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ABSTRACT

Embedding spaces encapsulate rich information from deep learning models, with
vector distances reflecting the semantic similarity between textual elements. How-
ever, their abstract nature and the computational complexity of analyzing them
remain significant challenges. To address these, we introduce the concept of Se-
mantic Field Subspace, a novel mapping that links embedding spaces with the
underlying semantics. We propose SAFARI, a novel algorithm for SemAntic Field
subspAce deteRmInation, which leverages hierarchical clustering to discover hier-
archical semantic structures, using Semantic Shifts to capture semantic changes as
clusters merge, allowing for the identification of meaningful subspaces. To improve
scalability, we extend Weyl’s Theorem, enabling an efficient approximation of Se-
mantic Shifts that significantly reduces computational costs. Extensive evaluations
on five real-world datasets demonstrate the effectiveness of SAFARI in uncovering
interpretable and hierarchical semantic structures. Additionally, our approximation
method achieves a 15∼30× speedup while maintaining minimal errors (less than
0.01), making it practical for large-scale applications. The source code is available
at https://anonymous.4open.science/r/Safari-C803/.

1 INTRODUCTION

Embedding spaces are widely recognized for encapsulating rich information learned by deep learning
models. In language models, for instance, the distance between embedding vectors often reflects
the semantic similarities of corresponding textual elements (Devlin et al., 2019; Wu et al., 2020).
However, despite their widespread use, the understanding of embedding spaces remains limited
(Ethayarajh, 2019; Clark et al., 2019; Simhi & Markovitch, 2023). Two primary challenges make
understanding embedding spaces difficult:

(1) Abstract Nature: Embedding spaces reflect complex, high-dimensional relationships between
data points, making them inherently abstract. To interpret these spaces, we need a clear
connection between the embedded data and their underlying semantics. However, a universally
accepted definition of semantics within these spaces remains elusive.

(2) Computational Complexity: Understanding embedding spaces requires substantial data,
and as these spaces grow richer and more complex, the need for samples increases, straining
computational efficiency. Managing this expanding data demands advanced computational
resources and optimized algorithms to ensure practical and timely analysis.

Extensive research on embedding spaces spans various perspectives, with two lines of research most
relevant to our work: geometry-based and interpretability-based methods. The first line of research
focuses on the geometric properties of the embedding space, describing vector distributions and their
desired characteristics (Mu & Viswanath, 2018; Liu et al., 2019; Demeter et al., 2020; Ethayarajh,
2019). However, these approaches primarily enhance representation quality by manipulating the ge-
ometry of the space, often overlooking the interpretability and semantic coherence of the embeddings.
The second line of research concentrates on making the embedding space more interpretable using
techniques like rotation, probing (Park et al., 2017; Dufter & Schütze, 2019; Clark et al., 2019; Dalvi
et al., 2019), or transforming data into more interpretable dimensions (Simhi & Markovitch, 2023).
Despite providing insights into individual dimensions, they often rely on significant assumptions
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about the interpretability of original dimensions or require constructing new spaces, which can be
computationally intensive and may not preserve the original semantic relationships.

In this paper, we investigate the semantic structure of embedding spaces through textual elements.
To address their abstract nature and the challenges of interpretation, we introduce key concepts that
link embedding spaces to the underlying semantics. We define each direction as a unique semantic
set, serving as a foundation for understanding the structure. Recognizing the context-dependent
nature of semantics, we introduce the concept of a Semantic Field for more nuanced interpretation.
Identifying Semantic Fields within embedding spaces is framed as an optimization problem. We
approximate each Semantic Field as a subspace, referred to as the Semantic Field Subspace, and
solve the optimization using Singular Value Decomposition (SVD) (Halko et al., 2009; Trefethen &
Bau, 2022).

Building on this concept, we propose SAFARI, a novel algorithm for determining Semantic Field
Subspaces through hierarchical clustering. By introducing the concept of Semantic Shift, SAFARI
accurately identifies the start and end points of Semantic Field Subspaces within a clustering den-
drogram, unveiling the hierarchical structure of Semantic Fields. To overcome the computational
challenges of analyzing large datasets, we extend Weyl’s Theorem (Weyl, 1912) to approximate
Semantic Shift without relying on full SVD, significantly improving computational efficiency.

We evaluate SAFARI on five real-world datasets to validate its ability to uncover hierarchical
semantic structures. The results confirm that SAFARI efficiently identifies Semantic Field Subspaces,
revealing natural and interpretable hierarchies. Moreover, our approximate method for Semantic
Shift computation delivers a 15∼30× speedup with errors less than 0.01, making it highly practical
for large-scale applications. Our contributions are summarized as follows:

(1) We introduce the concept of Semantic Field Subspaces, a novel mapping that bridges embedding
spaces with their underlying semantics. It enhances the interpretability of high-dimensional
embeddings, facilitating deeper insights into the semantics encoded within vector spaces.

(2) We present SAFARI, a creative algorithm that leverages Semantic Shift to determine Semantic
Field Subspaces. By employing hierarchical clustering, SAFARI effectively uncovers the
hierarchical semantic structures. We also develop an efficient approximate method for Semantic
Shift computation, significantly improving computational efficiency.

(3) We systematically evaluate the efficacy of SAFARI through extensive experiments, demon-
strating that our algorithm successfully and efficiently identifies Semantic Filed Subspaces,
revealing their hierarchical structures.

2 RELATED WORK

Geometry-based Approaches. This research focuses on the geometric properties of embedding
spaces, aiming to describe the vector distributions and their desired characteristics (Mu & Viswanath,
2018; Liu et al., 2019; Demeter et al., 2020; Ethayarajh, 2019). For instance, Mu & Viswanath (2018)
improved word representations by removing the top principal components, while Liu et al. (2019)
suppressed transformed dimensions with large variances. Demeter et al. (2020) highlighted how the
softmax function weakens geometric structures, introducing bias. A key finding by Ethayarajh (2019)
showed that most vectors reside within a narrow cone in the embedding space. Unlike geometry-based
research, we do not aim to prove or find the ideal distribution or other geometric properties in the
embedding space to improve the model. Instead, SAFARI focuses on revealing and understanding
structures within a given embedding space, regardless of its geometric properties. This allows us to
maintain the original semantic relationships while uncovering meaningful patterns.

