
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RLAR: AN AGENTIC REWARD SYSTEM FOR
MULTI-TASK REINFORCEMENT LEARNING ON
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model alignment via reinforcement learning depends critically
on reward function quality. However, generic reward models often underper-
form on heterogeneous task distributions due to distribution shifts, while training
task-specific reward models is costly and prone to annotation difficulty, catas-
trophic forgetting, and loss of generalization. We present RLAR (Reinforcement
Learning from Agent Rewards), an agent-driven framework that dynamically as-
signs tailored reward functions to individual training queries. RLAR combines
two automated LLM-based stages. First, the tool generation stage where web-
agents and code-agents generate rule-, metric-, and model-based reward func-
tions and wrap them as a callable tool. Then, there is a reward tool calling
stage where a central decision LLM assign the reward function tools to indi-
vidual queries. Across diverse tasks including translation, summarization, ques-
tion answering, and mathematics, RLAR delivers 5–10% average improvement
over a widely-used generic reward model (Skywork-Reward-V2) and matches
GPT-4.1-as-judge performance, while generalizing well to untrained benchmarks
such as BenchMAX, AIME-2024 and Arena-Hard-v2. Ablation studies show
performance drops of 40%, 77%, and 198% when removing the web-agent,
code-agent, and selection backbone, with the backbone achieving 86.50% selec-
tion accuracy near the theoretical ceiling of top reward models. The retrieval
module locates optimal tools reliably, with an average first-page rank of 5.64. By
systematically leveraging and extending existing reward sources, RLAR offers a
scalable path to high-quality RL alignment over multiple task domains.

1 INTRODUCTION

Large language model (LLM) alignment via reinforcement learning (RL) has achieved substantial
progress, where a policy model’s parameters are iteratively updated to maximize rewards from an
oracle (Schulman et al., 2017; Ouyang et al., 2022; Shao et al., 2024). The effectiveness of this
process hinges on the quality of the reward function. However, a core challenge arises when training
LLMs on heterogeneous tasks: a single, generic reward model often lacks the discriminative power
for specific domains due to distribution shifts. Meanwhile, creating specialized reward models for
each task is frequently impractical, facing obstacles like catastrophic forgetting, the need for expert
domain knowledge for data annotation (e.g., in cross-lingual tasks), and prohibitive costs.

This situation highlights a crucial gap but also a significant opportunity. The open-source community
has already developed numerous high-quality, task-specific reward models (Liu et al., 2024; Cai
et al., 2024; Yang et al., 2024; Corrêa, 2023; Cheng et al., 2025; Lambert et al., 2025), available
on platforms like HuggingFace1 and ModelScope2. These specialized models typically outperform
generic evaluators on their intended tasks, yet they remain an underutilized resource. We argue for a
paradigm shift: instead of focusing on training new static models that directly output sample-specific
rewards, a more scalable and cost-effective approach is to develop a dynamic process that leverages
these existing assets to construct an appropriate reward function for the task at hand.

1https://https://huggingface.co/
2https://modelscope.cn/

1

https://https://huggingface.co/
https://modelscope.cn/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To bridge the above gaps, we introduce RLAR, a unified framework that leverages LLM agents to
design and use reward functions. RLAR consists of two stages: reward function tool generation
and manipulation of reward function tools. When a query enters the framework, it is first catego-
rized under a specific task tag. A code-agent workflow is then activated to plan appropriate reward
functions for the task, ultimately producing implemented and callable reward function API scripts.
In parallel, a web-agent workflow is triggered to browse the Internet in search of the most relevant
open-source reward model repositories. It filters the results, retaining only the repository best suited
for the current task. The selected repository is then downloaded and wrapped into a callable reward
function. Once the toolbox construction is complete, an LLM manipulates these generated tools
to bind each query with the most suitable reward function. This reward function is then used to
calculate the reward score during training.

To simulate a real scenario where heterogeneous tasks, we carefully adopted from public available
training datasets ranging from translation, summarization, QA, RLHF, essay generation, multi-turn
QA and math, to construct such mixed distribution of training dataset. We adopted a query fil-
tration, and resulted in a 8k-level training set and validation set. On other hand, we also selected
established benchmarks (gsm-8k (Cobbe et al., 2021), BENCHMAX (Huang et al., 2025), ARENA-
HARD-V2 (Li et al., 2024), AIME-20243) to evaluate the performance of RLAR.

In our experiments, we selected a widely adopted reward model (Skywork-Reward-V2-Llama-3.1-
8B) (Liu et al., 2024) as the generic reward model baseline. We also included a generative reward
model (GPT-4.1) implemented in the LLM-as-a-judge framework. RLAR achieved superior RL
training performance in most cases, yielding an overall 5% to 10% average performance improve-
ment over the generic reward model baseline on the validation set. In experiments using Qwen3-
0.6B as the base model, our method performed on par with the generative reward model implemented
with GPT-4.1. RLAR can also scale from 0.6B to 8B base model sizes, consistently outperform-
ing the SOTA single-RM baselines in the training domain. Furthermore, our method demonstrated
strong generalizability to untrained benchmarks, particularly on ARENA-HARD-V2, AIME-2024.

Our analysis confirms the critical role of each system component, with ablation studies revealing
that the RLAR performance increment against base model drops ranging 40%, 77%, 198% when
removing web-agent, code-agent and the selection backbone modules. Crucially, this selection back-
bone operates as a near-oracle predictor, attaining a 86.50% accuracy rate that effectively matches
the theoretical performance ceiling of the available state-of-the-art reward models. Furthermore, the
framework demonstrates high robustness in tool discovery, with the retrieval module consistently lo-
cating optimal reward tools on the first search page with an average rank of 5.64. The data and code
are available on https://anonymous.4open.science/r/ICLR2026-RLVR-8718.

2 PRELIMINARIES

2.1 TASK DEFINITION

We investigate the problem of reinforcement learning in LLM post-training stage for complex,
mixed-domain text generation tasks. The core objective is to train a single policy model that achieves
high performance across multiple task domains without sacrificing the quality of any individual task.

Let {D1, D2, . . . , Dn} denote datasets from n different domains, each corresponding to one type of
task (e.g., translation, summarization, question answering). We define a mixed-domain distribution:

D = {D1, D2, . . . , Dn}.

Our goal is to train a policy model A that maximizes expected performance over D under a multi-
task reinforcement learning framework:

max
A

Ed∼D [Rd(A)] ,

where Rd(A) denotes the reward of model A on domain d, potentially obtained from benchmarks,
development set metrics, and human feedback.

3https://artofproblemsolving.com/wiki/index.php/AIME Problems and Solutions

2

https://anonymous.4open.science/r/ICLR2026-RLVR-8718

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 LARGE LANGUAGE MODEL POST TRAINING WITH RL

In reinforcement learning from human feedback (RLHF), the Proximal Policy Optimization algo-
rithm (Schulman et al., 2017) is frequently employed for policy optimization. The typical workflow
begins with a warm-start training phase in which a Value Model (often a reward model) is learned.
Its objective function can be expressed as:

L(θ) = − 1

N
E(x,y+,y−)∼D

[
log σ

(
rθ(x, y+)− rθ(x, y−)

)]
,

where rθ(x, y) denotes the scalar reward assigned by the model to response y given prompt x, and
σ(·) is the logistic sigmoid function. The training pairs (y+, y−) come from human preference data,
with y+ being the preferred output.

We research on a more training efficient framework. The Group Relative Policy Optimization
(GRPO) approach (Shao et al., 2024) modifies the advantage estimation in order to reduce the de-
pendence on a learnable value model for estimating advantage baseline. Instead, GRPO computes
the normalized advantage within a group of sampled outputs:

Âi =
ri −mean(r)

std(r)
,

where {ri}Gi=1 are the rewards assigned to G candidate outputs for the same prompt, mean(r) and
std(r) are computed over the group. Also, the KL penalty term is removed from the per-step reward
and is instead applied directly to the overall optimization objective:

max
ϕ

E x∼D,

{yi}G
i=1∼πref (yi|x)

[
1

G

G∑
i=1

min

{
πθ(yi|x)
πref(yi|x)

Âi,

clip

(
πθ(yi|x)
πref(yi|x)

, 1− ϵ, 1 + ϵ

)
Âi

}]
− β DKL[πϕ ∥ πref] .

This formulation reduces sensitivity to reward model estimation errors by leveraging relative com-
parisons within output groups.

3 TASK DESIGN AND DATA PROCESS

Real-world LLM deployment rarely encounters isolated task types; instead, models face blended,
unpredictable inputs requiring broad capabilities. By integrating varied tasks into a single training
corpus, we aim to mimic these real conditions, promote cross-task generalization, and exposing the
need to design customized reward function to diverse queries.

