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ABSTRACT

Large language model alignment via reinforcement learning depends critically
on reward function quality. However, generic reward models often underper-
form on heterogeneous task distributions due to distribution shifts, while training
task-specific reward models is costly and prone to annotation difficulty, catas-
trophic forgetting, and loss of generalization. We present RLAR (Reinforcement
Learning from Agent Rewards), an agent-driven framework that dynamically as-
signs tailored reward functions to individual training queries. RLAR combines
two automated LLM-based stages. First, the tool generation stage where web-
agents and code-agents generate rule-, metric-, and model-based reward func-
tions and wrap them as a callable tool. Then, there is a reward tool calling
stage where a central decision LLM assign the reward function tools to indi-
vidual queries. Across diverse tasks including translation, summarization, ques-
tion answering, and mathematics, RLAR delivers 5–10% average improvement
over a widely-used generic reward model (Skywork-Reward-V2) and matches
GPT-4.1-as-judge performance, while generalizing well to untrained benchmarks
such as BenchMAX, AIME-2024 and Arena-Hard-v2. Ablation studies show
performance drops of 40%, 77%, and 198% when removing the web-agent,
code-agent, and selection backbone, with the backbone achieving 86.50% selec-
tion accuracy near the theoretical ceiling of top reward models. The retrieval
module locates optimal tools reliably, with an average first-page rank of 5.64. By
systematically leveraging and extending existing reward sources, RLAR offers a
scalable path to high-quality RL alignment over multiple task domains.

1 INTRODUCTION

Large language model (LLM) alignment via reinforcement learning (RL) has achieved substantial
progress, where a policy model’s parameters are iteratively updated to maximize rewards from an
oracle (Schulman et al., 2017; Ouyang et al., 2022; Shao et al., 2024). The effectiveness of this
process hinges on the quality of the reward function. However, a core challenge arises when training
LLMs on heterogeneous tasks: a single, generic reward model often lacks the discriminative power
for specific domains due to distribution shifts. Meanwhile, creating specialized reward models for
each task is frequently impractical, facing obstacles like catastrophic forgetting, the need for expert
domain knowledge for data annotation (e.g., in cross-lingual tasks), and prohibitive costs.

This situation highlights a crucial gap but also a significant opportunity. The open-source community
has already developed numerous high-quality, task-specific reward models (Liu et al., 2024; Cai
et al., 2024; Yang et al., 2024; Corrêa, 2023; Cheng et al., 2025; Lambert et al., 2025), available
on platforms like HuggingFace1 and ModelScope2. These specialized models typically outperform
generic evaluators on their intended tasks, yet they remain an underutilized resource. We argue for a
paradigm shift: instead of focusing on training new static models that directly output sample-specific
rewards, a more scalable and cost-effective approach is to develop a dynamic process that leverages
these existing assets to construct an appropriate reward function for the task at hand.

1https://https://huggingface.co/
2https://modelscope.cn/
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To bridge the above gaps, we introduce RLAR, a unified framework that leverages LLM agents to
design and use reward functions. RLAR consists of two stages: reward function tool generation
and manipulation of reward function tools. When a query enters the framework, it is first catego-
rized under a specific task tag. A code-agent workflow is then activated to plan appropriate reward
functions for the task, ultimately producing implemented and callable reward function API scripts.
In parallel, a web-agent workflow is triggered to browse the Internet in search of the most relevant
open-source reward model repositories. It filters the results, retaining only the repository best suited
for the current task. The selected repository is then downloaded and wrapped into a callable reward
function. Once the toolbox construction is complete, an LLM manipulates these generated tools
to bind each query with the most suitable reward function. This reward function is then used to
calculate the reward score during training.

To simulate a real scenario where heterogeneous tasks, we carefully adopted from public available
training datasets ranging from translation, summarization, QA, RLHF, essay generation, multi-turn
QA and math, to construct such mixed distribution of training dataset. We adopted a query fil-
tration, and resulted in a 8k-level training set and validation set. On other hand, we also selected
established benchmarks (gsm-8k (Cobbe et al., 2021), BENCHMAX (Huang et al., 2025), ARENA-
HARD-V2 (Li et al., 2024), AIME-20243) to evaluate the performance of RLAR.

In our experiments, we selected a widely adopted reward model (Skywork-Reward-V2-Llama-3.1-
8B) (Liu et al., 2024) as the generic reward model baseline. We also included a generative reward
model (GPT-4.1) implemented in the LLM-as-a-judge framework. RLAR achieved superior RL
training performance in most cases, yielding an overall 5% to 10% average performance improve-
ment over the generic reward model baseline on the validation set. In experiments using Qwen3-
0.6B as the base model, our method performed on par with the generative reward model implemented
with GPT-4.1. RLAR can also scale from 0.6B to 8B base model sizes, consistently outperform-
ing the SOTA single-RM baselines in the training domain. Furthermore, our method demonstrated
strong generalizability to untrained benchmarks, particularly on ARENA-HARD-V2, AIME-2024.

Our analysis confirms the critical role of each system component, with ablation studies revealing
that the RLAR performance increment against base model drops ranging 40%, 77%, 198% when
removing web-agent, code-agent and the selection backbone modules. Crucially, this selection back-
bone operates as a near-oracle predictor, attaining a 86.50% accuracy rate that effectively matches
the theoretical performance ceiling of the available state-of-the-art reward models. Furthermore, the
framework demonstrates high robustness in tool discovery, with the retrieval module consistently lo-
cating optimal reward tools on the first search page with an average rank of 5.64. The data and code
are available on https://anonymous.4open.science/r/ICLR2026-RLVR-8718.

2 PRELIMINARIES

2.1 TASK DEFINITION

We investigate the problem of reinforcement learning in LLM post-training stage for complex,
mixed-domain text generation tasks. The core objective is to train a single policy model that achieves
high performance across multiple task domains without sacrificing the quality of any individual task.

Let {D1, D2, . . . , Dn} denote datasets from n different domains, each corresponding to one type of
task (e.g., translation, summarization, question answering). We define a mixed-domain distribution:

D = {D1, D2, . . . , Dn}.

Our goal is to train a policy model A that maximizes expected performance over D under a multi-
task reinforcement learning framework:

max
A

Ed∼D [Rd(A)] ,

where Rd(A) denotes the reward of model A on domain d, potentially obtained from benchmarks,
development set metrics, and human feedback.

3https://artofproblemsolving.com/wiki/index.php/AIME Problems and Solutions
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2.2 LARGE LANGUAGE MODEL POST TRAINING WITH RL

In reinforcement learning from human feedback (RLHF), the Proximal Policy Optimization algo-
rithm (Schulman et al., 2017) is frequently employed for policy optimization. The typical workflow
begins with a warm-start training phase in which a Value Model (often a reward model) is learned.
Its objective function can be expressed as:

L(θ) = − 1

N
E(x,y+,y−)∼D

[
log σ

(
rθ(x, y+)− rθ(x, y−)

)]
,

where rθ(x, y) denotes the scalar reward assigned by the model to response y given prompt x, and
σ(·) is the logistic sigmoid function. The training pairs (y+, y−) come from human preference data,
with y+ being the preferred output.

We research on a more training efficient framework. The Group Relative Policy Optimization
(GRPO) approach (Shao et al., 2024) modifies the advantage estimation in order to reduce the de-
pendence on a learnable value model for estimating advantage baseline. Instead, GRPO computes
the normalized advantage within a group of sampled outputs:

Âi =
ri −mean(r)

std(r)
,

where {ri}Gi=1 are the rewards assigned to G candidate outputs for the same prompt, mean(r) and
std(r) are computed over the group. Also, the KL penalty term is removed from the per-step reward
and is instead applied directly to the overall optimization objective:

max
ϕ

E x∼D,

{yi}G
i=1∼πref (yi|x)

[
1

G

G∑
i=1

min

{
πθ(yi|x)
πref(yi|x)

Âi,

clip

(
πθ(yi|x)
πref(yi|x)

, 1− ϵ, 1 + ϵ

)
Âi

}]
− β DKL[πϕ ∥ πref ] .

