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ABSTRACT

Large language model alignment via reinforcement learning depends critically
on reward function quality. However, generic reward models often underper-
form on heterogeneous task distributions due to distribution shifts, while training
task-specific reward models is costly and prone to annotation difficulty, catas-
trophic forgetting, and loss of generalization. We present RLAR (Reinforcement
Learning from Agent Rewards), an agent-driven framework that dynamically as-
signs tailored reward functions to individual training queries. RLAR combines
two automated LLM-based stages. First, the tool generation stage where web-
agents and code-agents generate rule-, metric-, and model-based reward func-
tions and wrap them as a callable tool. Then, there is a reward tool calling
stage where a central decision LLM assign the reward function tools to indi-
vidual queries. Across diverse tasks including translation, summarization, ques-
tion answering, and mathematics, RLAR delivers 5-10% average improvement
over a widely-used generic reward model (Skywork-Reward-V2) and matches
GPT-4.1-as-judge performance, while generalizing well to untrained benchmarks
such as BenchMAX

By
systematically leveraging and extending existing reward sources, RLAR offers a
scalable path to high-quality RL alignment over multiple task domains.

1 INTRODUCTION

Large language model (LLM) alignment via reinforcement learning (RL) has achieved substantial
progress, where a policy model’s parameters are iteratively updated to maximize rewards from an
oracle (Schulman et al., 2017} |Ouyang et al., 2022} [Shao et al.| 2024). The effectiveness of this
process hinges on the quality of the reward function. However, a core challenge arises when training
LLMs on heterogeneous tasks: a single, generic reward model often lacks the discriminative power
for specific domains due to distribution shifts. Meanwhile, creating specialized reward models for
each task is frequently impractical, facing obstacles like catastrophic forgetting, the need for expert
domain knowledge for data annotation (e.g., in cross-lingual tasks), and prohibitive costs.

This situation highlights a crucial gap but also a significant opportunity. The open-source community
has already developed numerous high-quality, task-specific reward models (Liu et al.l 2024} |Cai
et al.| [2024; [Yang et al., 2024} (Corréal, 2023}, [Cheng et al., [2025; Lambert et al., [2025)), available
on platforms like HuggingFaccﬂ and ModelScop These specialized models typically outperform
generic evaluators on their intended tasks, yet they remain an underutilized resource. We argue for a
paradigm shift: instead of focusing on training new static models that directly output sample-specific
rewards, a more scalable and cost-effective approach is to develop a dynamic process that leverages
these existing assets to construct an appropriate reward function for the task at hand.

'nttps://https://huggingface.co/
’https://modelscope.cn/
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To bridge the above gaps, we introduce RLAR, a unified framework that leverages LLM agents to
design and use reward functions. RLAR consists of two stages: reward function tool generation
and manipulation of reward function tools. When a query enters the framework, it is first catego-
rized under a specific task tag. A code-agent workflow is then activated to plan appropriate reward
functions for the task, ultimately producing implemented and callable reward function API scripts.
In parallel, a web-agent workflow is triggered to browse the Internet in search of the most relevant
open-source reward model repositories. It filters the results, retaining only the repository best suited
for the current task. The selected repository is then downloaded and wrapped into a callable reward
function. Once the toolbox construction is complete, an LLM manipulates these generated tools
to bind each query with the most suitable reward function. This reward function is then used to
calculate the reward score during training.

To simulate a real scenario where heterogeneous tasks, we carefully adopted from public available
training datasets ranging from translation, summarization, QA, RLHF, essay generation, multi-turn
QA and math, to construct such mixed distribution of training dataset. We adopted a query fil-
tration, and resulted in a 8k-level training set and validation set. On other hand, we also selected
established benchmarks (gsm-8k (Cobbe et al., [2021), BENCHMAX (Huang et al., 2025)),

to evaluate the performance of RLAR.

In our experiments, we selected a widely adopted reward model (Skywork-Reward-V2-Llama-3.1-
8B) (Liu et al., [2024)) as the generic reward model baseline. We also included a generative reward
model (GPT-4.1) implemented in the LL.M-as-a-judge framework. RLAR achieved superior RL
training performance in most cases, yielding an overall 5% to 10% average performance improve-
ment over the generic reward model baseline on the validation set. In experiments using Qwen3

as the base model, our method performed on par with the generative reward model implemented
with GPT-4.1.

Furthermore, our method demonstrated

strong generalizability to untrained benchmarks,

The data and code
are available on https://anonymous.4open.science/r/ICLR2026-RLVR-8718.

2 PRELIMINARIES

2.1 TASK DEFINITION

We investigate the problem of reinforcement learning in LLM post-training stage for complex,
mixed-domain text generation tasks. The core objective is to train a single policy model that achieves
high performance across multiple task domains without sacrificing the quality of any individual task.

Let {D1, Ds, ..., D,} denote datasets from n different domains, each corresponding to one type of
task (e.g., translation, summarization, question answering). We define a mixed-domain distribution:

D ={Dy,Ds,...,D,}.

Our goal is to train a policy model A that maximizes expected performance over D under a multi-
task reinforcement learning framework:

mgx Ede [Rd(A)} s

where R4(A) denotes the reward of model A on domain d, potentially obtained from benchmarks,
development set metrics, and human feedback.

3https://artofproblemsolving.com/wiki/index.php/AIME _Problems_and_Solutions
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2.2 LARGE LANGUAGE MODEL POST TRAINING WITH RL

In reinforcement learning from human feedback (RLHF), the Proximal Policy Optimization algo-
rithm (Schulman et al.|[2017) is frequently employed for policy optimization. The typical workflow
begins with a warm-start training phase in which a Value Model (often a reward model) is learned.
Its objective function can be expressed as:

1
‘C(G) = _N E(m,y+,y_)~D 10g0’(7‘g(!117 y+) - ’I“g(.’L', y*)) s
where rg(x,y) denotes the scalar reward assigned by the model to response y given prompt x, and
o(+) is the logistic sigmoid function. The training pairs (y,, y—) come from human preference data,
with y being the preferred output.

We research on a more training efficient framework. The Group Relative Policy Optimization
(GRPO) approach (Shao et al., 2024) modifies the advantage estimation in order to reduce the de-
pendence on a learnable value model for estimating advantage baseline. Instead, GRPO computes
the normalized advantage within a group of sampled outputs:

+  r;—mean(r)
Ai = std(r) 7

where {r;}$ , are the rewards assigned to G' candidate outputs for the same prompt, mean(r) and
std(r) are computed over the group. Also, the KL penalty term is removed from the per-step reward
and is instead applied directly to the overall optimization objective:

1 7o (yile)
max [E @~D, [Zmin{mAi,

{yi Y& ~ et (il ) i=1 Tref (Yl )
clip(ﬂe(yilx), T—e 14 e> A;
Tref (Yi|T)

— BDkL[Tg || Tret] -

This formulation reduces sensitivity to reward model estimation errors by leveraging relative com-
parisons within output groups.

3 TASK DESIGN AND DATA PROCESS

Real-world LLM deployment rarely encounters isolated task types; instead, models face blended,
unpredictable inputs requiring broad capabilities. By integrating varied tasks into a single training
corpus, we aim to mimic these real conditions, promote cross-task generalization, and exposing the
need to design customized reward function to diverse queries.

We focus on the following major task types: translation, summarization, controlled Generation,
RLHF, math and multi-turn. We use publicly available datasets on HuggingFace to build the train-
ing and test set. A more detailed introduction of the task and our selected dataset are listed in
Appendix [C] For the translation task, we selected a subset of English-French translations. For con-
ditional generation, we constructed two types of generation tasks: Cloze Generation and Essay
Writing. The former involves removing several paragraphs from an essay and requiring the model
to fill in the missing content, while the latter expands an original essay given a summary description
of it. For multi-turn tasks, we only consider the generation requirement in the final turn.