We focus on the following major task types: translation, summarization, controlled Generation,
RLHF, math and multi-turn. We use publicly available datasets on HuggingFace to build the train-
ing and test set. A more detailed introduction of the task and our selected dataset are listed in
Appendix C. For the translation task, we selected a subset of English-French translations. For con-
ditional generation, we constructed two types of generation tasks: Cloze Generation and Essay
Writing. The former involves removing several paragraphs from an essay and requiring the model
to fill in the missing content, while the latter expands an original essay given a summary description
of it. For multi-turn tasks, we only consider the generation requirement in the final turn.

For all datasets, we performed downsampling based on query quality to ensure a balanced distribu-
tion of queries across different dataset sources. In addition, for all queries, we applied an automated
quality filtering process, requiring the LLM to remove samples that did not meet the standards based
on both query quality and response quality. The prompt is filed in Appendix C.2.

When constructing the validation set, if the original dataset contains a test set disjoint from the
training set (e.g., BENCHMAX, GSM-8K), we processed the corresponding test set content using
the same method and used it as the validation set. If the original data does not contain a training set
(e.g., TULU3, WILDCHAT, SUMMARIZATION, IVYPANDA), we randomly sampled from the training
data to form the validation set.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Statistics for the train and validation dataset concerned in this paper.

Translation Summary Math Instruction Follow Multi-turn Conditional Generation

Train 1507 2296 1000 982 967 1862
Valid 60 20 60 10 60 20

Prompt #Len. std Medium Resp #Len. std Medium

Train 11352 22511 996 2099 4048 844
Valid 10141 19440 917 2220 4936 776

import torch

from transformers

import ...

def

compute_seed_score

(...):

...

RM_demoFilterSearch Google Download Repo

Web agent tools

translation Rerank CodeGen

Figure 1: An example workflow for searching reward model for a translation task.

Furthermore, to facilitate our experiments, we obtained the outputs of GPT-4.1-0414 on all queries.
GPT-4.1 is regarded as achieving state-of-the-art performance on these tasks. For queries lacking
human-annotated responses, we used the results from GPT-4.1 as their reference responses. Table 1
shows the statistics of the train and validation set. The first two rows record the query numbers from
each of the sources in the column. The last two rows show the length of both input and output.

4 METHODOLOGY

In face of the challenge that a single, generic reward model is likely incapable of serving as value
model to train heterogeneous task compositions, we propose RLAR, an automated Reward Design
Framework driven by code and web LLM agents. RLAR utilize the both the LLM’s intrinsic ability
to design rule based rewards as well as the web search tool manipulation ability, to expand its boards
in reward modeling. The framework consists of two stages: Reward Function Tool Generation
(Section 4.1) and Final Reward Design (Section 4.2). We adopt the GPT-4.1 as the backend LLM to
drive all the agentic API calls.

4.1 REWARD FUNCTION TOOL GENERATION

In this stage, RLAR will prepare all the possible reward tools for the next stage through one screen
of the target domain without human labeling. For any training query, an unrestricted task prediction
module classifies the task type and produces a concise descriptor (≤3 words), such as english-french
translation or math calculation. This stage aims to enhance the downstream workflow accuracy,
mitigating noise from lengthy queries. We propose two agentic pipelines for reward tool generation.

Web Agent. The Web Agent mainly retrieve reward model from web and deploy the most matched
on as reward tool. Figure 1 shows its working mechanism. The Web Agent first utilizes the result
of the descriptor to construct the Google Search retrievals query. It then iteratively performs result
retrieval using this query (with a maximum of 5 iterations).

Filter : The LLM-based filter module conducts a coarse screening of all retrieval results, keeping
only the entries that meet the requirements for a reward model repository.

Rerank : The LLM-based module reorders all of resulting model entries based on the repository’s
README description. We select the first ranked model as the result of the current retrieval.

Implementation : The LLM-based reactor downloads the model checkpoints from the remote
repository and resulting the deployment script based on its README or example code.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Code Agent. The Code Agent operates on the premise that for every query, it is possible to define
a rule- or metric-based reward (such as using verifiers for math problems or BLEU for translation).
Therefore, we focus on unleashing the LLM’s intrinsic capability for reward design and code im-
plementation. The agent follows a plan-and-write pipeline: it first generates up to five candidate
rule/metric-based reward schemes, assigning each a name and a description based on the provided
descriptor. It then translates these function names and descriptions into functional Python script.

For each query and task, both code and web agents are triggered and construct their respective
reward tools. If certain query fail to match any tools, it will be routed to a default reward tool
(skywork-llama-8B-v2). A registry of existing tools is maintained to avoid redundant creation. All
constructed tools are encapsulated as Python functions with fixed parameters: prompt, candidate
response, and reference response. The final outputs are callable Python reward functions stored in
a default directory. After construction, a summarization module compiles an OpenAI tool request-
formatted list, inserted into the RLAR reward plan tool stack. Appendix E.2.2 to E.3.2 records the
core prompt for the modules.

4.2 MANIPULATING REWARD TOOLS

seed_reward_score

final_answer_accuracy

skywork_llama_reward_score

Translate the following from ...

Solve x in the below equation...

Write an essay about ...

reward_tool_1

...
rule/metric-based tools

reward_tool_2

reward_tool_3

reward_tool_4

reward_tool_5

reward_tool_6

reward_tool_7

reward_tool_8
...

llm-based tools

I recommend using this tool
as your reward function

Figure 2: An LLM call the designed reward tools
for each of the query.

All above designed tools, including rule-,
metric- and LLM-based, are provided to an
LLM with strong tool invocation capabilities
(GPT-4.1). We design prompts with both in-
struction and response, requiring the LLM to
actively select and invoke an reward function in
the context for each query, shown in Figure 2.

Unlike RLAIF, our approach employs Func-
tional-style Rewards: the AI does not directly
output rewards for each generation. Instead, it
designs reward functions. Denote the certain
reward function as fi that projects prompt p ,
candidate x and reference y into a float score s,
formally fi : p, x, y → s, the above agentic tool generation workflow serves as a functional F(·)
over task t such that

F(t) = (fi)i∈N
The manipulation LLM serves as a mapping σLLM from the family of reward functions into desired
target reward function ft:

ft = σLLM (query) ◦ F(t)

This method exploits AI’s manipulation capabilities over web and code tools, enhancing the cover-
age and accuracy of reward signals across diverse tasks. From an engineering perspective, it signifi-
cantly reduces token cost, since Python functions and local models are generally more efficient than
generative reward models API calls, such as GPT, in large-scale rollouts.

5 EXPERIMENTS

5.1 BASELINES AND EVALUATION

We compare the following categories of baselines. Non-RL methods: we include the
supervised fine-tuning (SFT) baseline. RL-based methods: we examine several types
of reward system designs. For the single generic reward model setting, we select
Skywork-Reward-V2-Llama-3.1-8B, which achieves the highest score on REWARD-
BENCH-V1, V2 Lambert et al. (2024); Malik et al. (2025b). We also include a Lazy Rule im-
plementation of the following combination: in gsm8k, we use the consistency of the final number
between the prediction and answer as the reward; for all text generation tasks, we use 70% BLEU-
1 (Papineni et al., 2002) scores adding up with 30% our designed length metric, where the length
is computed as Equation 1 in Appendix D.1. We also included a strong RLAIF baseline using a
generative reward model, implemented by prompting GPT-4.1 in an LLM-as-a-judge manner and
taking its judge score as the reward signal. The prompt of it is listed in Appendix D.2. We experi-
ment the methods on Qwen3-0.6B and Llama-3.2-1B-Instruct as base models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Evaluation results for various models on multiple metrics. Tr/Summ/CG/MulT shorts for
TRANSLATION, SUMMARIZATION, CONDITIONAL GENERATION, MULTI-TURN, respectively.
BenX shorts for BENCHMAX, MTBen shorts for MT-BENCH.