Interpretability-based Approaches. This research targets making embedding spaces more inter-
pretable, often through rotation and probing methods (Park et al., 2017; Dufter & Schütze, 2019;
Clark et al., 2019; Dalvi et al., 2019). Park et al. (2017) employed rotation algorithms to improve
word vector interpretability, while Dufter & Schütze (2019) applied rotation to enhance word space
comprehension. Clark et al. (2019) analyzed attention mechanisms in pre-trained models, particularly
BERT (Devlin et al., 2019), to gain insights into how the model processes information. Dalvi et al.
(2019) examined individual vector dimensions in NLP models to uncover the roles of these dimen-
sions. Recently, Simhi & Markovitch (2023) transformed latent spaces into a new one with more
conceptualized and interpretable dimensions. Although SAFARI also seeks to interpret embedding
spaces, it differs by not assuming that the original dimensions are inherently interpretable or by
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transforming them into new spaces. Instead, SAFARI identify comprehensible structures by linking
embedding vectors to their underlying semantic space, preserving the original embeddings and
providing a robust framework for semantic interpretation.

3 PROBLEM FORMULATION

Before introducing SAFARI, we first define the key concepts of Semantic Distance, Semantic Field,
and Semantic Field Subspace. Frequently used notations are summarized in Table A1.

Semantic Distance. Let X be a set of textual elements and Rd a continuous, d-dimensional embed-
ding space learned by a deep learning model h : X → E , where E ⊂ Rd denotes embedding vectors
for the elements in X . Semantic Distance measures how different two textual elements are, based on
the distance between their embedding vectors:
Definition 1 (Semantic Distance): The Semantic Distance dsem(·, ·) between any two textual elements
x,x′ ∈ X is defined as the cosine distance between their embedding vectors v,v′ ∈ E:

dsem(v,v′) = 1− ⟨v,v′⟩/(∥v∥ · ∥v′∥). (1)

We use x and embedding vector v interchangeably when there is no ambiguity. Each textual element
often carries multiple layers of meaning, which we refer to as its semantics. LetM be the set of
all possible semantics. The semantics of an embedding vector v can be expressed as a set fsem(v),
where fsem(v) : E → 2|M| \∅, representing the various semantic facets of v.

We argue that a single textual element x cannot be fully interpreted in isolation, as its semantics,
fsem(v), require context for interpretation. As the adage states, “You shall know a word by the
company it keeps,” meaning x becomes interpretable only when considered with related elements in
its context. For example, as shown in Fig. 1, the word ‘Apple’ is ambiguous on its own but gains
specific meaning when used in different contexts–referring to a technology company with words like
‘Mac,’ ‘IBM,’ and ‘Windows,’ or to a fruit with words like ‘Apple Tree,’ ‘Juice,’ and ‘Banana.’ The
meaning becomes clearer as more contextual words are added.

Technology
Company

Mac

Apple

Mac

Apple IBM

Mac

Apple IBM

Windows

Apple
Tree

Apple

Apple
Tree

Apple Juice

Apple
Tree

Apple Juice

Banana

Apple

Fruit

Figure 1: A word ‘Apple’: from ambiguous to specific.

Coca-Cola

Coke Pepsi

Sprite

Figure 2: Close neighborhood.

Interpreting an Embedding Vector using Close Neighborhood. As discussed earlier, the semantics
of a textual element x can be interpreted through the context in which it appears. In models like
Word2Vec (Mikolov et al., 2013) and contextual models like BERT (Devlin et al., 2019), the semantics
of an embedding vector v is shaped by the surrounding vectors in its context.

To capture this context, we consider a subset of E that contains embedding vectors sharing common
semantics with v. According to Definition 1, these vectors are located near v in terms of Semantic
Distance. However, not all nearby vectors contribute meaningful information for interpreting v.
For instance, as depicted in Fig. 2, the vectors of ‘Coca-Cola’ and ‘Coke’ are nearly identical but
redundant, as they represent the same concept. Such synonyms are excluded from the interpretation.
We approximate synonyms as the k-Nearest Neighbors (k-NNs) of v, typically with k set to 3. The
close neighborhood of v, denoted as N (v), is defined as:

N (v) = {v′ | fsem(v′) ∩ fsem(v) ̸= ∅,v′ ∈ E} \ k-NNs(v).
In Fig. 2, the words ‘Sprite’ and ‘Pepsi’ are the close neighborhood of ‘Coca-Cola.’ Since enumerating
the entire set N (v) is impractical, we focus on a subset of N (v) in its context for interpretation.
Definition 2 (Interpretable Semantics of an Embedding Vector): Given a subset Nsub(v) ⊆ N (v),
the interpretable semantics of v is defined as the intersection of the semantics of all v′ ∈ Nsub(v):

fint(v) =
⋂

v′∈Nsub(v)
fsem(v′). (2)
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Semantic Field. After interpreting the semantics of a single vector v, we extend this to a set of
embedding vectors C ⊆ E , referred to as a Semantic Field. Similar to Definition 2, the Semantic
Field captures the shared semantics across multiple vectors by intersecting the meanings of vectors in
C. Since C may contain vectors with varying semantics, we refine it to include only those that share
the most common semantics. Formally, we define the Semantic Field as:
Definition 3 (Semantic Field): Given a set C of embedding vectors, the Semantic Field is defined as:

Fint(C) =
⋂

v∈C∗ fsem(v), (3)

where C∗ is a subset of C that maximizes shared semantics by minimizing the symmetric difference:

C∗ = argminCsub⊆C
∣∣⋃

v′∈Csub
fsem(v′)−

⋂
v′∈Csub

fsem(v′)
∣∣ . (4)

Figure 3: Visualization of symmetric difference.

Suppose Csub = {v1,v2}. As shown in Fig. 3,
the symmetric difference is visualized as the
shadow area, and minimizing it helps iden-
tify the optimal subset C∗ ⊆ C that shares
the most common semantics (the overlapping
area). Nevertheless, the concept of a Seman-
tic Field relies on the latent semantic function
fsem(·), making them abstract and hard to
compute directly. To remedy this issue, we introduce the concept of a Semantic Field Subspace.