For all datasets, we performed downsampling based on query quality to ensure a balanced distribu-
tion of queries across different dataset sources. In addition, for all queries, we applied an automated
quality filtering process, requiring the LLM to remove samples that did not meet the standards based
on both query quality and response quality. The prompt is filed in Appendix [C.2]

When constructing the validation set, if the original dataset contains a test set disjoint from the
training set (e.g., BENCHMAX, GSM-8K), we processed the corresponding test set content using
the same method and used it as the validation set. If the original data does not contain a training set
(e.g., TULU3, WILDCHAT, SUMMARIZATION, IVYPANDA), we randomly sampled from the training
data to form the validation set.
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Table 1: Statistics for the train and validation dataset concerned in this paper.

Translation ~ Summary Math Instruction Follow  Multi-turn ~ Conditional Generation

Train 1507 2296 1000 982 967 1862
Valid 60 20 60 10 60 20
Prompt #Len. std Medium Resp #Len. std Medium
Train 11352 22511 996 2099 4048 844
Valid 10141 19440 917 2220 4936 776

E# Web agent tools
\ Search Google J—{@ Filter ]———[@ Rerank Download Repo I RM_demo J—{@ CodeGen J

import torch
from transformers
import ...

Ve tcn o e See Soms RUTE |

U ) R compute_seed_score

(...):

Figure 1: An example workflow for searching reward model for a translation task.

Furthermore, to facilitate our experiments, we obtained the outputs of GPT-4.1-0414 on all queries.
GPT-4.1 is regarded as achieving state-of-the-art performance on these tasks. For queries lacking
human-annotated responses, we used the results from GPT-4.1 as their reference responses. Table[I]
shows the statistics of the train and validation set. The first two rows record the query numbers from
each of the sources in the column. The last two rows show the length of both input and output.

4 METHODOLOGY

In face of the challenge that a single, generic reward model is likely incapable of serving as value
model to train heterogeneous task compositions, we propose RLAR, an automated Reward Design
Framework driven by code and web LLM agents. RL AR utilize the both the LLM’s intrinsic ability
to design rule based rewards as well as the web search tool manipulation ability, to expand its boards
in reward modeling. The framework consists of two stages: Reward Function Tool Generation
(Section[F.T) and Final Reward Design (Section[d.2). We adopt the GPT-4.1 as the backend LLM to
drive all the agentic API calls.

4.1 REWARD FUNCTION TOOL GENERATION

In this stage, RLAR will prepare all the possible reward tools for the next stage through one screen
of the target domain without human labeling. For any training query, an unrestricted task prediction
module classifies the task type and produces a concise descriptor (<3 words), such as english-french
translation or math calculation. This stage aims to enhance the downstream workflow accuracy,
mitigating noise from lengthy queries. We propose two agentic pipelines for reward tool generation.

Web Agent. The Web Agent mainly retrieve reward model from web and deploy the most matched
on as reward tool. Figure[I] shows its working mechanism. The Web Agent first utilizes the result
of the descriptor to construct the Google Search retrievals query. It then iteratively performs result
retrieval using this query (with a maximum of 5 iterations).

Filter : The LLM-based filter module conducts a coarse screening of all retrieval results, keeping
only the entries that meet the requirements for a reward model repository.

Rerank : The LLM-based module reorders all of resulting model entries based on the repository’s
README description. We select the first ranked model as the result of the current retrieval.

Implementation : The LLM-based reactor downloads the model checkpoints from the remote
repository and resulting the deployment script based on its README or example code.
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Code Agent.

The agent follows a plan-and-write pipeline: it first generates up to five candidate
rule/metric-based reward schemes, assigning each a name and a description based on the provided
descriptor. It then translates these function names and descriptions into functional Python script.

For each query and fask, both code and web agents are triggered and construct their respective
reward tools.

. A registry of existing tools is maintained to avoid redundant creation. All
constructed tools are encapsulated as Python functions with fixed parameters: prompt, candidate
response, and reference response. The final outputs are callable Python reward functions stored in
a default directory. After construction, a summarization module compiles an OpenAl tool request-
formatted list, inserted into the RLAR reward plan tool stack.

4.2 MANIPULATING REWARD TOOLS

All above designed tools, including rule-,

metric- and -based, are provided to an  [amissire o on G eommens g oo o6 s evi e
LLM with strong tool invocation capabilities

Q P e
Solve x in the below equation... (4o
O,

Afo " final_answer_acauracy}
(GPT-4.1). We design prompts with both in- S v
struction and response, requiring the LLM to &= =
actively select and invoke an reward function in & . i ‘
. . H (Creward_tool 1 ) | i (reward_tool 5 ) !
the context for each query, shown in Flgure@ | i
:
Unlike RLAIF, our approach employs Func-
tional-style Rewards: the AI does not directly § rilefmetribased toos | L imbosedtoots |

output rewards for each generation. Instead, it
designs reward functions. Denote the certain  Figure 2: An LLM call the designed reward tools
reward function as f; that projects prompt p , for each of the query.
candidate z and reference y into a float score s,
formally f; : p,z,y — s, the above agentic tool generation workflow serves as a functional F(-)
over task ¢ such that

F(t) = (fi)ien

The manipulation LLM serves as a mapping o1 as from the family of reward functions into desired
target reward function f;:

ft = oLLa(query) o F(t)
This method exploits AI’s manipulation capabilities over web and code tools, enhancing the cover-
age and accuracy of reward signals across diverse tasks. From an engineering perspective, it signifi-
cantly reduces token cost, since Python functions and local models are generally more efficient than
generative reward models API calls, such as GPT, in large-scale rollouts.

5 EXPERIMENTS

5.1 BASELINES AND EVALUATION

We compare the following categories of baselines. = Non-RL methods: we include the
supervised fine-tuning (SFT) baseline. RL-based methods: we examine several types
of reward system designs. For the single generic reward model setting, we select
Skywork-Reward-V2-Llama-3.1-8B, which achieves the highest score on REWARD-
BENCH Lambert et al.| (2024); Malik et al. (2025b). We also include a Lazy Rule im-
plementation of the following combination: in gsm8k, we use the consistency of the final number
between the prediction and answer as the reward; for all text generation tasks, we use 70% BLEU-
1 (Papineni et al.| [2002) scores adding up with 30% our designed length metric, where the length
is computed as Equation [T]in Appendix We also included a strong RLAIF baseline using a
generative reward model, implemented by prompting GPT-4.1 in an LLM-as-a-judge manner and
taking its judge score as the reward signal. The prompt of it is listed in Appendix We experi-
ment the methods on Qwen3-0.6B and Llama-3.2-1B-Instruct as base models.
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Table 2: Evaluation results for various models on multiple metrics. Tr/Summ/CG/MulT shorts for
TRANSLATION, SUMMARIZATION, CONDITIONAL GENERATION, MULTI-TURN, respectively.
BenX shorts for BENCHMAX, MTBen shorts for MT-BENCH.

Validation set
Avg. Tr Summ RLHF CG MulT Math

Llama-3.2-1B-Instruct

Base Model | 5.12 378 480 200 430 555 693 | 149  6.09
SFT 575 798 435 150 340 5.8 605 | 745 479
LazyRule | 6.18 733 550 150 440 572 7.08 | 724  6.58
single-RM | 637 723 590 290 590 585 7.00 | 7.17 650
RLAR (ours) | 6.75 7.82 6.0  3.00 556 622 745 | 838  6.62

BenX MTBen

Owen-3-0.6B
Base Model | 6.67 6.67 6.85 380 530 593 8.30 6.34 6.95
SFT 579 7.07 5.60 240 670 4.82 6.93 6.78 441

Lazy Rule 6.82 737 6.85 3.50 550 573 8.50 6.77 6.59
single-RM 697 692 730 310 630 5.78 8.98 6.68 6.67
RLAR (ours) | 7.32 7.67 7.05 420 570 645 9.00 7.07 7.11

Generative RMs with Qwen-3-0.6B
GPT4.1 | 732 738 745 390 7.03 6.37 9.10 | 7.05 7.15

Evaluation: In Section [3] we have already constructed all in-domain dev set that has no overlap
or leakage with the training set. While GSM8K (Cobbe et al., 2021) is included in our scope, we
add public benchmarks, to address the generalizability of the tuned policy model. BENCH-
MAX (Huang et al.l 2025), a multilingual instruction following benchmark. We select the flore
subset and randomly and evenly selected 200 paired English and French sentences. The transla-
tion is bidirectional and both are tested.