This formulation reduces sensitivity to reward model estimation errors by leveraging relative com-
parisons within output groups.

3 TASK DESIGN AND DATA PROCESS

Real-world LLM deployment rarely encounters isolated task types; instead, models face blended,
unpredictable inputs requiring broad capabilities. By integrating varied tasks into a single training
corpus, we aim to mimic these real conditions, promote cross-task generalization, and exposing the
need to design customized reward function to diverse queries.

We focus on the following major task types: translation, summarization, controlled Generation,
RLHF, math and multi-turn. We use publicly available datasets on HuggingFace to build the train-
ing and test set. A more detailed introduction of the task and our selected dataset are listed in
Appendix C. For the translation task, we selected a subset of English-French translations. For con-
ditional generation, we constructed two types of generation tasks: Cloze Generation and Essay
Writing. The former involves removing several paragraphs from an essay and requiring the model
to fill in the missing content, while the latter expands an original essay given a summary description
of it. For multi-turn tasks, we only consider the generation requirement in the final turn.

For all datasets, we performed downsampling based on query quality to ensure a balanced distribu-
tion of queries across different dataset sources. In addition, for all queries, we applied an automated
quality filtering process, requiring the LLM to remove samples that did not meet the standards based
on both query quality and response quality. The prompt is filed in Appendix C.2.

When constructing the validation set, if the original dataset contains a test set disjoint from the
training set (e.g., BENCHMAX, GSM-8K), we processed the corresponding test set content using
the same method and used it as the validation set. If the original data does not contain a training set
(e.g., TULU3, WILDCHAT, SUMMARIZATION, IVYPANDA), we randomly sampled from the training
data to form the validation set.

3
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Table 1: Statistics for the train and validation dataset concerned in this paper.

Translation Summary Math Instruction Follow Multi-turn Conditional Generation

Train 1507 2296 1000 982 967 1862
Valid 60 20 60 10 60 20

Prompt #Len. std Medium Resp #Len. std Medium

Train 11352 22511 996 2099 4048 844
Valid 10141 19440 917 2220 4936 776

import torch

from transformers

import ...

def

compute_seed_score

(...):

...

RM_demoFilterSearch Google Download Repo

Web agent tools

translation Rerank CodeGen

Figure 1: An example workflow for searching reward model for a translation task.

Furthermore, to facilitate our experiments, we obtained the outputs of GPT-4.1-0414 on all queries.
GPT-4.1 is regarded as achieving state-of-the-art performance on these tasks. For queries lacking
human-annotated responses, we used the results from GPT-4.1 as their reference responses. Table 1
shows the statistics of the train and validation set. The first two rows record the query numbers from
each of the sources in the column. The last two rows show the length of both input and output.

4 METHODOLOGY

In face of the challenge that a single, generic reward model is likely incapable of serving as value
model to train heterogeneous task compositions, we propose RLAR, an automated Reward Design
Framework driven by code and web LLM agents. RLAR utilize the both the LLM’s intrinsic ability
to design rule based rewards as well as the web search tool manipulation ability, to expand its boards
in reward modeling. The framework consists of two stages: Reward Function Tool Generation
(Section 4.1) and Final Reward Design (Section 4.2). We adopt the GPT-4.1 as the backend LLM to
drive all the agentic API calls.

4.1 REWARD FUNCTION TOOL GENERATION

In this stage, RLAR will prepare all the possible reward tools for the next stage through one screen
of the target domain without human labeling. For any training query, an unrestricted task prediction
module classifies the task type and produces a concise descriptor (≤3 words), such as english-french
translation or math calculation. This stage aims to enhance the downstream workflow accuracy,
mitigating noise from lengthy queries. We propose two agentic pipelines for reward tool generation.

Web Agent. The Web Agent mainly retrieve reward model from web and deploy the most matched
on as reward tool. Figure 1 shows its working mechanism. The Web Agent first utilizes the result
of the descriptor to construct the Google Search retrievals query. It then iteratively performs result
retrieval using this query (with a maximum of 5 iterations).

Filter : The LLM-based filter module conducts a coarse screening of all retrieval results, keeping
only the entries that meet the requirements for a reward model repository.

Rerank : The LLM-based module reorders all of resulting model entries based on the repository’s
README description. We select the first ranked model as the result of the current retrieval.

Implementation : The LLM-based reactor downloads the model checkpoints from the remote
repository and resulting the deployment script based on its README or example code.

4
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Code Agent. The Code Agent operates on the premise that for every query, it is possible to define
a rule- or metric-based reward (such as using verifiers for math problems or BLEU for translation).
Therefore, we focus on unleashing the LLM’s intrinsic capability for reward design and code im-
plementation. The agent follows a plan-and-write pipeline: it first generates up to five candidate
rule/metric-based reward schemes, assigning each a name and a description based on the provided
descriptor. It then translates these function names and descriptions into functional Python script.

For each query and task, both code and web agents are triggered and construct their respective
reward tools. If certain query fail to match any tools, it will be routed to a default reward tool
(skywork-llama-8B-v2). A registry of existing tools is maintained to avoid redundant creation. All
constructed tools are encapsulated as Python functions with fixed parameters: prompt, candidate
response, and reference response. The final outputs are callable Python reward functions stored in
a default directory. After construction, a summarization module compiles an OpenAI tool request-
formatted list, inserted into the RLAR reward plan tool stack. Appendix E.2.2 to E.3.2 records the
core prompt for the modules.

4.2 MANIPULATING REWARD TOOLS

seed_reward_score

final_answer_accuracy

skywork_llama_reward_score

Translate the following from ...

Solve x in the below equation...

Write an essay about ...

reward_tool_1

...
rule/metric-based tools

reward_tool_2

reward_tool_3

reward_tool_4

reward_tool_5

reward_tool_6

reward_tool_7

reward_tool_8
...

llm-based tools

I recommend using this tool
as your reward function

Figure 2: An LLM call the designed reward tools
for each of the query.

All above designed tools, including rule-,
metric- and LLM-based, are provided to an
LLM with strong tool invocation capabilities
(GPT-4.1). We design prompts with both in-
struction and response, requiring the LLM to
actively select and invoke an reward function in
the context for each query, shown in Figure 2.

Unlike RLAIF, our approach employs Func-
tional-style Rewards: the AI does not directly
output rewards for each generation. Instead, it
designs reward functions. Denote the certain
reward function as fi that projects prompt p ,
candidate x and reference y into a float score s,
formally fi : p, x, y → s, the above agentic tool generation workflow serves as a functional F(·)
over task t such that

F(t) = ( fi )i∈N
The manipulation LLM serves as a mapping σLLM from the family of reward functions into desired
target reward function ft:

ft = σLLM (query) ◦ F(t)

This method exploits AI’s manipulation capabilities over web and code tools, enhancing the cover-
age and accuracy of reward signals across diverse tasks. From an engineering perspective, it signifi-
cantly reduces token cost, since Python functions and local models are generally more efficient than
generative reward models API calls, such as GPT, in large-scale rollouts.