Validation set BenX MTBenAvg. Tr Summ RLHF CG MulT Math
Llama-3.2-1B-Instruct

Base Model 5.12 3.78 4.80 2.00 4.30 5.55 6.93 1.49 6.09
SFT 5.75 7.98 4.35 1.50 3.40 5.18 6.05 7.45 4.79

Lazy Rule 6.18 7.33 5.50 1.50 4.40 5.72 7.08 7.24 6.58
single-RM 6.37 7.23 5.90 2.90 5.90 5.85 7.00 7.17 6.50

RLAR (ours) 6.75 7.82 6.00 3.00 5.56 6.22 7.45 8.38 6.62
Qwen-3-0.6B

Base Model 6.67 6.67 6.85 3.80 5.30 5.93 8.30 6.34 6.95
SFT 5.79 7.07 5.60 2.40 6.70 4.82 6.93 6.78 4.41

Lazy Rule 6.82 7.37 6.85 3.50 5.50 5.73 8.50 6.77 6.59
single-RM 6.97 6.92 7.30 3.10 6.30 5.78 8.98 6.68 6.67

RLAR (ours) 7.32 7.67 7.05 4.20 5.70 6.45 9.00 7.07 7.11
Generative RMs with Qwen-3-0.6B

GPT-4.1 7.32 7.38 7.45 3.90 7.03 6.37 9.10 7.05 7.15

Evaluation: In Section 3, we have already constructed all in-domain dev set that has no overlap
or leakage with the training set. While GSM8K (Cobbe et al., 2021) is included in our scope, we
add three public benchmarks, to address the generalizability of the tuned policy model. BENCH-
MAX (Huang et al., 2025), a multilingual instruction following benchmark. We select the flore
subset and randomly and evenly selected 200 paired English and French sentences. The transla-
tion is bidirectional and both are tested. AIME-2024, which evaluates the advanced mathematical
reasoning of LLMs using the 30 challenging, integer-answer problems from the 2024 American
Invitational Mathematics Examination. ARENA-HARD-V2 (Li et al., 2024), an automated evalua-
tion benchmark that assesses LLMs using 500 challenging, high-quality user prompts derived from
Chatbot Arena to accurately approximate human preference rankings.

Training setting: For the supervised finetuning setting, we tune the base model on the training
dataset for 2 epochs. For all the RL methods, we use the GRPO (Shao et al., 2024) algorithm
framework and last the training for 100 steps for all. Training details are filed in Appendix D.3.
All experiments were performed on a server 8×NVIDIA H100 GPUs (80GB memory each), us-
ing a global batch size of 128 and mixed-precision (FP16) training. There is an additional server
8×NVIDIA A100 GPUs (80GB) for launching all reward models.

5.2 MAIN RESULTS

Compared to alternative reward designs, RLAR strikes an optimal balance between performance
and efficiency. While generative RLAIF (GPT-4.1) offers strong signals, it incurs high inference
costs and longer training times (20 hours vs. 6 hours for RLAR). Our framework achieves compa-
rable or superior results to generative RLAIF, particularly on tasks with objective correctness signals
like Math and Translation. This demonstrates that dynamic, task-aligned reward tools are a scalable
competitor to expensive LLM-as-a-judge approaches.

Efficiency and scalability. The efficiency advantages of RLAR are significant. Training with
RLAR requires 6 hours for 100 steps on our setup, compared to 20 hours for generative reward
models. Similarly, token costs for tool creation ($50) are far lower than the inference cost of GPT-
4.1 based evaluators ($250 per 100 steps). This cost–performance trade-off suggests that RLAR can
scale favorably to larger models and more complex training regimes, where budget constraints make
reliance on generative RMs impractical.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Scaling experiments on Qwen3 series. RLAR shows superior scaling properties, particu-
larly in Math and OOD benchmarks (AIME/BigMAX). AH-v2 shorts for ARENA-HARD-V2.

Model Val Set Key Tasks BigMAX AIME AH-v2
Avg. Math Trans rating acc elo

Qwen3-1.7B

Base 7.13 6.67 8.00 8.12 16.7 764
Single-RM 7.23 6.67 8.17 8.18 20.0 777
RLAR 7.80 8.83 7.98 8.26 36.7 808

Qwen3-8B

Base 8.02 7.83 8.87 9.29 33.3 1008
Single-RM 8.45 8.88 8.93 8.96 43.3 1053
RLAR 8.52 9.00 9.10 9.04 50.0 1070

Table 4: Ablation Experiments on Core Components (Average Score across Benchmarks)

Configuration Avg Tr Summ RLHF CG MulT Math BenX

Base 6.67 6.67 6.85 3.80 5.30 5.93 8.30 6.34
Lazy Rule 6.82 7.37 6.85 3.50 5.50 5.73 8.50 6.77
w/o Web-Agent 6.93 7.45 6.65 4.00 5.50 5.73 8.67 6.84
w/o Selection 6.03 5.68 5.25 2.80 6.15 5.77 7.42 7.07

RLAR (Full) 7.32 7.67 7.05 4.20 5.70 6.45 9.00 7.07

5.3 SCALING ANALYSIS

To investigate the scalability of RLAR, we extended the comparison between the Base model,
Single-RM (using Skywork-Reward), and our method (RLAR) to larger model sizes: Qwen3-1.7B
and 8B. As shown in Table 3, we observe that RLAR consistently achieves the highest average
validation scores across all model sizes, outperforming both Base and Single-RM baselines. These
gains are particularly evident in reasoning-heavy tasks; for instance, on the 8B model, RLAR boosts
the Math score from 7.83 to 9.00, effectively unlocking the model’s latent reasoning potential. Fur-
thermore, while the Single-RM baseline frequently suffers from overfitting on out-of-domain bench-
marks like AIME-2024 and ARENA-HARD, RLAR demonstrates superior robustness, mitigating
performance degradation and maintaining high generalization ability even as model size increases.

6 ANALYSIS

6.1 ABLATIONS ON MODULE

We analyze the contribution of the three main components in our system: Web-Agent (responsible
for LLM-based reward tool), Code-Agent (responsible for rule/metric-based reward tool) and the
Selection backbone. The results of these end-to-end ablation experiments are summarized in Table
4. The model is denoted as Base. We ablated throught the following threads: remove web agent
and leave the rest alone (w/o Web-Agent); remove both Web-Agent/Code-Agent and use human
curated rule/metric-based rewards (Lazy Rule); remove selection module and use the most often
called reward from of that category (w/o Selection).

Web&Code-Agent Comparing the full model (RLAR, 7.32) against w/o Web-Agent (6.93), the
Web-Agent contributes a substantial performance gain of 0.39 points in the average score, demon-
strating its vital role in improving overall system efficacy through specialized web-based rewards.
Furthermore, w/o Web-Agent (6.93) slightly outperforms Lazy Rule (6.82), suggesting that the
Code-Agent’s generated reward tools are comparable to human-designed verifiable rewards.

Selection Backbone The comparison between RLAR (7.32) and Greedy (6.03) indicates that the
Selection LLM is vital. Its ability to perform fine-grained, per-instance tool selection is essential

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

for high performance, as a category-level ”most-used generated tool” approach fails to generalize
effectively within diverse task categories.

6.2 RERANKING AND SELECTION MODULE ACCURACY

Experimental Setup : We utilized a randomly and uniformly sampled4 subset of 400 samples from
the Reward Bench-v2 test set, where each sample consists of one preferred (chosen) response and
three non-preferred (rejected) responses for a given prompt. The unit test evaluates the module’s
predictive power of a given reward model tool. According to the practice from Reward Bench-v2,
a model is considered a “pass” on a sample if the softmax reward score it assigns to the chosen
response exceeds a threshold of 0.5 among the four candidate responses. We benchmarked five
frequently selected LLM-based reward model tools in the main experiment: skywork llama,
deberta reward, reward reward, gpt2 helpful reward, and seed-X-8b.

Table 5: Rerank Top@1 Accuracy

Metric Pass(%)

Top-Ranked Reward Model 86.50
Random Ranking Baseline 33.25

Rerank Module: This module is designed to dynami-
cally prioritize the most effective reward models based on
contextual information such as the prompt, model name,
and associated model card details. We fed the 5 model
name and model card info to the module and let it rerank.
The module’s performance (86.5%) over random baseline
(33.25%) demonstrates it efficacy.

Table 6: Tool Selection Accuracy

Metric Pass(%)

Top-Ranked Reward Model 86.50
SOTA Reward Model 86.75
Random Selection Baseline 33.25

Tool Selection Backbone: We further analyzed the ac-
curacy of the tool selection Backbone, which acts as a
near-oracle predictor for the best tool. The 86.50% pass
rate achieved by our selection mechanism (using the top-
ranked model) is marginally lower than the single best
possible performance, which is represented by the overall
SOTA model pass rate (86.75%) observed across all five
options on the same test subset. This close proximity indicates that the selection backbone operates
as a near-oracle predictor, accurately selecting the best reward tool in nearly all instances where
an effective tool exists.