Training setting: For the supervised finetuning setting, we tune the base model on the training
dataset for 2 epochs. For all the RL methods, we use the GRPO (Shao et al.l [2024) algorithm
framework and last the training for 100 steps for all. Training details are filed in Appendix
All experiments were performed on a server 8 xNVIDIA H100 GPUs (80GB memory each), us-
ing a global batch size of 128 and mixed-precision (FP16) training. There is an additional server
8xNVIDIA A100 GPUs (80GB) for launching all reward models.

5.2 MAIN RESULTS

Efficiency and scalability. The efficiency advantages of RLAR are significant. Training with
RLAR requires 6 hours for 100 steps on our setup, compared to 20 hours for generative reward
models. Similarly, token costs for tool creation ($50) are far lower than the inference cost of GPT-
4.1 based evaluators ($250 per 100 steps). This cost—performance trade-off suggests that RLAR can
scale favorably to larger models and more complex training regimes, where budget constraints make
reliance on generative RMs impractical.
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Table 3: Scaling experiments on Qwen3 series. RLAR shows superior scaling properties, particu-
larly in Math and OOD benchmarks (AIME/BigMAX). AH-v2 shorts for ARENA-HARD-V2.

Model Val Set Key Tasks BigMAX AIME AH-v2
Avg. Math Trans rating acc elo

QOwen3-1.7B

Base 7.13 6.67 8.00 8.12 16.7 764

Single-RM 7.23 6.67 8.17 8.18 20.0 777

RLAR 7.80 8.83 7.98 8.26 36.7 808
QOwen3-8B

Base 8.02 7.83 8.87 9.29 333 1008

Single-RM 8.45 8.88 8.93 8.96 433 1053

RLAR 8.52 9.00 9.10 9.04 50.0 1070

Table 4: Ablation Experiments on Core Components (Average Score across Benchmarks)

Configuration Avg Tr Summ RLHF CG MulT Math BenX

Base 6.67 6.67 6.85 3.80 530 593 8.30 6.34
Lazy Rule 6.82 7.37 6.85 3.50 550 573 8.50 6.77
w/o Web-Agent 693 745 6.65 4.00 550 573 8.67 6.84
w/o Selection 6.03 5.68 5.25 2.80 6.15 577 7.42 7.07

RLAR (Full) 732 7.67 7.05 4.20 570  6.45 9.00 7.07

5.3 SCALING ANALYSIS

To investigate the scalability of RLAR, we extended the comparison between the Base model,
Single-RM (using Skywork-Reward), and our method (RLAR) to larger model sizes: Qwen3-1.7B
and 8B. As shown in Table [} we observe that RLAR consistently achieves the highest average
validation scores across all model sizes, outperforming both Base and Single-RM baselines. These
gains are particularly evident in reasoning-heavy tasks; for instance, on the 8B model, RLAR boosts
the Math score from 7.83 to 9.00, effectively unlocking the model’s latent reasoning potential. Fur-
thermore, while the Single-RM baseline frequently suffers from overfitting on out-of-domain bench-
marks like AIME-2024 and ARENA-HARD, RLAR demonstrates superior robustness, mitigating
performance degradation and maintaining high generalization ability even as model size increases.

6 ANALYSIS

6.1 ABLATIONS ON MODULE

We analyze the contribution of the three main components in our system: Web-Agent (responsible
for LLM-based reward tool), Code-Agent (responsible for rule/metric-based reward tool) and the
Selection backbone. The results of these end-to-end ablation experiments are summarized in Table
B The model is denoted as Base. We ablated throught the following threads: remove web agent
and leave the rest alone (w/o Web-Agent); remove both Web-Agent/Code-Agent and use human
curated rule/metric-based rewards (LLazy Rule); remove selection module and use the most often
called reward from of that category (w/o Selection).

Web&Code-Agent Comparing the full model (RLAR, 7.32) against w/o Web-Agent (6.93), the
Web-Agent contributes a substantial performance gain of 0.39 points in the average score, demon-
strating its vital role in improving overall system efficacy through specialized web-based rewards.
Furthermore, w/o Web-Agent (6.93) slightly outperforms Lazy Rule (6.82), suggesting that the
Code-Agent’s generated reward tools are comparable to human-designed verifiable rewards.

Selection Backbone The comparison between RLAR (7.32) and Greedy (6.03) indicates that the
Selection LLM is vital. Its ability to perform fine-grained, per-instance tool selection is essential
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for high performance, as a category-level “most-used generated tool” approach fails to generalize
effectively within diverse task categories.

6.2 RERANKING AND SELECTION MODULE ACCURACY

Experimental Setup : We utilized a randomly and uniformly samplecﬂ subset of 400 samples from
the Reward Bench-v2 test set, where each sample consists of one preferred (chosen) response and
three non-preferred (rejected) responses for a given prompt. The unit test evaluates the module’s
predictive power of a given reward model tool. According to the practice from Reward Bench-v2,
a model is considered a “pass” on a sample if the softmax reward score it assigns to the chosen
response exceeds a threshold of 0.5 among the four candidate responses. We benchmarked five
frequently selected LLM-based reward model tools in the main experiment: skywork_llama,
deberta_reward, reward.reward, gpt2_helpful _reward, and seed—-X—-8b.

Rerank Module: This module is designed to dynami-
cally prioritize the most effective reward models based on
contextual information such as the prompt, model name,

Table 5: Rerank Top@1 Accuracy

and associated model card details. We fed the 5 model =~ Metric Pass(%)
name and model card info to the module and let it rerank. Top Ranked Reward Model ~ 86.50
The module’s performance (86.5%) over random baseline  Random Ranking Baseline 33.25
(33.25%) demonstrates it efficacy.

Tool Selection Backbone: We further analyzed the ac- Table 6: Tool Selection Accuracy
curacy of the tool selection Backbone, which acts as a

near-oracle predictor for the best tool. The 86.50% pass Metric Pass(%)

rate achieved by our selection mechanism (using the top-
ranked model) is marginally lower than the single best ~ Top-Ranked Reward Model  86.50
possible performance, which is represented by the overall ~ SOTA Reward Model 86.75
SOTA model pass rate (86.75%) observed across all five Random Selection Baseline 33.25
options on the same test subset. This close proximity indicates that the selection backbone operates
as a near-oracle predictor, accurately selecting the best reward tool in nearly all instances where
an effective tool exists.

6.3 ERROR AND ROBUSTNESS ANALYSIS

We conducted an error analysis by counting the task types Table 7: Web Retrieval Page Rank
of instructions for which the Web-Agent could not find a

specialized reward model (unmatched conditions). The Task Type Unmatched(%

breakdown in Table [§] shows that the majority of un- 'Typ (%)

found instructions originate from essay infilling/genera- Infilling ) 47.4
Essay Generation 43.8

tion tasks. Specifically, there is currently no correspond-
ing reward model explicitly trained for the these two task
domains, which accounts for the high unmatched ratio
in these categories. Notably, When a specialized tool is
unmatched, RLAR defaults to using a generic, default
LLM-based reward model (skywork—11ama).

