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Abstract

Grammar-constrained decoding (GCD) is a001
powerful technique that enforces formal gram-002
mar constraints on the outputs of large lan-003
guage models (LLMs). This method ensures004
that generated text adheres to predefined struc-005
tural rules, making it highly suitable for tasks006
requiring precise output formats. Despite its007
broad applications, the theoretical fundamen-008
tals of GCD remain underexplored, particularly009
in the context of formal language theory. In this010
work, we introduce the concept of tokenization011
as an inverse homomorphism, which maps the012
original string language to a token language013
defined on the alphabet of token IDs. The fact014
that tokenization is an inverse homomorphism015
is important for the efficiency of GCD, provid-016
ing both a theoretical basis and an efficient con-017
struction method for the GCD algorithm. We018
further extend this framework to support Uni-019
code characters, which are essential for multi-020
lingual NLP applications.021

Our implementation is available at the follow-022
ing URL: Anonymous.023

1 Introduction024

Grammar-constrained decoding (GCD) is a tech-025

nique that enforces formal grammar constraints on026

the outputs of large language models (LLMs). This027

method allows users to define the desired structure028

of the output using formal grammars as an interface029

and ensures that the generated text adheres to these030

constraints with hard guarantees. Due to its general-031

ity and robustness, grammar-constrained decoding032

has been widely applied in various tasks, including033

code synthesis (Poesia et al., 2022; Scholak et al.,034

2021), semantic parsing for domain-specific lan-035

guages (Shin et al., 2021; Wang et al., 2023), and036

other structured outputs (Geng et al., 2024b; Zara-037

tiana et al., 2024; Li et al., 2024). Various optimiza-038

tion techniques have been proposed in subsequent039

works to improve the efficiency (Beurer-Kellner040

1. Detokenization is homomorphic from
token IDs to ASCIIa

d(15496) = “Hello” ∧ d(2159) = “ World”.

d([15496,2159]) = “Hello World ”

≡
[d(15496),d(2159)] = “Hello World”.

2. Detokenization is not homomorphic from
token IDs to Unicode

d(19526) = “ä¥” ∧ d(254) = “ł”.

d([19526,254]) = “你”

̸≡
[d(19526),d(254)] = “ä¥ł”

3. Detokenization is homomorphic from
token IDs to Unicode bytes Tokenization

d(19526) = “E4 BD” ∧ d(254) = “A0”.

d([19526,254]) = “E4 BD A0 (你)”

≡
[d(19526),d(254)] = “E4 BD A0(你)”

• Detokenization = d : N∗→ Σ∗

• Tokenization = d−1 : Σ∗→ N∗
aA leading space is omitted before the token Hello

Figure 1: Tokenization and Detokenization functions
illustrating the broken homomorphism property in Ope-
nAI GPT-2’s Tokenization scheme.

et al., 2024) and extend to black-box LLMs with- 041

out logit access (Geng et al., 2024a). 042

From a high-level perspective, grammar- 043

constrained decoding can be viewed as a checking 044

mechanism that continuously validates the gener- 045

ated text against a set of formal grammar rules un- 046
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til the completion of the generation process. This047