6.3 ERROR AND ROBUSTNESS ANALYSIS

Table 7: Web Retrieval Page Rank

Task Type Unmatched(%)

Infilling 47.4
Essay Generation 43.8
Multi-Turn 8.8

We conducted an error analysis by counting the task types
of instructions for which the Web-Agent could not find a
specialized reward model (unmatched conditions). The
breakdown in Table 8 shows that the majority of un-
found instructions originate from essay infilling/genera-
tion tasks. Specifically, there is currently no correspond-
ing reward model explicitly trained for the these two task
domains, which accounts for the high unmatched ratio
in these categories. Notably, When a specialized tool is
unmatched, RLAR defaults to using a generic, default
LLM-based reward model (skywork-llama).

Table 8: Position Ranks

Category Avg Pos

Summ 7.17
Translation 2.36
RLHF 5.03
Multi-Turn 7.61
Infill/Gen 3.75
Math 6.87

To assess the robustness of the searching module, we
tracked the average item position (calculated as page rank
×10) for the matched reward model. Across all sampled
categories, the overall average retrieval position was 5.64
items. As detailed in Table 7, all individual sub-categories
consistently found the optimal item on the first page, con-
firming the robustness and high precision of the agent’s
query generation and search logic.

We further validate the soundness of the framework’s design by including a detailed analysis of the
generated tool quality (Appendix I.1) and an investigation into the reward tool usage within our
main experiments (Appendix I.2). In summary, code-agents achieve a 94.9% executable rate when

4The “Tie” category is removed due to test input-output form and the pass-difficulty in softmax calculation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

utilizing rule/metric-based tools, and we observe a dominant percentage of LLM-based reward tool
usage in text-generation tasks.

7 RELATED WORKS

7.1 LLM OPTIMIZATION REWARD DESIGNS

In industry, training discriminative reward models (Ouyang et al., 2022; DeepSeek-AI et al., 2025;
Liu et al., 2024) is widely regarded as the most reliable approach for constructing a human preference
oracle within reinforcement learning (RL) frameworks for LLM optimization. In addition, gener-
ative rewards extend the aforementioned task from classification to generation, and have demon-
strated feasibility in mathematical domains (Generative RM, Google), RLHF-based settings (Ke
et al., 2024; Wang et al., 2024; Zhu et al., 2025; Li et al., 2023), and can be integrated with advances
in LLM reasoning, such as CritiqueGRPO (Zhang et al., 2025). With the rapid development of math,
reasoning and code generation, the design of verifiable rewards has attracted increasing attention.
Binary rewards that can be verified through explicit rules have been shown to be more efficient in
these domains (Shao et al., 2024; Lambert et al., 2025). An extension of verifiable reward design
in NLP tasks may involve employing standard NLP metrics (Chang et al., 2025). However, such
metrics are susceptible to bias and may lead to reward hacking.

7.2 REINFORCEMENT LEARNING FROM AI FEEDBACK

RLAIF (Lee et al., 2024) explores the development of reward models without extensive manual
labeling of training data. Self-rewarding (Yuan et al., 2025) require the policy model to evaluate
and discriminate its own generations. The LLM-as-a-judge (Zheng et al., 2023) paradigm employs
a strong LLM to evaluate another LLM by means of a preceding evaluation prompt. RewardA-
gent (Peng et al., 2025) utilizes an LLM to combine pre-specified reward designs. These approaches
inevitably embed strong human priors into reward design, either through the evaluation prompt or
through the foundational reward specifications. In contrast to RewardAgent, our work extends both
the design flexibility—granting LLMs greater freedom in tool manipulation to access a broader
range of reward models—and the evaluation of reward design within an existing reward model
framework (specifically GRPO rather than DPO).

7.3 DYNAMIC REWARD ASSIGNING

Recent research in integrating LLM with RL, particularly for reward shaping, has primarily fo-
cused on analyzing the agent’s policy trace from prior steps to iteratively refine the reward function.
(Afonso et al., 2025) and (Carta et al., 2022) leverage the LLM’s reasoning to guide reward weight
pruning or analyze the trace to determine the appropriate reward shape design. Other methods, such
as (Xie et al., 2025) and (Singla et al., 2024) explore techniques like curriculum scheduling and
adjusting the reward schedule via prompt hints. RLAR diverges significantly by harnessing the
LLM’s capability to search the web and generate code, allowing it to directly design entirely new
rewards rather than being limited to weight adjustments. RLAR is also flexible for cross-domain
optimization problems, where reward designs differ substantially across various sub-domains, a
challenge that existing single-task-focused methods do not fully address.

8 CONCLUSION

In this work, we proposed RLAR, a unified agent-driven framework that is able to provide cus-
tomized reward function design for each training query for reinforcement learning. Our framework
consists of a reward function generation stage as well as tool manipulation stage for each query. In
our experiment on heterogeneous task environment, RLAR excels in most of the included tasks and
shows great generalizability in untrained out of domain benchmarks. Our examination show that
the coding module design of RLAR is highly reliable with high pass rates of the implemented func-
tions, while the search, selection modules are accurately functioning as designed. In-depth ablation
reveals that the backbone selection module and the web-agent are vital to the increments. RLAR
highlights the potential to elaborate in reward side to improve RL training efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

António Afonso, Iolanda Leite, Alessandro Sestini, Florian Fuchs, Konrad Tollmar, and Linus
Gisslén. Self-correcting reward shaping via language models for reinforcement learning agents
in games, 2025. URL https://arxiv.org/abs/2506.23626.

Agentlans. allenai-wildchat-1m-multiturn. agentlans/
allenai-WildChat-1M-multiturn, 2019.

Aircrypto. English-french-translations-train-large. aircrypto/
English-French-Translations-Train-Large, 2019.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024.

Thomas Carta, Pierre-Yves Oudeyer, Olivier Sigaud, and Sylvain Lamprier. Eager: Asking and
answering questions for automatic reward shaping in language-guided rl, 2022. URL https:
//arxiv.org/abs/2206.09674.

Yapei Chang, Yekyung Kim, Michael Krumdick, Amir Zadeh, Chuan Li, Chris Tanner, and Mohit
Iyyer. Bleuberi: Bleu is a surprisingly effective reward for instruction following, 2025. URL
https://arxiv.org/abs/2505.11080.

Shanbo Cheng, Yu Bao, Qian Cao, Luyang Huang, Liyan Kang, Zhicheng Liu, Yu Lu, Wenhao Zhu,
Jingwen Chen, Zhichao Huang, Tao Li, Yifu Li, Huiying Lin, Sitong Liu, Ningxin Peng, Shuaijie
She, Lu Xu, Nuo Xu, Sen Yang, Runsheng Yu, Yiming Yu, Liehao Zou, Hang Li, Lu Lu, Yuxuan
Wang, and Yonghui Wu. Seed-x: Building strong multilingual translation llm with 7b parameters,
2025. URL https://arxiv.org/abs/2507.13618.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang, and
Nazli Goharian. A discourse-aware attention model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
615–621, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-2097. URL https://aclanthology.org/N18-2097.

Nicholas Kluge Corrêa. Aira, 2023. URL https://github.com/Nkluge-correa/Aira.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang

10

https://arxiv.org/abs/2506.23626
agentlans/allenai-WildChat-1M-multiturn
agentlans/allenai-WildChat-1M-multiturn
aircrypto/English-French-Translations-Train-Large
aircrypto/English-French-Translations-Train-Large
https://arxiv.org/abs/2206.09674
https://arxiv.org/abs/2206.09674
https://arxiv.org/abs/2505.11080
https://arxiv.org/abs/2507.13618
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://aclanthology.org/N18-2097
https://github.com/Nkluge-correa/Aira

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Xu Huang, Wenhao Zhu, Hanxu Hu, Conghui He, Lei Li, Shujian Huang, and Fei Yuan. Benchmax:
A comprehensive multilingual evaluation suite for large language models, 2025. URL https:
//arxiv.org/abs/2502.07346.

Pei Ke, Bosi Wen, Andrew Feng, Xiao Liu, Xuanyu Lei, Jiale Cheng, Shengyuan Wang, Aohan
Zeng, Yuxiao Dong, Hongning Wang, Jie Tang, and Minlie Huang. CritiqueLLM: Towards an
informative critique generation model for evaluation of large language model generation. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13034–13054,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.704. URL https://aclanthology.org/2024.acl-long.704/.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi
Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh
Hajishirzi. Rewardbench: Evaluating reward models for language modeling, 2024. URL
https://arxiv.org/abs/2403.13787.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard, Johan Ferret,
Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. RLAIF: Scaling reinforcement
learning from human feedback with AI feedback, 2024. URL https://openreview.net/
forum?id=AAxIs3D2ZZ.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment, 2023. URL https://arxiv.org/abs/2310.05470.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
benchbuilder pipeline. arXiv preprint arXiv:2406.11939, 2024.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms, 2024. URL
https://arxiv.org/abs/2410.18451.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2502.07346
https://arxiv.org/abs/2502.07346
https://aclanthology.org/2024.acl-long.704/
https://arxiv.org/abs/2403.13787
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://openreview.net/forum?id=AAxIs3D2ZZ
https://openreview.net/forum?id=AAxIs3D2ZZ
https://arxiv.org/abs/2310.05470
https://arxiv.org/abs/2410.18451

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A. Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation, 2025a. URL
https://arxiv.org/abs/2506.01937.

