
Under review as a conference paper at ICLR 2022

A PIECE-WISE POLYNOMIAL FILTERING APPROACH
FOR GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) exploit signals from node features and the input
graph topology to improve node classification task performance. However, these
models tend to perform poorly on heterophilic graphs, where connected nodes
have different labels. Recently proposed GNNs work across graphs having vary-
ing levels of homophily. Among these, models relying on polynomial graph filters
have shown promise. We observe that solutions to these polynomial graph filter
models are also solutions to an overdetermined system of equations. It suggests
that in some instances, the model needs to learn a reasonably high order polyno-
mial. On investigation, we find the proposed models ineffective at learning such
polynomials due to their designs. To mitigate this issue, we perform an eigende-
composition of the graph and propose to learn multiple adaptive polynomial filters
acting on different subsets of the spectrum. We theoretically and empirically show
that our proposed model learns a better filter, thereby improving classification ac-
curacy. We study various aspects of our proposed model including, dependency
on the number of eigencomponents utilized, latent polynomial filters learned, and
performance of the individual polynomials on the node classification task. We fur-
ther show that our model is scalable by evaluating over large graphs. Our model
achieves performance gains of up to 10% over the state-of-the-art models and out-
performs existing polynomial filter-based approaches in general. Our anonymized
code is available at https://tinyurl.com/PPGNN.

1 INTRODUCTION

In this work, we are interested in the problem of classifying nodes in a graph. In this problem, a
graph and features for all the nodes in the graph are made available. We are also given labels for
a subset of the nodes in the graph. The learning model utilizes this information to predict labels
for the remaining nodes. Graph Neural Networks (GNNs) perform well on such problems (Kipf
& Welling, 2017). GNNs predict a node’s label by aggregating information from its neighbours.
Thus, the performance of GNN is dependent on how well the given graph correlates with the node
labels. Characterizing the correlation between the graph and node labels is an active area of research.
Several metrics have been proposed including edge homophily (Abu-El-Haija et al., 2019a; Zhu
et al., 2020), node homophily (Pei et al., 2020), class homophily (Lim et al., 2021). All these
metrics show that GNNs perform well when the graphs and node labels are positively correlated.
For example, in the simplest case, GNNs work well when the node and its neighbours share similar
labels. However, the performance can be poor if this criterion is not satisfied.

Several proposed GNN models attempt to be robust to the underlying correlation between graphs and
labels. Some approaches modify the aggregation mechanism (Pei et al., 2020; Zhu et al., 2020; Kim
& Oh, 2021), while other approaches propose to estimate and leverage the label-label compatibility
matrix as a prior (Zhu et al., 2021). More recent approaches have tackled this problem from a filter
learning perspective (Bo et al., 2021; Chien et al., 2021). These methods learn a filter function that
operates on the eigenvalues of the graph. With eigenvalues having frequency interpretations (Shu-
man et al., 2013), the filter function selectively accentuates and suppresses various frequencies as
required by the task. This process enables the model to learn better embeddings, which translates to
improved performance. Our interest lies in the area of modelling GNNs that can learn an effective
filter.

1

https://tinyurl.com/PPGNN

Under review as a conference paper at ICLR 2022

Chien et al. (2021) proposed to learn a polynomial filter. This model achieves good performance
gains on several datasets with varying correlations between graphs and labels. However, we observe
that learning a polynomial of a degree lower than the number of nodes can be seen as solving an
over-determined system of equations. Our observation suggests needing a higher-order polynomial
to model richer or more complex frequency responses for certain datasets. The design of the model
proposed in Chien et al. (2021) makes it ineffective in learning a higher-order polynomial. It happens
because the model attempts to overcome over-smoothing by giving smaller coefficient values to
larger powers. In this paper, we address this issue and make the following contributions:

• Inspired by Chien et al. (2021), we propose to learn a polynomial filter; however, we do
so by learning a sum of polynomials over different subsets of eigenvalues. Such modelling
enables learning higher-order polynomials with several low order polynomials acting over
the different subsets.

