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Abstract

Grammar-constrained decoding (GCD) is a
powerful technique that enforces formal gram-
mar constraints on the outputs of large lan-
guage models (LLMs). This method ensures
that generated text adheres to predefined struc-
tural rules, making it highly suitable for tasks
requiring precise output formats. Despite its
broad applications, the theoretical fundamen-
tals of GCD remain underexplored, particularly
in the context of formal language theory. In this
work, we introduce the concept of tokenization
as an inverse homomorphism, which maps the
original string language to a token language
defined on the alphabet of token IDs. The fact
that tokenization is an inverse homomorphism
is important for the efficiency of GCD, provid-
ing both a theoretical basis and an efficient con-
struction method for the GCD algorithm. We
further extend this framework to support Uni-
code characters, which are essential for multi-
lingual NLP applications.

Our implementation is available at the follow-
ing URL: Anonymous.

1 Introduction

Grammar-constrained decoding (GCD) is a tech-
nique that enforces formal grammar constraints on
the outputs of large language models (LLMs). This
method allows users to define the desired structure
of the output using formal grammars as an interface
and ensures that the generated text adheres to these
constraints with hard guarantees. Due to its general-
ity and robustness, grammar-constrained decoding
has been widely applied in various tasks, including
code synthesis (Poesia et al., 2022; Scholak et al.,
2021), semantic parsing for domain-specific lan-
guages (Shin et al., 2021; Wang et al., 2023), and
other structured outputs (Geng et al., 2024b; Zara-
tiana et al., 2024; Li et al., 2024). Various optimiza-
tion techniques have been proposed in subsequent
works to improve the efficiency (Beurer-Kellner

1. Detokenization is homomorphic from
token IDs to ASCII*

d(15496) = “Hello” A d(2159) = *_World”.
d(]15496,2159]) = “Hello_World

[d(15496),d(2159)] = “Hello_World”.

2. Detokenization is not homomorphic from
token IDs to Unicode
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Z
) =

) 11352

[d(19526),d(

3. Detokenization is homomorphic from
token IDs to Unicode bytes Tokenization

d(19526) = “E4 BD” A d(254) = “A0”.
d([19526,254]) = “E4 BD A0 ({f)”

[d(19526),d(254)] = “E4 BD AO(ff)”

¢ Detokenization = d : N* — *

* Tokenization =d ! : ©* — N*

“A leading space is omitted before the token Hello

Figure 1: Tokenization and Detokenization functions
illustrating the broken homomorphism property in Ope-
nAl GPT-2’s Tokenization scheme.

et al., 2024) and extend to black-box LLMs with-
out logit access (Geng et al., 2024a).

From a high-level perspective, grammar-
constrained decoding can be viewed as a checking
mechanism that continuously validates the gener-
ated text against a set of formal grammar rules un-
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til the completion of the generation process. This
continuous validation process is similar to the in-
cremental parsing process in traditional parsing
algorithms, where the parser checks the validity of
the input string as it is being read. The difference is
that as LLLMs employ a token-based representation,
the validation process is done on the sequence of
token IDs rather than the sequence of characters.
As shown in Fig. 2, tokenizing a few strings with
a very simple structure, such as balanced paren-
theses, results in a non-trivial sequence of token
IDs The misalignment between the token IDs and
the original characters is further amplified when
the strings contain Unicode characters, which are
represented by multiple bytes (or multiple token
IDs ) as shown in Fig. 1. As the central question of
grammar-constrained decoding is how to efficiently
validate the token IDs sequence, it is crucial to un-
derstand the relationship between the sequence of
token IDs and the original string of characters.