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A. Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation, 2025b. URL
https://arxiv.org/abs/2506.01937.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
URL https://arxiv.org/abs/2203.02155.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.

Hao Peng, Yunjia Qi, Xiaozhi Wang, Zijun Yao, Bin Xu, Lei Hou, and Juanzi Li. Agentic reward
modeling: Integrating human preferences with verifiable correctness signals for reliable reward
systems. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15934–15949, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.775. URL
https://aclanthology.org/2025.acl-long.775/.

Qwedsacf. ivypanda-essays. qwedsacf/ivypanda-essays, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Somanshu Singla, Zhen Wang, Tianyang Liu, Abdullah Ashfaq, Zhiting Hu, and Eric P. Xing.
Dynamic rewarding with prompt optimization enables tuning-free self-alignment of language
models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 21889–21909, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.emnlp-main.1220. URL https://aclanthology.org/2024.emnlp-main.
1220/.

Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao
Chen, Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, and Yue
Zhang. PandaLM: An automatic evaluation benchmark for LLM instruction tuning optimiza-
tion. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=5Nn2BLV7SB.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.14768.

Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
in-context: Multi-objective alignment of foundation models with dynamic preference adjustment.
International Conference on Machine Learning, 2024.

12

https://arxiv.org/abs/2506.01937
https://arxiv.org/abs/2506.01937
https://arxiv.org/abs/2203.02155
https://aclanthology.org/P02-1040/
https://aclanthology.org/2025.acl-long.775/
qwedsacf/ivypanda-essays
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://aclanthology.org/2024.emnlp-main.1220/
https://aclanthology.org/2024.emnlp-main.1220/
https://openreview.net/forum?id=5Nn2BLV7SB
https://arxiv.org/abs/2502.14768

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason Weston. Self-rewarding language models, 2025. URL https://arxiv.org/
abs/2401.10020.

Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
Critique-grpo: Advancing llm reasoning with natural language and numerical feedback, 2025.
URL https://arxiv.org/abs/2506.03106.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. JudgeLM: Fine-tuned large language models
are scalable judges. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=xsELpEPn4A.

A REPRODUCIBILITY STATEMENT

We have included the heterogeneous data construction process in Section 3 and more details in
Appendix. We described the RL training settings and experiment platforms in Appendix D.3 and
Section 5.1. The prompts involving the usage of LLM (primarily GPT-4.1) are filed in Appendix E.
The above materials are able to fully reproduce our work.

B LIMITATIONS

We primarily validated RLAR on heterogeneous tasks in text forms. Due to the budget constraints,
we did not extend the scope into multi-modal, audio tasks such as text-to-image generations. We
believe this is a good exploration field for future works. On the other hand, due to the GPU resource
constraints, we conducted our experiments on medium scaled (∼1B) LLMs. There is still room for
further analysis on the scalability of the RLAR framework.

In practice, some repository README would become out-dated when reporting (such as claiming
to be state-of-the-art of that time). Though not directly caused by the design, RLAR is potentially
vulnerable to readme hacking, as our assumption is that most of these repo readmes are trustworthy.
We leave the development for developing more robust retrieval modules for future works.

Lastly, we focus on language models that are modeled as text classifiers. This is quite similar to
practices in the industry, mainly aiming to save the computational cost of reward calculation. For
generative reward models, our framework can support development on this basis; however, given the
constraints of our experimental setup, we consider this to be outside the scope of the present work.

C DATA PROCESS DETAILS

C.1 DETAILED INTRODUCTION OF DATASETS

Translation (En-Fr, Fr-En): This task requires the LLM to translate between English
and French (in our case, English to French and French to English). We use the dataset
aircrypto/English-French-Translations-Train-Large (Aircrypto, 2019) from
HuggingFace, which provides high-quality, paired sentence-level samples.

Instruction Following: Given specific requirements in the provided instructions, the LLM should
respond accordingly. We use tulu3-sft-reused-on-policy-8b, part of the Tulu-3 (Lam-
bert et al., 2025) preference dataset, which contains generation pairs between different LLMs during
the training of Llama-3.1-Tulu-3-8B.

Multi-turn: LLM respond to instructions with previous interaction histories. We pick
allenai-WildChat-1M-multiturn (Agentlans, 2019), a collection of 1M ChatGPT inter-
action logs from the wild. We select the English subset aimed at RLHF queries.

13

https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2506.03106
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=xsELpEPn4A

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Summarization: This task requires LLM to summarize over long documents into short abstracts.
We pick ccdv/govreport-summarization, ccdv/pubmed-summarization,
ccdv/arxiv-summarization(Cohan et al., 2018), which includes different types of
documents from arxiv articles to government reports.

Math: We pick OpenAI GSM8K (Cobbe et al., 2021), a classic dataset of grade-school math prob-
lems designed to evaluate multi-step reasoning. We choose not to use more complex math-reasoning
datasets because our focus in this work is primarily on LLM text-generation tasks. Advanced math
reasoning often requires specialized methodologies, such as tree-search reasoning, which makes it
unsuitable for single-pass direct generation.

Conditional Generation: The LLM should generate coherent text according to given constraints. In
our setting, we task the LLM with filling in missing paragraphs in an essay or producing a complete
essay based on an abstract outline. We use qwedsacf/ivypanda-essays (Qwedsacf, 2019), a
HuggingFace dataset repository containing long-form essays covering multiple disciplines sourced
from the IvyPanda platform5.

C.2 DATA FILTERING PROMPT

1 You are given a set of task samples, each consisting of:
2 1. User Query the task or request made to the model.
3 2. Model Response the output given by the model.
4

5 The samples may come from various task types, including:
6 - Translation
7 - Summarization
8 - Math problem solving
9 - Reinforcement Learning from Human Feedback (RLHF) style instructional

prompts
10 - Conditional text generation
11 - M u l t i turn dialogue
12

13 Your goal: Identify and select only the samples that did not meet
14 quality standards based on:
15

16 A. Query Quality Issues:
17 - I l l formed or incomplete queries
18 - Ambiguous or misleading instructions
19 - Irrelevant or off-topic requests
20 - Grammatically broken or nonsensical input
21

22 B. Response Quality Issues:
23 - Incorrect or factually wrong answers
24 - Incomplete responses that fail to address the query
25 - Poor language quality or incoherent writing
26 - Hallucinations or m a d e up facts
27 - Misinterpretation of the query
28

29 Instructions:
30 1. For each sample, examine both the query and response.
31 2. Mark the sample as "Fail" if either the query quality
32 or the response quality is below standard.
33 3. Briefly explain why the sample fails,
34 citing issues in query, response, or both.
35 4. Output only the failing samples, in the format:
36 [Sample ID]
37 Query: ...
38 Response: ...
39 Fail Reason: ...
40

5https://ivypanda.com/

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

41 Be strict in applying the criteria even if only one
42 side (query or response) is substandard, the sample
43 should be considered as failing.

D EXPERIMENT TRAINING DETAILS

D.1 MANUAL DESIGNED REWARD FUNCTION OVER LENGTH

We designed the following function for calculating reward scores over length. Suppose generation
length is x and reference length is r, we raise:

l(x, y) =


x

r
, 0 ≤ x ≤ 0.75r,

0.25r
f(r;r,0.25r)−f(0.75r;r,0.25r) [f(x; r, 0.25r)− f(0.75r; r, 0.25r)] + 0.75r

r
, x > 0.75r,

(1)

f(t;µ, σ) =
1√
2π σ

exp

(
− (t− µ)2

2σ2

)
. (2)

This can be regarded as stretching and shifting a Gaussian normal probabilistic distribution function,
centered at r with standard deviation 0.25r, along the y-axis so that it passes through the two points
(0.75r, 0.75) and (r, 1). Before 3

4 of reference length, there is a linear increment with more words.