continuous validation process is similar to the in-048

cremental parsing process in traditional parsing049

algorithms, where the parser checks the validity of050

the input string as it is being read. The difference is051

that as LLMs employ a token-based representation,052

the validation process is done on the sequence of053

token IDs rather than the sequence of characters.054

As shown in Fig. 2, tokenizing a few strings with055

a very simple structure, such as balanced paren-056

theses, results in a non-trivial sequence of token057

IDs The misalignment between the token IDs and058

the original characters is further amplified when059

the strings contain Unicode characters, which are060

represented by multiple bytes (or multiple token061

IDs ) as shown in Fig. 1. As the central question of062

grammar-constrained decoding is how to efficiently063

validate the token IDs sequence, it is crucial to un-064

derstand the relationship between the sequence of065

token IDs and the original string of characters.066

While numerous implementations of grammar-067

constrained decoding have been available, there is068

no investigation into the structural properties of the069

token ID sequence and how this impacts the effi-070

ciency of GCD. In this work, we aim to bridge this071

gap by viewing the grammar-constrained decoding072

problem from a formal language perspective. We073

consider the grammar-constrained decoding prob-074

lem as a decision problem that involves determining075

whether a given (partial) string belongs to a formal076

language L defined by a specific grammar G. The077

sequence of token IDs generated by the tokenizer078

can be viewed as a new language L′, which we refer079

to as the token language because it is defined on the080

alphabet of token IDs. We start by showing that the081

tokenization process can be viewed as an inverse082

homomorphism from the token ID alphabet to the083

character alphabet. This homomorphism property084

allows us to establish a connection between the to-085

ken language L′ and the original string language L,086

i.e., the token language is an inverse-homomorphic087

image of the original string language. We then088

show that this homomorphic property is crucial for089

the efficiency of grammar-constrained decoding, as090

it provides both a theoretical foundation and an ef-091

ficient construction for the grammar-constrained092

decoding algorithm.093

After establishing the homomorphic property094

of tokenization, we extend our discussion to095

the support for Unicode characters in grammar-096

constrained decoding. While most of the existing097

works on GCD focus on ASCII characters, the sup- 098

port for Unicode characters is crucial for multilin- 099

gual NLP applications. Due to the fact that Unicode 100

characters are represented by multiple bytes, the 101

tokenization process on Unicode characters has an 102

extra layer of complexity. We show that the support 103

for Unicode characters can be naturally integrated 104

into the homomorphic framework by transforming 105

the grammar G with Unicode characters to a new 106

grammar G′ with byte-level alphabet. Once the 107

transformation is done, we can reuse the same al- 108

gorithm for grammar-constrained decoding on the 109

byte-level alphabet, thereby removing the difficulty 110

of handling Unicode characters in the token space 111

Contributions 112

• We establish a theoretical foundation for 113

grammar-constrained decoding by viewing 114

the problem as a decision problem in formal 115

language theory. 116

• We show that tokenization can be seen as an 117

inverse homomorphism between token IDs 118

and characters (or bytes), which paves the way 119

for efficient grammar-constrained decoding 120

on token space. 121

• We show that the homomorphic property is 122

broken with Unicode characters but can be 123

restored by transforming the grammar to a 124

byte-level alphabet. This allows to extend 125

grammar-constrained decoding to Unicode- 126

with minimal effort 127

2 Preliminaries 128

2.1 Context-free grammar and language 129

Definition 2.1 (Context-free Grammar). A context- 130

free grammar (CFG) is a 4-tuple G = (V,Σ,P,S), 131

where 132

• V is a finite set of non-terminal symbols (vari- 133

ables), 134

• Σ is a finite set of terminal symbols, 135

• P is a finite set of production rules, each of the 136

form A→ α, where A ∈ N and α ∈ (N∪Σ)∗, 137

• S ∈ N is the start symbol. 138

Definition 2.2 (Formal Language). A formal lan- 139

guage L is a set of strings over an alphabet Σ, 140

where a string is a finite sequence of symbols from 141

Σ. 142
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Depth String Tokenization Tokens
0 "" [ 1 ] BOS = 1
1 "[]" [ 1, 5159 ] [ = 518
2 "[[]]" [ 1, 518, 2636, 29962 ] [] = 2636
3 "[[[]]]" [ 1, 5519, 2636, 5262 ] [[ = 5519
4 "[[[[[]]]]" [ 1, 5519, 29961, 2636, 5262, 29962 ] [[ = 29961
5 "[[[[[[]]]]]" [ 1, 5519, 8999, 2636, 5262, 5262 ] [[[ = 8999
6 "[[[[[[[[]]]]]]" [ 1, 5519, 8999, 29961, 2636, 5262, 5262, 29962 ] ] = 29962
7 "[[[[[[[[[]]]]]]]" [ 1, 5519, 8999, 8999, 2636, 5262, 5262, 5262 ] ]] = 5262
8 "[[[[[[[[[[[]]]]]]]]" [ 1, 5519, 8999, 8999, 29961, 2636, 5262, 5262, 5262, 29962 ] [] = 5159

