 15.92 ∗ 0.90 ∗ 11.70 ∗ 0.64 ∗ 20.01 ∗ 0.78 ∗ 4.10 ∗

MissDiff 0.80 ∗ 1.63 ∗ 0.85 ∗ 15.69 ∗ 0.85 ∗ 1.18 ∗ 0.83 ∗ 4.40 ∗ 0.73 ∗ 13.54 ∗ 0.89 ∗ 16.08 ∗ 0.63 ∗ 21.83 ∗ 0.76 ∗ 5.69 ∗

GAIN 0.80 ∗ 0.48 ∗ 0.43 ∗ 1.46 ∗ 0.72 ∗ 0.57 ∗ 0.68 ∗ 0.74 ∗ 0.56 ∗ 2.40 ∗ 0.55 ∗ 2.05 ∗ 0.51 ∗ 4.08 0.71 ∗ 0.87 ∗

MIRACLE 0.54 0.19 0.48 ∗ 2.02 0.44 ∗ 0.23 0.57 ∗ 0.54 ∗ 3.35 ∗ 42.49 ∗ 3.85 ∗ 34.51 ∗ 0.43 2.89 0.53 ∗ 0.57 ∗

MIWAE 0.60 ∗ 0.31 ∗ 0.53 ∗ 2.08 ∗ 0.72 ∗ 0.56 ∗ 0.82 ∗ 1.00 ∗ 0.57 ∗ 2.81 ∗ 0.63 ∗ 2.32 ∗ 0.54 ∗ 5.52 ∗ 0.65 ∗ 0.76 ∗

Sink 0.77 ∗ 0.55 ∗ 0.84 ∗ 4.13 ∗ 0.83 ∗ 0.69 ∗ 0.82 ∗ 1.02 ∗ 0.74 ∗ 3.19 ∗ 0.91 ∗ 3.98 ∗ 0.67 ∗ 5.39 ∗ 0.76 ∗ 0.99 ∗

TDM 0.71 ∗ 0.49 ∗ 0.74 ∗ 3.56 ∗ 0.73 ∗ 0.58 ∗ 0.76 ∗ 0.90 ∗ 0.62 ∗ 2.60 ∗ 0.81 ∗ 3.57 ∗ 0.57 ∗ 4.95 0.73 ∗ 0.94 ∗

ReMasker 0.49 0.27 0.48 ∗ 1.56 ∗ nan nan 0.52 ∗ 0.46 ∗ 0.55 ∗ 2.52 ∗ 0.59 ∗ 1.84 ∗ 0.58 ∗ 4.49 0.56 ∗ 0.62 ∗

NewImp 0.48 0.17 0.27 0.76 0.36 0.21 0.33 0.25 0.39 1.79 0.39 1.17 0.43 4.03 0.48 0.54

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the results
that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

Table G.4: Standard deviation of MAE and WASS metrics at 20% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 1.45E-1 5.95E-1 3.96E-2 2.78E0 6.42E-2 2.35E-1 3.95E-3 2.24E-1 5.04E-3 2.03E0 9.93E-2 3.40E0 1.84E-2 9.01E-1 2.76E-2 1.28E-1
MissDiff 1.35E-1 7.18E-1 7.42E-3 3.48E0 1.84E-2 1.67E-1 1.38E-2 1.02E0 1.29E-2 8.67E-1 3.32E-2 3.61E0 7.57E-3 5.95E0 3.28E-2 8.13E-1
GAIN 3.18E-1 5.29E-1 5.32E-2 2.81E-1 3.98E-2 5.34E-2 2.87E-2 6.18E-2 4.32E-2 1.25E-1 2.46E-3 3.84E-2 5.71E-2 3.76E-1 6.93E-2 9.70E-2
MIRACLE 1.44E-1 1.75E-1 2.22E-2 6.20E-2 1.89E-2 1.43E-2 1.49E-2 2.46E-2 3.01E-1 4.73E0 3.73E-1 3.82E0 2.56E-2 2.59E-1 4.69E-2 3.77E-2
MIWAE 1.62E-1 2.25E-1 2.11E-2 1.76E-1 1.31E-2 4.51E-2 3.24E-2 6.88E-2 2.55E-2 4.75E-2 3.67E-2 1.36E-1 2.82E-2 2.78E-1 6.03E-2 5.11E-2
Sink 1.38E-1 2.45E-1 9.11E-3 1.75E-1 3.48E-2 7.35E-2 1.23E-2 3.27E-2 3.42E-3 4.49E-2 3.73E-2 2.47E-1 1.08E-2 3.28E-1 3.56E-2 6.35E-2
TDM 1.53E-1 2.59E-1 4.48E-3 1.16E-1 3.30E-2 7.34E-2 8.41E-3 2.25E-2 2.85E-2 3.93E-2 3.31E-2 2.15E-1 2.29E-2 3.44E-1 3.24E-2 5.11E-2
ReMasker 1.27E-1 1.32E-1 9.08E-2 3.42E-1 9.42E-2 1.75E-1 1.90E-2 2.42E-2 3.78E-2 8.97E-2 4.59E-2 1.29E-1 1.54E-1 1.38E0 4.45E-2 4.02E-2
NewImp 1.33E-1 2.16E-1 1.29E-2 1.18E-1 1.87E-2 1.23E-2 3.36E-3 5.46E-3 4.84E-3 4.37E-2 2.55E-2 1.49E-1 1.98E-2 1.76E-1 6.04E-2 6.49E-2