While numerous implementations of grammar-
constrained decoding have been available, there is
no investigation into the structural properties of the
token ID sequence and how this impacts the effi-
ciency of GCD. In this work, we aim to bridge this
gap by viewing the grammar-constrained decoding
problem from a formal language perspective. We
consider the grammar-constrained decoding prob-
lem as a decision problem that involves determining
whether a given (partial) string belongs to a formal
language L defined by a specific grammar G. The
sequence of token IDs generated by the tokenizer
can be viewed as a new language L', which we refer
to as the token language because it is defined on the
alphabet of token IDs. We start by showing that the
tokenization process can be viewed as an inverse
homomorphism from the token ID alphabet to the
character alphabet. This homomorphism property
allows us to establish a connection between the to-
ken language L' and the original string language L,
i.e., the token language is an inverse-homomorphic
image of the original string language. We then
show that this homomorphic property is crucial for
the efficiency of grammar-constrained decoding, as
it provides both a theoretical foundation and an ef-
ficient construction for the grammar-constrained
decoding algorithm.

After establishing the homomorphic property
of tokenization, we extend our discussion to
the support for Unicode characters in grammar-
constrained decoding. While most of the existing

works on GCD focus on ASCII characters, the sup-
port for Unicode characters is crucial for multilin-
gual NLP applications. Due to the fact that Unicode
characters are represented by multiple bytes, the
tokenization process on Unicode characters has an
extra layer of complexity. We show that the support
for Unicode characters can be naturally integrated
into the homomorphic framework by transforming
the grammar G with Unicode characters to a new
grammar G’ with byte-level alphabet. Once the
transformation is done, we can reuse the same al-
gorithm for grammar-constrained decoding on the
byte-level alphabet, thereby removing the difficulty
of handling Unicode characters in the token space

Contributions

* We establish a theoretical foundation for
grammar-constrained decoding by viewing
the problem as a decision problem in formal
language theory.

* We show that tokenization can be seen as an
inverse homomorphism between token IDs
and characters (or bytes), which paves the way
for efficient grammar-constrained decoding
on token space.

* We show that the homomorphic property is
broken with Unicode characters but can be
restored by transforming the grammar to a
byte-level alphabet. This allows to extend
grammar-constrained decoding to Unicode-
with minimal effort

2 Preliminaries

2.1 Context-free grammar and language

Definition 2.1 (Context-free Grammar). A context-
free grammar (CFG) is a 4-tuple G = (V,%,P,S),
where

* V is a finite set of non-terminal symbols (vari-
ables),

* Y is a finite set of terminal symbols,

* P is a finite set of production rules, each of the
form A — o, where A € N and oo € (NUX)¥,

* S € N is the start symbol.

Definition 2.2 (Formal Language). A formal lan-
guage L is a set of strings over an alphabet %,
where a string is a finite sequence of symbols from
P



Depth  String Tokenization Tokens

0 [1] BOS =1

1 "[" [1,5159] [=518
2 " [1,518,2636, ] [1=2636
3 "L [1,5519,2636, 5262 ] [[=5519
4 "LLCren [1,5519,29961, 2636, 5262, ] [[ = 29961
5 K [ 1, 5519, 8999, 2636, 5262, 5262 ] [[[ = 8999
6 e [ 1,5519, 8999, 29961, 2636, 5262, 5262, ] =

7 R mninme [ 1, 5519, 8999, 8999, 2636, 5262, 5262, 5262 ] 11=5262
8 "TLICCCCICOIII [ 1, 5519, 8999, 8999, 29961, 2636, 5262, 5262, 5262, 1 _[1=5159

Figure 2: Tokenization Output for Nested Brackets Using LLaMA Tokenizer

If G(V,%,P,S) is a CFG, the language of G, de-
noted L(G), is the set of all strings of terminal
symbols that can be derived from the start symbol
S. If a language L is the language of some CFG,
then L is called a context-free language(CFL).

Definition 2.3 (Pushdown Automaton). A push-
down automaton (PDA) is a 7-tuple M =
(0,%.1,6,q0,20,F), where

* (Q is a finite set of states,

* Y is a finite set of input symbols,

I is a finite set of stack symbols,

§: 0% (BU{e}) xT — 291 is the transi-
tion function,

* go € Q is the start state,
* 7o € I is the initial stack symbol,
o I C Q is the set of accepting states.