Figure 2: Tokenization Output for Nested Brackets Using LLaMA Tokenizer

If G(V,Σ,P,S) is a CFG, the language of G, de-143

noted L(G), is the set of all strings of terminal144

symbols that can be derived from the start symbol145

S. If a language L is the language of some CFG,146

then L is called a context-free language(CFL).147

Definition 2.3 (Pushdown Automaton). A push-148

down automaton (PDA) is a 7-tuple M =149

(Q,Σ,Γ, δ,q0,Z0,F), where150

• Q is a finite set of states,151

• Σ is a finite set of input symbols,152

• Γ is a finite set of stack symbols,153

• δ : Q× (Σ∪{ϵ})×Γ→ 2Q×Γ∗ is the transi-154

tion function,155

• q0 ∈ Q is the start state,156

• Z0 ∈ Γ is the initial stack symbol,157

• F ⊆ Q is the set of accepting states.158

Theorem 2.1 (Pushdown Automaton and Contex-159

t-free Grammar). For every context-free grammar160

G, there exists a pushdown automaton M that ac-161

cepts the language L(G).162

Thm. 2.1 implies that one can always construct163

a PDA to decide whether a given string belongs to164

a context-free language.165

Definition 2.4 (String Homomorphism). Given two166

operations ⊕ and ⊙ on two alphabets Σ∗ and Γ∗167

respectively, a function h : Σ∗→ T ∗ is a string ho-168

momorphism if ∀u,v ∈ Σ∗,h(u⊕ v) = h(u)⊙h(v).169

In the following, we assume that ⊕ and ⊙ are170

both string concatenation operations and use xy to171

denote the concatenation of two elements x and172

y. Thus, a mapping h is a string homomorphism173

if it preserves the concatenation of strings. One174

can apply a homomorphism to a language L by175

applying it to each string in the language, which176

results in a new language h(L). That is, h(L) =177

{h(w) | w ∈ L} is the image of L under h.178

Definition 2.5 (Inverse Homomorphism). Given 179

a string homomorphism h : Σ∗→ Γ∗, the inverse 180

function h−1 : Γ∗→ Σ∗ is called an inverse homo- 181

morphism. 182

The inverse homomorphism h−1(L) includes all 183

strings in Σ∗ that map to strings in L under h. 184

Theorem 2.2 (Closure under Inverse Homomor- 185

phism). If L is a context-free(regular) language 186

and h : Σ∗→ Γ∗ is a homomorphism, then the in- 187

verse homomorphic image h−1(L) is also a context- 188

free(regular) language (Hopcroft et al., 2006, The- 189

orem 7.30). 190

2.2 Tokenization and Unicode 191

Tokenization1 is the process of splitting a string 192

into sub-word units known as tokens and convert- 193

ing these tokens into numerical representations (in- 194

tegers) which can be fed into the model. This step 195

improves the efficiency of the model by reducing 196

the vocabulary size and the length of the input se- 197

quences. 198

Detokenization is the reverse process of tokeniza- 199

tion; it involves converting the token IDs back into 200

their respective token strings, and subsequently 201

concatenating these strings to form the original 202

text. 203

Unicode Support. Byte-level tokenization2 (Wang 204

et al., 2019; Radford et al., 2019) is the standard 205

way to provide support for Unicode characters. Un- 206

like traditional character-level tokenization, byte- 207

level tokenization first converts the text into a byte 208

sequence according to a format such as UTF-8, 209

and then applies tokenization to the byte sequence. 210

The resulting token IDs are chunks of bytes instead 211

1In some litterature, tokenization only refers to the process
of spliting the text and the term encoding is used to describe
the mapping from token to ID. In this work, we follow our
definition.

2also known as byte-level encoding
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of characters, which allows the model to support212