Multi-Turn 8.8

Table 8: Position Ranks

Category Avg Pos

To assess the robustness of the searching module, we

tracked the average item position (calculated as page rank Summ i

Translation 2.36
x10) for the matched reward model. Across all sampled RLHF 5.03
categories, the overall average retrieval position was 5.64 Multi-Turn 7:61
items. As detailed in Table[J} all individual sub-categories Infil/Gen 3.75
consistently found the optimal item on the first page, con- Math 6.87

firming the robustness and high precision of the agent’s
query generation and search logic.
We further validate the soundness of the framework’s design by including a detailed analysis of the

generated tool quality (Appendix [[I) and an investigation into the reward tool usage within our
main experiments (Appendix . In summary, code-agents achieve a 94.9% executable rate when

*The “Tie” category is removed due to test input-output form and the pass-difficulty in softmax calculation.
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7 RELATED WORKS

7.1 LLM OPTIMIZATION REWARD DESIGNS

In industry, training discriminative reward models (Ouyang et al.l2022; DeepSeek-Al et al.| 2025
Liu et al.}[2024) is widely regarded as the most reliable approach for constructing a human preference
oracle within reinforcement learning (RL) frameworks for LLM optimization. In addition, gener-
ative rewards extend the aforementioned task from classification to generation, and have demon-
strated feasibility in mathematical domains (Generative RM, Google), RLHF-based settings (Ke
et al.}2024;|Wang et al., 2024} Zhu et al.} 2025; |Li et al., [2023)), and can be integrated with advances
in LLM reasoning, such as CritiqueGRPO (Zhang et al.|[2025). With the rapid development of math,
reasoning and code generation, the design of verifiable rewards has attracted increasing attention.
Binary rewards that can be verified through explicit rules have been shown to be more efficient in
these domains (Shao et al.| [2024; [Lambert et al.| |2025). An extension of verifiable reward design
in NLP tasks may involve employing standard NLP metrics (Chang et al., 2025). However, such
metrics are susceptible to bias and may lead to reward hacking.

7.2 REINFORCEMENT LEARNING FROM Al FEEDBACK

RLAIF (Lee et al., [2024) explores the development of reward models without extensive manual
labeling of training data. Self-rewarding (Yuan et al., [2025) require the policy model to evaluate
and discriminate its own generations. The LLM-as-a-judge (Zheng et al.,|2023) paradigm employs
a strong LLM to evaluate another LLM by means of a preceding evaluation prompt. RewardA-
gent (Peng et al.l [2025)) utilizes an LLM to combine pre-specified reward designs. These approaches
inevitably embed strong human priors into reward design, either through the evaluation prompt or
through the foundational reward specifications. In contrast to RewardAgent, our work extends both
the design flexibility—granting LLMs greater freedom in tool manipulation to access a broader
range of reward models—and the evaluation of reward design within an existing reward model
framework (specifically GRPO rather than DPO).

7.3

8 CONCLUSION

In this work, we proposed RLAR, a unified agent-driven framework that is able to provide cus-
tomized reward function design for each training query for reinforcement learning. Our framework
consists of a reward function generation stage as well as tool manipulation stage for each query. In
our experiment on heterogeneous task environment, RLAR excels in most of the included tasks and
shows great generalizability in untrained out of domain benchmarks. Our examination show that
the coding module design of RLAR is highly reliable with high pass rates of the implemented func-
tions,

RLAR
highlights the potential to elaborate in reward side to improve RL training efficiency.



Under review as a conference paper at ICLR 2026

REFERENCES

Anténio Afonso, Iolanda Leite, Alessandro Sestini, Florian Fuchs, Konrad Tollmar, and Linus
Gisslén. Self-correcting reward shaping via language models for reinforcement learning agents
in games, 2025. URL https://arxiv.org/abs/2506.23626.

Agentlans. allenai-wildchat-1m-multiturn. agentlans/
allenai-WildChat-1M-multiturn, 2019.

Aircrypto. English-french-translations-train-large. aircrypto/
English-French-Translations—-Train-Large, 2019.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm?2 technical report, 2024.

Thomas Carta, Pierre-Yves Oudeyer, Olivier Sigaud, and Sylvain Lamprier. Eager: Asking and
answering questions for automatic reward shaping in language-guided rl, 2022. URL https:
//arxiv.org/abs/2206.09674.

Yapei Chang, Yekyung Kim, Michael Krumdick, Amir Zadeh, Chuan Li, Chris Tanner, and Mohit
Iyyer. Bleuberi: Bleu is a surprisingly effective reward for instruction following, 2025. URL
https://arxiv.org/abs/2505.11080.

Shanbo Cheng, Yu Bao, Qian Cao, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, Wenhao Zhu,
Jingwen Chen, Zhichao Huang, Tao Li, Yifu Li, Huiying Lin, Sitong Liu, Ningxin Peng, Shuaijie
She, Lu Xu, Nuo Xu, Sen Yang, Runsheng Yu, Yiming Yu, Liehao Zou, Hang Li, Lu Lu, Yuxuan
Wang, and Yonghui Wu. Seed-x: Building strong multilingual translation llm with 7b parameters,
2025. URL https://arxiv.org/abs/2507.13618\

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and
Nazli Goharian. A discourse-aware attention model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
615-621, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-2097. URL https://aclanthology.org/N18-2097.

Nicholas Kluge Corréa. Aira, 2023. URL https://github.com/Nkluge—-correa/Aira.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang

10


https://arxiv.org/abs/2506.23626
agentlans/allenai-WildChat-1M-multiturn
agentlans/allenai-WildChat-1M-multiturn
aircrypto/English-French-Translations-Train-Large
aircrypto/English-French-Translations-Train-Large
https://arxiv.org/abs/2206.09674
https://arxiv.org/abs/2206.09674
https://arxiv.org/abs/2505.11080
https://arxiv.org/abs/2507.13618
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/N18-2097
https://github.com/Nkluge-correa/Aira

Under review as a conference paper at ICLR 2026

Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948,

Xu Huang, Wenhao Zhu, Hanxu Hu, Conghui He, Lei Li, Shujian Huang, and Fei Yuan. Benchmax:
A comprehensive multilingual evaluation suite for large language models, 2025. URL https:
//arxiv.orqg/abs/2502.07346.

Pei Ke, Bosi Wen, Andrew Feng, Xiao Liu, Xuanyu Lei, Jiale Cheng, Shengyuan Wang, Aohan
Zeng, Yuxiao Dong, Hongning Wang, Jie Tang, and Minlie Huang. CritiqueLLM: Towards an
informative critique generation model for evaluation of large language model generation. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13034—-13054,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.704. URL https://aclanthology.org/2024.acl-1long.704/.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh
Hajishirzi. Rewardbench: Evaluating reward models for language modeling, 2024. URL
https://arxiv.org/abs/2403.13787.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard, Johan Ferret,
Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. RLAIF: Scaling reinforcement
learning from human feedback with Al feedback, 2024. URL https://openreview.net/
forum?id=AAxIs3D277.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment, 2023. URL https://arxiv.org/abs/2310.05470

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
benchbuilder pipeline. arXiv preprint arXiv:2406.11939, 2024.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms, 2024. URL
https://arxiv.org/abs/2410.18451.

11


https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2502.07346
https://arxiv.org/abs/2502.07346
https://aclanthology.org/2024.acl-long.704/
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://openreview.net/forum?id=AAxIs3D2ZZ
https://openreview.net/forum?id=AAxIs3D2ZZ
https://arxiv.org/abs/2310.05470
https://arxiv.org/abs/2410.18451

Under review as a conference paper at ICLR 2026

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A. Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation, 2025a. URL
https://arxiv.org/abs/2506.01937.

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A. Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation, 2025b. URL
https://arxiv.org/abs/2506.01937.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URLhttps://arxiv.org/abs/2203.02155.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311-318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.

Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin Xu, Lei Hou, and Juanzi Li. Agentic reward
modeling: Integrating human preferences with verifiable correctness signals for reliable reward
systems. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15934-15949, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.775. URL
https://aclanthology.org/2025.acl-long.775/.