• Such modelling, however, requires an eigendecomposition of the graph, which can be ex-
pensive. We leverage the model in Chien et al. (2021) and the fact that there exist efficient
algorithms for computing top and bottom eigen components to propose a practically effi-
cient model.

• We present theoretical analysis that suggests that our sum of polynomials approach can
approximate a latent optimal filter better than a single polynomial. We also show that the
space of learnable filters and graphs using our approach is larger than what is possible
with Chien et al. (2021).

• Our experimental results show that our model performs better than state-of-the-art methods
on several datasets, giving up to 10% gains. These gains indicate that modelling the filter as
a sum of polynomials is needed to approximate the latent filter better. We also answer other
research questions through ablative studies, including the importance of the top and bottom
eigenvalues, the number of top and bottom eigenvalues needed, the number of polynomials
needed, and the trade-offs involved.

The rest of the paper is organized as follows: We present related work in Section 2, problem setup
and motivation for the approach in Section 3, details of the proposed approach with complexity and
theoretical analysis in Section 4 and finally experimental results and empirical analysis in Section 5.

2 RELATED WORKS

In the recent times, Graph Neural Networks (GNNs) have become an increasingly popular method
for semi-supervised classification with graphs. Bruna et al. (2014) set the stage for early GNN
models, which was then followed by various modifications (Defferrard et al., 2016; Kipf & Welling,
2017; Hamilton et al., 2017; Veličković et al., 2018). Incorporating random walk information (Abu-
El-Haija et al., 2019b;a; Li et al., 2018) gave further improvements in these models, but they still
suffer from over smoothing. Several proposed models attempt to overcome this problem (Klicpera
et al., 2019; Lukovnikov & Fischer, 2021; Chamberlain et al., 2021; Yang et al., 2021).

Another line of research explored the question of which graphs worked well with GNNs. The critical
understanding was that the performance of GNN was dependent on the correlation of the graphs with
the node labels. Several approaches (Abu-El-Haija et al., 2019a; Zhu et al., 2020; Wang & Derr,
2021) considered edge homophily and proposed a robust GNN model by aggregating information
from several higher-order hops. Kim & Oh (2021) also considered edge homophily and mitigated
the issue by learning robust attention models. Pei et al. (2020) talks about node homophily and
proposes to aggregate information from neighbours in the graph and neighbours inferred from the
latent space. Zhu et al. (2021) proposes to estimate label-label compatibility matrix and uses it as
a prior to update posterior belief on the labels. However, these approaches still rely on the given
graphs for information like the hop neighbours etc., which might be poor approximations of the
desired neighbours with similar labels.

Some of the recent approaches focused on learning filter functions that operate on the eigenvalues of
the graph. Learning these filter functions can be viewed as directly adapting the graph for the desired
task. Bo et al. (2021) models the filter function as an attention mechanism on the edges, which
learns the difference in the proportion of low-pass and high-pass frequency signals. Chien et al.

2

Under review as a conference paper at ICLR 2022

(2021) proposes a polynomial filter on the eigenvalues that directly adapts the graph for the desired
task. Zheng et al. (2021) decompose the graph into low-pass and high-pass frequencies, and define
a framelet based convolutional model. Our work is closely related to these lines of exploration. In
this work, we propose to learn a filter function as a sum of polynomials over different subsets of the
eigenvalues, enabling design of effective filters to model task-specific complex frequency responses
with compute trade-offs.