Semantic Field Subspace. According to Definition 1, embedding vectors pointing in the same
directions represent the same semantics. This insight leads to the idea that every vector in the
embedding space corresponds to a unique set of semantics, and conversely, a specific vector can
represent each semantic set. Hence, a Semantic Field can be approximated by treating the semantic
sets as embedding vectors and solving the optimization in Eq. (4).
Definition 4 (Semantic Field Subspace): Let S be a subspace of Rd. The semantics of S is defined as:

Fsem(S) =
⋂

v∈C∗ fsem(v), (5)

where C∗ is the set of embedding vectors in S that minimizes the following symmetric difference:

C∗ = argminC⊂S
∣∣⋃

v′∈C fsem(v′)−
⋂

v′∈C fsem(v′)
∣∣ . (6)

Although enumerating all vectors in a subspace is still impractical, we can approximate a subspace
using a finite set of representative vectors C ⊆ E . Representing C as a matrix A allows us to apply
SVD to extract the key components, capturing the essential semantics of the subspace. We define this
relaxed subspace approximation as follows:
Definition 5 (Relaxed Version of Semantic Field Subspace): Given a subset C ⊆ E represented by
a matrix A, the subspace S can be approximated by A, i.e., S ≈ A. Applying SVD to A gives
A = UΣV ⊤, and the Semantic Field Subspace Fsem(S) is approximated by the singular values in
Σ and the singular vectors in V ⊤, i.e., Fsem(S) ≈ Σ,V ⊤.

4 METHODOLOGY

4.1 THE SAFARI ALGORITHM

Motivation. SAFARI is designed to identify Semantic Field Subspaces from a set E of embedding
vectors. While Definition 5 provides a theoretical framework for constructing these subspaces, the
primary challenge lies in selecting appropriate subsets C ⊆ E , especially in a large, diverse text corpus.
SAFARI addresses this by leveraging the natural clustering property of embedding vectors, where
clusters represent specific topics or semantic themes, enabling efficient identification of meaningful
subspaces in complex, high-dimensional embedding spaces.

Algorithm Description. SAFARI utilizes hierarchical clustering to iteratively identify potential
Semantic Field Subspaces, as it offers flexibility by not requiring a predefined number of clusters,
allowing for dynamic exploration of the data. Additionally, hierarchical clustering produces a
dendrogram, which helps interpret relationships between clusters and their semantic structures. The
pseudo-code for SAFARI is shown in Algorithm 1.
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Algorithm 1: SAFARI
Input: A set E of embedding vectors in Rd, window size w;
Output: A set Ψ of clusters with specific Semantic Field Subspaces;

1 Φ← Initialize each v ∈ E as its own cluster;
2 iter = 0; µ = 0; τ = 0;
3 Ψ← ∅; ▷ Store clusters with specific Semantic Field Subspaces
4 while |Φ| > 1 do

▷ Step 1: Cluster Merging
5 {Cx, Cy} ← argminCi,Cj∈Φ dsem(Ci, Cj);
6 Cnew ← Cx ∪ Cy;
7 Φ← Φ ∪ Cnew \ {Cx, Cy};

▷ Step 2: Semantic Field Subspace Determination
8 Cx ← |Cx| > |Cy| ? Cx : Cy;
9 Compute the Semantic Shift ∆Fsem(Cx, Cnew) using Algorithm 2;

10 if ∆Fsem(Cx, Cnew) > µ+ 2τ then Ψ← Ψ ∪ Cnew;
11 iter = iter + 1;
12 Update µ and τ by considering ∆Fsem(Cx, Cnew) and the previous (w − 1) values;
13 return Ψ;

Initially, each embedding vector in E forms its own cluster, resulting in n clusters (Line 1). These
clusters do not yet provide meaningful interpretation or form Semantic Field Subspaces. An empty
set Ψ is initialized to store clusters with specific semantic meanings (Line 3). The algorithm then
iterates through two key steps until all clusters are merged into a single one (Lines 4–12).

• Step 1: Cluster Merging. First, the two closest clusters, Cx and Cy , are identified based on the
Semantic Distance dsem(Cx, Cy), with the centroid representing each cluster (Line 5). These
two clusters are then merged into a new cluster Cnew (Line 6), after which the original clusters
Cx and Cy are removed, and the new cluster Cnew is added to the set Φ (Line 7).

• Step 2: Semantic Field Subspace Determination. The larger cluster, Cx, is selected, and
the Semantic Shift ∆Fsem(Cx, Cnew) is computed to measure the semantic gap between Cx
and Cnew (Lines 8–9), where its definition and computation will be presented later. A sliding
window of size w tracks the last w Semantic Shift values, calculating their mean (µ) and standard
deviation (τ ). If ∆Fsem(Cx, Cnew) exceeds the dynamic threshold (µ+ 2τ), indicating a large
semantic gap, Cnew is added to Ψ as a Semantic Field Subspace (Line 10). At last, the algorithm
updates the iteration counter and recalculates µ and τ for the next iteration (Lines 11–12).

Exact Semantic Shift Computation. We now define and describe the process for computing the
Semantic Shift (pseudo-code provided in Appendix B). Given two clusters, Cx and Cnew, we first
construct matrices Ax and Anew, representing their respective subspaces, Sx and Snew. Following
Definition 5, SVD is performed on these two matrices Ax and Anew to approximate the semantics of
these subspaces: Fsem(Sx) ≈ Σx,V

⊤
x and Fsem(Snew) ≈ Σnew,V

⊤
new.

We then compare the singular vectors vi ∈ V ⊤
x with their nearest neighbors ṽ∗

i ∈ V ⊤
new, based on

Semantic Distance dsem(vi, ṽ
∗
i ), which captures shifts in semantic direction. For each singular value

σi ∈ Σx and σ̃i ∈ Σnew sorted in descending order, we calculate the difference ∆σi = |σi − σ̃i|,
reflecting shifts in the importance of each dimension. Thus, the total Semantic Shift between clusters
Cx and Cnew (or subspaces Sx and Snew) is defined as:

∆Fsem(Cx, Cnew) = ∆Fsem(Sx,Snew) =
∑

i ∆σi · dsem(vi, ṽ
∗
i ). (7)

Eq. (7) captures both the importance difference (through ∆σi) and directional difference (through
dsem(vi, ṽ

∗
i )), providing a comprehensive measure of the semantic gap between subspaces.