Qwedsacf. ivypanda-essays. qwedsacf/ivypanda—-essays, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL |https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Somanshu Singla, Zhen Wang, Tianyang Liu, Abdullah Ashfaq, Zhiting Hu, and Eric P. Xing.
Dynamic rewarding with prompt optimization enables tuning-free self-alignment of language
models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 21889-21909, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.emnlp-main.1220. URL https://aclanthology.org/2024.emnlp-main.
1220/

Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao
Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, and Yue
Zhang. PandalLM: An automatic evaluation benchmark for LLM instruction tuning optimiza-
tion. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=5Nn2BLV7SB.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqgian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing Ilm reasoning with rule-based reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.14768,

Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
in-context: Multi-objective alignment of foundation models with dynamic preference adjustment.
International Conference on Machine Learning, 2024.

12


https://arxiv.org/abs/2506.01937
https://arxiv.org/abs/2506.01937
https://arxiv.org/abs/2203.02155
https://aclanthology.org/P02-1040/
https://aclanthology.org/2025.acl-long.775/
qwedsacf/ivypanda-essays
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://aclanthology.org/2024.emnlp-main.1220/
https://aclanthology.org/2024.emnlp-main.1220/
https://openreview.net/forum?id=5Nn2BLV7SB
https://arxiv.org/abs/2502.14768

Under review as a conference paper at ICLR 2026

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason Weston. Self-rewarding language models, 2025. URL jhttps://arxiv.org/
abs/2401.10020.

Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
Critique-grpo: Advancing llm reasoning with natural language and numerical feedback, 2025.
URLhttps://arxiv.org/abs/2506.03106.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlaol

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. JudgeLM: Fine-tuned large language models
are scalable judges. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=xsELpEPn4A.

A  REPRODUCIBILITY STATEMENT

We have included the heterogeneous data construction process in Section [3] and more details in
Appendix. We described the RL training settings and experiment platforms in Appendix [D.3]and
Section[5.1} The prompts involving the usage of LLM (primarily GPT-4.1) are filed in Appendix [E}
The above materials are able to fully reproduce our work.

B LIMITATIONS

We primarily validated RLAR on heterogeneous tasks in text forms. Due to the budget constraints,
we did not extend the scope into multi-modal, audio tasks such as text-to-image generations. We
believe this is a good exploration field for future works. On the other hand, due to the GPU resource
constraints, we conducted our experiments on medium scaled (~1B) LLMs. There is still room for
further analysis on the scalability of the RLAR framework.

In practice, some repository README would become out-dated when reporting (such as claiming
to be state-of-the-art of that time). Though not directly caused by the design, RLAR is potentially
vulnerable to readme hacking, as our assumption is that most of these repo readmes are trustworthy.
We leave the development for developing more robust retrieval modules for future works.

Lastly, we focus on language models that are modeled as text classifiers. This is quite similar to
practices in the industry, mainly aiming to save the computational cost of reward calculation. For
generative reward models, our framework can support development on this basis; however, given the
constraints of our experimental setup, we consider this to be outside the scope of the present work.

C DATA PROCESS DETAILS

C.1 DETAILED INTRODUCTION OF DATASETS

Translation (En-Fr, Fr-En): This task requires the LLM to translate between English
and French (in our case, English to French and French to English). We use the dataset

aircrypto/English-French-Translations-Train-Large (Aircrypto, 2019) from
HuggingFace, which provides high-quality, paired sentence-level samples.

Instruction Following: Given specific requirements in the provided instructions, the LLM should
respond accordingly. We use tulu3-sft-reused-on-policy—8b, part of the Tulu-3
2025) preference dataset, which contains generation pairs between different LLMs during
the training of Llama-3.1-Tulu-3-8B.

Multi-turn: LLM respond to instructions with previous interaction histories.  We pick
allenai-WildChat-1M-multiturn 2019), a collection of 1M ChatGPT inter-
action logs from the wild. We select the English subset aimed at RLHF queries.
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Summarization: This task requires LLM to summarize over long documents into short abstracts.
We pick ccdv/govreport-summarization, ccdv/pubmed-summarization,
ccdv/arxiv-summarization(Cohan et al, 2018), which includes different types of
documents from arxiv articles to government reports.

Math: We pick OpenAl GSM8K (Cobbe et al.|[2021), a classic dataset of grade-school math prob-
lems designed to evaluate multi-step reasoning. We choose not to use more complex math-reasoning
datasets because our focus in this work is primarily on LLM text-generation tasks. Advanced math
reasoning often requires specialized methodologies, such as tree-search reasoning, which makes it
unsuitable for single-pass direct generation.

Conditional Generation: The LLM should generate coherent text according to given constraints. In
our setting, we task the LLM with filling in missing paragraphs in an essay or producing a complete
essay based on an abstract outline. We use qwedsacf/ivypanda-essays (Qwedsacf,[2019), a
HuggingFace dataset repository containing long-form essays covering multiple disciplines sourced
from the IvyPanda platfornﬂ

C.2 DATA FILTERING PROMPT

You are given a set of task samples, each consisting of:
1. User Query the task or request made to the model.
2. Model Response the output given by the model.

The samples may come from various task types, including:

- Translation

- Summarization

- Math problem solving

- Reinforcement Learning from Human Feedback (RLHF) style instructional
prompts

- Conditional text generation

- Multiturn dialogue

Your goal: Identify and select only the samples that did not meet
quality standards based on:

A. Query Quality Issues:

- I11 formed or incomplete queries

- Ambiguous or misleading instructions

- Irrelevant or off-topic requests

— Grammatically broken or nonsensical input

B. Response Quality Issues:

— Incorrect or factually wrong answers

- Incomplete responses that fail to address the query
- Poor language quality or incoherent writing

— Hallucinations or madeup facts

- Misinterpretation of the query

Instructions:
1. For each sample, examine both the query and response.
2. Mark the sample as "Fail" if either the query quality
or the response quality is below standard.
3. Briefly explain why the sample fails,
citing issues in query, response, or both.
4. Output only the failing samples, in the format:
[Sample ID]
Query:
Response:
Fail Reason:

‘https://ivypanda.com/
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Be strict in applying the criteria even if only one
side (query or response) is substandard, the sample
should be considered as failing.

D EXPERIMENT TRAINING DETAILS

D.1 MANUAL DESIGNED REWARD FUNCTION OVER LENGTH

We designed the following function for calculating reward scores over length. Suppose generation
length is x and reference length is r, we raise:

g 0<x<0.75r,
'
l Z, = 257
(z,y) TRy L (37, 0.25r) — f(0.757;7,0.257)] + 0.75r e 05
r 7 o
()

N2
f(tipo) = ﬁexp (—“205)) . @)

This can be regarded as stretching and shifting a Gaussian normal probabilistic distribution function,
centered at r with standard deviation 0.257, along the y-axis so that it passes through the two points
(0.75r,0.75) and (r, 1). Before 2 of reference length, there is a linear increment with more words.

D.2 PROMPT FOR THE LLM JUDGE IN RLAIF

search results filtration

Input: propmt, candiate, reference

You are an expert evaluator of language model outputs. You will receive:

1. **Prompt:** The original instruction/task given to the model.

2. **Candidate Response:** The model’s output to be evaluated.

3. **Reference Response:** A high-quality gold-standard or reference output.

Your task:

- Evaluate the quality of the *Candidate Response* compared to the *Reference Response*
and in relation to the given *Prompt*.

- Consider the category of task (which could be: **translation**, **summarization**,
**generation®*, **infilling/cloze**, **conditional generation**, **math**, or **instruc-
tion following**), and adjust your evaluation criteria accordingly.

- Score on a scale from 0 to 10, according to the rubric below.

- Output the score in the format ‘[[X]]° (where X is the integer score) **once** in your
reply, followed by a clear explanation of reasoning and specific strengths/weaknesses.

#i## **Evaluation Dimensions by Task Category** *(Use whichever are relevant to the given
prompt.)*

- **Translation:** Accuracy, completeness, fidelity to meaning, fluency, grammar, style.

- **Summarization: ** Coverage of key points, factual faithfulness, conciseness, coherence.
- **Generation (creative writing, open-ended):** Relevance, originality, creativity, coher-
ence, style, adherence to constraints.

- **Infilling/Cloze: ** Correctness of missing content, contextual fit, fluency, logical conti-
nuity.