MCAR

CSDI_T 4.54E-2 5.09E-2 1.05E-2 1.33E0 1.73E-2 1.46E-1 5.36E-3 3.03E-2 8.51E-3 7.25E-1 1.69E-2 1.37E0 4.54E-3 5.07E-1 2.54E-3 2.50E-2
MissDiff 3.37E-2 5.02E-1 9.14E-3 5.36E-1 1.75E-2 2.94E-1 7.44E-3 1.06E0 9.22E-3 9.56E-2 1.49E-2 2.37E0 3.06E-3 2.59E0 7.27E-3 1.13E0
GAIN 5.67E-2 5.60E-2 7.51E-3 3.57E-2 6.21E-3 2.45E-2 2.02E-2 3.50E-2 7.40E-3 3.03E-2 9.46E-3 4.17E-2 1.42E-2 1.77E-1 1.67E-2 1.82E-2
MIRACLE 2.35E-2 2.34E-2 1.35E-2 4.06E-2 5.66E-3 6.01E-3 5.36E-3 1.14E-2 2.36E-2 1.98E-1 1.21E-1 1.83E0 4.58E-3 1.09E-1 7.64E-3 2.30E-2
MIWAE 2.76E-2 1.85E-2 1.10E-2 5.57E-2 2.79E-2 4.10E-2 1.68E-2 5.13E-2 2.73E-2 1.16E-1 1.64E-2 7.49E-2 1.61E-2 2.68E-1 5.22E-3 1.72E-2
Sink 2.04E-2 2.24E-2 5.92E-3 7.02E-2 1.33E-2 2.09E-2 1.16E-2 3.50E-2 2.84E-3 5.01E-2 8.93E-3 8.83E-2 7.60E-3 2.46E-1 6.25E-3 2.48E-2
TDM 1.48E-2 2.87E-2 6.57E-3 7.20E-2 1.42E-2 1.93E-2 1.38E-2 3.52E-2 2.61E-3 7.96E-3 1.84E-2 9.92E-2 1.01E-2 1.93E-1 4.91E-3 1.32E-2
ReMasker 3.25E-2 9.47E-3 1.41E-2 1.29E-1 1.07E-1 1.96E-1 1.09E-2 1.09E-2 4.00E-2 1.63E-1 4.79E-2 3.06E-1 1.13E-1 1.56E0 8.09E-3 1.52E-2
NewImp 3.25E-2 2.44E-2 1.42E-3 2.83E-2 3.12E-3 1.66E-2 8.22E-3 1.95E-3 1.13E-2 4.72E-2 6.48E-3 2.83E-2 1.97E-3 1.52E-1 4.82E-3 1.22E-2

MNAR

CSDI_T 8.79E-2 3.69E-1 2.23E-2 1.85E0 1.92E-2 1.35E-1 1.44E-2 1.07E-1 1.17E-2 1.28E0 1.33E-2 1.89E0 5.62E-3 6.07E-1 7.60E-3 3.31E-2
MissDiff 5.88E-2 7.69E-1 8.45E-3 1.82E0 1.03E-2 2.02E-1 1.97E-2 8.06E-1 2.19E-2 2.28E-1 1.39E-2 4.05E0 8.29E-3 3.70E0 8.84E-3 2.05E-1
GAIN 3.27E-2 8.42E-2 2.23E-2 1.90E-1 4.37E-2 6.57E-2 2.17E-2 3.99E-2 7.77E-3 8.22E-2 2.45E-2 2.00E-1 2.07E-2 2.61E-1 1.65E-2 5.25E-2
MIRACLE 2.42E-2 2.71E-2 5.33E-2 8.42E-1 1.65E-2 1.82E-2 2.34E-2 3.99E-2 7.48E-2 2.21E0 6.79E-2 1.25E0 2.25E-2 3.69E-1 5.58E-3 1.39E-2
MIWAE 1.04E-2 3.27E-2 9.20E-3 4.25E-2 3.77E-2 6.09E-2 1.96E-2 4.44E-2 2.51E-2 1.70E-1 5.47E-2 3.37E-1 3.40E-2 4.35E-1 6.92E-3 2.52E-2
Sink 1.93E-2 6.83E-2 2.07E-2 1.43E-1 8.90E-3 2.11E-2 2.06E-2 3.74E-2 1.97E-2 1.37E-1 3.13E-2 1.86E-1 3.57E-3 3.95E-1 7.94E-3 2.33E-2
TDM 2.20E-2 6.10E-2 2.29E-2 1.27E-1 1.02E-2 2.07E-2 2.02E-2 3.68E-2 2.99E-2 1.34E-1 2.51E-2 1.59E-1 1.03E-2 2.80E-1 5.78E-3 1.86E-2
ReMasker 2.99E-2 1.14E-1 3.00E-2 1.38E-1 8.40E-2 1.71E-1 2.04E-2 2.98E-2 3.94E-2 2.77E-1 3.44E-2 2.01E-1 6.90E-2 9.91E-1 1.76E-2 2.88E-2
NewImp 2.04E-2 1.70E-2 4.70E-3 1.96E-2 1.38E-2 1.78E-2 1.45E-2 2.77E-2 3.86E-3 8.63E-3 7.47E-3 8.12E-2 2.18E-2 6.56E-1 4.31E-3 1.59E-2
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Table G.5: Performance of MAE and WASS metrics at 40% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 0.92 ∗ 2.80 ∗ 0.89 ∗ 17.47 ∗ 0.84 ∗ 2.75 ∗ 0.82 ∗ 3.82 ∗ 0.70 ∗ 16.04 ∗ 0.89 ∗ 13.29 ∗ 0.62 ∗ 20.06 ∗ 0.77 ∗ 4.05 ∗

MissDiff 0.83 ∗ 1.86 ∗ 0.87 ∗ 15.08 ∗ 0.84 ∗ 1.37 ∗ 0.83 ∗ 4.06 ∗ 0.70 ∗ 13.50 ∗ 0.86 ∗ 18.23 ∗ 0.61 ∗ 23.33 ∗ 0.75 ∗ 6.41 ∗