D.2 PROMPT FOR THE LLM JUDGE IN RLAIF

search results filtration

Input: propmt, candiate, reference

You are an expert evaluator of language model outputs. You will receive:
1. **Prompt:** The original instruction/task given to the model.
2. **Candidate Response:** The model’s output to be evaluated.
3. **Reference Response:** A high-quality gold-standard or reference output.
Your task:
- Evaluate the quality of the *Candidate Response* compared to the *Reference Response*
and in relation to the given *Prompt*.
- Consider the category of task (which could be: **translation**, **summarization**,
generation, **infilling/cloze**, **conditional generation**, **math**, or **instruc-
tion following**), and adjust your evaluation criteria accordingly.
- Score on a scale from 0 to 10, according to the rubric below.
- Output the score in the format ‘[[X]]‘ (where X is the integer score) **once** in your
reply, followed by a clear explanation of reasoning and specific strengths/weaknesses.
—
Evaluation Dimensions by Task Category *(Use whichever are relevant to the given
prompt.)*
- **Translation:** Accuracy, completeness, fidelity to meaning, fluency, grammar, style.
- **Summarization:** Coverage of key points, factual faithfulness, conciseness, coherence.
- **Generation (creative writing, open-ended):** Relevance, originality, creativity, coher-
ence, style, adherence to constraints.
- **Infilling/Cloze:** Correctness of missing content, contextual fit, fluency, logical conti-
nuity.
- **Conditional Generation:** Logical or rule-based conformity, adherence to provided con-
straints, completeness.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

- **Math/Reasoning:** Correctness of calculations or logic, clarity, rigor of explanation.
- **Instruction Following:** How fully and correctly the instructions are followed, align-
ment with intent, completeness.
—
Scoring Rubric (0–10)
- 10: Perfect or near-perfect match. Fully correct, faithful, or relevant. No significant errors
in meaning, facts, or execution. High clarity, fluency, and adherence to task.
- 9: Almost perfect; tiny, easily overlookable issues (minor style or formatting quirks).
- 8: Very good; only minor errors or slight omissions that don’t significantly harm the result.
- 7: Good; mostly correct but with notable small issues (minor factual, structural, or stylistic
errors).
- 6: Fair; significant issues exist but main content or logic remains intact. Some loss of
fidelity, clarity, or completeness.
- 5: Borderline acceptable; mix of correct and incorrect elements, noticeable gaps or errors,
not reliably usable without fixes.
- 4: Poor; frequent errors or omissions, core meaning partially lost. Low reliability.
- 3: Very poor; large parts incorrect, irrelevant, or incoherent. Only minor parts are correct.
- 2: Minimal correctness; almost entirely wrong or off-task, but with a trace of relevant
material.
- 1: Nearly useless; incomprehensible or totally wrong, but not fully empty.
- 0: No meaningful output, completely unrelated, or empty.
—
Output Format Respond with: “‘ [[X]] Explanation: [Your detailed explanation,
citing specific task-related criteria, success points, and failure points. Mention the type of
category-specific evaluation applied.] “‘ - Replace **X** with a single integer 0–10. Make
sure your explanation is concise within 50 words.
—
[propmt]
{prompt}
[Candidate Response]
{candidate}
[Reference Response]
{reference}

D.3 REPRODUCTION DETAILS FOR RL TRAINING

We use the volcano engine reinforcement learning for LLMs framework, VERL (Sheng et al., 2024).
We validate the implementation of the framework run all our RL experiments based on it. Below
is the hyperparameters for all our experiments and we use the same set of hyperparameters for all
experiments.

1 python3 -m verl.trainer.main_ppo --config-path=config \
2 --config-name=’ppo_megatron_trainer.yaml’\
3 algorithm.adv_estimator=grpo \
4 data.train_files=$rlvr_train_path \
5 data.val_files=$rlvr_test_path \
6 data.train_batch_size=128 \
7 data.max_prompt_length=15000 \
8 data.max_response_length=6000 \
9 actor_rollout_ref.rollout.prompt_length=15000 \

10 actor_rollout_ref.rollout.response_length=6000 \
11 data.filter_overlong_prompts=True \
12 data.truncation=’error’ \
13 actor_rollout_ref.model.path=$base_model \
14 actor_rollout_ref.actor.optim.lr=5e-6 \
15 actor_rollout_ref.actor.ppo_mini_batch_size=64 \
16 actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=2 \
17 actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=4 \
18 actor_rollout_ref.actor.megatron.tensor_model_parallel_size=2 \

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

19 actor_rollout_ref.actor.use_kl_loss=True \
20 actor_rollout_ref.actor.kl_loss_coef=0.001 \
21 actor_rollout_ref.actor.kl_loss_type=low_var_kl \
22 actor_rollout_ref.actor.entropy_coeff=0 \
23 actor_rollout_ref.model.enable_gradient_checkpointing=True \
24 actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
25 actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
26 actor_rollout_ref.rollout.max_num_batched_tokens=65536 \
27 actor_rollout_ref.rollout.name=vllm \
28 actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
29 actor_rollout_ref.rollout.n=5 \
30 actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=8 \
31 actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=4 \
32 actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2 \
33 algorithm.use_kl_in_reward=False \
34 trainer.critic_warmup=0 \
35 trainer.logger=[’console’,’wandb’] \
36 trainer.project_name=$proj_name \
37 trainer.experiment_name=$exp_name \
38 trainer.n_gpus_per_node=8 \
39 trainer.nnodes=1 \
40 trainer.save_freq=20 \
41 trainer.test_freq=10 \
42 trainer.total_epochs=2 $@

The following is our supervised finetuning training script:

1 torchrun --standalone --nnodes=1 --nproc_per_node=$nproc_per_node \
2 -m verl.trainer.fsdp_sft_trainer \
3 data.train_files=$train_files \
4 data.val_files=$val_files \
5 data.max_length=30000 \
6 data.truncation=left \
7 data.prompt_key=extra_info \
8 data.response_key=extra_info \
9 optim.lr=1e-5 \

10 data.prompt_dict_keys=[’question’] \
11 +data.response_dict_keys=[’answer’] \
12 data.micro_batch_size=1 \
13 data.micro_batch_size_per_gpu=1 \
14 data.val_batch_size=1 \
15 model.partial_pretrain=$base_model \
16 trainer.default_local_dir=$save_path \
17 trainer.project_name=main_exp \
18 trainer.experiment_name=sft-qwen3-0.6 \
19 trainer.logger=[’console’] \
20 trainer.total_epochs=2 \
21 trainer.default_hdfs_dir=null $@ \
22 ulysses_sequence_parallel_size=2 \
23 use_remove_padding=true

The other hyper-parameters, such as optimizer β, are set default to the framework trainer configura-
tions from https://github.com/volcengine/verl/tree/main/verl/trainer/
config.

17

https://github.com/volcengine/verl/tree/main/verl/trainer/config
https://github.com/volcengine/verl/tree/main/verl/trainer/config

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E PROMPT DETAILS

E.1 PROMPT FOR TASK DECOMPOSITION

search results filtration

Input: original task

Please break down the following generative task into a combination of several basic genera-
tive tasks:
Basic task list: 1. Controlled generation: Generate coherent natural language text that meets
certain given conditions. Best for simple, clear tasks; complex writing should be split into
smaller steps like planning and cloze generation.
2. Translation: Generate a corresponding text in another natural language from a text in one
natural language.
3. Text summarization: Summarize the given text, retaining the main information.
4. Question answering: Provide appropriate answers based on background information and
question requests provided by the user.
5. Paraphrasing: Modify the provided text into a different form of expression that meets the
given rewriting requirements.
6. Cloze generation: Given a continuous piece of text with missing parts, generate appropri-
ate text for the missing positions so that the original text becomes complete, coherent, and
consistent.
7. Planning generation: Plan a high-level outline in order to accomplish a relatively complex
generative task, such as creating a chapter list, designing character traits, designing scripts,
or designing a timeline.
8. Code: Generate executable code that meets the specified requirements, or supplement or
revise code according to the given requirements. The defining criterion for this task is that
the output is primarily code.
Decomposition goal:
- Break down the complex generative task provided by the user into a list composed of the
above basic tasks according to its logical steps. - Steps should be arranged in execution
order, and the description should start from the original input form and proceed until the
task is completed.
- Each step must clearly specify the “basic task type” and the execution content of that step.
- If the task does not need to be broken down, provide a single-step basic task and rewrite its
description into a clearer instruction that aligns with the type of task in the basic task list.
Output format requirements:
- List the decomposition results step-by-step (step number + basic task type name + specific
execution description).
- Enclose the final result within <Result> ... < \Result > tags.
Below is an example:
[Example Start]
Task to be decomposed: Please provide an English summary for the following Chinese
document.
Decomposition result:
1. Translation: Please translate the following Chinese document into an English document.
2. Text summarization: Please summarize the given English document, and ensure the sum-
mary does not exceed 200 words.
[Example End]
Now, perform the above decomposition process on the given question (or task description)
below, and write the final decomposition result within <Result> ... < \Result > tags.
{original task}

E.2 PROMPT DETAILS FOR REWARD MODEL CHOICE

E.2.1 TOOL WRAPPING

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 {
2 "type": "function",
3 "function": {
4 "name": "search_serper_engine",
5 "description": "Performs a Google search using the Serper API

restricted to finding Hugging Face model checkpoints. Use
this tool only to look up Hugging Face checkpoint URLs,
model pages, or related information. Short queries work
best. Reward model might be confusing with base models or
chat models",

6 "parameters": {
7 "type": "object",
8 "properties": {
9 "query": {

10 "type": "string",
11 "description": "The search query for Hugging Face

checkpoints, e.g., model names or keywords to
locate on huggingface.co."