Theorem 2.1 (Pushdown Automaton and Contex-
t-free Grammar). For every context-free grammar
G, there exists a pushdown automaton M that ac-
cepts the language L(G).

Thm. 2.1 implies that one can always construct
a PDA to decide whether a given string belongs to
a context-free language.

Definition 2.4 (String Homomorphism). Given two
operations & and © on two alphabets ¥* and T
respectively, a function h : ¥* — T* is a string ho-
momorphism if Vu,v € X* h(u®v) = h(u) © h(v).

In the following, we assume that & and © are
both string concatenation operations and use xy to
denote the concatenation of two elements x and
y. Thus, a mapping 4 is a string homomorphism
if it preserves the concatenation of strings. One
can apply a homomorphism to a language L by
applying it to each string in the language, which
results in a new language h(L). That is, h(L) =
{h(w) | w € L} is the image of L under A.

Definition 2.5 (Inverse Homomorphism). Given
a string homomorphism h : ¥* — I'*, the inverse
function h=! : T* — ¥* is called an inverse homo-
morphism.

The inverse homomorphism 4~ ! (L) includes all
strings in %* that map to strings in L under A.

Theorem 2.2 (Closure under Inverse Homomor-
phism). If L is a context-free(regular) language
and h : X% — T'* is a homomorphism, then the in-
verse homomorphic image h™' (L) is also a context-
free(regular) language (Hopcroft et al., 2006, The-
orem 7.30).

2.2 Tokenization and Unicode

Tokenization' is the process of splitting a string
into sub-word units known as tokens and convert-
ing these tokens into numerical representations (in-
tegers) which can be fed into the model. This step
improves the efficiency of the model by reducing
the vocabulary size and the length of the input se-
quences.

Detokenization is the reverse process of tokeniza-
tion; it involves converting the token IDs back into
their respective token strings, and subsequently
concatenating these strings to form the original
text.

Unicode Support. Byte-level tokenization? (Wang
et al., 2019; Radford et al., 2019) is the standard
way to provide support for Unicode characters. Un-
like traditional character-level tokenization, byte-
level tokenization first converts the text into a byte
sequence according to a format such as UTF-8,
and then applies tokenization to the byte sequence.
The resulting token IDs are chunks of bytes instead

'In some litterature, fokenization only refers to the process
of spliting the text and the term encoding is used to describe
the mapping from token to ID. In this work, we follow our
definition.

Zalso known as byte-level encoding



of characters, which allows the model to support
effectively any Unicode character.

3 Tokenization is inverse homomorphism

In this section, we start with showing that tokeniza-
tion can be seen as an inverse homomorphism be-
tween token IDs and characters (or bytes), which
implies that the structure of the source language
is preserved. We then show that this homomor-
phism leads to an efficient construction of a PDA
for grammar-constrained decoding on token space.

3.1 Tokenization preserves structure

In the context of LLM, we have two alphabets:

1. the character alphabet X which is typically a
charset, i.e. Unicode characters or ASCIIL.

2. the token alphabet I" which is the set of all
possible token IDs in a language model’s vo-
cabulary, i.e. I'={0,1,...,|V|—1} where
V is the vocabulary of the language model’s
tokenizer.

The tokenization function is a mapping from the
character alphabet to the token alphabet:

tok: X = T*

The detokenization function is the inverse of the
tokenization function:

tok~!: % — »*

where tok ! (tok(x)) = x for all x € ¥*.

In the context of grammar-constrained decod-
ing, we have a formal grammar G that we want
to enforce on the output of the language model,
e.g. JSON grammar. The language generated by
the grammar G is denoted by L(G). The image of
L(G) under the tokenization function tok forms an-
other language tok(L(G)), which we call the foken
language.