Example 1: Consider a toy example with 11 words. The dendrogram in Fig. 4 shows how Algorithm
1 identifies Semantic Field Subspaces through hierarchical clustering. In the first three iterations,
semantically similar word pairs, such as ‘Macbook Air’ and ‘Macbook Pro,’ ‘PowerPoint’ and ‘Excel,’
and ‘Michael Jordan’ and ‘Chicago Bulls,’ are merged together. These merges result in only minor
Semantic Shifts, so they are not recognized as Semantic Field Subspaces. However, in the 4th
iteration, the word ‘Apple’ is merged with the ‘Macbook Air’ and ‘Macbook Pro’ cluster, which
produces a significant Semantic Shift, indicating the creation of a new Semantic Field Subspace.
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This example also highlights the hierarchical nature of Semantic Field Subspaces. For instance,
the ‘IT Companies’ subspace encompasses both ‘Apple (as an IT Company)’ and ‘Microsoft (as an
IT Company)’ as individual subspaces within it. Additionally, as the clustering process continues,
SAFARI dynamically tracks Semantic Shifts using a sliding window, allowing it to adjust the
threshold in real-time. This adaptive mechanism ensures that irrelevant clusters (like ‘IT Companies’
and ‘NBA’) do not form new Semantic Field Subspaces, preserving semantic integrity. △

Semantic Field Subspace

Macbook
Air

Macbook
Pro

PowerPoint Excel

NBA

Apple

Iteration

0

2

4

8

6

ChickenKFC

10

Microsoft Basketball Michael
Jordan

Chicago
Bulls

Apple
(IT Company)

Microsoft
(IT Company)

IT Companies

Non-Subspace Clusters

Semantic Shift 

Figure 4: A toy example of Algorithm 1.

4.2 APPROXIMATE SEMANTIC SHIFT COMPUTATION AND THEORETICAL ANALYSIS

Approximate Semantic Shift Computation. Exact Semantic Shift computation is computationally
intensive due to the need for a full SVD on two dense matrices, Ax and Anew. For a matrix of size
n × d (d ≤ n), the SVD has a time complexity of O(nd2) (Halko et al., 2009; Trefethen & Bau,
2022), which becomes prohibitive when repeated at each iteration. To address this, we develop an
efficient approximation algorithm (pseudo-code in Appendix C). Given the larger cluster Cx and the
smaller cluster Cy , we first construct matrices Ax and Ay . We then compute the spectral norm of Ay

and the maximum singular value σmax from Ax, using them to approximate the Semantic Shift of
Cx and Cnew:

∆F̃sem(Cx, Cnew) = ∥Ay∥2 σmax(Ax). (8)

Theoretical Analysis. Next, we provide a theoretical analysis to show that the Semantic Shift (Eq. (7))
can be accurately approximated by Eq. (8). Given two matrices Ax and Ay, let Anew = [Ax|Ay]
be the matrix of the newly merged cluster Cnew. We begin with Theorem 1, which shows that the
magnitude difference (∆σi) between Ax and Anew is bounded.
Theorem 1: Given any two matrices Ax and Ay with equal number of columns, where Ax has more
rows than Ay , the following inequality holds:

∆σi = |σi(Ax)− σi(Anew)| ≤ ∥Ay∥2 . (9)

Proof. The proof relies on Weyl’s Theorem (Weyl, 1912), which we first present. In each iteration
where two clusters are merged, let A ∈ Rm×d denote the matrix of the larger cluster. The merging
process introduces a perturbation to A, denoted as E, and the perturbed matrix is given by Ã = A+E.
Weyl’s Theorem provides a bound on the change in singular values caused by this perturbation:
Theorem 2 (Weyl’s Theorem (Weyl, 1912)):

|σi(A)− σi(Ã)| = |σi(A)− σi(A+E)| ≤ ∥E∥2 . (10)

Weyl’s Theorem states that the singular values of a matrix cannot change by more than the spectral
norm of the perturbation matrix E. Even though E is often assumed to be small in matrix perturbation
theory, this result holds for any perturbation, regardless of the size of ∥E∥2 (Stewart, 1998).

We now apply Weyl’s Theorem to prove Theorem 1. Let O be a zero matrix. Thus, Anew =
[Ax|Ay] = [Ax|O] + [O|Ay]. According to Theorem 2, we have:

|σi([Ax|O])− σi(Anew)| ≤ ∥[O|Ay]∥2 = ∥Ay∥2 .
To complete the proof, we need to show that σi([Ax|O]) = σi(Ax). Since this equality always holds,
Theorem 1 is proved.

Based on Theorem 1, Eq. (7) can be rewritten as: ∆Fsem(Cx, Cnew) =
∑

i ∆σi · dsem(vi, ṽ
∗
i ) ≤∑

i ∥Ay∥2 · dsem(vi, ṽ
∗
i ) = ∥Ay∥2 ·

∑
i dsem(vi, ṽ

∗
i ). To further approximate

∑
i dsem(vi, ṽ

∗
i ),

we present the following theorem:

6
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Theorem 3: Given two matrices Ax and Ay used in the exact Semantic Shift computation as presented
in Section 4.1, the directional difference between them is proportional to the largest singular vector
σmax of Ax: ∑

i dsem(vi, ṽ
∗
i ) = O(σmax(Ax)). (11)

Proof. To prove Theorem 3, we first introduce Lemma 1.
Lemma 1: For a given matrix M with a series of singular values {σi}, the condition number is
κ(M) = σmax

σmin
. The condition number quantifies the matrix’s sensitivity to small perturbations,

where higher values indicate greater susceptibility to changes (Belsley et al., 2005; Meyer, 2023).
Consequently, we establish: ∑

i dsem(vi, ṽ
∗
i ) = O(κ(M)). (12)

Given that real-world matrices contain noise and are often rank-deficient, we assume that:
∀M , lim

i→r
σi = 0,

∀M1,M2, lim
i→r1

σi(M1) = O( lim
j→r2

σj(M2)). (13)

Using this assumption, we compare the condition numbers of two matrices M1 and M2:
κ(M1)
κ(M2)

= σmax(M1)×σmin(M2)
σmax(M2)×σmin(M1)

. (14)

According to Eq. (13), we have κ(M1)
κ(M2)

= σmax(M1)
σmax(M2)

. Thus, comparing condition numbers of matrices
under this assumption (Eq. (13)) is equivalent to comparing their largest singular values. Therefore,

κ(M) = O(σmax(M)). (15)
With Lemma 1, we establish that the condition number, and thus the total directional difference, can
be approximated by the largest singular value. This completes the proof of Theorem 3.