effectively any Unicode character.213

3 Tokenization is inverse homomorphism214

In this section, we start with showing that tokeniza-215

tion can be seen as an inverse homomorphism be-216

tween token IDs and characters (or bytes), which217

implies that the structure of the source language218

is preserved. We then show that this homomor-219

phism leads to an efficient construction of a PDA220

for grammar-constrained decoding on token space.221

3.1 Tokenization preserves structure222

In the context of LLM, we have two alphabets:223

1. the character alphabet Σ which is typically a224

charset, i.e. Unicode characters or ASCII.225

2. the token alphabet Γ which is the set of all226

possible token IDs in a language model’s vo-227

cabulary, i.e. Γ = {0,1, . . . , |V | − 1} where228

V is the vocabulary of the language model’s229

tokenizer.230

The tokenization function is a mapping from the231

character alphabet to the token alphabet:232

tok : Σ∗→ Γ∗233

The detokenization function is the inverse of the234

tokenization function:235

tok−1 : Γ∗→ Σ∗236

where tok−1(tok(x)) = x for all x ∈ Σ∗.237

In the context of grammar-constrained decod-238

ing, we have a formal grammar G that we want239

to enforce on the output of the language model,240

e.g. JSON grammar. The language generated by241

the grammar G is denoted by L(G). The image of242

L(G) under the tokenization function tok forms an-243

other language tok(L(G)), which we call the token244

language.245

Proposition 3.1. Tokenization functions are gener-246

ally not homomorphic from the character space to247

the token space under the concatenation operation.248

One can easily verify this by considering the249

following example.250

Example 3.1. With GPT-3 tokenizer, the brackets251

[ and ] are individually tokenized as 58 and 60,252

respectively, but the combined [] is tokenized as253

21737.254

In contrast, the detokenization function is homo- 255

morphic, i.e. d([t1, t2]) = [d(t1),d(t2)]∀t1, t2 ∈ Γ∗ 256

as shown in Fig. 1 This is not surprising, as the 257

detokenization function, as the name suggests, per- 258

forms the following steps:: 259

1. Mapping token IDs back to their correspond- 260

ing tokens. 261

2. Concatenating these tokens to reconstruct the 262

string. 263

3. Performing necessary post-processing to re- 264

store the original string format. 265

We can now state the following proposition: 266

Proposition 3.2. The detokenization function is an 267

homomorphism from the token space to the charac- 268

ter space under the concatenation operation. The 269

tokenization is thus an inverse homomorphism. 270

All major subword encoding schemes, including 271

Byte Pair Encoding (BPE) (Sennrich et al., 2016), 272

WordPiece, and SentencePiece (Kudo and Richard- 273

son, 2018), exhibit this homomorphic property in 274

their detokenization functions. We provide a more 275

detailed analysis of how real-world tokenizers act 276

as inverse homomorphisms in Appendix A. As a 277

direct consequence of the tokenization function 278

being an inverse homomorphism and the closure 279

properties of context-free languages under inverse 280

homomorphism (Theorem 2.2), we have the fol- 281

lowing proposition: 282

Proposition 3.3. The token language tok(L(G)) is 283

a context-free(regular) language for any context- 284

free(regular) language L(G). 285

3.2 Token-space membership problem 286

Membership problem is a fundamental problem 287

in formal language theory, which involves deter- 288

mining whether a given string s belongs to a for- 289

mal language L(G) defined by a specific gram- 290

mar G. Membership problem is at the core of 291

grammar-constrained decoding, where the goal is 292

to ensure that the generated text adheres to spe- 293

cific constraints on the output. The main challenge 294

in grammar-constrained decoding is to efficiently 295

solve the membership problem3 for a given gram- 296

mar and a candidate sequence of tokens generated 297

by a large language model (LLM). 298

The membership problem is decidable 299

for context-free languages and regular lan- 300

guages (Hopcroft et al., 2006, Chap 7.4.4) , which 301

3More precisely, this is a partial membership problem, as
we are interested in whether the string is a prefix of a valid
string in the language.
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are the two most common types of grammars302