Proposition 3.1. Tokenization functions are gener-
ally not homomorphic from the character space to
the token space under the concatenation operation.

One can easily verify this by considering the
following example.

Example 3.1. With GPT-3 tokenizer, the brackets
[ and ] are individually tokenized as 58 and 60,

respectively, but the combined [ ] is tokenized as
21737.

In contrast, the detokenization function is homo-
morphic, i.e. d([t1,5]) = [d(t1),d(t2)|Vt1,t, € T*
as shown in Fig. 1 This is not surprising, as the
detokenization function, as the name suggests, per-
forms the following steps::

1. Mapping token IDs back to their correspond-
ing tokens.

2. Concatenating these tokens to reconstruct the
string.

3. Performing necessary post-processing to re-
store the original string format.

We can now state the following proposition:
Proposition 3.2. The detokenization function is an
homomorphism from the token space to the charac-
ter space under the concatenation operation. The
tokenization is thus an inverse homomorphism.

All major subword encoding schemes, including
Byte Pair Encoding (BPE) (Sennrich et al., 2016),
WordPiece, and SentencePiece (Kudo and Richard-
son, 2018), exhibit this homomorphic property in
their detokenization functions. We provide a more
detailed analysis of how real-world tokenizers act
as inverse homomorphisms in Appendix A. As a
direct consequence of the tokenization function
being an inverse homomorphism and the closure
properties of context-free languages under inverse
homomorphism (Theorem 2.2), we have the fol-
lowing proposition:

Proposition 3.3. The token language tok(L(G)) is
a context-free(regular) language for any context-
free(regular) language L(G).

3.2 Token-space membership problem

Membership problem is a fundamental problem
in formal language theory, which involves deter-
mining whether a given string s belongs to a for-
mal language L(G) defined by a specific gram-
mar G. Membership problem is at the core of
grammar-constrained decoding, where the goal is
to ensure that the generated text adheres to spe-
cific constraints on the output. The main challenge
in grammar-constrained decoding is to efficiently
solve the membership problem? for a given gram-
mar and a candidate sequence of tokens generated
by a large language model (LLM).

The membership problem is decidable
for context-free languages and regular lan-
guages (Hopcroft et al., 2006, Chap 7.4.4) , which

3More precisely, this is a partial membership problem, as

we are interested in whether the string is a prefix of a valid
string in the language.



are the two most common types of grammars
used in grammar-constrained decoding. This is
a well-established result and various algorithms,
efficient or not, exist to solve the membership
problem for context-free languages. Now that we
have established that tokenization is an inverse
homomorphism and the token language retains the
structure of the original string language Thm. 3.3,
we can make the following claim:

Proposition 3.4. The membership problem for a
context-free (or regular) language in the token
space is decidable and can be solved with the same
algorithms used in the character space.

In practice, this means that we can:

1. solve the membership problem directly in the
token space without the need to convert it back
to the character space with the existing pars-
ing algorithms for context-free languages.

2. test the recognition power of LLMs for a cer-
tain category, such as context-free languages,
by writing a context-free grammar in charac-
ter space and feeding it directly to the LLM
without worrying about the structure being
lost after tokenization.

3.3 Token-space automata construction

In this section, we explain how to construct a parser
for the token language tok(L) based on the parser
for the string language L by using the homomor-
phism property of tokenization. The main idea is
analogous to the construction of a pushdown au-
tomaton (PDA) for the inverse homomorphism of
a context-free language sketched in Hopcroft et al.
(2006, Theorem 7.30). Given a homomorphism
h from alphabet I' to alphabet X, and L being a
context-free language over X, the construction of
a PDA to accept language L' = h~!'(L) is shown
in Fig. 3. As stated in Thm. 2.1, we can always
construct a PDA M which reads the input string in
the alphabet > and accepts the language L. The
construction of such a PDA is standard and well-
known in the literature (Hopcroft et al., 2006, Chap
6.3.1). We then construct a PDA M’ which reads
the input string in the alphabet I' (token IDs in our
case) and accepts the language L' = tok(L). The
working of the PDA M’ is as follows:

1. It applies the homomorphism
h(detokenization in our case) to the in-
put token ID a and puts the result /(a) into

the buffer, i.e. mapping the token IDs back to
the character space.