By utilizing this approximation for Semantic Shifts, we can bypass the need for full SVD in each
iteration. Instead, we only need to compute ∥Ay∥2 and σmax(Ax), significantly reducing the time
complexity in Algorithm 1 (Meyer, 2023; Horn & Johnson, 2012).

5 EXPERIMENTS

5.1 SEMANTIC FIELD SUBSPACE ISOLATION

Experiment Setup. We first evaluate whether the Semantic Field Subspaces determined by SAFARI
effectively preserve their semantic meanings and remain isolated from one another. We employ four
datasets: AG-News (Zhang et al., 2015), AAPD (Yang et al., 2018), IMDB (Maas et al., 2011), and
Yelp1 (see Appendix D for details). Using BLINK (Wu et al., 2020) for entity linking, we extract
entities from each dataset and rank them by their TF-IDF scores (Schütze et al., 2008; Leskovec et al.,
2020), selecting the top 10%. These entities are then split into 80% for training (used to identify
subspaces) and 20% for testing. For each Semantic Field Subspace, we retain the top 100 singular
vectors. We then compute the average distance between test entities and the identified subspaces to
evaluate the isolation and preservation of semantic meaning. The results are presented in Fig. 5.

AG-News AAPD IMDB Yelp
Entities

AG
-N

ew
s

AA
PD

IM
DB

Ye
lp

Su
bs

pa
ce

s

2.92 4.21 3.86 3.41

3.41 3.37 3.78 3.65

3.64 4.24 2.77 3.22

3.40 4.21 3.55 2.87

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Figure 5: Semantic Field Subspace Isolation.

Result Analysis. The results in Fig. 5 yield three
key observations: (1) Test entities are closest to the
subspace corresponding to their respective dataset
and show reasonable distances to others, confirming
that SAFARI effectively preserves semantic meanings
within isolated subspaces. (2) Entities from AAPD
exhibit the greatest distance from other subspaces, re-
flecting the significant semantic gap between academic
papers and other types of content. (3) Entities within
AAPD are further from their own subspace compared
to other datasets, likely due to the smaller number of
entities extracted from academic papers, resulting in
a less rich semantic representation.

1https://www.yelp.com/dataset
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5.2 SEMANTIC FIELD SUBSPACE CLASSIFICATION

Experiment Setup. We conduct a classification experiment to further assess whether the Semantic
Field Subspaces identified by SAFARI retain semantic meaning. AG-News is divided into four
categories: Business, Sci/Tech, Sports, and World, while AAPD, IMDB, and Yelp are grouped
based on their content: academic papers, movie reviews, and business entities, respectively, resulting
in 7 distinct categories (classes). Following the setup from Section 5.1, we assign class labels to
entities and select the top-n entities from each class, using 80% for training and 20% for testing.
Semantic Field Subspaces are constructed using training data, with each subspace assigned a class
label. For the test entities, we calculate the distance (weighted by singular values) to all subspaces,
predicting the label of the nearest one. We compare the performance of SAFARI against several
baselines, including SVM (Platt, 1999; Chang & Lin, 2011), KNN (Cover & Hart, 1967; Fix, 1985),
Random Forest (Breiman, 2001), and BERT (Dalvi et al., 2019), with Random Guess as a trivial
baseline. Classification accuracy and training time are presented in Figs. 6 and 7.
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Figure 6: Classification accuracy.
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Figure 7: Training time.

Result Analysis. The results in Fig. 6 reveals three crucial findings: (1) SAFARI and SVM achieve the
highest accuracy, with SAFARI slightly outperforming in some cases. (2) KNN and Random Forest
perform moderately well, both surpassing BERT and Random Guess. (3) BERT lags in accuracy
due to its reliance on embedding vectors rather than raw text. Regarding efficiency (see Fig. 7), BERT
incurs the highest time cost, increasing sharply as the number of entities grows. SVM also shows
a steep rise in time cost but remains much faster than BERT. In contrast, SAFARI and Random
Forest maintain consistently low time costs. Overall, SAFARI strikes the best balance between
accuracy and efficiency, confirming its efficacy in retaining semantic meaning for classification.
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Figure 8: Efficiency comparison across 7 distinct classes.

5.3 EFFICIENCY

Experiment Setup. We then assess the speed of Semantic Shift computation by comparing full
SVD with our approximation method. The input data includes the top 2,000 entities from each class,
processed via hierarchical clustering, with the resulting matrices used to measure computational
efficiency. The results are averaged over 10 independent runs.

Result Analysis. As shown in Fig. 8, our approximation method is significantly faster than full SVD,
achieving speedups of 15∼30× across 7 distinct classes. The small variations, indicated by error
bars, reflect stability across runs. While the speedup increases with larger errors, we maintained at
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10−3, suggesting the potential for even greater speedups with larger errors. These results underscore
the efficiency and reliability of our approximation method for computing Semantic Shifts.

5.4 HIERARCHICAL SEMANTIC STRUCTURE

Experiment Setup. We validate SAFARI’s ability to uncover hierarchical semantic structures by
applying it to the top 1,000 entities from each category, with a focus on the Sports category from
the AG-News dataset. The Sports category was chosen due to its well-structured, event-driven
content, providing an ideal setting for evaluation. At each iteration, Semantic Shifts are computed to
identify Semantic Field Subspaces, using both exact and approximation methods to further confirm
SAFARI’s ability to deliver accurate approximations in real-world data. The results from iteration
11,000 to 16,000 are depicted in Fig. 9, with specific shifts at iterations 11,352 and 15,856 highlighted
to showcase the hierarchical structure, further analyzed in Figs. 10 and 11, respectively.
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Figure 9: Exact and approximate Semantic Shift values for the Sports category in AG-News.