- *¥*Conditional Generation:** Logical or rule-based conformity, adherence to provided con-
straints, completeness.
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- **Math/Reasoning: ** Correctness of calculations or logic, clarity, rigor of explanation.
- **Instruction Following:** How fully and correctly the instructions are followed, align-
ment with intent, completeness.

### **Scoring Rubric (0—10)**

- 10: Perfect or near-perfect match. Fully correct, faithful, or relevant. No significant errors
in meaning, facts, or execution. High clarity, fluency, and adherence to task.

- 9: Almost perfect; tiny, easily overlookable issues (minor style or formatting quirks).

- 8: Very good; only minor errors or slight omissions that don’t significantly harm the result.
- 7: Good; mostly correct but with notable small issues (minor factual, structural, or stylistic
errors).

- 6: Fair; significant issues exist but main content or logic remains intact. Some loss of
fidelity, clarity, or completeness.

- 5: Borderline acceptable; mix of correct and incorrect elements, noticeable gaps or errors,
not reliably usable without fixes.

- 4: Poor; frequent errors or omissions, core meaning partially lost. Low reliability.

- 3: Very poor; large parts incorrect, irrelevant, or incoherent. Only minor parts are correct.

- 2: Minimal correctness; almost entirely wrong or off-task, but with a trace of relevant
material.

- 1: Nearly useless; incomprehensible or totally wrong, but not fully empty.

- 0: No meaningful output, completely unrelated, or empty.

### **Output Format** Respond with: “‘ [[X]] Explanation: [Your detailed explanation,
citing specific task-related criteria, success points, and failure points. Mention the type of
category-specific evaluation applied.] “‘ - Replace **X** with a single integer 0—10. Make
sure your explanation is concise within 50 words.

[propmt]

{prompt}

[Candidate Response]

{candidate}

[Reference Response]

{reference}

D.3 REPRODUCTION DETAILS FOR RL TRAINING

We use the volcano engine reinforcement learning for LLMs framework, VERL (Sheng et al., 2024).
We validate the implementation of the framework run all our RL experiments based on it. Below
is the hyperparameters for all our experiments and we use the same set of hyperparameters for all
experiments.

python3 -m verl.trainer.main_ppo —--config-path=config \
—-—-config-name='ppo_megatron_trainer.yaml’\
algorithm.adv_estimator=grpo \
data.train_files=S$rlvr_train_path \
data.val_files=S$rlvr_test_path \
data.train_batch_size=128 \
data.max_prompt_length=15000 \
data.max_response_length=6000 \
actor_rollout_ref.rollout.prompt_length=15000 \
actor_rollout_ref.rollout.response_length=6000 \
data.filter_overlong_prompts=True \
data.truncation=’'error’ \
actor_rollout_ref.model.path=$base_model \
actor_rollout_ref.actor.optim.lr=5e-6 \
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=2 \
actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=4 \
actor_rollout_ref.actor.megatron.tensor_model_parallel_size=2 \
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actor_rollout_ref.actor.use_kl loss=True \
actor_rollout_ref.actor.kl _loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.rollout.log prob_micro_batch_size_per_gpu=8 \
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
actor_rollout_ref.rollout.max_num_batched_tokens=65536 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
actor_rollout_ref.rollout.n=5 \

actor_rollout_ref.ref.log _prob_micro_batch_size_per_gpu=8 \
actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=4 \
actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2 \
algorithm.use_kl_in_reward=False \

trainer.critic_warmup=0 \

trainer.logger=[’console’, wandb’] \
trainer.project_name=S$proj_name \
trainer.experiment_name=S$exp_name \

trainer.n_gpus_per_node=8 \

trainer.nnodes=1 \

trainer.save_freqg=20 \

trainer.test_freg=10 \

trainer.total_epochs=2 $@

The following is our supervised finetuning training script:

torchrun --standalone —--nnodes=1 —--nproc_per_node=$nproc_per_node \
-m verl.trainer.fsdp_sft_trainer \

data.train_files=Strain_files \
data.val_files=Sval_files \
data.max_length=30000 \
data.truncation=left \
data.prompt_key=extra_info \
data.response_key=extra_info \
optim.lr=1e-5 \
data.prompt_dict_keys=[’'question’] \
+data.response_dict_keys=[’answer’] \
data.micro_batch_size=1 \
data.micro_batch_size_per_gpu=1l \
data.val_batch_size=1 \
model.partial_pretrain=$base_model \
trainer.default_local_dir=$save_path \
trainer.project_name=main_exp \
trainer.experiment_name=sft-qwen3-0.6 \
trainer.logger=[’console’] \
trainer.total_epochs=2 \
trainer.default_hdfs_dir=null $Q@ \
ulysses_sequence_parallel_size=2 \
use_remove_padding=true

The other hyper-parameters, such as optimizer 3, are set default to the framework trainer configura-
tions from https://github.com/volcengine/verl/tree/main/verl/trainer/

configl
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E PROMPT DETAILS

E.1 PROMPT FOR TASK DECOMPOSITION

search results filtration

Input: original_task

Please break down the following generative task into a combination of several basic genera-
tive tasks:

Basic task list: 1. Controlled generation: Generate coherent natural language text that meets
certain given conditions. Best for simple, clear tasks; complex writing should be split into
smaller steps like planning and cloze generation.

2. Translation: Generate a corresponding text in another natural language from a text in one
natural language.

3. Text summarization: Summarize the given text, retaining the main information.

4. Question answering: Provide appropriate answers based on background information and
question requests provided by the user.

5. Paraphrasing: Modify the provided text into a different form of expression that meets the
given rewriting requirements.

6. Cloze generation: Given a continuous piece of text with missing parts, generate appropri-
ate text for the missing positions so that the original text becomes complete, coherent, and
consistent.

7. Planning generation: Plan a high-level outline in order to accomplish a relatively complex
generative task, such as creating a chapter list, designing character traits, designing scripts,
or designing a timeline.

8. Code: Generate executable code that meets the specified requirements, or supplement or
revise code according to the given requirements. The defining criterion for this task is that
the output is primarily code.

Decomposition goal:

- Break down the complex generative task provided by the user into a list composed of the
above basic tasks according to its logical steps. - Steps should be arranged in execution
order, and the description should start from the original input form and proceed until the
task is completed.

- Each step must clearly specify the “basic task type” and the execution content of that step.
- If the task does not need to be broken down, provide a single-step basic task and rewrite its
description into a clearer instruction that aligns with the type of task in the basic task list.
Output format requirements:

- List the decomposition results step-by-step (step number + basic task type name + specific
execution description).

- Enclose the final result within <Result> ... < \Result > tags.

Below is an example:

[Example Start]

Task to be decomposed: Please provide an English summary for the following Chinese
document.

Decomposition result:

1. Translation: Please translate the following Chinese document into an English document.
2. Text summarization: Please summarize the given English document, and ensure the sum-
mary does not exceed 200 words.

[Example End]

Now, perform the above decomposition process on the given question (or task description)
below, and write the final decomposition result within <Result> ... < \Result > tags.
{original task}

E.2 PROMPT DETAILS FOR REWARD MODEL CHOICE

E.2.1 TOOL WRAPPING
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"type": "function",
"function": {

"name": "search_serper_engine",

"description": "Performs a Google search using the Serper API
restricted to finding Hugging Face model checkpoints. Use
this tool only to look up Hugging Face checkpoint URLs,
model pages, or related information. Short queries work
best. Reward model might be confusing with base models or
chat models",

"parameters": {
"type": "object",
"properties": {

"query": {

lltype": "Stril’lg",

"description": "The search query for Hugging Face
checkpoints, e.g., model names or keywords to
locate on huggingface.co."

}
s
"required": ["query"]

E.2.2 PROMPT FOR SEARCH RESULTS FILTRATION

search results filtration

Input: original_task

You are given a list of search engine results with position IDs. Your task is to filter them
according to the following rules:

1. **Identify Reward Models:**

- Keep only results that are **reward model** links.