5 EXPERIMENTS

5.1 BASELINES AND EVALUATION

We compare the following categories of baselines. Non-RL methods: we include the
supervised fine-tuning (SFT) baseline. RL-based methods: we examine several types
of reward system designs. For the single generic reward model setting, we select
Skywork-Reward-V2-Llama-3.1-8B, which achieves the highest score on REWARD-
BENCH-V1, V2 Lambert et al. (2024); Malik et al. (2025b). We also include a Lazy Rule im-
plementation of the following combination: in gsm8k, we use the consistency of the final number
between the prediction and answer as the reward; for all text generation tasks, we use 70% BLEU-
1 (Papineni et al., 2002) scores adding up with 30% our designed length metric, where the length
is computed as Equation 1 in Appendix D.1. We also included a strong RLAIF baseline using a
generative reward model, implemented by prompting GPT-4.1 in an LLM-as-a-judge manner and
taking its judge score as the reward signal. The prompt of it is listed in Appendix D.2. We experi-
ment the methods on Qwen3-0.6B and Llama-3.2-1B-Instruct as base models.

5
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Table 2: Evaluation results for various models on multiple metrics. Tr/Summ/CG/MulT shorts for
TRANSLATION, SUMMARIZATION, CONDITIONAL GENERATION, MULTI-TURN, respectively.
BenX shorts for BENCHMAX, MTBen shorts for MT-BENCH.

Validation set BenX MTBenAvg. Tr Summ RLHF CG MulT Math
Llama-3.2-1B-Instruct

Base Model 5.12 3.78 4.80 2.00 4.30 5.55 6.93 1.49 6.09
SFT 5.75 7.98 4.35 1.50 3.40 5.18 6.05 7.45 4.79

Lazy Rule 6.18 7.33 5.50 1.50 4.40 5.72 7.08 7.24 6.58
single-RM 6.37 7.23 5.90 2.90 5.90 5.85 7.00 7.17 6.50

RLAR (ours) 6.75 7.82 6.00 3.00 5.56 6.22 7.45 8.38 6.62
Qwen-3-0.6B

Base Model 6.67 6.67 6.85 3.80 5.30 5.93 8.30 6.34 6.95
SFT 5.79 7.07 5.60 2.40 6.70 4.82 6.93 6.78 4.41

Lazy Rule 6.82 7.37 6.85 3.50 5.50 5.73 8.50 6.77 6.59
single-RM 6.97 6.92 7.30 3.10 6.30 5.78 8.98 6.68 6.67

RLAR (ours) 7.32 7.67 7.05 4.20 5.70 6.45 9.00 7.07 7.11
Generative RMs with Qwen-3-0.6B

GPT-4.1 7.32 7.38 7.45 3.90 7.03 6.37 9.10 7.05 7.15

Evaluation: In Section 3, we have already constructed all in-domain dev set that has no overlap
or leakage with the training set. While GSM8K (Cobbe et al., 2021) is included in our scope, we
add three public benchmarks, to address the generalizability of the tuned policy model. BENCH-
MAX (Huang et al., 2025), a multilingual instruction following benchmark. We select the flore
subset and randomly and evenly selected 200 paired English and French sentences. The transla-
tion is bidirectional and both are tested. AIME-2024, which evaluates the advanced mathematical
reasoning of LLMs using the 30 challenging, integer-answer problems from the 2024 American
Invitational Mathematics Examination. ARENA-HARD-V2 (Li et al., 2024), an automated evalua-
tion benchmark that assesses LLMs using 500 challenging, high-quality user prompts derived from
Chatbot Arena to accurately approximate human preference rankings.

Training setting: For the supervised finetuning setting, we tune the base model on the training
dataset for 2 epochs. For all the RL methods, we use the GRPO (Shao et al., 2024) algorithm
framework and last the training for 100 steps for all. Training details are filed in Appendix D.3.
All experiments were performed on a server 8×NVIDIA H100 GPUs (80GB memory each), us-
ing a global batch size of 128 and mixed-precision (FP16) training. There is an additional server
8×NVIDIA A100 GPUs (80GB) for launching all reward models.

5.2 MAIN RESULTS

Compared to alternative reward designs, RLAR strikes an optimal balance between performance
and efficiency. While generative RLAIF (GPT-4.1) offers strong signals, it incurs high inference
costs and longer training times ( 20 hours vs. 6 hours for RLAR). Our framework achieves compa-
rable or superior results to generative RLAIF, particularly on tasks with objective correctness signals
like Math and Translation. This demonstrates that dynamic, task-aligned reward tools are a scalable
competitor to expensive LLM-as-a-judge approaches.

Efficiency and scalability. The efficiency advantages of RLAR are significant. Training with
RLAR requires 6 hours for 100 steps on our setup, compared to 20 hours for generative reward
models. Similarly, token costs for tool creation ($50) are far lower than the inference cost of GPT-
4.1 based evaluators ($250 per 100 steps). This cost–performance trade-off suggests that RLAR can
scale favorably to larger models and more complex training regimes, where budget constraints make
reliance on generative RMs impractical.

6
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Table 3: Scaling experiments on Qwen3 series. RLAR shows superior scaling properties, particu-
larly in Math and OOD benchmarks (AIME/BigMAX). AH-v2 shorts for ARENA-HARD-V2.

Model Val Set Key Tasks BigMAX AIME AH-v2
Avg. Math Trans rating acc elo

Qwen3-1.7B

Base 7.13 6.67 8.00 8.12 16.7 764
Single-RM 7.23 6.67 8.17 8.18 20.0 777
RLAR 7.80 8.83 7.98 8.26 36.7 808

Qwen3-8B

Base 8.02 7.83 8.87 9.29 33.3 1008
Single-RM 8.45 8.88 8.93 8.96 43.3 1053
RLAR 8.52 9.00 9.10 9.04 50.0 1070

Table 4: Ablation Experiments on Core Components (Average Score across Benchmarks)

Configuration Avg Tr Summ RLHF CG MulT Math BenX

Base 6.67 6.67 6.85 3.80 5.30 5.93 8.30 6.34
Lazy Rule 6.82 7.37 6.85 3.50 5.50 5.73 8.50 6.77
w/o Web-Agent 6.93 7.45 6.65 4.00 5.50 5.73 8.67 6.84
w/o Selection 6.03 5.68 5.25 2.80 6.15 5.77 7.42 7.07

RLAR (Full) 7.32 7.67 7.05 4.20 5.70 6.45 9.00 7.07

5.3 SCALING ANALYSIS

To investigate the scalability of RLAR, we extended the comparison between the Base model,
Single-RM (using Skywork-Reward), and our method (RLAR) to larger model sizes: Qwen3-1.7B
and 8B. As shown in Table 3, we observe that RLAR consistently achieves the highest average
validation scores across all model sizes, outperforming both Base and Single-RM baselines. These
gains are particularly evident in reasoning-heavy tasks; for instance, on the 8B model, RLAR boosts
the Math score from 7.83 to 9.00, effectively unlocking the model’s latent reasoning potential. Fur-
thermore, while the Single-RM baseline frequently suffers from overfitting on out-of-domain bench-
marks like AIME-2024 and ARENA-HARD, RLAR demonstrates superior robustness, mitigating
performance degradation and maintaining high generalization ability even as model size increases.

6 ANALYSIS

6.1 ABLATIONS ON MODULE

We analyze the contribution of the three main components in our system: Web-Agent (responsible
for LLM-based reward tool), Code-Agent (responsible for rule/metric-based reward tool) and the
Selection backbone. The results of these end-to-end ablation experiments are summarized in Table
4. The model is denoted as Base. We ablated throught the following threads: remove web agent
and leave the rest alone (w/o Web-Agent); remove both Web-Agent/Code-Agent and use human
curated rule/metric-based rewards (Lazy Rule); remove selection module and use the most often
called reward from of that category (w/o Selection).