GAIN 0.86 ∗ 0.87 0.56 ∗ 2.28 ∗ 0.78 ∗ 0.76 ∗ 0.74 ∗ 0.94 ∗ 0.52 ∗ 2.14 ∗ 0.57 2.46 0.66 ∗ 6.41 ∗ 0.72 ∗ 1.17 ∗

MIRACLE 0.66 ∗ 0.43 ∗ 0.72 ∗ 7.16 0.47 0.32 0.57 ∗ 0.58 ∗ 4.02 ∗ 61.45 ∗ 3.48 ∗ 32.16 ∗ 0.49 ∗ 4.33 0.53 0.69
MIWAE 0.69 0.59 0.53 ∗ 2.10 ∗ 0.78 ∗ 0.74 ∗ 0.83 ∗ 1.10 ∗ 0.53 ∗ 2.58 ∗ 0.58 ∗ 2.11 0.52 ∗ 5.79 ∗ 0.61 ∗ 0.85 ∗

Sink 0.87 ∗ 0.94 0.89 ∗ 4.76 ∗ 0.85 ∗ 0.86 ∗ 0.84 ∗ 1.17 ∗ 0.74 ∗ 3.13 ∗ 0.88 ∗ 3.97 ∗ 0.63 ∗ 5.60 ∗ 0.76 ∗ 1.25 ∗

TDM 0.84 ∗ 0.93 0.82 ∗ 4.31 ∗ 0.77 ∗ 0.75 ∗ 0.78 ∗ 1.05 ∗ 0.64 ∗ 2.57 ∗ 0.81 ∗ 3.61 ∗ 0.58 ∗ 5.37 ∗ 0.73 ∗ 1.19 ∗

ReMasker 0.41 ∗ 0.22 ∗ 0.43 1.40 0.93 ∗ 1.05 ∗ 0.51 ∗ 0.47 ∗ 0.51 ∗ 2.23 ∗ 0.58 ∗ 1.96 0.53 3.89 0.52 0.66 ∗
NewImp 0.71 0.79 0.38 1.32 0.43 0.35 0.40 0.37 0.40 1.67 0.46 1.68 0.43 4.08 0.50 0.70

MCAR

CSDI_T 0.71 ∗ 1.76 ∗ 0.73 ∗ 15.43 ∗ 0.85 ∗ 2.77 ∗ 0.82 ∗ 3.91 ∗ 0.76 ∗ 14.66 ∗ 0.72 ∗ 11.68 ∗ 0.57 ∗ 19.81 ∗ 0.78 ∗ 4.15 ∗

MissDiff 0.71 ∗ 1.22 ∗ 0.73 ∗ 13.89 ∗ 0.84 ∗ 1.29 ∗ 0.81 ∗ 3.00 ∗ 0.75 ∗ 13.14 ∗ 0.72 ∗ 12.65 ∗ 0.56 ∗ 19.50 ∗ 0.76 ∗ 3.89 ∗

GAIN 0.74 ∗ 0.49 ∗ 0.46 ∗ 2.61 ∗ 0.79 ∗ 0.90 ∗ 0.79 ∗ 1.45 ∗ 0.74 ∗ 7.30 ∗ 0.52 ∗ 2.49 0.63 ∗ 11.12 0.77 ∗ 1.52 ∗

MIRACLE 0.58 0.25 ∗ 0.49 ∗ 2.92 ∗ 0.60 ∗ 0.48 ∗ 0.66 ∗ 0.99 ∗ 2.74 ∗ 59.66 ∗ 3.20 ∗ 51.98 ∗ 0.40 ∗ 4.28 ∗ 0.61 ∗ 0.97 ∗

MIWAE 0.62 ∗ 0.32 0.51 ∗ 3.50 ∗ 0.79 ∗ 0.84 ∗ 0.84 ∗ 1.53 ∗ 0.66 ∗ 6.68 ∗ 0.53 ∗ 2.67 ∗ 0.50 ∗ 7.86 ∗ 0.68 ∗ 1.17 ∗

Sink 0.74 ∗ 0.57 ∗ 0.75 ∗ 5.78 ∗ 0.84 ∗ 1.04 ∗ 0.82 ∗ 1.60 ∗ 0.76 ∗ 6.59 ∗ 0.74 ∗ 4.33 ∗ 0.61 ∗ 7.62 ∗ 0.76 ∗ 1.59 ∗

TDM 0.70 ∗ 0.52 ∗ 0.65 ∗ 4.90 ∗ 0.79 ∗ 0.93 ∗ 0.78 ∗ 1.48 ∗ 0.67 ∗ 5.71 ∗ 0.65 ∗ 3.74 ∗ 0.53 ∗ 7.06 ∗ 0.74 ∗ 1.50 ∗

ReMasker 0.52 0.17 ∗ 0.37 ∗ 1.97 ∗ 1.02 ∗ 1.54 ∗ 0.64 ∗ 0.88 ∗ 0.55 ∗ 5.64 ∗ 0.47 ∗ 2.13 ∗ 0.44 ∗ 4.88 0.59 0.97 ∗
NewImp 0.56 0.30 0.28 1.29 0.55 0.52 0.54 0.74 0.45 4.00 0.35 1.55 0.37 4.98 0.59 1.05

MNAR

CSDI_T 0.79 ∗ 2.16 ∗ 0.81 ∗ 16.41 ∗ 0.86 ∗ 2.81 ∗ 0.83 ∗ 3.89 ∗ 0.75 ∗ 14.67 ∗ 0.81 ∗ 11.79 ∗ 0.60 ∗ 19.51 ∗ 0.79 ∗ 4.17 ∗