Result Analysis. First, SAFARI shows high accuracy in approximating Semantic Shifts. As displayed
in Fig. 9, the approximate curve (red) closely aligns with the exact curve (blue), with a high Pearson
correlation coefficient of 0.92, confirming the effectiveness of our approximation method outlined in
Section 4.2. Moreover, the dynamic thresholding mechanism in SAFARI, using a sliding window,
effectively captures the Semantic Field Subspaces with smaller Semantic Shifts that might otherwise
be missed due to varying Semantic Shift magnitudes.

Second, SAFARI captures hierarchical relationships with varying granularity. In Fig. 10, small
initial clusters (e.g., individual USA university basketball or football teams) gradually evolve into
broader categories like “University Football and Basketball Teams from the USA.” Similarly, Fig. 11
shows how teams initially grouped by country later form broader regional clusters, with European
teams (blue labels) grouping more closely than non-European teams (read labels). This progression
highlights SAFARI’s ability to preserve semantic relationships while uncovering the hierarchical
structure within the data. Further analysis is provided in Appendix E.1.

Hawaii Rainbow Warriors
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Washington Huskies
men’s basketball team
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men’s basketball team

Connecticut Huskies
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Figure 10: USA basketball teams merged with
USA football teams.
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Figure 11: Sports teams from different locations
merged.
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5.5 FAKE NEWS EXPLANATION

Experiment Setup. Finally, we showcase how SAFARI can provide detailed explanations using
the FakeNewsCorpus dataset (Pathak & Srihari, 2019), which divides fake news articles into ten
categories: Bias, Clickbait, Conspiracy, Fake, Hate, JunkSci, Political, Reliable, Satire, and
Unreliable. Detailed descriptions are provided in Table D2. Unlike content-based labels in previous
datasets, these domain-based labels necessitate deeper explanations to clarify classification reasoning.
For example, an article labeled JunkSci might overlap with the Clickbait category, emphasizing
the need for precise explanations to avoid ambiguity. This complexity makes this dataset more
challenging, showcasing SAFARI’s ability to handle nuanced and overlapping categories.

We extract entities from each news article and construct ten Semantic Field Subspaces. By comparing
these subspaces, we analyze their principal directions and perform a nearest neighbor search to
identify the top k Wikipedia entities. To enhance interpretability, each entity is mapped to a Wikidata
node (Vrandečić & Krötzsch, 2014), where we examine the associated labels (Ayoola et al., 2022),
and the top node types are grouped into broader categories, offering insights into the classification
and relationships between the news article categories.

tfidf

Location

Religion

Science

Sports

Entertainment

Fictional works

Politics

Civil War

Game of Chance
Reliable
Clickbait

(a) Reliable vs. Clickbait.
tfidf
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Science

Sports

Entertainment

Fictional works

Politics

Civil War

Game of Chance
Reliable
Hate

(b) Reliable vs. Hate.
tfidf

Location

Religion

Science

Sports

Entertainment

Fictional works

Politics

Civil War

Game of Chance
Reliable
Junksci

(c) Reliable vs. JunkSci.

Figure 12: Reliable news compared with Clickbait, Hate, and JunkSci news.

Result Analysis. The Semantic Field Subspaces constructed by SAFARI for the ten fake news
categories display distinct patterns (see Appendix E.2 for details). To explain these differences, we
compare each subspace with the Reliable subspace, focusing on three specific categories: Clickbait,
Hate, and JunkSci (see Fig. 12). Further comparison results are available in Appendix E.3.

• Reliable: Reliable news consistently scores high for node types related to Science, Religion, and
Sports. This suggests that fake news sources prioritize emotionally charged and controversial
topics, while Reliable sources focus more on factual, less sensational content.

• Clickbait: Articles labeled as Clickbait show high values for the Fictional works node type,
alongside strong associations with Entertainment and Sports (see Fig. 12(a)). This suggests that
clickbait content often revolves around sensational or fictional topics to capture attention, with
less emphasis on scientific or factual information.

• Hate: The Hate category emphasizes the Location node type, reflecting its frequent associations
with political propaganda and regional tensions (see Fig. 12(b)). This geographic specificity is
distinct to Hate news, as it amplifies political or cultural division based on location.

• JunkSci: JunkSci sources are linked to the Game of Chance and Entertainment node types,
suggesting a focus on random outcomes and unscientific topics (see Fig. 12(c)). This aligns with
the nature of junk science, as it often lacks scientific rigor, unlike reliable sources that emphasize
factual content such as science and religion.

6 CONCLUSIONS

In this paper, we tackled the challenge of understanding the abstract and intricate structure of
embedding spaces. We introduced SAFARI, a novel algorithm for identifying Semantic Field
Subspaces through hierarchical clustering and the concept of Semantic Shift, with an efficient
approximation method that avoids SVD, reducing the computational cost. Extensive experiments
on five real-world datasets demonstrated SAFARI’s capability to uncover interpretable, hierarchical
semantic structures while achieving substantial computational savings. SAFARI has shown to be
effective for tasks like classification and explanation. This work not only bridges the gap between
embedding spaces and their underlying semantics but also offers new insights into the structure and
utility of embedding spaces, enhancing both interpretability and efficiency in their analysis.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos Christodoulopoulos, and Andrea Pierleoni.
ReFinED: An efficient zero-shot-capable approach to end-to-end entity linking. In Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), pp. 209–220, 2022.

David A Belsley, Edwin Kuh, and Roy E Welsch. Regression diagnostics: Identifying influential data
and sources of collinearity. John Wiley & Sons, 2005.

Leo Breiman. Random Forests. Machine Learning, 45:5–32, 2001.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does BERT look
at? an analysis of BERT’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp. 276–286, 2019.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, and James Glass.
What is one grain of sand in the desert? Analyzing individual neurons in deep NLP models. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 6309–6317, 2019.

David Demeter, Gregory Kimmel, and Doug Downey. Stolen probability: A structural weakness
of neural language models. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 2191–2197, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pp. 4171–4186, 2019.

Philipp Dufter and Hinrich Schütze. Analytical methods for interpretable ultradense word embeddings.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 1185–1191, 2019.