2. The underlying PDA M in the character space
reads the input characters i(a) and updates its
state and stack accordingly.

The resulting PDA M’ reads the token IDs as input
and decides whether the token IDs form a valid
string in the token language tok(L).

Buffer
Input T " H hiw) €32 b c
Y ack
PDA » Accept/
M reject
I}
PDA M' Y
Stack

Figure 3: Construction of a PDA M’ to accept lan-
guage 4~ !(L). In the context of LLM, the input a is a
token ID, the homomorphism # is detokenization, the
buffer is used to store the token /(a), the PDA state is
the current state of the PDA in the character space, and
the PDA stack is the stack of the PDA in the character
space.

Once we have constructed the PDA M’, we can
use it to validate the generated token IDs from the
LLM in an incremental manner as shown in 1 (Line
6). In case the tokenization is not an inverse homo-
morphism, we can still accept the token IDs from
the LLM by converting them back to the charac-
ter space and then feeding them to the PDA in the
character space. But this approach is less efficient
as it does not allow for incremental validation of
the token IDs as shown in Algorithm 1 (Line 4).

Incorrect construction We also present an intu-
itive yet incorrect approach to construct a parser
for the token language tok(L). This approach may
seem reasonable at first glance but is incorrect due
to the non-homomorphic nature of tokenization
The idea behind this approach consists of two steps:

1. Apply the tokenization function tok to the ter-
minal symbols of the grammar G to obtain a
new grammar G’.



Algorithm 1 Grammar Constrained Decoding

Require: Grammar G, parser P, language model
LLM, , prompt x, tokenization function fok
and detokenization function rok~!, token vo-
cabulary V

Ensure: Generation y adhering to G

1. y: [List[int]] < ]
2: Pinit(G)
3: loop
4: Pupdate(tok='(yy)) > advance
state of P with entire partial generation o (non-
homomorphic)
OR
Pupdate(tok'(y;)) > advance state of P
with new token ¢ (homomorphic)
7: m < [0,0,...,0] > initialize mask as all
Zeros
8: for each token #; in vocab V do
: if P.accept(t;) then

10: m[i] < 1 > set mask at position i
to 1 if token is accepted

11: end if

12: end for

13: p < LLM(x®Dy)

14: p < poOm

15: Vi1 < sample(p’)
sample

16: if t = EOS then

17: break

18: end if

19: Yit+1 < y:t-append(yi41)

20: end loop

21: returny

> compute logits
> element-wise product
> e.g., argmax or

> optionally detokenize y to string

2. Build a parser for the new grammar G’ to parse
the token language rok(L).

This approach would have been correct if the
tokenization function was a homomorphism, i.e.
tok(ab) = tok(a)tok(b) for all a,b € ¥*. How-
ever, as we have shown in Thm. 3.1, the tokeniza-
tion function is not a homomorphism. With the
above incorrect approach, the parser would elimi-
nate many valid token sequences that are not gen-
erated by the grammar G'.

3.4 Runtime complexity analysis

We analyze the runtime complexity of Algorithm 1.
Given a prompt of length n tokens and a target
generation of m tokens, the computation mainly
involves step 5 to compute the mask of the next

allowed tokens. Assuming the parsing complexity
is f(n) and the incremental parsing complexity is
0 f(n) for each step, we have :

1. Token verification: For each token, Step 6 re-
quires an incremental parsing of newly added
token ¢ f(n).

2. Vocabulary verification: Without any opti-
mization, verifying all tokens in the vocabu-
lary results in a factor of |V|.