MissDiff 0.75 ∗ 1.39 ∗ 0.79 ∗ 14.93 ∗ 0.84 ∗ 1.23 ∗ 0.83 ∗ 3.35 ∗ 0.74 ∗ 13.45 ∗ 0.78 ∗ 14.07 ∗ 0.60 ∗ 20.56 ∗ 0.76 ∗ 4.29 ∗

GAIN 0.76 ∗ 0.62 0.85 ∗ 7.92 ∗ 0.86 ∗ 1.11 0.96 ∗ 2.16 ∗ 1.15 ∗ 13.95 ∗ 0.84 ∗ 6.52 ∗ 1.20 ∗ 31.45 ∗ 1.01 ∗ 2.49 ∗

MIRACLE 0.68 ∗ 0.41 0.77 ∗ 12.61 0.62 ∗ 0.53 0.68 ∗ 1.05 ∗ 2.79 ∗ 58.80 ∗ 3.24 ∗ 51.35 ∗ 0.63 ∗ 12.68 0.61 1.03 ∗

MIWAE 0.67 0.39 0.58 ∗ 4.47 ∗ 0.79 ∗ 0.88 ∗ 0.84 ∗ 1.57 ∗ 0.64 ∗ 6.17 ∗ 0.59 ∗ 3.72 ∗ 0.54 ∗ 9.12 ∗ 0.69 ∗ 1.21 ∗

Sink 0.77 ∗ 0.67 ∗ 0.82 ∗ 7.39 ∗ 0.85 ∗ 1.09 ∗ 0.83 ∗ 1.65 ∗ 0.76 ∗ 6.46 ∗ 0.81 ∗ 5.87 ∗ 0.63 ∗ 8.78 ∗ 0.77 ∗ 1.64 ∗

TDM 0.74 ∗ 0.63 ∗ 0.74 ∗ 6.60 ∗ 0.80 ∗ 1.00 ∗ 0.79 ∗ 1.54 ∗ 0.67 ∗ 5.55 ∗ 0.74 ∗ 5.33 ∗ 0.57 ∗ 8.31 ∗ 0.75 ∗ 1.56 ∗

ReMasker 0.59 0.32 0.46 ∗ 3.22 ∗ 1.02 ∗ 1.63 ∗ 0.66 ∗ 0.92 ∗ 0.56 ∗ 5.53 ∗ 0.61 ∗ 4.04 ∗ 0.47 6.89 0.59 ∗ 0.98
NewImp 0.64 0.46 0.36 2.34 0.58 0.59 0.56 0.83 0.44 3.92 0.43 2.31 0.44 7.16 0.60 1.10

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the results
that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

Table G.6: Standard deviation of MAE and WASS metrics at 40% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 5.62E-2 4.89E-1 4.20E-2 2.52E0 4.95E-2 1.76E-1 1.12E-2 1.08E-1 1.79E-2 7.93E-1 1.60E-2 2.80E0 7.74E-3 4.41E-1 1.70E-2 1.24E-2
MissDiff 2.52E-2 5.98E-1 2.08E-2 2.15E0 2.61E-2 1.82E-1 1.32E-2 1.23E0 2.35E-2 7.88E-1 4.90E-2 4.20E0 1.07E-2 4.73E0 1.73E-2 1.24E0
GAIN 9.55E-2 1.65E-1 4.16E-2 2.92E-1 4.52E-2 1.07E-1 3.97E-2 1.08E-1 4.52E-2 2.47E-1 6.32E-2 7.18E-1 6.09E-2 9.92E-1 5.57E-2 1.49E-1
MIRACLE 5.76E-2 8.09E-2 8.59E-2 6.27E0 1.86E-2 3.13E-2 1.89E-2 3.62E-2 6.15E-1 1.76E1 1.93E-1 3.20E0 3.28E-2 1.30E0 2.53E-2 4.69E-2
MIWAE 6.81E-3 2.48E-2 3.73E-2 2.38E-1 1.74E-2 4.58E-2 1.57E-2 3.97E-2 2.50E-2 1.64E-1 3.00E-2 1.35E-1 1.48E-2 4.72E-1 1.52E-2 5.58E-3
Sink 2.45E-2 5.19E-2 2.01E-2 1.44E-1 2.64E-2 3.44E-2 9.54E-3 3.82E-2 3.42E-2 1.43E-1 2.53E-2 1.01E-1 5.68E-3 2.33E-1 1.93E-2 4.80E-2
TDM 2.33E-2 6.30E-2 1.75E-2 1.26E-1 2.12E-2 2.78E-2 6.42E-3 2.93E-2 3.05E-2 1.31E-1 2.60E-2 1.36E-1 1.06E-2 1.98E-1 1.47E-2 3.44E-2
ReMasker 1.17E-2 1.53E-3 1.11E-2 7.93E-2 4.22E-2 1.51E-1 1.44E-2 3.52E-2 3.12E-2 1.28E-1 4.30E-2 2.35E-1 5.80E-2 3.13E-1 1.84E-2 1.91E-2
NewImp 3.84E-2 9.15E-2 2.98E-2 1.76E-1 1.54E-2 1.61E-2 2.06E-2 4.60E-2 9.12E-3 8.56E-2 2.65E-2 2.37E-1 1.68E-2 2.47E-1 7.86E-3 1.84E-2