Kawin Ethayarajh. How contextual are contextualized word representations? Comparing the geometry
of BERT, ELMo, and GPT-2 embeddings. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 55–65, 2019.

Evelyn Fix. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties,
volume 1. USAF School of Aviation Medicine, 1985.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Stochastic algorithms for constructing approximate matrix decompositions. arXiv preprint
arXiv:0909.4061, 2009.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge
University Press, 2020.

Tianlin Liu, Lyle Ungar, and Joao Sedoc. Unsupervised post-processing of word vectors via conceptor
negation. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 6778–6785,
2019.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 142–150, 2011.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representa-
tions of words and phrases and their compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems (NIPS), pp. 3111–3119, 2013.

Jiaqi Mu and Pramod Viswanath. All-but-the-Top: Simple and effective postprocessing for word
representations. In International Conference on Learning Representations (ICLR), 2018.

Sungjoon Park, JinYeong Bak, and Alice Oh. Rotated word vector representations and their inter-
pretability. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 401–411, 2017.

Archita Pathak and Rohini K Srihari. BREAKING! Presenting fake news corpus for automated
fact checking. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pp. 357–362, 2019.

John Platt. Probabilistic outputs for support vector machines and comparisons to regularized likeli-
hood methods. Advances in Large Margin Classifiers, 10(3):61–74, 1999.

Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to Information
Retrieval. Cambridge University Press, 2008.

Adi Simhi and Shaul Markovitch. Interpreting embedding spaces by conceptualization. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
1704–1719, 2023.

Gilbert W Stewart. Perturbation Theory for the Singular Value Decomposition. 1998.

Lloyd N Trefethen and David Bau. Numerical Linear Algebra. SIAM, 2022.
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A TABLE OF NOTATIONS

Table A1: List of frequently used notations.

Symbol Description
x,X A set X of textual elements x, i.e., x ∈ X
v, E A set E of embedding vectors v in a d-dimensional embedding space Rd, i.e., v ∈ E and E ⊂ Rd

h A deep learning model: X → E
dsem(v,v′) The semantic distance between any two embedding vectors v and v′

M A semantic set
N (v) The close neighborhood of an embedding vector v
fsem(v) The semantics of an embedding vector v, i.e., fsem(v) : Rd → 2|M| \ {∅}
fint(v) The interpretable semantics of an embedding vector v, i.e., fint(v) : Rd → 2|M| \ {∅}
Fint(C) The semantic field of a subset of embedding vectors C ⊆ E , i.e., Fint(C) : Rd → 2|M| \ {∅}
Fsem(S) The semantic field subspace of a subspace S ⊆ Rd, i.e., Fsem(S) : 2|Rd| \ {∅} → 2|M| \ {∅}
∆Fsem(C1, C2) The semantic shift of any two clusters C1 and C2

B PSEUDO-CODE FOR EXACT SEMANTIC SHIFT COMPUTATION

The pseudo-code for exact Semantic Shift computation is depicted in Algorithm 2.

Algorithm 2: Exact Semantic Shift Computation
Input: Larger cluster Cx and new cluster Cnew;
Output: Exact Semantic Shift ∆Fsem(Cx, Cnew);

1 Ax and Anew ← Construct two matrices from Cx and Cnew;
2 Fsem(Sx) ≈ Σx,V

⊤
x and Fsem(Snew) ≈ Σnew,V

⊤
new ← Perform SVD on Ax and Anew;

3 Compute ∆Fsem(Cx, Cnew) using Eq. (7);
4 return ∆Fsem(Cx, Cnew);

C PSEUDO-CODE FOR APPROXIMATE SEMANTIC SHIFT COMPUTATION

The pseudo-code for approximate Semantic Shift computation is depicted in Algorithm 3.

Algorithm 3: Approximate Semantic Shift Computation
Input: Larger cluster Cx and smaller cluster Cy;
Output: Approximate Semantic Shift ∆F̃sem(Cx, Cnew);

1 Ax and Ay ← Construct two matrices from Cx and Cy;
2 σmax ← Compute the maximum singular value from Ax;
3 Compute ∆F̃sem(Cx, Cnew) using Eq. (8);
4 return ∆F̃sem(Cx, Cnew);

D DATASET DETAILS

In the experiments, we employ five publicly available, real-world datasets for performance evaluation.
Below are the dataset details:

• AG-News: This dataset comprises over 1 million news articles from more than 2,000 sources
(Zhang et al., 2015), commonly used for clustering, classification, ranking, and search. Each
article is categorized under one of four labels: Business, Sci/Tech, Sports, and World.

• AAPD: This Arxiv Academic Paper Dataset (AAPD) contains 55,840 abstracts and subjects of
computer science papers developed for multi-label classification tasks (Yang et al., 2018).
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Table D2: Description for the categories/labels in FakeNewsCorpus.

Label Description
Bias Sources that come from a particular point of view and may rely on propaganda, decon-

textualized information, and opinions distorted as facts.
Clickbait Sources that provide generally credible content but use exaggerated, misleading, or

questionable headlines, social media descriptions, and/or images.
Conspiracy Sources that are well-known promoters of kooky conspiracy theories.
Fake Sources that entirely fabricate information, disseminate deceptive content, or grossly

distort actual news reports.
Hate Sources that actively promote racism, misogyny, homophobia, and other forms of

discrimination.
JunkSci Sources that promote pseudoscience, metaphysics, naturalistic fallacies, and other

scientifically dubious claims.
Political Sources that provide generally verifiable information in support of certain points of

view or political orientations.
Reliable Sources that circulate news and information in a manner consistent with traditional and

ethical practices in journalism.
Satire Sources that use humor, irony, exaggeration, ridicule, and false information to comment

on current events.
Unreliable Sources that may be reliable but whose contents require further verification.

• IMDB: This dataset includes 50,000 movie reviews,2 which is evenly split into 25,000 reviews
for training and 25,000 for testing, used for binary sentiment classification (Maas et al., 2011).

• Yelp: This dataset contains millions of reviews, user data, and business attributes,3 supporting
tasks like sentiment analysis and business recommendations.