Web&Code-Agent Comparing the full model (RLAR, 7.32) against w/o Web-Agent (6.93), the
Web-Agent contributes a substantial performance gain of 0.39 points in the average score, demon-
strating its vital role in improving overall system efficacy through specialized web-based rewards.
Furthermore, w/o Web-Agent (6.93) slightly outperforms Lazy Rule (6.82), suggesting that the
Code-Agent’s generated reward tools are comparable to human-designed verifiable rewards.

Selection Backbone The comparison between RLAR (7.32) and Greedy (6.03) indicates that the
Selection LLM is vital. Its ability to perform fine-grained, per-instance tool selection is essential

7
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for high performance, as a category-level ”most-used generated tool” approach fails to generalize
effectively within diverse task categories.

6.2 RERANKING AND SELECTION MODULE ACCURACY

Experimental Setup : We utilized a randomly and uniformly sampled4 subset of 400 samples from
the Reward Bench-v2 test set, where each sample consists of one preferred (chosen) response and
three non-preferred (rejected) responses for a given prompt. The unit test evaluates the module’s
predictive power of a given reward model tool. According to the practice from Reward Bench-v2,
a model is considered a “pass” on a sample if the softmax reward score it assigns to the chosen
response exceeds a threshold of 0.5 among the four candidate responses. We benchmarked five
frequently selected LLM-based reward model tools in the main experiment: skywork llama,
deberta reward, reward reward, gpt2 helpful reward, and seed-X-8b.

Table 5: Rerank Top@1 Accuracy

Metric Pass(%)

Top-Ranked Reward Model 86.50
Random Ranking Baseline 33.25

Rerank Module: This module is designed to dynami-
cally prioritize the most effective reward models based on
contextual information such as the prompt, model name,
and associated model card details. We fed the 5 model
name and model card info to the module and let it rerank.
The module’s performance (86.5%) over random baseline
(33.25%) demonstrates it efficacy.

Table 6: Tool Selection Accuracy

Metric Pass(%)

Top-Ranked Reward Model 86.50
SOTA Reward Model 86.75
Random Selection Baseline 33.25

Tool Selection Backbone: We further analyzed the ac-
curacy of the tool selection Backbone, which acts as a
near-oracle predictor for the best tool. The 86.50% pass
rate achieved by our selection mechanism (using the top-
ranked model) is marginally lower than the single best
possible performance, which is represented by the overall
SOTA model pass rate (86.75%) observed across all five
options on the same test subset. This close proximity indicates that the selection backbone operates
as a near-oracle predictor, accurately selecting the best reward tool in nearly all instances where
an effective tool exists.

6.3 ERROR AND ROBUSTNESS ANALYSIS

Table 7: Web Retrieval Page Rank

Task Type Unmatched(%)

Infilling 47.4
Essay Generation 43.8
Multi-Turn 8.8

We conducted an error analysis by counting the task types
of instructions for which the Web-Agent could not find a
specialized reward model (unmatched conditions). The
breakdown in Table 8 shows that the majority of un-
found instructions originate from essay infilling/genera-
tion tasks. Specifically, there is currently no correspond-
ing reward model explicitly trained for the these two task
domains, which accounts for the high unmatched ratio
in these categories. Notably, When a specialized tool is
unmatched, RLAR defaults to using a generic, default
LLM-based reward model (skywork-llama).

Table 8: Position Ranks

Category Avg Pos

Summ 7.17
Translation 2.36
RLHF 5.03
Multi-Turn 7.61
Infill/Gen 3.75
Math 6.87

To assess the robustness of the searching module, we
tracked the average item position (calculated as page rank
×10) for the matched reward model. Across all sampled
categories, the overall average retrieval position was 5.64
items. As detailed in Table 7, all individual sub-categories
consistently found the optimal item on the first page, con-
firming the robustness and high precision of the agent’s
query generation and search logic.

We further validate the soundness of the framework’s design by including a detailed analysis of the
generated tool quality (Appendix I.1) and an investigation into the reward tool usage within our
main experiments (Appendix I.2). In summary, code-agents achieve a 94.9% executable rate when

4The “Tie” category is removed due to test input-output form and the pass-difficulty in softmax calculation.
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utilizing rule/metric-based tools, and we observe a dominant percentage of LLM-based reward tool
usage in text-generation tasks.

7 RELATED WORKS

7.1 LLM OPTIMIZATION REWARD DESIGNS

In industry, training discriminative reward models (Ouyang et al., 2022; DeepSeek-AI et al., 2025;
Liu et al., 2024) is widely regarded as the most reliable approach for constructing a human preference
oracle within reinforcement learning (RL) frameworks for LLM optimization. In addition, gener-
ative rewards extend the aforementioned task from classification to generation, and have demon-
strated feasibility in mathematical domains (Generative RM, Google), RLHF-based settings (Ke
et al., 2024; Wang et al., 2024; Zhu et al., 2025; Li et al., 2023), and can be integrated with advances
in LLM reasoning, such as CritiqueGRPO (Zhang et al., 2025). With the rapid development of math,
reasoning and code generation, the design of verifiable rewards has attracted increasing attention.
Binary rewards that can be verified through explicit rules have been shown to be more efficient in
these domains (Shao et al., 2024; Lambert et al., 2025). An extension of verifiable reward design
in NLP tasks may involve employing standard NLP metrics (Chang et al., 2025). However, such
metrics are susceptible to bias and may lead to reward hacking.

7.2 REINFORCEMENT LEARNING FROM AI FEEDBACK

RLAIF (Lee et al., 2024) explores the development of reward models without extensive manual
labeling of training data. Self-rewarding (Yuan et al., 2025) require the policy model to evaluate
and discriminate its own generations. The LLM-as-a-judge (Zheng et al., 2023) paradigm employs
a strong LLM to evaluate another LLM by means of a preceding evaluation prompt. RewardA-
gent (Peng et al., 2025) utilizes an LLM to combine pre-specified reward designs. These approaches
inevitably embed strong human priors into reward design, either through the evaluation prompt or
through the foundational reward specifications. In contrast to RewardAgent, our work extends both
the design flexibility—granting LLMs greater freedom in tool manipulation to access a broader
range of reward models—and the evaluation of reward design within an existing reward model
framework (specifically GRPO rather than DPO).

7.3 DYNAMIC REWARD ASSIGNING

Recent research in integrating LLM with RL, particularly for reward shaping, has primarily fo-
cused on analyzing the agent’s policy trace from prior steps to iteratively refine the reward function.
(Afonso et al., 2025) and (Carta et al., 2022) leverage the LLM’s reasoning to guide reward weight
pruning or analyze the trace to determine the appropriate reward shape design. Other methods, such
as (Xie et al., 2025) and (Singla et al., 2024) explore techniques like curriculum scheduling and
adjusting the reward schedule via prompt hints. RLAR diverges significantly by harnessing the
LLM’s capability to search the web and generate code, allowing it to directly design entirely new
rewards rather than being limited to weight adjustments. RLAR is also flexible for cross-domain
optimization problems, where reward designs differ substantially across various sub-domains, a
challenge that existing single-task-focused methods do not fully address.

8 CONCLUSION

In this work, we proposed RLAR, a unified agent-driven framework that is able to provide cus-
tomized reward function design for each training query for reinforcement learning. Our framework
consists of a reward function generation stage as well as tool manipulation stage for each query. In
our experiment on heterogeneous task environment, RLAR excels in most of the included tasks and
shows great generalizability in untrained out of domain benchmarks. Our examination show that
the coding module design of RLAR is highly reliable with high pass rates of the implemented func-
tions, while the search, selection modules are accurately functioning as designed. In-depth ablation
reveals that the backbone selection module and the web-agent are vital to the increments. RLAR
highlights the potential to elaborate in reward side to improve RL training efficiency.