MCAR

CSDI_T 1.48E-2 1.26E-1 7.13E-3 5.01E-1 1.65E-2 9.81E-2 3.60E-3 4.53E-2 7.26E-3 1.17E-1 8.37E-3 9.05E-1 4.95E-3 1.15E-1 4.98E-3 2.86E-2
MissDiff 2.06E-2 4.36E-1 4.25E-3 2.93E-1 9.19E-3 1.63E-1 3.52E-3 6.06E-1 6.67E-3 5.26E-2 8.46E-3 4.44E-1 7.08E-3 2.29E0 3.42E-3 4.09E-1
GAIN 5.60E-2 5.41E-2 4.64E-2 5.45E-1 1.66E-2 4.70E-2 3.97E-2 1.68E-1 7.12E-2 1.29E0 3.50E-2 3.89E-1 1.05E-1 4.04E0 2.79E-2 9.53E-2
MIRACLE 3.75E-2 1.74E-2 1.64E-2 2.28E-1 8.23E-3 1.64E-2 8.89E-3 1.23E-2 3.45E-2 2.51E0 7.71E-2 2.75E0 8.06E-3 2.20E-1 2.45E-3 9.21E-3
MIWAE 1.15E-2 3.09E-2 1.20E-2 1.68E-1 1.19E-2 1.74E-2 2.14E-2 7.26E-2 2.21E-2 2.49E-1 1.79E-3 1.13E-1 7.84E-3 1.36E-1 2.35E-3 7.99E-3
Sink 1.77E-2 5.29E-2 1.02E-3 1.47E-1 7.96E-3 1.07E-2 6.43E-3 2.29E-2 6.07E-3 8.95E-2 6.39E-3 3.77E-2 2.21E-3 2.36E-1 2.72E-3 1.78E-2
TDM 1.21E-2 5.55E-2 4.32E-3 1.34E-1 7.35E-3 6.43E-3 7.29E-3 2.60E-2 6.14E-3 4.51E-2 1.00E-2 6.14E-2 4.32E-3 1.81E-1 2.10E-3 5.86E-3
ReMasker 2.34E-2 2.34E-2 8.99E-3 1.32E-1 7.16E-2 2.70E-1 7.18E-3 2.55E-2 2.23E-2 2.73E-1 1.56E-2 1.60E-1 9.66E-3 3.15E-1 4.74E-3 1.55E-2
NewImp 1.10E-2 1.59E-2 2.77E-3 6.27E-2 1.22E-2 2.43E-2 9.57E-3 2.58E-2 5.96E-3 1.52E-1 6.26E-3 8.57E-2 6.42E-3 2.24E-1 3.51E-3 1.21E-2

MNAR

CSDI_T 2.46E-2 1.20E-1 1.89E-2 1.73E0 1.64E-2 9.76E-2 1.00E-2 1.12E-1 7.74E-3 1.29E-1 2.37E-2 1.38E0 9.74E-3 2.76E-1 6.99E-3 2.32E-2
MissDiff 3.18E-2 3.53E-1 5.71E-3 1.11E0 6.41E-3 5.92E-2 6.35E-3 5.98E-1 1.44E-2 9.89E-2 1.14E-2 2.02E0 4.89E-3 2.33E0 3.86E-3 7.19E-1
GAIN 3.59E-2 2.80E-2 6.99E-2 9.28E-1 1.27E-1 3.41E-1 1.27E-1 5.75E-1 7.48E-2 1.94E0 6.59E-2 1.10E0 5.06E-2 3.08E0 1.24E-1 5.38E-1
MIRACLE 2.73E-2 6.77E-2 1.06E-1 9.92E0 7.74E-3 1.80E-2 4.77E-3 1.52E-2 6.96E-2 2.75E0 3.64E-2 2.04E0 1.35E-2 3.87E0 5.02E-3 1.09E-2
MIWAE 1.68E-2 2.03E-2 2.21E-2 3.33E-1 1.42E-2 5.43E-2 1.51E-2 6.14E-2 6.26E-3 1.54E-1 3.69E-2 4.10E-1 1.35E-2 5.96E-1 5.12E-3 2.25E-2
Sink 5.21E-3 5.52E-2 7.91E-3 2.08E-1 7.14E-3 4.09E-2 1.51E-3 1.36E-2 6.10E-3 3.67E-2 1.25E-2 1.79E-1 6.44E-3 3.55E-1 1.68E-3 2.31E-2
TDM 1.12E-2 6.53E-2 1.15E-2 2.41E-1 8.22E-3 4.59E-2 2.05E-3 2.00E-2 2.66E-2 2.49E-1 1.84E-2 2.26E-1 5.12E-3 4.67E-1 4.06E-3 3.10E-2
ReMasker 7.23E-3 4.58E-2 2.96E-2 3.39E-1 6.75E-2 2.22E-1 7.57E-3 2.93E-2 1.43E-2 9.16E-2 2.25E-2 3.43E-1 1.61E-2 5.20E-1 1.10E-3 2.91E-2
NewImp 2.87E-2 1.07E-1 6.75E-3 1.35E-1 1.62E-2 4.75E-2 4.48E-3 2.24E-2 6.74E-3 9.11E-2 5.62E-3 5.59E-2 3.52E-3 1.61E-1 8.02E-3 2.34E-2
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Table G.7: Performance of MAE and WASS metrics at 50% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 0.85 ∗ 2.61 ∗ 0.84 ∗ 17.30 ∗ 0.84 ∗ 2.82 ∗ 0.81 ∗ 3.79 ∗ 0.72 ∗ 15.46 ∗ 0.84 ∗ 13.20 ∗ 0.60 ∗ 19.79 ∗ 0.78 ∗ 4.09 ∗

MissDiff 0.78 1.97 ∗ 0.82 ∗ 15.22 ∗ 0.84 ∗ 1.34 ∗ 0.82 ∗ 3.35 ∗ 0.72 ∗ 13.67 ∗ 0.80 ∗ 15.05 ∗ 0.59 ∗ 24.55 ∗ 0.77 ∗ 5.95 ∗