used in grammar-constrained decoding. This is303

a well-established result and various algorithms,304

efficient or not, exist to solve the membership305

problem for context-free languages. Now that we306

have established that tokenization is an inverse307

homomorphism and the token language retains the308

structure of the original string language Thm. 3.3,309

we can make the following claim:310

Proposition 3.4. The membership problem for a311

context-free (or regular) language in the token312

space is decidable and can be solved with the same313

algorithms used in the character space.314

In practice, this means that we can:315

1. solve the membership problem directly in the316

token space without the need to convert it back317

to the character space with the existing pars-318

ing algorithms for context-free languages.319

2. test the recognition power of LLMs for a cer-320

tain category, such as context-free languages,321

by writing a context-free grammar in charac-322

ter space and feeding it directly to the LLM323

without worrying about the structure being324

lost after tokenization.325

3.3 Token-space automata construction326

In this section, we explain how to construct a parser327

for the token language tok(L) based on the parser328

for the string language L by using the homomor-329

phism property of tokenization. The main idea is330

analogous to the construction of a pushdown au-331

tomaton (PDA) for the inverse homomorphism of332

a context-free language sketched in Hopcroft et al.333

(2006, Theorem 7.30). Given a homomorphism334

h from alphabet Γ to alphabet Σ, and L being a335

context-free language over Σ, the construction of336

a PDA to accept language L′ = h−1(L) is shown337

in Fig. 3. As stated in Thm. 2.1, we can always338

construct a PDA M which reads the input string in339

the alphabet Σ and accepts the language L. The340

construction of such a PDA is standard and well-341

known in the literature (Hopcroft et al., 2006, Chap342

6.3.1). We then construct a PDA M′ which reads343

the input string in the alphabet Γ (token IDs in our344

case) and accepts the language L′ = tok(L). The345

working of the PDA M′ is as follows:346

1. It applies the homomorphism347

h(detokenization in our case) to the in-348

put token ID a and puts the result h(a) into349

the buffer, i.e. mapping the token IDs back to 350

the character space. 351

2. The underlying PDA M in the character space 352

reads the input characters h(a) and updates its 353

state and stack accordingly. 354

The resulting PDA M′ reads the token IDs as input 355

and decides whether the token IDs form a valid 356

string in the token language tok(L). 357

Figure 3: Construction of a PDA M′ to accept lan-
guage h−1(L). In the context of LLM, the input a is a
token ID, the homomorphism h is detokenization, the
buffer is used to store the token h(a), the PDA state is
the current state of the PDA in the character space, and
the PDA stack is the stack of the PDA in the character
space.

Once we have constructed the PDA M′, we can 358

use it to validate the generated token IDs from the 359

LLM in an incremental manner as shown in 1 (Line 360

6). In case the tokenization is not an inverse homo- 361

morphism, we can still accept the token IDs from 362

the LLM by converting them back to the charac- 363

ter space and then feeding them to the PDA in the 364

character space. But this approach is less efficient 365

as it does not allow for incremental validation of 366

the token IDs as shown in Algorithm 1 (Line 4). 367

Incorrect construction We also present an intu- 368

itive yet incorrect approach to construct a parser 369

for the token language tok(L). This approach may 370

seem reasonable at first glance but is incorrect due 371

to the non-homomorphic nature of tokenization 372

The idea behind this approach consists of two steps: 373

1. Apply the tokenization function tok to the ter- 374

minal symbols of the grammar G to obtain a 375

new grammar G′. 376
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Algorithm 1 Grammar Constrained Decoding

Require: Grammar G, parser P, language model
LLM, , prompt x, tokenization function tok
and detokenization function tok−1, token vo-
cabulary V

Ensure: Generation y adhering to G
1: y : [List[int]]← []
2: P.init(G)
3: loop
4: P.update(tok−1(y:t)) ▷ advance

state of P with entire partial generation o (non-
homomorphic)

5: OR
6: P.update(tok−1(yt)) ▷ advance state of P

with new token t (homomorphic)
7: m← [0,0, . . . ,0] ▷ initialize mask as all

zeros
8: for each token ti in vocab V do
9: if P.accept(ti) then

10: m[i]← 1 ▷ set mask at position i
to 1 if token is accepted

11: end if
12: end for
13: p← LLM(x⊕y) ▷ compute logits
14: p′← p⊙m ▷ element-wise product
15: yt+1← sample(p′) ▷ e.g., argmax or

sample
16: if t = EOS then
17: break
18: end if
19: y:t+1← y:t.append(yt+1)
20: end loop
21: return y ▷ optionally detokenize y to string