9
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A REPRODUCIBILITY STATEMENT

We have included the heterogeneous data construction process in Section 3 and more details in
Appendix. We described the RL training settings and experiment platforms in Appendix D.3 and
Section 5.1. The prompts involving the usage of LLM (primarily GPT-4.1) are filed in Appendix E.
The above materials are able to fully reproduce our work.

B LIMITATIONS

We primarily validated RLAR on heterogeneous tasks in text forms. Due to the budget constraints,
we did not extend the scope into multi-modal, audio tasks such as text-to-image generations. We
believe this is a good exploration field for future works. On the other hand, due to the GPU resource
constraints, we conducted our experiments on medium scaled (∼1B) LLMs. There is still room for
further analysis on the scalability of the RLAR framework.

In practice, some repository README would become out-dated when reporting (such as claiming
to be state-of-the-art of that time). Though not directly caused by the design, RLAR is potentially
vulnerable to readme hacking, as our assumption is that most of these repo readmes are trustworthy.
We leave the development for developing more robust retrieval modules for future works.

Lastly, we focus on language models that are modeled as text classifiers. This is quite similar to
practices in the industry, mainly aiming to save the computational cost of reward calculation. For
generative reward models, our framework can support development on this basis; however, given the
constraints of our experimental setup, we consider this to be outside the scope of the present work.

C DATA PROCESS DETAILS

C.1 DETAILED INTRODUCTION OF DATASETS

Translation (En-Fr, Fr-En): This task requires the LLM to translate between English
and French (in our case, English to French and French to English). We use the dataset
aircrypto/English-French-Translations-Train-Large (Aircrypto, 2019) from
HuggingFace, which provides high-quality, paired sentence-level samples.

Instruction Following: Given specific requirements in the provided instructions, the LLM should
respond accordingly. We use tulu3-sft-reused-on-policy-8b, part of the Tulu-3 (Lam-
bert et al., 2025) preference dataset, which contains generation pairs between different LLMs during
the training of Llama-3.1-Tulu-3-8B.

Multi-turn: LLM respond to instructions with previous interaction histories. We pick
allenai-WildChat-1M-multiturn (Agentlans, 2019), a collection of 1M ChatGPT inter-
action logs from the wild. We select the English subset aimed at RLHF queries.
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Summarization: This task requires LLM to summarize over long documents into short abstracts.
We pick ccdv/govreport-summarization, ccdv/pubmed-summarization,
ccdv/arxiv-summarization(Cohan et al., 2018), which includes different types of
documents from arxiv articles to government reports.

Math: We pick OpenAI GSM8K (Cobbe et al., 2021), a classic dataset of grade-school math prob-
lems designed to evaluate multi-step reasoning. We choose not to use more complex math-reasoning
datasets because our focus in this work is primarily on LLM text-generation tasks. Advanced math
reasoning often requires specialized methodologies, such as tree-search reasoning, which makes it
unsuitable for single-pass direct generation.

Conditional Generation: The LLM should generate coherent text according to given constraints. In
our setting, we task the LLM with filling in missing paragraphs in an essay or producing a complete
essay based on an abstract outline. We use qwedsacf/ivypanda-essays (Qwedsacf, 2019), a
HuggingFace dataset repository containing long-form essays covering multiple disciplines sourced
from the IvyPanda platform5.

C.2 DATA FILTERING PROMPT

1 You are given a set of task samples, each consisting of:
2 1. User Query the task or request made to the model.
3 2. Model Response the output given by the model.
4

5 The samples may come from various task types, including:
6 - Translation
7 - Summarization
8 - Math problem solving
9 - Reinforcement Learning from Human Feedback (RLHF) style instructional

prompts
10 - Conditional text generation
11 - M u l t i turn dialogue
12

13 Your goal: Identify and select only the samples that did not meet
14 quality standards based on:
15

16 A. Query Quality Issues:
17 - I l l formed or incomplete queries
18 - Ambiguous or misleading instructions
19 - Irrelevant or off-topic requests
20 - Grammatically broken or nonsensical input
21

22 B. Response Quality Issues:
23 - Incorrect or factually wrong answers
24 - Incomplete responses that fail to address the query
25 - Poor language quality or incoherent writing
26 - Hallucinations or m a d e up facts
27 - Misinterpretation of the query
28

29 Instructions:
30 1. For each sample, examine both the query and response.
31 2. Mark the sample as "Fail" if either the query quality
32 or the response quality is below standard.
33 3. Briefly explain why the sample fails,
34 citing issues in query, response, or both.
35 4. Output only the failing samples, in the format:
36 [Sample ID]
37 Query: ...
38 Response: ...
39 Fail Reason: ...
40

5https://ivypanda.com/
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41 Be strict in applying the criteria even if only one
42 side (query or response) is substandard, the sample
43 should be considered as failing.

D EXPERIMENT TRAINING DETAILS

D.1 MANUAL DESIGNED REWARD FUNCTION OVER LENGTH

We designed the following function for calculating reward scores over length. Suppose generation
length is x and reference length is r, we raise:

l(x, y) =


x

r
, 0 ≤ x ≤ 0.75r,

0.25r
f(r;r,0.25r)−f(0.75r;r,0.25r) [f(x; r, 0.25r)− f(0.75r; r, 0.25r)] + 0.75r

r
, x > 0.75r,

(1)

f(t;µ, σ) =
1√
2π σ

exp

(
− (t− µ)2

2σ2

)
. (2)

This can be regarded as stretching and shifting a Gaussian normal probabilistic distribution function,
centered at r with standard deviation 0.25r, along the y-axis so that it passes through the two points
(0.75r, 0.75) and (r, 1). Before 3

4 of reference length, there is a linear increment with more words.

D.2 PROMPT FOR THE LLM JUDGE IN RLAIF

search results filtration

Input: propmt, candiate, reference

You are an expert evaluator of language model outputs. You will receive:
1. **Prompt:** The original instruction/task given to the model.
2. **Candidate Response:** The model’s output to be evaluated.
3. **Reference Response:** A high-quality gold-standard or reference output.
Your task:
- Evaluate the quality of the *Candidate Response* compared to the *Reference Response*
and in relation to the given *Prompt*.
- Consider the category of task (which could be: **translation**, **summarization**,
**generation**, **infilling/cloze**, **conditional generation**, **math**, or **instruc-
tion following**), and adjust your evaluation criteria accordingly.
- Score on a scale from 0 to 10, according to the rubric below.
- Output the score in the format ‘[[X]]‘ (where X is the integer score) **once** in your
reply, followed by a clear explanation of reasoning and specific strengths/weaknesses.
—
### **Evaluation Dimensions by Task Category** *(Use whichever are relevant to the given
prompt.)*
- **Translation:** Accuracy, completeness, fidelity to meaning, fluency, grammar, style.
- **Summarization:** Coverage of key points, factual faithfulness, conciseness, coherence.
- **Generation (creative writing, open-ended):** Relevance, originality, creativity, coher-
ence, style, adherence to constraints.
- **Infilling/Cloze:** Correctness of missing content, contextual fit, fluency, logical conti-
nuity.
- **Conditional Generation:** Logical or rule-based conformity, adherence to provided con-
straints, completeness.
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- **Math/Reasoning:** Correctness of calculations or logic, clarity, rigor of explanation.
- **Instruction Following:** How fully and correctly the instructions are followed, align-
ment with intent, completeness.
—
### **Scoring Rubric (0–10)**
- 10: Perfect or near-perfect match. Fully correct, faithful, or relevant. No significant errors
in meaning, facts, or execution. High clarity, fluency, and adherence to task.
- 9: Almost perfect; tiny, easily overlookable issues (minor style or formatting quirks).
- 8: Very good; only minor errors or slight omissions that don’t significantly harm the result.
- 7: Good; mostly correct but with notable small issues (minor factual, structural, or stylistic
errors).
- 6: Fair; significant issues exist but main content or logic remains intact. Some loss of
fidelity, clarity, or completeness.
- 5: Borderline acceptable; mix of correct and incorrect elements, noticeable gaps or errors,
not reliably usable without fixes.
- 4: Poor; frequent errors or omissions, core meaning partially lost. Low reliability.
- 3: Very poor; large parts incorrect, irrelevant, or incoherent. Only minor parts are correct.
- 2: Minimal correctness; almost entirely wrong or off-task, but with a trace of relevant
material.
- 1: Nearly useless; incomprehensible or totally wrong, but not fully empty.
- 0: No meaningful output, completely unrelated, or empty.
—
### **Output Format** Respond with: “‘ [[X]] Explanation: [Your detailed explanation,
citing specific task-related criteria, success points, and failure points. Mention the type of
category-specific evaluation applied.] “‘ - Replace **X** with a single integer 0–10. Make
sure your explanation is concise within 50 words.
—
[propmt]
{prompt}
[Candidate Response]
{candidate}
[Reference Response]
{reference}