The total complexity of generating the entire se-
quence with GCD is:

Y VI-6f(n) = V|- f(n+m)
i=1

In case the parser complexity is O(n?) (e.g., Earley
parser), the total complexity would be:

O(IVI-(n+m)?)
for generating the entire sequence.

Non-homomorphic case

When the tokenization is not an inverse homomor-
phism, we lose the ability to validate the token IDs
incrementally. We must convert the token IDs back
to the character space and feed them to the PDA,
which requires parsing the entire sequence from
the beginning at each decoding step, as shown in
Algorithm 1 (Line 4).
The token verification complexity will be

fln+i)

for each token, and the complexity of generating
the entire sequence will be

O(m-|V|- (n+m)°)

, which is significantly higher than the homomor-
phic case.

4 Grammar with Unicode characters

When the grammar contains Unicode characters
in the terminal alphabet, the tokenization process
becomes more complex because a single character
can be represented by multiple tokens which are
not detokenizable independently. For example, the
Chinese character /7% is tokenized as [19526,254]
in the GPT-2 tokenizer but the token 19526 or 254



alone does not correspond to any character. Know-
ing only the token 19526 is insufficient to deter-
mine the character {7, as the context provided by
the token 254 is also necessary, as illustrated in
Fig. 1. This dependency of the next token breaks
the homomorphic property of the detokenization
function as shown in Fig. 1. However, considering
that the tokenization function is actually operating
on byte-level encodings of the Unicode characters,
we can restore the homomorphic property by trans-
forming the grammar to byte-level as well.

4.1 Grammar transformation

We propose a simple transformation that allows
us to handle Unicode characters in the grammar-
constrained decoding framework. The transforma-
tion involves transforming the grammar G from
character alphabet X to byte alphabet B by substi-
tuting terminal symbols with their byte-level encod-
ings. It is nothing more than just adding additional
rules that map terminal symbols to their Unicode
encodings in the grammar G, resulting in a new
grammar G'.

Algorithm 2 Byte-Level Grammar Transformation

Require: Original Grammar G = (N,T,P,S),
parser P
Ensure: New Grammar G’ suitable for Unicode
encoding
Grammar transformation steps:
1: N' + NU{T} > Extend non-terminal set with
Unicode terminal holder T
2: T’ < {Unicode Encodings} > Define new set
of terminal symbols as Unicode bytes
3: P/ + PU{T — Unicode Encodings} >
Extend production rules to include mappings
from terminals to their byte encodings
4: G+ (N',T',P',S) > Define new grammar
with updated rules, terminals, non-terminals

The new grammar is defined as G =
(N',T",P,S) where N\ = NU{T} and T’ =
{Unicode Encodings}. The new rules are
of the form T — Unicode Encodings, where
Unicode Encodings represent the byte-level encod-
ing of the Unicode characters. The new grammar
G’ has a vocabulary of size 256, where each ele-
ment corresponds to a byte.

With this new grammar G’, we eliminate cases
where a terminal symbol in the grammar corre-

sponds to multiple tokens. This transformation
ensures that:

* A single token may represent multiple termi-
nal symbols (multiple bytes)

* A single terminal symbol(byte) corresponds
to a single token.

As a result, the detokenization function is now ho-
momorphic again from the token space to the byte
space as shown in Fig. 1. Since ASCII characters
are represented by a single byte in UTF-8 encoding,
the byte-level construction is backward compatible
with ASCII characters.

4.2 Complexity analysis

Given a grammar G = (N,T,P,S), the grammar
transformation in Algorithm 2 involves adding a
fixed number of new rules |[N|+ 256 to the gram-
mar. Both the time and space complexity of this
transformation is O(|N|), where |N| is the number
of non-terminal symbols in the grammar.

5 Experiment

We compare the runtime of grammar-constrained
decoding in the token space under both homomor-
phic and non-homomorphic settings. For the non-
homomorphic case, we assume the detokenization
is not an inverse homomorphism, and we always
parse the entire sequence from the beginning at
each decoding step.