2. Build a parser for the new grammar G′ to parse377

the token language tok(L).378

This approach would have been correct if the379

tokenization function was a homomorphism, i.e.380

tok(ab) = tok(a)tok(b) for all a,b ∈ Σ∗. How-381

ever, as we have shown in Thm. 3.1, the tokeniza-382

tion function is not a homomorphism. With the383

above incorrect approach, the parser would elimi-384

nate many valid token sequences that are not gen-385

erated by the grammar G′.386

3.4 Runtime complexity analysis387

We analyze the runtime complexity of Algorithm 1.388

Given a prompt of length n tokens and a target389

generation of m tokens, the computation mainly390

involves step 5 to compute the mask of the next391

allowed tokens. Assuming the parsing complexity 392

is f (n) and the incremental parsing complexity is 393

δ f (n) for each step, we have : 394

1. Token verification: For each token, Step 6 re- 395

quires an incremental parsing of newly added 396

token δ f (n). 397

2. Vocabulary verification: Without any opti- 398

mization, verifying all tokens in the vocabu- 399

lary results in a factor of |V |. 400

The total complexity of generating the entire se- 401

quence with GCD is: 402

m∑
i=1

|V | · δ f (n) = |V | · f (n+m) 403

In case the parser complexity is O(n3) (e.g., Earley 404

parser), the total complexity would be: 405

O(|V | · (n+m)3) 406

for generating the entire sequence. 407

Non-homomorphic case 408

When the tokenization is not an inverse homomor- 409

phism, we lose the ability to validate the token IDs 410

incrementally. We must convert the token IDs back 411

to the character space and feed them to the PDA, 412

which requires parsing the entire sequence from 413

the beginning at each decoding step, as shown in 414

Algorithm 1 (Line 4). 415

The token verification complexity will be 416

f (n+ i) 417

for each token, and the complexity of generating 418

the entire sequence will be 419

O(m · |V | · (n+m)3) 420

, which is significantly higher than the homomor- 421

phic case. 422

4 Grammar with Unicode characters 423

When the grammar contains Unicode characters 424

in the terminal alphabet, the tokenization process 425

becomes more complex because a single character 426

can be represented by multiple tokens which are 427

not detokenizable independently. For example, the 428

Chinese character你 is tokenized as [19526,254] 429

in the GPT-2 tokenizer but the token 19526 or 254 430
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alone does not correspond to any character. Know-431

ing only the token 19526 is insufficient to deter-432

mine the character你, as the context provided by433

the token 254 is also necessary, as illustrated in434

Fig. 1. This dependency of the next token breaks435

the homomorphic property of the detokenization436

function as shown in Fig. 1. However, considering437

that the tokenization function is actually operating438

on byte-level encodings of the Unicode characters,439

we can restore the homomorphic property by trans-440

forming the grammar to byte-level as well.441

4.1 Grammar transformation442

We propose a simple transformation that allows443

us to handle Unicode characters in the grammar-444

constrained decoding framework. The transforma-445

tion involves transforming the grammar G from446

character alphabet Σ to byte alphabet B by substi-447

tuting terminal symbols with their byte-level encod-448

ings. It is nothing more than just adding additional449

rules that map terminal symbols to their Unicode450

encodings in the grammar G, resulting in a new451

grammar G′.452

Algorithm 2 Byte-Level Grammar Transformation

Require: Original Grammar G = (N,T,P,S),
parser P

Ensure: New Grammar G′ suitable for Unicode
encoding
Grammar transformation steps:

1: N′← N∪{T} ▷ Extend non-terminal set with
Unicode terminal holder T

2: T ′←{Unicode Encodings} ▷ Define new set
of terminal symbols as Unicode bytes

3: P′← P∪{T→ Unicode Encodings} ▷
Extend production rules to include mappings
from terminals to their byte encodings

4: G′← (N′,T ′,P′,S) ▷ Define new grammar
with updated rules, terminals, non-terminals