D.3 REPRODUCTION DETAILS FOR RL TRAINING

We use the volcano engine reinforcement learning for LLMs framework, VERL (Sheng et al., 2024).
We validate the implementation of the framework run all our RL experiments based on it. Below
is the hyperparameters for all our experiments and we use the same set of hyperparameters for all
experiments.

1 python3 -m verl.trainer.main_ppo --config-path=config \
2 --config-name=’ppo_megatron_trainer.yaml’\
3 algorithm.adv_estimator=grpo \
4 data.train_files=$rlvr_train_path \
5 data.val_files=$rlvr_test_path \
6 data.train_batch_size=128 \
7 data.max_prompt_length=15000 \
8 data.max_response_length=6000 \
9 actor_rollout_ref.rollout.prompt_length=15000 \

10 actor_rollout_ref.rollout.response_length=6000 \
11 data.filter_overlong_prompts=True \
12 data.truncation=’error’ \
13 actor_rollout_ref.model.path=$base_model \
14 actor_rollout_ref.actor.optim.lr=5e-6 \
15 actor_rollout_ref.actor.ppo_mini_batch_size=64 \
16 actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=2 \
17 actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=4 \
18 actor_rollout_ref.actor.megatron.tensor_model_parallel_size=2 \
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19 actor_rollout_ref.actor.use_kl_loss=True \
20 actor_rollout_ref.actor.kl_loss_coef=0.001 \
21 actor_rollout_ref.actor.kl_loss_type=low_var_kl \
22 actor_rollout_ref.actor.entropy_coeff=0 \
23 actor_rollout_ref.model.enable_gradient_checkpointing=True \
24 actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
25 actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
26 actor_rollout_ref.rollout.max_num_batched_tokens=65536 \
27 actor_rollout_ref.rollout.name=vllm \
28 actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
29 actor_rollout_ref.rollout.n=5 \
30 actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=8 \
31 actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=4 \
32 actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2 \
33 algorithm.use_kl_in_reward=False \
34 trainer.critic_warmup=0 \
35 trainer.logger=[’console’,’wandb’] \
36 trainer.project_name=$proj_name \
37 trainer.experiment_name=$exp_name \
38 trainer.n_gpus_per_node=8 \
39 trainer.nnodes=1 \
40 trainer.save_freq=20 \
41 trainer.test_freq=10 \
42 trainer.total_epochs=2 $@

The following is our supervised finetuning training script:

1 torchrun --standalone --nnodes=1 --nproc_per_node=$nproc_per_node \
2 -m verl.trainer.fsdp_sft_trainer \
3 data.train_files=$train_files \
4 data.val_files=$val_files \
5 data.max_length=30000 \
6 data.truncation=left \
7 data.prompt_key=extra_info \
8 data.response_key=extra_info \
9 optim.lr=1e-5 \

10 data.prompt_dict_keys=[’question’] \
11 +data.response_dict_keys=[’answer’] \
12 data.micro_batch_size=1 \
13 data.micro_batch_size_per_gpu=1 \
14 data.val_batch_size=1 \
15 model.partial_pretrain=$base_model \
16 trainer.default_local_dir=$save_path \
17 trainer.project_name=main_exp \
18 trainer.experiment_name=sft-qwen3-0.6 \
19 trainer.logger=[’console’] \
20 trainer.total_epochs=2 \
21 trainer.default_hdfs_dir=null $@ \
22 ulysses_sequence_parallel_size=2 \
23 use_remove_padding=true

The other hyper-parameters, such as optimizer β, are set default to the framework trainer configura-
tions from https://github.com/volcengine/verl/tree/main/verl/trainer/
config.
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E PROMPT DETAILS

E.1 PROMPT FOR TASK DECOMPOSITION

search results filtration

Input: original task

Please break down the following generative task into a combination of several basic genera-
tive tasks:
Basic task list: 1. Controlled generation: Generate coherent natural language text that meets
certain given conditions. Best for simple, clear tasks; complex writing should be split into
smaller steps like planning and cloze generation.
2. Translation: Generate a corresponding text in another natural language from a text in one
natural language.
3. Text summarization: Summarize the given text, retaining the main information.
4. Question answering: Provide appropriate answers based on background information and
question requests provided by the user.
5. Paraphrasing: Modify the provided text into a different form of expression that meets the
given rewriting requirements.
6. Cloze generation: Given a continuous piece of text with missing parts, generate appropri-
ate text for the missing positions so that the original text becomes complete, coherent, and
consistent.
7. Planning generation: Plan a high-level outline in order to accomplish a relatively complex
generative task, such as creating a chapter list, designing character traits, designing scripts,
or designing a timeline.
8. Code: Generate executable code that meets the specified requirements, or supplement or
revise code according to the given requirements. The defining criterion for this task is that
the output is primarily code.
Decomposition goal:
- Break down the complex generative task provided by the user into a list composed of the
above basic tasks according to its logical steps. - Steps should be arranged in execution
order, and the description should start from the original input form and proceed until the
task is completed.
- Each step must clearly specify the “basic task type” and the execution content of that step.
- If the task does not need to be broken down, provide a single-step basic task and rewrite its
description into a clearer instruction that aligns with the type of task in the basic task list.
Output format requirements:
- List the decomposition results step-by-step (step number + basic task type name + specific
execution description).
- Enclose the final result within <Result> ... < \Result > tags.
Below is an example:
[Example Start]
Task to be decomposed: Please provide an English summary for the following Chinese
document.
Decomposition result:
1. Translation: Please translate the following Chinese document into an English document.
2. Text summarization: Please summarize the given English document, and ensure the sum-
mary does not exceed 200 words.
[Example End]
Now, perform the above decomposition process on the given question (or task description)
below, and write the final decomposition result within <Result> ... < \Result > tags.
{original task}

E.2 PROMPT DETAILS FOR REWARD MODEL CHOICE

E.2.1 TOOL WRAPPING

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 {
2 "type": "function",
3 "function": {
4 "name": "search_serper_engine",
5 "description": "Performs a Google search using the Serper API

restricted to finding Hugging Face model checkpoints. Use
this tool only to look up Hugging Face checkpoint URLs,
model pages, or related information. Short queries work
best. Reward model might be confusing with base models or
chat models",

6 "parameters": {
7 "type": "object",
8 "properties": {
9 "query": {

10 "type": "string",
11 "description": "The search query for Hugging Face

checkpoints, e.g., model names or keywords to
locate on huggingface.co."