Experimental setup We evaluate the runtime of
grammar-constrained decoding algorithms in both
homomorphic (line 6 in Algorithm 1) and non-
homomorphic (Line 4 in Algorithm 1) settings. We
use the recursive descent parser as the parsing algo-
rithm, and the LLaMA tokenizer for tokenization.
We prompt the model to generate a json string con-
taining N key-value pairs, where N ranges from
1 to 65. This prompt allows us to reliably mea-
sure the runtime of the decoding algorithm with
different output lengths.

Grammar We use a simplified JSON grammar
for the experiments as shown below:

S — Object
Object — { } | { Members }
Members — Pair | Pair , Members

Pair — String : Value

Value — String | Number | Object | Array | true | false



Array — [ ]| [ Elements ]

Elements — Value | Value , Elements

Metrics are:

* the constraint checking time for each decod-
ing step,

e the cumulative constraint checking time for
generating the entire sequence of tokens.

Results The growth of the runtime is shown in
Fig. 4. We can observe that the incremental con-
straint checking in the homomorphic setting is sig-
nificantly faster than the non-homomorphic setting.
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Figure 4: Grammar-constrained decoding runtime.
The runtime of grammar-constrained decoding in both
homomorphic(incremental) and non-homomorphic(non-
incremental) settings. The left subfigure shows the run-
time at each decoding step, while the right subfigure
shows the cumulative runtime. (LLM forward pass time
is not included in the runtime.)

6 Related Work

Guiding the decoding process of LLMs with gram-
mar constraints is a well-established approach.
Deutsch et al. (2019) proposed a general method
to constrain the generation process of language
models using a pushdown automaton, the compu-
tational model for context-free languages. Shin
et al. (2021) and Poesia et al. (2022) suggested
constraining the output of LLMs to a specific
grammar to enhance performance in code syn-
thesis and semantic parsing tasks. Shin et al.
(2021) implemented an Earley parser to parse the
grammar, while Poesia et al. (2022) and Geng
et al. (2024b) used ANTLR (Parr, 2013) and
Grammatical-Framework (Ranta, 2019) to gener-
ate the parser. Slatton (2023) and Jones (2023)
contributed the feature of grammar-constrained
decoding to the Llama.cpp library. Guid-
ance (guidance-ai, 2024) and Outlines (Willard

and Louf, 2023), as general-purpose constraint-
generation frameworks, also added support for
context-free grammars, with guidance-ai (2024)
using an Earley parser for grammar parsing. Kuch-
nik et al. (2023) and Beurer-Kellner et al. (2024)
discussed how to achieve efficient and effective
constrained decoding for regular expressions and
context-free grammar constraints, respectively.
Comparing to the existing work, our work fo-
cuses on the theoretical foundation of grammar-
constrained decoding by leveraging the homomor-
phic properties of LLM tokenizers. However,
there exist already implementations of grammar-
constrained decoding that effectively utilize the ho-
momorphic properties of LLM tokenizers without
explicitly invoking the formal language theory. For
example, guidance-ai (2024); Poesia et al. (2022);
Beurer-Kellner et al. (2024) have achieved incre-
mental parsing in the token space. Our work pro-
vides a formal foundation for these methods and
extends them to handle Unicode characters in the
grammar-constrained decoding framework.

7 Conclusion

In this work, we present a theoretical framework
for grammar-constrained decoding from the formal
language theory perspective. We show that the to-
kenization process is an inverse homomorphism,
which maps a string to a sequence of tokens. We
prove that the token language retains the structure
of the original string language, which allows us to
efficiently solve the membership problem in the
token space. We show how this homomorphism
property can be used to construct a parser for the
token language based on the parser for the string
language. Finally, we propose a simple transfor-
mation that allows us to handle Unicode characters
in the grammar-constrained decoding framework,
which extends to multilingual NLP applications.