12 }
13 },
14 "required": ["query"]
15 }
16 }
17 }

E.2.2 PROMPT FOR SEARCH RESULTS FILTRATION

search results filtration

Input: original task

You are given a list of search engine results with position IDs. Your task is to filter them
according to the following rules:
1. **Identify Reward Models:**
- Keep only results that are **reward model** links.
- Reward models often have model names containing keywords like ‘-Reward-’ or ‘-RM-’.
- Discard results for base models (‘-Base’) or instruct models (‘-Instruct’) or chat models
(‘-Chat’).
- If a model name has none of these hints, and it’s unclear whether it is a reward model,
discard it.
2. **Hugging Face Model Repositories Only:**
- Keep only links pointing to **Hugging Face model repositories**.
- Discard datasets, research papers, blog posts, or other non-model content.
3. **Score Output Format only:**
- Regression models only, in other words, models that output a score (e.g., 0-1) rather than
generating text.
Directly discard those items that violates rule 1, 2 or 3 and keep the rest items. Output the
resting items in list using their original position id like ”[0, 1, 3, 5, ...]”. If none of the items
are left, output an empty list ”[]”.
{results}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.2.3 PROMPT FOR SEARCH RESULTS RERANKING

search results rerank

Input: original task

You are given a list of search engine results with position IDs. Your task is to filter them
according to the following rules:
1. **Identify Reward Models:** - Keep only results that are **reward model** links. -
Reward models often have model names containing keywords like ‘-Reward-‘ or ‘-RM-‘.
- Discard results for base models (‘-Base‘) or instruct models (‘-Instruct‘) or chat models
(‘-Chat‘). - If a model name has none of these hints, and it’s unclear whether it is a reward
model, discard it.
2. **Hugging Face Model Repositories Only:** - Keep only links pointing to **Hugging
Face model repositories**. - Discard datasets, research papers, blog posts, or other non-
model content.
3. **Score Output Format only:** - Regression models only, in other words, models that
output a score (e.g., 0-1) rather than generating text.
Directly discard those items that violates rule 1, 2 or 3 and keep the rest items. Output the
resting items in list using their original position id like ”[0, 1, 3, 5, ...]”. If none of the items
are left, output an empty list ”[]”.
{results}

E.2.4 PROMPT FOR SEARCH RESULTS LLM-BASED REWARD MODEL IMPLEMENTATION

reward tool implementation

Input: original task

Implement a python script for launching a reward model according to the following infor-
mative scripts. The model local checkpoint is {model local dir}. The cuda device for the
model is ”{cuda device}”. You should write a function, that support input parameter: -
prompt: str, instruction or context conditions - response: str, the text need to be evaluated -
reference: str, some reference answer/response for the above prompt
Your implementation are free to use the packages mentioned in the scripts. Name the cal-
culation function starting with ”compute ”, such as ”def compute XXX(...)” where XXX
should be the reward model name or related abbreviation. Make sure the model checkpoint
is loaded precisely once in the script. Format your output enclosed within ”python \ n xxxx
\n”. Also, additionally print the calculation funciton after four sharp marks ####, such as
”#### def compute xxx(...)” in the end of your output (outside the python script).
{scripts}
[your implementation]

E.3 PROMPT FOR CODE-AGENT WORKFLOW

E.3.1 PLAN

1 LIST_TASK_PROMPT = """You are an expert in designing reward models and
evaluation metrics for the **{task}** task.

2 Your goal is to list **3 5 possible reward model or evaluation metric
choices** for this task, drawing from the following two categories:

3

4 1. **Rule-based** Explicit rules (e.g., exact match with reference
output, length constraints) used directly as rewards.

5 2. **Metric-based** Standard NLP metrics (e.g., BLEU, ROUGE, METEOR)
used to evaluate and reward generated results.

6

7 **Output formatting requirements:**

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

8 - Place your results **after four hash marks (‘####‘)**.
9 - For **each choice**, indicate its **category** and **name**, using the

format:
10 ‘‘‘
11 #### <Category>/<Name>: <Brief description>
12 ‘‘‘
13 - Use a **new line** for each choice.
14

15 **Example:**
16 ‘‘‘
17 #### Metric-based/BLEU: Measures the n-gram overlap between generated

output and reference text.
18 #### Rule-based/Length: Rewards outputs within the target length range

for conciseness.
19 ‘‘‘
20 """

E.3.2 WRITE

1 WRITE_CODE_PROPMT = """Implement the following metric according to
description using python. You are free to use packages. You should
write a function begin with ’compute_xxx’ where xxx is the name of
the metric. The function accepts:

2 - prompt: the instruction to the prompt
3 - candidate_response: the candidate response to be evaluated by the

metric
4 - reference_response: the reference answer for the prompt
5 You should directly return a scaler score.
6

7 Output the python code in ‘‘‘python\n xxxx\n‘‘‘. And list the
requirements within ‘‘‘‘‘‘ use requirements.txt style.

8

9 {metric description}
10 """

F LLM USAGE IN THIS PAPER

Large Language Models (LLMs) were used in the preparation of this work as a general-purpose
assistance tool. Specifically, LLMs were employed in the following ways:

• Translation Assistance: Converting expressions and sentences from the author’s native
language into English.

• Language Polishing and Grammar Revision: Improving clarity, fluency, and grammati-
cal correctness of the text, and ensuring that phrasing is natural in academic English.

• Draft Review and Critique: Providing feedback on drafts, including identifying unclear
passages, suggesting improvements in structure, and flagging potential ambiguities.

LLMs were not used for generating original research ideas, performing data analysis, or writing
substantive technical content. All core research contributions, results, and argumentative structure
were developed by the authors. The role of LLMs was limited to translation, linguistic polishing,
and non-substantive editorial suggestions to improve presentation.

G GENERATED TOOLS

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: A list of the generated reward function tool names by our code-agent.

Type Metric Type Metric
rule based Forbidden Words rule based Stepwise Completeness
rule based Prompt Adherence rule based Length
rule based Numeric Accuracy rule based Exact Template Match
rule based Novelty Penalty rule based Contradiction Detection
rule based Disallowed Phrase Penalty rule based Exact Output Match
rule based No Unsupported Claims rule based Reference Match
rule based Exact Answer Match rule based Named Entity Preservation
rule based Unit Consistency rule based Keyword Presence
rule based Minimal Edit Distance rule based Thesis Inclusion
rule based Mandatory Content Inclusion rule based Scientific Claims Match
rule based Pronounceability rule based Position Sensitivity
rule based Section Coverage rule based Entity Presence
rule based Answer Type Match rule based Stepwise Correctness
rule based Terminology Accuracy rule based Diversity Score
rule based Forbidden Content rule based Fact Match
rule based Forbidden Phrase Detection rule based No Information Leakage
rule based Annotation Completeness rule based Grammar and Spelling Accuracy
rule based Clarity Constraint rule based Answer Presence
rule based No Overlap with Input rule based No Syntax Errors
rule based Numeric Tolerance rule based Edit Distance
rule based Keyword Coverage rule based No Repetition
rule based Length Ratio rule based One-Hot Accuracy
rule based Novelty rule based Exact Match
rule based Pattern Compliance rule based Step Match
rule based Syntax Validity rule based Format Compliance
rule based Allowed Vocabulary rule based Entity Overlap
rule based Explicit Irrelevance rule based Accuracy
rule based Coverage of Key Points rule based Section Presence
rule based Clarity rule based Test Case Pass Rate
rule based Dictionary Filtering rule based Length Expansion
rule based Content Inclusion rule based Error Pattern Removal
rule based Plagiarism Check rule based Functionality Test
rule based Politeness Constraint rule based Formatting Compliance
rule based Exact Test Case Pass rule based Key Information Coverage
rule based Genre-Adherence rule based Passes Unit Tests
rule based Exact Step Match rule based Exact Keyword Match
rule based Required Field Inclusion rule based Attribute Coverage
rule based Valid Vocabulary rule based Medical Term Coverage
rule based Keyword Absence rule based Required Component Presence
rule based Final Answer Correctness rule based Keyword Inclusion
rule based Structure Compliance rule based Step Consistency
rule based Readability rule based No-Answer Accuracy
rule based Length Constraint rule based Error Reduction
rule based Answer Type Mismatch rule based Thesis Presence
rule based Case-Insensitive Match rule based Topic Divergence
rule based Exact Numeric Match rule based Originality-Penalty
rule based Keyword Exclusion rule based Structure
rule based Format Consistency rule based Required Elements
rule based Reference Citation rule based Instruction Match
rule based Key Concepts Inclusion rule based Stepwise Solution Match
rule based Fact Consistency rule based Step Count Constraint
nlp metric F1 Score nlp metric METEOR
nlp metric ROUGE nlp metric GLEU
nlp metric BERTScore nlp metric Mˆ2 Score
nlp metric chrF nlp metric ROUGE-L
nlp metric Levenshtein Distance nlp metric BLEU