12 }
13 },
14 "required": ["query"]
15 }
16 }
17 }

E.2.2 PROMPT FOR SEARCH RESULTS FILTRATION

search results filtration

Input: original task

You are given a list of search engine results with position IDs. Your task is to filter them
according to the following rules:
1. **Identify Reward Models:**
- Keep only results that are **reward model** links.
- Reward models often have model names containing keywords like ‘-Reward-’ or ‘-RM-’.
- Discard results for base models (‘-Base’) or instruct models (‘-Instruct’) or chat models
(‘-Chat’).
- If a model name has none of these hints, and it’s unclear whether it is a reward model,
discard it.
2. **Hugging Face Model Repositories Only:**
- Keep only links pointing to **Hugging Face model repositories**.
- Discard datasets, research papers, blog posts, or other non-model content.
3. **Score Output Format only:**
- Regression models only, in other words, models that output a score (e.g., 0-1) rather than
generating text.
Directly discard those items that violates rule 1, 2 or 3 and keep the rest items. Output the
resting items in list using their original position id like ”[0, 1, 3, 5, ...]”. If none of the items
are left, output an empty list ”[]”.
{results}
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E.2.3 PROMPT FOR SEARCH RESULTS RERANKING

search results rerank

Input: original task

You are given a list of search engine results with position IDs. Your task is to filter them
according to the following rules:
1. **Identify Reward Models:** - Keep only results that are **reward model** links. -
Reward models often have model names containing keywords like ‘-Reward-‘ or ‘-RM-‘.
- Discard results for base models (‘-Base‘) or instruct models (‘-Instruct‘) or chat models
(‘-Chat‘). - If a model name has none of these hints, and it’s unclear whether it is a reward
model, discard it.
2. **Hugging Face Model Repositories Only:** - Keep only links pointing to **Hugging
Face model repositories**. - Discard datasets, research papers, blog posts, or other non-
model content.
3. **Score Output Format only:** - Regression models only, in other words, models that
output a score (e.g., 0-1) rather than generating text.
Directly discard those items that violates rule 1, 2 or 3 and keep the rest items. Output the
resting items in list using their original position id like ”[0, 1, 3, 5, ...]”. If none of the items
are left, output an empty list ”[]”.
{results}

E.2.4 PROMPT FOR SEARCH RESULTS LLM-BASED REWARD MODEL IMPLEMENTATION

reward tool implementation

Input: original task

Implement a python script for launching a reward model according to the following infor-
mative scripts. The model local checkpoint is {model local dir}. The cuda device for the
model is ”{cuda device}”. You should write a function, that support input parameter: -
prompt: str, instruction or context conditions - response: str, the text need to be evaluated -
reference: str, some reference answer/response for the above prompt
Your implementation are free to use the packages mentioned in the scripts. Name the cal-
culation function starting with ”compute ”, such as ”def compute XXX(...)” where XXX
should be the reward model name or related abbreviation. Make sure the model checkpoint
is loaded precisely once in the script. Format your output enclosed within ”python \ n xxxx
\n”. Also, additionally print the calculation funciton after four sharp marks ####, such as
”#### def compute xxx(...)” in the end of your output (outside the python script).
{scripts}
[your implementation]

E.3 PROMPT FOR CODE-AGENT WORKFLOW

E.3.1 PLAN

1 LIST_TASK_PROMPT = """You are an expert in designing reward models and
evaluation metrics for the **{task}** task.

2 Your goal is to list **3 5 possible reward model or evaluation metric
choices** for this task, drawing from the following two categories:

3

4 1. **Rule-based** Explicit rules (e.g., exact match with reference
output, length constraints) used directly as rewards.

5 2. **Metric-based** Standard NLP metrics (e.g., BLEU, ROUGE, METEOR)
used to evaluate and reward generated results.

6

7 **Output formatting requirements:**
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8 - Place your results **after four hash marks (‘####‘)**.
9 - For **each choice**, indicate its **category** and **name**, using the

format:
10 ‘‘‘
11 #### <Category>/<Name>: <Brief description>
12 ‘‘‘
13 - Use a **new line** for each choice.
14

15 **Example:**
16 ‘‘‘
17 #### Metric-based/BLEU: Measures the n-gram overlap between generated

output and reference text.
18 #### Rule-based/Length: Rewards outputs within the target length range

for conciseness.
19 ‘‘‘
20 """

E.3.2 WRITE

1 WRITE_CODE_PROPMT = """Implement the following metric according to
description using python. You are free to use packages. You should
write a function begin with ’compute_xxx’ where xxx is the name of
the metric. The function accepts:

2 - prompt: the instruction to the prompt
3 - candidate_response: the candidate response to be evaluated by the

metric
4 - reference_response: the reference answer for the prompt
5 You should directly return a scaler score.
6

7 Output the python code in ‘‘‘python\n xxxx\n‘‘‘. And list the
requirements within ‘‘‘‘‘‘ use requirements.txt style.

8

9 {metric description}
10 """

F LLM USAGE IN THIS PAPER

Large Language Models (LLMs) were used in the preparation of this work as a general-purpose
assistance tool. Specifically, LLMs were employed in the following ways:

• Translation Assistance: Converting expressions and sentences from the author’s native
language into English.

• Language Polishing and Grammar Revision: Improving clarity, fluency, and grammati-
cal correctness of the text, and ensuring that phrasing is natural in academic English.

• Draft Review and Critique: Providing feedback on drafts, including identifying unclear
passages, suggesting improvements in structure, and flagging potential ambiguities.

LLMs were not used for generating original research ideas, performing data analysis, or writing
substantive technical content. All core research contributions, results, and argumentative structure
were developed by the authors. The role of LLMs was limited to translation, linguistic polishing,
and non-substantive editorial suggestions to improve presentation.

G GENERATED TOOLS
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Table 9: A list of the generated reward function tool names by our code-agent.