8 Limitations

In this work, we extends the grammar-constrained
decoding framework to handle Unicode characters
by transforming the grammar to byte-level. How-
ever, there is one major limitation in the proposed
method. EBNF(Extended Backus-Naur Form) is a
widely used notation for specifying the syntax of
programming languages. The proposed grammar
transformation method is not directly applicable
to grammar written in EBNF. The reason is that
EBNF allows the use of meta-symbols like *, +, |
and range symbols like [@ — z]. While most of the
meta-symbols can be easily transformed to byte-
level, the range symbols pose a challenge. For
example, the range symbol [{/R-F%] in EBNF can-
not be directly transformed to byte-level because
the byte-level encoding of the Unicode characters
in the range is not contiguous. To address this
limitation, an additional transformation would be
required to handle the range symbols in the gram-
mar. We leave the exploration of this problem for
future work.

Our work doesn’t improve the efficiency of the
parsing algorithm per se, but rather provides a gen-
eral construction that is compatible with existing
parsing algorithms. With our construction, pars-
ing in the token space can be done just as fast as
in the string space, as long as the tokenizer is an
inverse homomorphism (which is the case for all
major tokenizers). The worst-case time complexity
of parsing in the token space is still cubic, which is
the same as parsing in the string space.

9 Responsible NLP

In this section, we respond to the call for respon-
sible NLP research by discussing the implications
of our work and suggesting guidelines for future
research.

* potential risks: we don’t see any potential
risks in our work.

* privacy: our work does not involve any data
collection or processing, so privacy is not a
concern.

* energy consumption: our work involves pars-
ing and decoding algorithms, which are run
on CPU with negligible energy consumption.
A few experiments running GCD with LLMs
are run on A100 GPU for a few hours.

* Al assistant: we used copilot for code and
paper writing, ChatGPT for paper review and
revision suggestions.
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A Example of Homomorphic
Tokenization API

In this section, we investigate the implementation
of tokenization in real-world and show that they
still preserve the context-free property of the source
language.

Recall that a function f : ¥>* — I'* is homomor-
phic if f(x®y) = f(x) ® f(y) for any x,y € 3*.
In the context of LM, we want to know whether
the decoding function def tokenizer_-
decode (token_ids: List[int]) —>
str: is homomorphic. In the following, we will
use the API of the tokenizers library* to illustrate
the tokenization process. Generally speaking, the
decoding function consists of two steps:

the token ids to tokens.
tokenizer.convert_ids_to_-—-
tokens (token_ids:List[int])—>
List[str]

1. convert

2. join the tokens to form a string and
apply some post-processing if needed.
tokenizer.convert tokens_ _to -
string(tokens:List[str]—-> str)

We will show that the step (2) can cause the homo-
morphism to break.

4https://github.com/huggingface/
tokenizers
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B Leading space in tokenization

Many tokenizers, including LLaMA, T5 employ
a longstanding practice of distinguishing between
prefix token and non-prefix token by baking the
space character into the prefix token. This heuris-
tic breaks the homomorphism because the leading
space in the token will be lost if the token is at the
beginning of a string. An example of Hello World
tokenized by TS5 is given below:

“Hello World” is tokenized as [22172,
3186] [% Hello”, “_World”] by
LLAMA.

We define # as the detokenization function and
h~! as the tokenization function: Given

h(22172) = *_Hello",
h(3186) = *_World".

We see that the homomorphism is broken:

h(22172,3186) = “Hello_World"

7&
h(22172) +h(3186) = “_Hello_World"

And if we reverse the order of the tokens, we
still get the same problem:

h(3186,22172) = “World,_Hello"

”
h(3186) + h(22172) = “_World_Hello"

The above example shows that the tokenization
process is not homomorphic and depends on the
context of the token in the string, i.e. whether the
token is at the beginning of the string or not.

However, this is break is relatively easy to fix by
simply considering an intermediate CFL, i.e. the
language with a leading space.

As the operation of adding a leading space to a
string is a regular operation, we still get CFL.
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