- Reward models often have model names containing keywords like ‘-Reward-’ or *-RM-".
- Discard results for base models (‘-Base’) or instruct models (‘-Instruct’) or chat models
(‘-Chat’).

- If a model name has none of these hints, and it’s unclear whether it is a reward model,
discard it.

2. **Hugging Face Model Repositories Only:**

- Keep only links pointing to **Hugging Face model repositories**.

- Discard datasets, research papers, blog posts, or other non-model content.

3. **Score Output Format only:**

- Regression models only, in other words, models that output a score (e.g., 0-1) rather than
generating text.

Directly discard those items that violates rule 1, 2 or 3 and keep the rest items. Output the
resting items in list using their original position id like [0, 1, 3, 5, ...]”. If none of the items
are left, output an empty list ”[]”.

{results}
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E.2.3 PROMPT FOR SEARCH RESULTS RERANKING

search results rerank

Input: original_task

You are given a list of search engine results with position IDs. Your task is to filter them
according to the following rules:

1. **Identify Reward Models:** - Keep only results that are **reward model** links. -
Reward models often have model names containing keywords like ‘-Reward-‘ or ‘-RM-".
- Discard results for base models (‘-Base*) or instruct models (‘-Instruct®) or chat models
(“-Chat‘). - If a model name has none of these hints, and it’s unclear whether it is a reward
model, discard it.

2. **Hugging Face Model Repositories Only:** - Keep only links pointing to **Hugging
Face model repositories**. - Discard datasets, research papers, blog posts, or other non-
model content.

3. **Score Output Format only:** - Regression models only, in other words, models that
output a score (e.g., 0-1) rather than generating text.

Directly discard those items that violates rule 1, 2 or 3 and keep the rest items. Output the
resting items in list using their original position id like [0, 1, 3, 5, ...]”. If none of the items
are left, output an empty list ’[]”.

{results}

E.2.4 PROMPT FOR SEARCH RESULTS LLM-BASED REWARD MODEL IMPLEMENTATION

reward tool implementation

Input: original_task

Implement a python script for launching a reward model according to the following infor-
mative scripts. The model local checkpoint is {model_local_dir}. The cuda device for the
model is ”{cuda_device}”. You should write a function, that support input parameter: -
prompt: str, instruction or context conditions - response: str, the text need to be evaluated -
reference: str, some reference answer/response for the above prompt

Your implementation are free to use the packages mentioned in the scripts. Name the cal-
culation function starting with “compute_”, such as ”def compute_XXX(...)” where XXX
should be the reward model name or related abbreviation. Make sure the model checkpoint
is loaded precisely once in the script. Format your output enclosed within ”python \ n xxxx
\n”. Also, additionally print the calculation funciton after four sharp marks ####, such as
“#### def compute_xxx(...)” in the end of your output (outside the python script).

{scripts}

[your implementation]

E.3 PROMPT FOR CODE-AGENT WORKFLOW

E.3.1 PLAN

LIST_TASK_PROMPT = """You are an expert in designing reward models and
evaluation metrics for the xx{task}*x task.

Your goal is to list xx3 5 possible reward model or evaluation metric
choices** for this task, drawing from the following two categories:

1. **xRule-basedx*x* Explicit rules (e.g., exact match with reference
output, length constraints) used directly as rewards.
2. xxMetric-basedx* Standard NLP metrics (e.g., BLEU, ROUGE, METEOR)

used to evaluate and reward generated results.

**xQutput formatting requirements:xx
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- Place your results x+after four hash marks (“####) xx.
— For xxeach choicex*, indicate its xxcategoryxx and xxname**, using the
format:

AURNRY

##44# <Category>/<Name>: <Brief description>

AURNRY

— Use a #**new linex* for each choice.

**xExample: xx

#### Metric-based/BLEU: Measures the n-gram overlap between generated
output and reference text.

#### Rule-based/Length: Rewards outputs within the target length range
for conciseness.

AURNRY

nun

E.3.2 WRITE

WRITE_CODE_PROPMT = """Implement the following metric according to
description using python. You are free to use packages. You should
write a function begin with ’compute_xxx’ where xxx is the name of
the metric. The function accepts:

- prompt: the instruction to the prompt

- candidate_response: the candidate response to be evaluated by the
metric

- reference_response: the reference answer for the prompt

You should directly return a scaler score.

Output the python code in ‘‘‘python\n xxxx\n'‘'‘. And list the
requirements within Y''''' use requirements.txt style.

{metric description}
mnn

F LLM USAGE IN THIS PAPER

Large Language Models (LLMs) were used in the preparation of this work as a general-purpose
assistance tool. Specifically, LLMs were employed in the following ways:

» Translation Assistance: Converting expressions and sentences from the author’s native
language into English.

» Language Polishing and Grammar Revision: Improving clarity, fluency, and grammati-
cal correctness of the text, and ensuring that phrasing is natural in academic English.

* Draft Review and Critique: Providing feedback on drafts, including identifying unclear
passages, suggesting improvements in structure, and flagging potential ambiguities.

LLMs were not used for generating original research ideas, performing data analysis, or writing
substantive technical content. All core research contributions, results, and argumentative structure
were developed by the authors. The role of LLMs was limited to translation, linguistic polishing,
and non-substantive editorial suggestions to improve presentation.

G GENERATED TOOLS
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Table 9: A list of the generated reward function tool names by our code-agent.

Type Metric Type Metric

rule_based Forbidden_Words rule_based Stepwise_Completeness
rule_based Prompt_Adherence rule_based Length

rule_based Numeric_Accuracy rule_based Exact_Template_Match
rule_based Novelty_Penalty rule_based Contradiction_Detection
rule_based Disallowed Phrase_Penalty rule_based Exact_Output_Match
rule_based No_Unsupported_Claims rule_based Reference Match

rule_based Exact_Answer Match rule_based Named Entity Preservation
rule_based Unit_Consistency rule_based Keyword_Presence
rule_based Minimal Edit_Distance rule_based Thesis_Inclusion
rule_based Mandatory_Content_Inclusion | rule_based Scientific_Claims_Match
rule_based Pronounceability rule_based Position_Sensitivity
rule_based Section_Coverage rule_based Entity_Presence
rule_based Answer_Type_Match rule_based Stepwise_Correctness
rule_based Terminology-Accuracy rule_based Diversity_-Score

rule_based Forbidden_Content rule_based Fact_Match

rule_based Forbidden_Phrase_Detection rule_based No_Information_Leakage
rule_based Annotation_Completeness rule_based Grammar_and_Spelling_Accuracy
rule_based Clarity_Constraint rule_based Answer_Presence

rule_based No_Overlap_with_Input rule_based No_Syntax_Errors
rule_based Numeric_-Tolerance rule_based Edit_Distance

rule_based Keyword_Coverage rule_based No_Repetition

rule_based Length Ratio rule_based One-Hot_Accuracy
rule_based Novelty rule_based Exact Match

rule_based Pattern_Compliance rule_based Step_Match

rule_based Syntax_Validity rule_based Format_Compliance
rule_based Allowed _Vocabulary rule_based Entity_Overlap

rule_based Explicit_Irrelevance rule_based Accuracy

rule_based Coverage_of _Key_Points rule_based Section_Presence
rule_based Clarity rule_based Test_Case_Pass_Rate
rule_based Dictionary Filtering rule_based Length_Expansion
rule_based Content_Inclusion rule_based Error_Pattern Removal
rule_based Plagiarism_Check rule_based Functionality_Test
rule_based Politeness_Constraint rule_based Formatting_Compliance
rule_based Exact_Test_Case_Pass rule_based Key_Information_Coverage
rule_based Genre—-Adherence rule_based Passes Unit_Tests
rule_based Exact_Step_Match rule_based Exact_Keyword Match
rule_based Required Field Inclusion rule_based Attribute_Coverage
rule_based Valid_Vocabulary rule_based Medical_Term_Coverage
rule_based Keyword_Absence rule_based Required_Component Presence
rule_based Final Answer_Correctness rule_based Keyword_Inclusion
rule_based Structure_Compliance rule_based Step_Consistency
rule_based Readability rule_based No-Answer_Accuracy
rule_based Length_Constraint rule_based Error_Reduction