• FakeNewsCorpus This dataset was compiled by automatically scraping the list of domains
from OpenSources (Pathak & Srihari, 2019). It contains 9,408,908 articles from 745 domains.4
The corpus is primarily intended to train deep learning algorithms for fake news detection. We
currently consider the news articles that are categorized based on their domains under ten labels:
Bias, Clickbait, Conspiracy, Fake, Hate, JunkSci, Political, Reliable, Satire, and
Unreliable. The descriptions of these ten labels are presented in Table D2.

Experiment Environment. All methods were written in Python 3.8. All experiments were conducted
on a machine with Intel® Xeon® Platinum 8480C, 2.0 TB memory, and one NVIDIA H100, running
on Ubuntu 20.04.

E EXTRA EXPERIMENTAL RESULTS

E.1 MORE ANALYSIS ON HIERARCHICAL SEMANTIC STRUCTURE

In this section, we explore the differences between the hierarchical semantic structures identified by
SAFARI in embedding spaces and the more intuitive hierarchies found in natural human language. In
human language, semantics typically follow a logical hierarchy, progressing from specific, concrete
entities to more abstract concepts, much like an ontology. However, in embedding spaces, this
progression is not always intuitive. The distinction between “specific” and “abstract” depends more
on the data and model than on human reasoning, often leading to groupings that diverge from what
we would expect based on natural language understanding.

For example, as illustrated in Fig. 10, USA basketball teams are first grouped with USA football
teams, and later, sports teams from various locations are merged, as shown in Fig. 11. This follows
a logical hierarchical structure, from more specific categories to broader ones. Yet, as shown in
Fig. E1 (at iteration 19,790), entities such as horse racing clubs, companies, and events (e.g., ‘Jockey
Club’) are merged with famous racing horses. This merging of horse racing happens thousands of
iterations after the merging of football and basketball teams in the USA. Following the ontology-like

2https://www.imdb.com/
3https://www.yelp.com/dataset
4https://github.com/several27/FakeNewsCorpus
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Figure E1: Famous racing horses merged with other horse racing entities.
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Figure E2: Explanation patterns of the Semantic Field Subspaces for the ten fake news categories.

progression, we would expect more abstract concepts. However, horse racing is not a more abstract
concept compared with other sports.

These examples underscore that the hierarchical structures found in embedding spaces are shaped
by the model’s learning patterns, not by human logic. While some structures align with natural
expectations, others can be surprising, revealing the complex relationship between the data and the
model. This highlights the importance of careful interpretation when analyzing embeddings, as the
resulting hierarchies may not always reflect conventional semantic reasoning.

E.2 EXPLANATION PATTERNS FOR TEN FAKE NEWS CATEGORIES

Figure E2 presents the explanation patterns of the Semantic Field Subspaces constructed by SAFARI
for the ten distinct fake news categories. Each subspace reveals different nearest entity types,
showcasing the nuanced relationships between these categories. For instance, the subspaces highlight
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Figure E3: More comparisons between Reliable and other categories of fake news.

key differences in how content is structured across categories like Clickbait, Hate, and JunkSci,
each emphasizing different entity types.

E.3 MORE COMPARISON RESULTS BETWEEN RELIABLE AND OTHER CATEGORIES

Fig. E3 depicts more comparisons between Reliable and other categories of fake news. Before
analyzing the results, we want to highlight that although this dataset is labeled as “fake news”,
the categories presented here are vague or not necessarily fake. These categories are not clearly
distinct from each other; for instance, a news piece labeled as Fake could also fall under Bias or
Unreliable simultaneously, making it unreasonable to strictly assign it to one category over another.
Consequently, the analysis below may be based on an inherently uncertain foundation.

• Bias: The node types for Bias are similar to those for Reliable, particularly in areas like
Location and Entertainment (see Fig. 3(a)). This is consistent with the dataset’s description
of biased content, which often involves propaganda or opinions presented as facts, rather than
outright falsehoods. One notable difference is that Bias lacks prominence in node types like
Science, Religion, and Sports, which appear more in Reliable news.

• Conspiracy: The node types for Conspiracy differ markedly from Reliable, with a notable
emphasis on Location and Entertainment (see Fig. 3(b)). This aligns with the nature of conspir-
acy theories, which often center around speculative narratives involving covert operations or
unverified claims. In contrast, Reliable news exhibits a more balanced spread across categories
like Science and Sports, highlighting the factual and grounded nature of its content. The disparity
between these node type patterns underscores the speculative and unverified themes prevalent in
conspiracy content.

• Fake: The Fake category shows a scattered pattern in node types, with no strong emphasis
on any particular theme (see Fig. 3(c)). This reflects the diversity and often random nature
of fake news, which may cover a wide range of topics with little factual basis. Compared to
Reliable news, which focuses on well-defined topics such as Science, Religion, and Sports, Fake
news lacks consistency, mirroring the dataset’s characterization of this category as containing
misleading or fabricated stories.

• Political: As expected, the node type patterns for Political news are closely aligned with
Reliable, with significant overlap in categories such as Science, Location, Entertainment, and
Sports (see Fig. 3(d)). This similarity is consistent with the dataset’s description of Political
news as verifiable but presented with a specific viewpoint. The comparison with Reliable
indicates that Political content, while biased toward certain ideologies or perspectives, does not
stray far from reliable reporting in terms of the types of entities discussed.
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• Satire: The Satire category shows high values in Location, Entertainment, and Fictional
works, which contrasts sharply with the more factual node types (e.g., Science and Religion)
found in Reliable news (see Fig. 3(e)). Satire often uses humor, exaggeration, and fictional
scenarios to comment on real-world events, explaining the prominence of such node types.
This divergence highlights the entertainment-driven and often fictional nature of satire, which
deliberately distorts facts for comedic or critical purposes, unlike the more serious and factual
content of Reliable news.

• Unreliable: The Unreliable category displays notable differences compared to Reliable news
sources. Except for Location, the node types associated with Unreliable sources are scattered
across diverse, less cohesive categories (see Fig. 3(f)). This suggests that Unlike Reliable
news, which demonstrates a strong association with node types related to well-established
factual domains like Science, Religion, and Sports, Unreliable sources exhibit a pattern of
fragmentation. This reflects the unpredictable and often erratic nature of unreliable news content,
where the underlying information may lack verification or coherence.
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