GAIN 0.74 0.69 0.55 ∗ 2.80 0.77 ∗ 0.85 ∗ 0.74 ∗ 1.05 ∗ 0.60 ∗ 3.06 ∗ 0.52 2.22 0.67 ∗ 8.36 ∗ 0.88 ∗ 1.84 ∗

MIRACLE 0.66 0.49 0.85 ∗ 7.33 ∗ 0.52 0.41 ∗ 0.63 ∗ 0.78 ∗ 3.21 ∗ 50.79 ∗ 3.88 ∗ 48.31 ∗ 0.52 ∗ 5.27 0.58 0.87 ∗

MIWAE 0.63 0.50 0.51 ∗ 2.51 0.78 ∗ 0.79 ∗ 0.84 ∗ 1.23 ∗ 0.56 ∗ 3.28 ∗ 0.55 ∗ 2.26 0.52 ∗ 6.70 ∗ 0.66 ∗ 1.05
Sink 0.82 ∗ 0.83 0.84 ∗ 5.38 ∗ 0.86 ∗ 1.00 ∗ 0.83 ∗ 1.30 ∗ 0.75 ∗ 3.93 ∗ 0.83 ∗ 4.40 ∗ 0.61 ∗ 6.44 ∗ 0.78 ∗ 1.47 ∗

TDM 0.78 0.81 0.79 ∗ 5.05 ∗ 0.80 ∗ 0.90 ∗ 0.78 ∗ 1.19 ∗ 0.68 ∗ 3.43 ∗ 0.77 ∗ 4.03 ∗ 0.56 ∗ 6.13 ∗ 0.76 ∗ 1.42 ∗

ReMasker 0.40 0.28 0.39 ∗ 1.47 ∗ 0.98 ∗ 1.35 ∗ 0.51 ∗ 0.54 0.52 ∗ 2.92 ∗ 0.51 2.01 0.53 4.70 0.57 0.85 ∗
NewImp 0.67 0.67 0.44 2.06 0.51 0.48 0.47 0.55 0.45 2.20 0.48 2.17 0.42 4.72 0.60 1.00

MCAR

CSDI_T 0.73 ∗ 1.86 ∗ 0.74 ∗ 15.79 ∗ 0.85 ∗ 2.71 ∗ 0.82 ∗ 3.99 ∗ 0.75 ∗ 14.56 ∗ 0.72 ∗ 11.31 ∗ 0.57 ∗ 19.45 ∗ 0.79 ∗ 4.31 ∗

MissDiff 0.72 ∗ 1.44 ∗ 0.74 ∗ 14.15 ∗ 0.85 ∗ 1.46 ∗ 0.81 ∗ 2.83 ∗ 0.75 ∗ 13.14 ∗ 0.71 ∗ 11.70 ∗ 0.56 ∗ 20.15 ∗ 0.76 ∗ 3.43 ∗

GAIN 0.70 ∗ 0.52 ∗ 0.50 ∗ 3.74 ∗ 0.87 ∗ 1.29 ∗ 1.11 3.32 0.92 ∗ 12.89 ∗ 0.65 ∗ 4.72 ∗ 1.03 ∗ 31.73 ∗ 0.86 2.22
MIRACLE 0.63 0.34 0.63 ∗ 6.17 ∗ 0.66 0.68 ∗ 0.74 ∗ 1.35 ∗ 2.46 ∗ 60.64 ∗ 2.97 ∗ 57.33 ∗ 0.55 ∗ 8.14 ∗ 0.65 ∗ 1.21 ∗

MIWAE 0.64 ∗ 0.38 0.55 ∗ 4.71 ∗ 0.81 ∗ 1.03 ∗ 0.84 ∗ 1.77 ∗ 0.68 ∗ 8.31 ∗ 0.56 ∗ 3.63 ∗ 0.52 ∗ 9.83 ∗ 0.70 ∗ 1.39
Sink 0.74 ∗ 0.68 ∗ 0.75 ∗ 7.30 ∗ 0.84 ∗ 1.28 ∗ 0.82 ∗ 1.91 ∗ 0.75 ∗ 8.27 ∗ 0.74 ∗ 5.64 ∗ 0.61 ∗ 9.24 ∗ 0.76 ∗ 1.92 ∗

TDM 0.72 ∗ 0.64 ∗ 0.67 ∗ 6.36 ∗ 0.81 ∗ 1.18 ∗ 0.79 ∗ 1.80 ∗ 0.69 ∗ 7.53 ∗ 0.68 ∗ 5.05 ∗ 0.55 ∗ 8.98 ∗ 0.75 ∗ 1.83 ∗

ReMasker 0.58 0.23 0.44 ∗ 3.17 ∗ 1.03 ∗ 1.96 ∗ 0.75 ∗ 1.22 0.63 ∗ 8.24 ∗ 0.51 ∗ 2.81 ∗ 0.49 ∗ 7.32 0.63 1.16 ∗
NewImp 0.59 0.38 0.34 2.16 0.65 0.84 0.64 1.18 0.48 5.12 0.40 2.22 0.40 6.92 0.64 1.40

MNAR

CSDI_T 0.75 ∗ 2.07 ∗ 0.78 ∗ 15.16 ∗ 0.86 ∗ 2.79 ∗ 0.82 ∗ 3.95 ∗ 0.75 ∗ 14.54 ∗ 0.80 ∗ 12.42 ∗ 0.60 ∗ 19.50 ∗ 0.79 ∗ 4.23 ∗

MissDiff 0.72 1.34 0.77 ∗ 14.78 ∗ 0.85 ∗ 1.44 ∗ 0.82 ∗ 3.08 ∗ 0.73 ∗ 13.52 ∗ 0.77 ∗ 11.83 ∗ 0.59 ∗ 20.34 ∗ 0.77 ∗ 3.65 ∗