The new grammar is defined as G′ =453

(N′,T ′,P,S) where N′ = N ∪ {T} and T ′ =454

{Unicode Encodings}. The new rules are455

of the form T → Unicode Encodings, where456

Unicode Encodings represent the byte-level encod-457

ing of the Unicode characters. The new grammar458

G′ has a vocabulary of size 256, where each ele-459

ment corresponds to a byte.460

With this new grammar G′, we eliminate cases461

where a terminal symbol in the grammar corre-462

sponds to multiple tokens. This transformation 463

ensures that: 464

• A single token may represent multiple termi- 465

nal symbols (multiple bytes) 466

• A single terminal symbol(byte) corresponds 467

to a single token. 468

As a result, the detokenization function is now ho- 469

momorphic again from the token space to the byte 470

space as shown in Fig. 1. Since ASCII characters 471

are represented by a single byte in UTF-8 encoding, 472

the byte-level construction is backward compatible 473

with ASCII characters. 474

4.2 Complexity analysis 475

Given a grammar G = (N,T,P,S), the grammar 476

transformation in Algorithm 2 involves adding a 477

fixed number of new rules |N|+256 to the gram- 478

mar. Both the time and space complexity of this 479

transformation is O(|N|), where |N| is the number 480

of non-terminal symbols in the grammar. 481

5 Experiment 482

We compare the runtime of grammar-constrained 483

decoding in the token space under both homomor- 484

phic and non-homomorphic settings. For the non- 485

homomorphic case, we assume the detokenization 486

is not an inverse homomorphism, and we always 487

parse the entire sequence from the beginning at 488

each decoding step. 489

Experimental setup We evaluate the runtime of 490

grammar-constrained decoding algorithms in both 491

homomorphic (line 6 in Algorithm 1) and non- 492

homomorphic (Line 4 in Algorithm 1) settings. We 493

use the recursive descent parser as the parsing algo- 494

rithm, and the LLaMA tokenizer for tokenization. 495

We prompt the model to generate a json string con- 496

taining N key-value pairs, where N ranges from 497

1 to 65. This prompt allows us to reliably mea- 498

sure the runtime of the decoding algorithm with 499

different output lengths. 500

Grammar We use a simplified JSON grammar 501

for the experiments as shown below: 502

S→ Object 503

Object→ { } | { Members } 504

Members→ Pair | Pair , Members 505

Pair→ String : Value 506

Value→ String | Number | Object | Array | true | false 507
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Array→ [ ] | [ Elements ]508

Elements→ Value | Value , Elements509

Metrics are:510

• the constraint checking time for each decod-511

ing step,512

• the cumulative constraint checking time for513

generating the entire sequence of tokens.514

Results The growth of the runtime is shown in515

Fig. 4. We can observe that the incremental con-516

straint checking in the homomorphic setting is sig-517

nificantly faster than the non-homomorphic setting.518

Figure 4: Grammar-constrained decoding runtime.
The runtime of grammar-constrained decoding in both
homomorphic(incremental) and non-homomorphic(non-
incremental) settings. The left subfigure shows the run-
time at each decoding step, while the right subfigure
shows the cumulative runtime. (LLM forward pass time
is not included in the runtime.)