Type Metric Type Metric
rule based Forbidden Words rule based Stepwise Completeness
rule based Prompt Adherence rule based Length
rule based Numeric Accuracy rule based Exact Template Match
rule based Novelty Penalty rule based Contradiction Detection
rule based Disallowed Phrase Penalty rule based Exact Output Match
rule based No Unsupported Claims rule based Reference Match
rule based Exact Answer Match rule based Named Entity Preservation
rule based Unit Consistency rule based Keyword Presence
rule based Minimal Edit Distance rule based Thesis Inclusion
rule based Mandatory Content Inclusion rule based Scientific Claims Match
rule based Pronounceability rule based Position Sensitivity
rule based Section Coverage rule based Entity Presence
rule based Answer Type Match rule based Stepwise Correctness
rule based Terminology Accuracy rule based Diversity Score
rule based Forbidden Content rule based Fact Match
rule based Forbidden Phrase Detection rule based No Information Leakage
rule based Annotation Completeness rule based Grammar and Spelling Accuracy
rule based Clarity Constraint rule based Answer Presence
rule based No Overlap with Input rule based No Syntax Errors
rule based Numeric Tolerance rule based Edit Distance
rule based Keyword Coverage rule based No Repetition
rule based Length Ratio rule based One-Hot Accuracy
rule based Novelty rule based Exact Match
rule based Pattern Compliance rule based Step Match
rule based Syntax Validity rule based Format Compliance
rule based Allowed Vocabulary rule based Entity Overlap
rule based Explicit Irrelevance rule based Accuracy
rule based Coverage of Key Points rule based Section Presence
rule based Clarity rule based Test Case Pass Rate
rule based Dictionary Filtering rule based Length Expansion
rule based Content Inclusion rule based Error Pattern Removal
rule based Plagiarism Check rule based Functionality Test
rule based Politeness Constraint rule based Formatting Compliance
rule based Exact Test Case Pass rule based Key Information Coverage
rule based Genre-Adherence rule based Passes Unit Tests
rule based Exact Step Match rule based Exact Keyword Match
rule based Required Field Inclusion rule based Attribute Coverage
rule based Valid Vocabulary rule based Medical Term Coverage
rule based Keyword Absence rule based Required Component Presence
rule based Final Answer Correctness rule based Keyword Inclusion
rule based Structure Compliance rule based Step Consistency
rule based Readability rule based No-Answer Accuracy
rule based Length Constraint rule based Error Reduction
rule based Answer Type Mismatch rule based Thesis Presence
rule based Case-Insensitive Match rule based Topic Divergence
rule based Exact Numeric Match rule based Originality-Penalty
rule based Keyword Exclusion rule based Structure
rule based Format Consistency rule based Required Elements
rule based Reference Citation rule based Instruction Match
rule based Key Concepts Inclusion rule based Stepwise Solution Match
rule based Fact Consistency rule based Step Count Constraint
nlp metric F1 Score nlp metric METEOR
nlp metric ROUGE nlp metric GLEU
nlp metric BERTScore nlp metric Mˆ2 Score
nlp metric chrF nlp metric ROUGE-L
nlp metric Levenshtein Distance nlp metric BLEU
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Source Repo Name
(Liu et al., 2024) Skywork/Skywork-Reward-V2-Llama-3.1-8B
(Liu et al., 2024) Skywork/Skywork-Reward-V2-Qwen3-8B
(Liu et al., 2024) Skywork/Skywork-Reward-V2-Llama-3.2-3B
(Liu et al., 2024) Skywork/Skywork-Reward-V2-Qwen3-4B
(Cheng et al., 2025) ByteDance-Seed/Seed-X-RM-7B

OpenAssistant/reward-model-deberta-v3-base
(Yang et al., 2024) Ray2333/gpt2-large-helpful-reward model
(Corrêa, 2023) nicholasKluge/RewardModel
(Cai et al., 2024) internlm/internlm2-1 8b-reward
(Malik et al., 2025a) allenai/Llama-3.1-8B-Base-RM-RB2

Table 10: Successfully deployed LLM-based reward models.

Figure 3: Maximum Advantage Estimations

Type Metric Type Metric
nlp metric Distinct-n nlp metric CodeBLEU
model based Content Novelty Score model based Negative Relevance Score
model based Topic Classifier model based Perplexity

H RECORDS FOR ADVANTAGE ESTIMATION

I ADDITIONAL ANALYSIS

I.1 REWARD TOOL GENERATION QUALITY

We evaluate the quality of reward tools produced by our two agents for tool generation mainly along
their construction validity and summarized in Table 11.

Code-agent tools. Across all the training queries, the code agent generated 118 reward scripts,
among which 112 (94.9%) were directly executable under our standardized interface.6 By type,

6Executability is checked by importing the generated function, calling it with a minimal synthetic triplet
(prompt, candidate, reference) and verifying a numeric return type without exceptions.
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Figure 4: Minimum Advantage Estimations

the set comprises 102 rule-based functions (86.4%), 12 standard metric implementations (10.2%;
e.g., BLEU, METEOR), and 4 learned-model–based scorers (3.4%). Rule-based tools typically
encode task-specific verifiable criteria (e.g., numeric-consistency checks for GSM8K or explicit-
irrelevance penalties for RLHF-style preference items), while metric-based tools provide length- or
n-gram–aware surrogates for general text quality. We discard learned-model–based proposals from
the code agent since they are potential out of memory threats to the deploying server.

Category Count

Code-agent scripts (total) 118
Executable 112 (94.9%)
Rule-based 102 (86.4%)
Metric-based 12 (10.2%)
Learned-model–based 4 (3.4%)

Web-agent repos (retrieved) 21
Deployed 10 (47.6%)
Rejected (size) 2
Rejected (not classification) 6
Rejected (insufficient docs) 3

Table 11: Summary of reward tool genera-
tion outcomes.

Web-agent tools. The web agent retrieved 21 can-
didate repositories from public model hubs (primar-
ily Hugging Face and ModelScope) that matched
the predicted task label and satisfied our reward-
model filter. And the filter eliminates base/instruc-
t/chat/vision models and retains text-classification
modeled reward models with download access. Af-
ter automatic screening and wrapping, 10 reposi-
tories (47.6%) were successfully deployed behind
a uniform Python API. The remaining 11 were re-
jected due to: model size prohibitive for our infer-
ence node (2), non–text-classification architectures
(6), or insufficient/ambiguous repository documen-
tation for reliable wrapping (3).

The high executability of code-agent tools (94.9%) and the moderate but reliable deployment rate
of web-agent tools (47.6%) indicate that RLAR can consistently materialize task-aligned reward
functions across heterogeneous inputs.

I.2 REWARD TOOL USAGE AND SELECTION PATTERNS

Having established that RLAR can reliably generate and deploy reward tools, we next examine how
these tools are actually invoked during training. This analysis addresses two questions: (i) which
categories of tools dominate in practice, and (ii) how the usage patterns vary with task source and
affect the learned policy.

We plot the actual usage of tools by examining the tool matching conditions based on the
data source in the training set shown in the Figure 5. Across all 8,000+ training sam-
ples, the majority of calls are routed to LLM- based reward models (96.4%), while rule-
based and metric- based tools are invoked only sparsely. The most frequently selected indi-
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vidual model is Skywork/ Skywork-Reward-V2-Llama-3.1-8B, accounting for 52.5%
of calls. A significant proportion of samples fall back to rule-based numeric-consistency
checks (“explicit number match”) On translation tasjs, the web-agent originated Seed-X-RM-7B
dominates, capturing cross-lingual adequacy more effectively than generic reward models.

Figure 5: Matching tools with source train-
ing dataset distribution.

The dominance of LLM-based rewards suggests
that, for heterogeneous open-domain training, high-
capacity discriminative models remain the most
trusted. Nevertheless, the occasional use of rule-
based checks in math and RLHF tasks demonstrates
that RLAR is capable of combining expert heuris-
tics when appropriate. RLAR does not rely on a
single global reward model but instead orchestrates
a portfolio of evaluators aligned with each domain.
As shown in the previous subsection, this diversity
translates into smoother advantage estimation and
stronger updates during policy optimization.

I.3 IMPACT ON ADVANTAGE
ESTIMATION AND POLICY LEARNING

We examine the records from the Qwen experiments covering Generative RM, method, single
generic reward, regarding the estimated min/max of advantage per step (Figure 3 and Figure 4),
and calculated the proportion that triggered clipping. Higher rates of being clipped means a higher
absolute value of estimated advantage. From the results, for Generative RM, rollouts triggering both
upper-clip and under-clip occur in every update step. Compared to single generic reward, RLAR has
a significantly higher clipping rate. This is direct evidence that methods with better performance
tends to estimate larger advantages in absolute values.

Figure 6: An illustra-
tion on the sensitivity to
extreme values of reward
functions.

Return to the discussion of Advantage Estimation Âi = ri−mean(r)
std(r) .

Consider two types of reward functions in Figure 6, the blue one is
sensitive to extreme values (smaller variance) while the orange one is
evenly modeled (higher variance). Assuming uniform roll-out sampling,
a higher value of Âi suggests that the underlying reward function re-
sembles the sensitive type (blue line). Therefore, extreme values (max-
imum/minimum) are divided by a smaller variance, resulting in a more
frequent reaching of the clip threshold. This is expected for policy opti-
mization that more weights should be transferred to these deviated rolls,
as part of exploration-exploitation balance.
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