GAIN 0.76 0.74 0.99 ∗ 12.08 ∗ 0.93 ∗ 1.64 ∗ 1.22 ∗ 3.97 ∗ 1.67 ∗ 31.57 ∗ 0.92 ∗ 9.02 ∗ 1.37 ∗ 49.74 ∗ 1.20 ∗ 4.30 ∗

MIRACLE 0.83 ∗ 0.74 1.14 ∗ 37.98 0.70 ∗ 0.79 ∗ 0.74 ∗ 1.39 ∗ 2.52 ∗ 61.17 ∗ 3.14 ∗ 62.26 ∗ 0.71 ∗ 14.79 ∗ 0.66 ∗ 1.31 ∗

MIWAE 0.73 0.63 ∗ 0.61 ∗ 5.73 ∗ 0.82 ∗ 1.08 0.85 ∗ 1.84 ∗ 0.66 ∗ 7.85 ∗ 0.61 ∗ 4.33 ∗ 0.53 ∗ 10.68 ∗ 0.71 ∗ 1.47
Sink 0.78 ∗ 0.86 ∗ 0.79 ∗ 8.47 ∗ 0.86 ∗ 1.35 ∗ 0.83 ∗ 1.98 ∗ 0.76 ∗ 8.19 ∗ 0.78 ∗ 6.54 ∗ 0.63 ∗ 10.57 ∗ 0.77 ∗ 2.01 ∗

TDM 0.76 ∗ 0.83 0.73 ∗ 7.72 ∗ 0.83 ∗ 1.26 ∗ 0.80 ∗ 1.87 ∗ 0.69 ∗ 7.30 ∗ 0.72 ∗ 6.04 ∗ 0.57 ∗ 10.20 ∗ 0.75 ∗ 1.91 ∗

ReMasker 0.61 ∗ 0.42 ∗ 0.55 ∗ 5.22 ∗ 0.99 ∗ 1.86 ∗ 0.76 ∗ 1.29 0.78 ∗ 9.82 ∗ 0.63 ∗ 5.39 ∗ 0.50 ∗ 9.25 ∗ 0.65 1.22 ∗
NewImp 0.74 0.84 0.39 3.12 0.69 0.98 0.65 1.23 0.47 5.03 0.48 3.31 0.44 8.38 0.65 1.47

Kindly Note: The best results are bolded and the second best results are underliend. “*” marks the results
that NewImp significantly outperform with p-value< 0.05 over paired samples t-test.

Table G.8: Standard deviation of MAE and WASS metrics at 50% missing rate.

Scenario Model BT BCD CC CBV IS PK QB WQW

MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MAR

CSDI_T 8.31E-2 4.42E-1 2.83E-2 2.31E0 3.66E-2 1.29E-1 1.34E-2 5.51E-2 2.39E-2 9.07E-1 3.55E-2 2.14E0 2.05E-2 5.84E-1 3.11E-2 2.52E-2
MissDiff 4.50E-2 5.54E-1 5.12E-3 1.98E0 1.24E-2 1.09E-1 8.44E-3 8.50E-1 3.78E-2 4.65E-1 2.17E-2 2.02E0 2.51E-2 3.72E0 2.49E-2 1.10E0
GAIN 5.10E-2 1.42E-1 6.41E-2 5.67E-1 4.97E-2 9.93E-2 3.91E-2 9.48E-2 2.46E-2 2.48E-1 7.03E-2 8.68E-1 8.40E-2 1.77E0 1.01E-1 3.67E-1
MIRACLE 1.50E-1 2.05E-1 9.31E-2 1.94E0 3.74E-2 6.26E-2 1.45E-2 2.64E-2 5.95E-1 1.68E1 5.56E-1 1.26E1 4.19E-2 6.07E-1 2.96E-2 5.79E-2
MIWAE 6.94E-2 1.35E-1 1.75E-2 1.16E-1 2.18E-2 4.43E-2 1.89E-2 1.02E-1 3.21E-2 2.02E-1 3.10E-2 2.21E-1 4.53E-2 3.92E-1 2.57E-2 5.02E-2
Sink 4.60E-2 1.38E-1 8.04E-3 8.61E-2 2.40E-2 3.24E-2 1.17E-2 6.38E-2 3.09E-2 1.35E-1 1.16E-2 4.24E-2 2.72E-2 7.38E-2 3.42E-2 8.69E-2
TDM 5.43E-2 1.61E-1 1.16E-2 7.27E-2 2.37E-2 4.04E-2 1.32E-2 7.26E-2 1.92E-2 9.41E-2 1.34E-2 9.02E-2 2.84E-2 6.32E-2 3.02E-2 7.58E-2
ReMasker 7.39E-2 1.44E-1 2.99E-2 1.41E-1 9.30E-2 2.22E-1 2.35E-2 3.19E-2 2.98E-2 2.94E-1 7.54E-2 6.08E-1 6.79E-2 7.58E-1 2.26E-2 4.20E-2
NewImp 1.07E-1 2.34E-1 3.02E-2 2.10E-1 2.83E-2 5.71E-2 1.19E-2 2.15E-2 1.51E-2 1.69E-1 1.42E-2 8.97E-2 1.69E-2 1.36E-1 4.13E-2 9.67E-2