6 Related Work519

Guiding the decoding process of LLMs with gram-520

mar constraints is a well-established approach.521

Deutsch et al. (2019) proposed a general method522

to constrain the generation process of language523

models using a pushdown automaton, the compu-524

tational model for context-free languages. Shin525

et al. (2021) and Poesia et al. (2022) suggested526

constraining the output of LLMs to a specific527

grammar to enhance performance in code syn-528

thesis and semantic parsing tasks. Shin et al.529

(2021) implemented an Earley parser to parse the530

grammar, while Poesia et al. (2022) and Geng531

et al. (2024b) used ANTLR (Parr, 2013) and532

Grammatical-Framework (Ranta, 2019) to gener-533

ate the parser. Slatton (2023) and Jones (2023)534

contributed the feature of grammar-constrained535

decoding to the Llama.cpp library. Guid-536

ance (guidance-ai, 2024) and Outlines (Willard537

and Louf, 2023), as general-purpose constraint- 538

generation frameworks, also added support for 539

context-free grammars, with guidance-ai (2024) 540

using an Earley parser for grammar parsing. Kuch- 541

nik et al. (2023) and Beurer-Kellner et al. (2024) 542

discussed how to achieve efficient and effective 543

constrained decoding for regular expressions and 544

context-free grammar constraints, respectively. 545

Comparing to the existing work, our work fo- 546

cuses on the theoretical foundation of grammar- 547

constrained decoding by leveraging the homomor- 548

phic properties of LLM tokenizers. However, 549

there exist already implementations of grammar- 550

constrained decoding that effectively utilize the ho- 551

momorphic properties of LLM tokenizers without 552

explicitly invoking the formal language theory. For 553

example, guidance-ai (2024); Poesia et al. (2022); 554

Beurer-Kellner et al. (2024) have achieved incre- 555

mental parsing in the token space. Our work pro- 556

vides a formal foundation for these methods and 557

extends them to handle Unicode characters in the 558

grammar-constrained decoding framework. 559

7 Conclusion 560

In this work, we present a theoretical framework 561

for grammar-constrained decoding from the formal 562

language theory perspective. We show that the to- 563

kenization process is an inverse homomorphism, 564

which maps a string to a sequence of tokens. We 565

prove that the token language retains the structure 566

of the original string language, which allows us to 567

efficiently solve the membership problem in the 568

token space. We show how this homomorphism 569

property can be used to construct a parser for the 570

token language based on the parser for the string 571

language. Finally, we propose a simple transfor- 572

mation that allows us to handle Unicode characters 573

in the grammar-constrained decoding framework, 574

which extends to multilingual NLP applications. 575

8



8 Limitations576

In this work, we extends the grammar-constrained577

decoding framework to handle Unicode characters578

by transforming the grammar to byte-level. How-579

ever, there is one major limitation in the proposed580

method. EBNF(Extended Backus-Naur Form) is a581

widely used notation for specifying the syntax of582

programming languages. The proposed grammar583

transformation method is not directly applicable584

to grammar written in EBNF. The reason is that585

EBNF allows the use of meta-symbols like ∗, +, |586

and range symbols like [a− z]. While most of the587

meta-symbols can be easily transformed to byte-588

level, the range symbols pose a challenge. For589

example, the range symbol [你-我] in EBNF can-590

not be directly transformed to byte-level because591

the byte-level encoding of the Unicode characters592

in the range is not contiguous. To address this593

limitation, an additional transformation would be594

required to handle the range symbols in the gram-595

mar. We leave the exploration of this problem for596

future work.597

Our work doesn’t improve the efficiency of the598

parsing algorithm per se, but rather provides a gen-599

eral construction that is compatible with existing600

parsing algorithms. With our construction, pars-601

ing in the token space can be done just as fast as602

in the string space, as long as the tokenizer is an603

inverse homomorphism (which is the case for all604

major tokenizers). The worst-case time complexity605

of parsing in the token space is still cubic, which is606

the same as parsing in the string space.607

9 Responsible NLP608

In this section, we respond to the call for respon-609

sible NLP research by discussing the implications610

of our work and suggesting guidelines for future611

research.612

• potential risks: we don’t see any potential613

risks in our work.614

• privacy: our work does not involve any data615

collection or processing, so privacy is not a616

concern.617

• energy consumption: our work involves pars-618

ing and decoding algorithms, which are run619

on CPU with negligible energy consumption.620

A few experiments running GCD with LLMs621

are run on A100 GPU for a few hours.622

• AI assistant: we used copilot for code and 623

paper writing, ChatGPT for paper review and 624

revision suggestions. 625
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B Leading space in tokenization750

Many tokenizers, including LLaMA, T5 employ751

a longstanding practice of distinguishing between752

prefix token and non-prefix token by baking the753

space character into the prefix token. This heuris-754

tic breaks the homomorphism because the leading755

space in the token will be lost if the token is at the756

beginning of a string. An example of Hello World757

tokenized by T5 is given below:758

“Hello World” is tokenized as [22172,759

3186] [“ Hello”, “ World”] by760

LLAMA.761

We define h as the detokenization function and762

h−1 as the tokenization function: Given763

h(22172) = “ Hello′′,764

h(3186) = “ World′′.765

766

We see that the homomorphism is broken:767

h(22172,3186) = “Hello World′′768

̸=769

h(22172)+h(3186) = “ Hello World′′770

771

And if we reverse the order of the tokens, we772

still get the same problem:773

h(3186,22172) = “World Hello′′774

̸=775

h(3186)+h(22172) = “ World Hello′′776

777

The above example shows that the tokenization778

process is not homomorphic and depends on the779

context of the token in the string, i.e. whether the780

token is at the beginning of the string or not.781

However, this is break is relatively easy to fix by782

simply considering an intermediate CFL, i.e. the783

language with a leading space.784

As the operation of adding a leading space to a785

string is a regular operation, we still get CFL.786
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