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Source Repo Name
(Liu et al., 2024) Skywork/Skywork-Reward-V2-Llama-3.1-8B
(Liu et al., 2024) Skywork/Skywork-Reward-V2-Qwen3-8B
(Liu et al., 2024) Skywork/Skywork-Reward-V2-Llama-3.2-3B
(Liu et al., 2024) Skywork/Skywork-Reward-V2-Qwen3-4B
(Cheng et al., 2025) ByteDance-Seed/Seed-X-RM-7B

OpenAssistant/reward-model-deberta-v3-base
(Yang et al., 2024) Ray2333/gpt2-large-helpful-reward model
(Corrêa, 2023) nicholasKluge/RewardModel
(Cai et al., 2024) internlm/internlm2-1 8b-reward
(Malik et al., 2025a) allenai/Llama-3.1-8B-Base-RM-RB2

Table 10: Successfully deployed LLM-based reward models.

Figure 3: Maximum Advantage Estimations

Type Metric Type Metric
nlp metric Distinct-n nlp metric CodeBLEU
model based Content Novelty Score model based Negative Relevance Score
model based Topic Classifier model based Perplexity

H RECORDS FOR ADVANTAGE ESTIMATION

I ADDITIONAL ANALYSIS

I.1 REWARD TOOL GENERATION QUALITY

We evaluate the quality of reward tools produced by our two agents for tool generation mainly along
their construction validity and summarized in Table 11.

Code-agent tools. Across all the training queries, the code agent generated 118 reward scripts,
among which 112 (94.9%) were directly executable under our standardized interface.6 By type,

6Executability is checked by importing the generated function, calling it with a minimal synthetic triplet
(prompt, candidate, reference) and verifying a numeric return type without exceptions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 4: Minimum Advantage Estimations

the set comprises 102 rule-based functions (86.4%), 12 standard metric implementations (10.2%;
e.g., BLEU, METEOR), and 4 learned-model–based scorers (3.4%). Rule-based tools typically
encode task-specific verifiable criteria (e.g., numeric-consistency checks for GSM8K or explicit-
irrelevance penalties for RLHF-style preference items), while metric-based tools provide length- or
n-gram–aware surrogates for general text quality. We discard learned-model–based proposals from
the code agent since they are potential out of memory threats to the deploying server.

Category Count

Code-agent scripts (total) 118
Executable 112 (94.9%)
Rule-based 102 (86.4%)
Metric-based 12 (10.2%)
Learned-model–based 4 (3.4%)

Web-agent repos (retrieved) 21
Deployed 10 (47.6%)
Rejected (size) 2
Rejected (not classification) 6
Rejected (insufficient docs) 3

Table 11: Summary of reward tool genera-
tion outcomes.

Web-agent tools. The web agent retrieved 21 can-
didate repositories from public model hubs (primar-
ily Hugging Face and ModelScope) that matched
the predicted task label and satisfied our reward-
model filter. And the filter eliminates base/instruc-
t/chat/vision models and retains text-classification
modeled reward models with download access. Af-
ter automatic screening and wrapping, 10 reposi-
tories (47.6%) were successfully deployed behind
a uniform Python API. The remaining 11 were re-
jected due to: model size prohibitive for our infer-
ence node (2), non–text-classification architectures
(6), or insufficient/ambiguous repository documen-
tation for reliable wrapping (3).

The high executability of code-agent tools (94.9%) and the moderate but reliable deployment rate
of web-agent tools (47.6%) indicate that RLAR can consistently materialize task-aligned reward
functions across heterogeneous inputs.

I.2 REWARD TOOL USAGE AND SELECTION PATTERNS

Having established that RLAR can reliably generate and deploy reward tools, we next examine how
these tools are actually invoked during training. This analysis addresses two questions: (i) which
categories of tools dominate in practice, and (ii) how the usage patterns vary with task source and
affect the learned policy.

We plot the actual usage of tools by examining the tool matching conditions based on the
data source in the training set shown in the Figure 5. Across all 8,000+ training sam-
ples, the majority of calls are routed to LLM- based reward models (96.4%), while rule-
based and metric- based tools are invoked only sparsely. The most frequently selected indi-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

vidual model is Skywork/ Skywork-Reward-V2-Llama-3.1-8B, accounting for 52.5%
of calls. A significant proportion of samples fall back to rule-based numeric-consistency
checks (“explicit number match”) On translation tasjs, the web-agent originated Seed-X-RM-7B
dominates, capturing cross-lingual adequacy more effectively than generic reward models.

Figure 5: Matching tools with source train-
ing dataset distribution.

The dominance of LLM-based rewards suggests
that, for heterogeneous open-domain training, high-
capacity discriminative models remain the most
trusted. Nevertheless, the occasional use of rule-
based checks in math and RLHF tasks demonstrates
that RLAR is capable of combining expert heuris-
tics when appropriate. RLAR does not rely on a
single global reward model but instead orchestrates
a portfolio of evaluators aligned with each domain.
As shown in the previous subsection, this diversity
translates into smoother advantage estimation and
stronger updates during policy optimization.

I.3 IMPACT ON ADVANTAGE
ESTIMATION AND POLICY LEARNING

We examine the records from the Qwen experiments covering Generative RM, method, single
generic reward, regarding the estimated min/max of advantage per step (Figure 3 and Figure 4),
and calculated the proportion that triggered clipping. Higher rates of being clipped means a higher
absolute value of estimated advantage. From the results, for Generative RM, rollouts triggering both
upper-clip and under-clip occur in every update step. Compared to single generic reward, RLAR has
a significantly higher clipping rate. This is direct evidence that methods with better performance
tends to estimate larger advantages in absolute values.

Figure 6: An illustra-
tion on the sensitivity to
extreme values of reward
functions.

Return to the discussion of Advantage Estimation Âi = ri−mean(r)
std(r) .

Consider two types of reward functions in Figure 6, the blue one is
sensitive to extreme values (smaller variance) while the orange one is
evenly modeled (higher variance). Assuming uniform roll-out sampling,
a higher value of Âi suggests that the underlying reward function re-
sembles the sensitive type (blue line). Therefore, extreme values (max-
imum/minimum) are divided by a smaller variance, resulting in a more
frequent reaching of the clip threshold. This is expected for policy opti-
mization that more weights should be transferred to these deviated rolls,
as part of exploration-exploitation balance.

25

	Introduction
	Preliminaries
	Task Definition
	Large Language Model post training with RL

	Task Design and Data Process
	Methodology
	Reward Function Tool Generation
	Manipulating Reward Tools

	Experiments
	Baselines and Evaluation
	Main Results
	Scaling Analysis

	Analysis
	Ablations on module
	Reranking and Selection Module Accuracy
	Error and Robustness Analysis

	Related Works
	LLM Optimization Reward Designs
	Reinforcement Learning from AI Feedback
	Dynamic Reward Assigning

	Conclusion
	Reproducibility Statement
	Limitations
	Data Process Details
	Detailed Introduction of Datasets
	Data Filtering Prompt

	Experiment Training Details
	Manual Designed Reward Function over Length
	Prompt for the LLM Judge in RLAIF
	Reproduction Details for RL Training

	Prompt Details
	Prompt for Task Decomposition
	Prompt Details for Reward Model Choice
	Tool wrapping
	Prompt for search results filtration
	Prompt for search results Reranking
	Prompt for search results LLM-based Reward Model Implementation

	Prompt for Code-Agent workflow
	Plan
	Write

	LLM usage in this paper
	Generated Tools
	Records for Advantage Estimation
	Additional Analysis
	Reward Tool Generation Quality
	Reward Tool Usage and Selection Patterns
	Impact on Advantage Estimation and Policy Learning