MCAR

CSDI_T 1.28E-2 1.58E-1 5.14E-3 1.23E0 8.83E-3 9.46E-2 2.93E-3 3.67E-2 7.87E-3 9.01E-2 6.38E-3 6.10E-1 5.04E-3 1.69E-1 1.11E-2 7.61E-2
MissDiff 2.62E-3 3.37E-1 1.01E-2 3.62E-1 4.33E-3 1.06E-1 3.15E-3 3.18E-1 9.26E-3 9.37E-2 4.25E-3 5.98E-1 4.81E-3 1.26E0 1.71E-3 3.02E-1
GAIN 1.71E-2 3.47E-2 2.42E-2 2.75E-1 4.53E-2 1.44E-1 2.62E-1 1.40E0 1.09E-1 2.43E0 2.01E-2 3.35E-1 1.38E-1 7.19E0 1.41E-1 6.71E-1
MIRACLE 2.19E-2 2.36E-2 7.61E-2 1.93E0 1.32E-2 2.67E-2 1.55E-2 3.61E-2 3.58E-2 2.18E0 4.86E-2 2.18E0 2.15E-2 1.96E-1 2.25E-3 5.85E-3
MIWAE 6.77E-3 4.45E-2 2.86E-2 3.40E-1 1.15E-2 3.66E-2 9.27E-3 4.98E-2 1.19E-2 1.97E-1 1.72E-2 3.34E-1 1.09E-2 3.17E-1 1.98E-3 1.68E-2
Sink 9.45E-3 2.19E-2 5.14E-3 7.93E-2 4.00E-3 1.70E-2 2.62E-3 2.17E-2 1.92E-3 5.94E-2 3.52E-3 1.46E-1 4.69E-3 7.05E-2 1.96E-3 2.86E-2
TDM 7.85E-3 2.24E-2 7.53E-3 9.35E-2 7.82E-3 2.75E-2 4.80E-3 2.12E-2 3.76E-3 1.02E-1 9.26E-3 1.67E-1 3.48E-3 1.87E-1 2.66E-3 5.92E-3
ReMasker 5.17E-2 6.46E-2 6.65E-4 4.77E-2 3.95E-2 1.45E-1 2.96E-3 1.48E-2 1.13E-2 1.97E-1 1.18E-2 2.05E-1 1.34E-2 4.30E-1 1.06E-3 2.08E-2
NewImp 1.22E-2 2.48E-2 3.72E-3 1.03E-1 9.87E-3 3.21E-2 5.17E-3 3.13E-2 8.34E-3 1.56E-1 7.22E-3 6.63E-2 6.53E-3 2.43E-1 1.57E-3 9.71E-3

MNAR

CSDI_T 5.67E-3 1.31E-1 1.04E-2 7.15E-1 2.05E-2 9.53E-2 1.23E-2 1.30E-1 6.97E-3 1.06E-1 1.36E-2 9.70E-1 4.20E-3 2.68E-1 6.23E-3 5.50E-2
MissDiff 7.33E-3 3.18E-1 6.20E-3 7.94E-1 1.48E-2 1.30E-1 6.44E-3 3.30E-1 9.96E-3 1.17E-1 1.01E-2 8.14E-1 8.28E-3 1.97E0 4.54E-3 1.73E-1
GAIN 3.37E-2 8.08E-2 3.52E-2 8.61E-1 7.13E-2 2.53E-1 8.83E-2 5.11E-1 1.55E-1 4.35E0 4.63E-2 1.21E0 1.62E-1 1.30E1 7.71E-2 5.63E-1
MIRACLE 4.62E-2 1.54E-1 1.55E-1 2.46E1 1.56E-2 4.66E-2 1.35E-2 4.39E-2 2.21E-2 1.78E0 9.72E-2 3.67E0 3.60E-2 1.71E0 1.24E-2 3.05E-2
MIWAE 2.88E-2 7.04E-2 3.13E-2 2.81E-1 6.52E-3 5.64E-2 1.06E-2 5.53E-2 2.19E-2 3.10E-1 1.69E-2 2.92E-1 1.75E-2 3.51E-1 4.18E-3 3.20E-2
Sink 4.90E-3 1.42E-2 6.82E-3 2.35E-1 7.10E-3 3.41E-2 4.21E-3 3.28E-2 6.06E-4 9.24E-2 1.26E-2 3.20E-1 7.64E-3 1.55E-1 7.06E-3 4.95E-2
TDM 2.87E-3 1.46E-2 1.06E-2 2.95E-1 7.99E-3 3.36E-2 5.73E-3 3.48E-2 1.56E-2 1.77E-1 1.51E-2 3.73E-1 6.81E-3 1.42E-1 6.82E-3 5.11E-2
ReMasker 2.52E-2 4.11E-2 2.60E-2 4.54E-1 5.75E-2 2.40E-1 1.06E-2 4.72E-2 3.77E-2 4.46E-1 3.96E-2 5.44E-1 1.13E-2 1.19E-1 4.54E-3 1.92E-2
NewImp 4.81E-3 1.42E-2 8.08E-3 1.42E-1 1.86E-2 8.53E-2 1.61E-2 7.67E-2 2.97E-3 8.78E-2 1.42E-2 1.95E-1 6.32E-3 2.48E-1 1.11E-2 4.15E-2
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope. We restrict our application in missing value imputation
task in numerical tabular, and our analysis is mainly focused on diffusion models, where the
score function is required.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our limitations are listed in Appendix G.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: To uphold the rigor of our manuscript, we provide all proofs of our proposition
as outlined in Appendix C. Besides, all theorems are properly cited in the manuscript.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We attempt to list all hyperparameters in Appendices D and E to ensure
reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We used the open access UCI datasets, and we uploaded our algorithm in this
github link https://github.com/JustusvLiebig/NewImp.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included all detailed information in Appendices D and E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Tables F.3 to F.9 and G.1 to G.8, and Figs. F.4 to F.7 , we report standard
deviation errors suitably and correctly defined or other appropriate information about the
statistical significance and error bar of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The required information is given in Appendices E.2 and F.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Since it is an algorithm-oriented research, there is no societal impact of the
work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve the safeguards issue.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, are properly credited. The license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not not release new assets in this manuscript.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our experiments did not involve ‘Crowdsourcing and Research with Human
Subjects’.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our answer is NA since our paper does not involve crowdsourcing or research
with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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