rule_based Answer_Type_Mismatch rule_based Thesis_Presence
rule_based Case—-Insensitive Match rule_based Topic._Divergence
rule_based Exact Numeric Match rule_based Originality-Penalty
rule_based Keyword_Exclusion rule_based Structure

rule_based Format _Consistency rule_based Required_Elements
rule_based Reference_Citation rule_based Instruction_Match
rule_based Key_Concepts_Inclusion rule_based Stepwise_Solution_Match
rule_based Fact_Consistency rule_based Step_Count_Constraint
nlp_metric Fl_Score nlp_metric METEOR

nlp_metric ROUGE nlp_metric GLEU

nlp_metric BERTScore nlp_metric M~2_Score

nlp_metric chrF nlp_metric ROUGE-L

nlp_metric Levenshtein Distance nlp_metric BLEU
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Source | Repo Name
Liu et al., 2024 Skywork/Skywork-Reward-V2-Llama-3.1-8B
Liu et al., 2024 Skywork/Skywork-Reward-V2-Qwen3-8B
Liu et al., 2024 Skywork/Skywork-Reward-V2-Llama-3.2-3B
Liu et al., [2024] Skywork/Skywork-Reward-V2-Qwen3-4B

Cheng et al., 2025

(Yang et al.,[2024)
(CorreaL 2023
a1 et al. 4

Malik et al.[[2025a)

ByteDance-Seed/Seed-X-RM-7B
OpenAssistant/reward-model-deberta-v3-base
Ray2333/gpt2-large-helpful-reward_model
nicholasKluge/RewardModel
internlm/internlm2-1_8b-reward

allenai/Llama-3.1-8B-Base-RM-RB2

Table 10: Successfully deployed LLM-based reward models.
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Figure 3: Maximum Advantage Estimations
Type Metric Type Metric
nlp_metric Distinct-n nlp_metric CodeBLEU

model_based
model_based

Content_Novelty_Score
Topic_Classifier

model_based
model_based

Negative_Relevance_Score
Perplexity

H RECORDS FOR ADVANTAGE ESTIMATION

I ADDITIONAL ANALYSIS

I.1 REWARD TOOL GENERATION QUALITY

We evaluate the quality of reward tools produced by our two agents for tool generation mainly along

their construction validity and summarized in Table[TT]

Code-agent tools.

Across all the training queries, the code agent generated 118 reward scripts,
among which 112 (94.9%) were directly executable under our standardized interfaceEl

By type,

SExecutability is checked by importing the generated function, calling it with a minimal synthetic triplet

(prompt,

23

candidate, reference) and verifying a numeric return type without exceptions.
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Figure 4: Minimum Advantage Estimations

the set comprises 102 rule-based functions (86.4%), 12 standard metric implementations (10.2%;
e.g., BLEU, METEOR), and 4 learned-model-based scorers (3.4%). Rule-based tools typically
encode task-specific verifiable criteria (e.g., numeric-consistency checks for GSM8K or explicit-
irrelevance penalties for RLHF-style preference items), while metric-based tools provide length- or
n-gram—aware surrogates for general text quality. We discard learned-model-based proposals from
the code agent since they are potential out of memory threats to the deploying server.

Web-agent tools. The web agent retrieved 21 can-

didate repositories from public model hubs (primar- Category Count
ily Hugging Face and ModelScope) that matched  Code-agent scripts (total) 118
the predicted task label and satisfied our reward- Executable 112 (94.9%)
model filter. And the filter eliminates base/instruc- 1134“1t€fba§ed q 11022 (18062‘;%)
t/chat/vision models and retains text-classification Lez;:;_djzi del_based 4E3 4% ;7 )
modeled reward models with download access. Af- i

ter automatic screening and wrapping, 10 reposi-  Web-agent repos (retrieved) 21
tories (47.6%) were successfully deployed behind Deployed 10 (47.6%)
a uniform Python API. The remaining 11 were re- Eg:gzg Erslljleassi fication) é
jected due to: model size prohibitive for our infer- Rejected (insufficient docs) 3

ence node (2), non—text-classification architectures
(6), or insufficient/ambiguous repository documen-
tation for reliable wrapping (3).

Table 11: Summary of reward tool genera-
tion outcomes.

The high executability of code-agent tools (94.9%) and the moderate but reliable deployment rate
of web-agent tools (47.6%) indicate that RLAR can consistently materialize task-aligned reward
functions across heterogeneous inputs.

1.2 REWARD TOOL USAGE AND SELECTION PATTERNS

Having established that RLAR can reliably generate and deploy reward tools, we next examine how
these tools are actually invoked during training. This analysis addresses two questions: (i) which
categories of tools dominate in practice, and (ii) how the usage patterns vary with task source and
affect the learned policy.

We plot the actual usage of tools by examining the tool matching conditions based on the
data source in the training set shown in the Figure 5]  Across all 8,000+ training sam-
ples, the majority of calls are routed to LLM- based reward models (96.4%), while rule-
based and metric- based tools are invoked only sparsely. The most frequently selected indi-
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vidual model is Skywork/ Skywork-Reward-V2-Llama-3.1-8B, accounting for 52.5%
of calls. A significant proportion of samples fall back to rule-based numeric-consistency
checks (“explicit number match”) On translation tasjs, the web-agent originated Seed-X-RM-7B
dominates, capturing cross-lingual adequacy more effectivelv than eeneric reward models.

The dominance of LLM-based rewards suggests
that, for heterogeneous open-domain training, high-
capacity discriminative models remain the most
trusted. Nevertheless, the occasional use of rule-

Przansiation en-fx compute seed score

Przansiation fr-en final_answer_correctness

numeTic accuracy

Math compute_skywork_llama_score

. loze
based checks in math and RLHF tasks demonstrates I
. .« . . Multiturn Chat
that RLAR is capable of combining expert heuris- P e neintuscore
tics when appropriate. RLAR does not rely on a —_ e eEit terelvence
single global reward model but instead orchestrates Poricina e es—

a portfolio of evaluators aligned with each domain.
As shown in the previous subsection, this diversity

T 7o O contradiction_detection

| Govreport Summarization
compute_length_score

translates into smoother advantage estimation and
stronger updates during policy optimization.
Figure 5: Matching tools with source train-

I3 IMPACT ON ADVANTAGE ing dataset distribution.

ESTIMATION AND POLICY LEARNING

We examine the records from the Qwen experiments covering Generative RM, method, single
generic reward, regarding the estimated min/max of advantage per step (Figure 3| and Figure [4)),
and calculated the proportion that triggered clipping. Higher rates of being clipped means a higher
absolute value of estimated advantage. From the results, for Generative RM, rollouts triggering both
upper-clip and under-clip occur in every update step. Compared to single generic reward, RLAR has
a significantly higher clipping rate. This is direct evidence that methods with better performance
tends to estimate larger advantages in absolute values.

Return to the discussion of Advantage Estimation A, = %T;I)l(r)

Consider two types of reward functions in Figure [6] the blue one is
sensitive to extreme values (smaller variance) while the orange one is
evenly modeled (higher variance). Assuming uniform roll-out sampling,
a higher value of A; suggests that the underlying reward function re-
sembles the sensitive type (blue line). Therefore, extreme values (max-
imum/minimum) are divided by a smaller variance, resulting in a more
frequent reaching of the clip threshold. This is expected for policy opti-
mization that more weights should be transferred to these deviated rolls,
as part of exploration-exploitation balance.

10{ —— sensitive RM
evenly modeled RM

estimated reward

1000175 -050 -0.25 000 025 050 0.75 100
golden reward

Figure 6: An illustra-
tion on the sensitivity to
extreme values of reward
functions.
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