3 PROBLEM SETUP AND MOTIVATION

We focus on the problem of semi-supervised node classification on a simple graph G = (V, E),
where V is the set of vertices and E is the set of edges. Let A ∈ {0, 1}n×n be the adjacency matrix
associated with G, where n = |V| is the number of nodes. Let Y be the set of all possible class
labels. Let X ∈ Rn×d be the d-dimensional feature matrix for all the nodes in the graph. Given a
training set of nodes D ⊂ V whose labels are known, along with A and X, our goal is to predict
the labels of the remaining nodes. Let AI = A + I where I is the identity matrix. Let DAI

be the
degree matrix of AI and Ã = D

−1/2
AI

AID
−1/2
AI

. Let Ã = UΛUT be the eigendecomposition of Ã.
Then, the spectral convolution of X on the graph A can be defined via the reference operator Ã and
a filter function h operating on the eigenvalues, in the Fourier domain (Tremblay et al., 2017; Chien
et al., 2021) as,

Z = UH(Λ)UTX = Udiag(Vα)UTX =

k∑
j=1

αjÃ
jX (1)

where H(Λ) = diag(h(Λ)). In this process, the filter function is essentially adapting the
graph for the desired task at hand. The second equality follows from using a polynomial filter,
H(λ) =

∑k
i=1 αiλ

i where αi’s are coefficients of the polynomial, k is the order of the polynomial
and λ is any eigenvalue from Λ. Note that H(Λ) = diag(Vα) where V ∈ Rn×k is a Vandermonde
matrix constructed using eigenvalues from Λ and α ∈ Rk×1 is the vector consisting of αj’s. The
last equality follows from the eigendecomposition properties, enabling avoidance of eigendecompo-
sition. It is well-known that polynomial filters can approximate any graph filter (Shuman et al., 2013;
Tremblay et al., 2017). However, several practical challenges arise in learning a good polynomial
filter. We briefly discuss them below.

Let h∗ be the optimal filter for some given task. Learning a polynomial filter involves the approx-
imation: h∗ ≈ Vα. Notice that this system is over-determined since the number of unknowns (k,
the size of α) is less than the number of equations (n, the number of nodes). To obtain a consis-
tent solution, we may have to work with higher-order polynomials. Working with higher powers
poses several practical challenges, and the following observations are in order. First, node features
computed via ÃjX becomes indistinguishable (see Figure 1a and A.2.1). Since the node features
are indistinguishable, the importance of the coefficient associated with ÃjX for the task at hand
reduces significantly. These observations are in line with Theorem 4.2 in Chien et al. (2021), where
it states that as over-smoothing happens, the corresponding coefficients of the polynomial go to zero.
We observe that with insignificant contributions from higher-order terms, the performance (aka test
accuracy) does not improve with the increase in the order of the polynomial (See Figure 1b, 1c
and A.2.2). Next, one can think of addressing this issue with ÃjX by directly working with full
eigendecomposition. However, this approach is prohibitively expensive for large graphs. Even if
we were to do this, λi’s are in the range of [−1, 1] and thus λji will diminish with higher powers.
Therefore, it will continue to be less effective in learning coefficients of a higher power. Motivated
by the above observations, we propose a novel piece-wise polynomial filter learning approach.

4 PROPOSED APPROACH

The central goal of our approach is to get improved task-specific performance by learning effective
task-specific graph filters. We propose to learn the polynomial filter as a sum of polynomials operat-
ing on different eigenvalue intervals, taking task-specific requirements and practical considerations
into account. We show that our proposed filter design can approximate the latent optimal graph

3

Under review as a conference paper at ICLR 2022

(a) (b) (c)

Figure 1: In (a), we plot the average of pairwise distances between node features for the Cora dataset,
after computing ÃjX for increasing j values. X-axis represents the various powers j and the Y-axis
represents the average of pairwise distances between node features. In (b) and (c), we plot the test
accuracies of the model in Chien et al. (2021) for increasing order of polynomials for Cora and
Chameleon dataset respectively. X-axis represents the order of the polynomial and Y-axis represents
the test accuracy achieved for that order.

filter better than a single polynomial, and the resultant class of learnable filters/graphs is richer. We
briefly discuss the training and computational complexity of the proposed model.

4.1 PIECE-WISE POLYNOMIAL/SPLINE GRAPH FILTER FUNCTION

We model the filtering function h(λ) as a piece-wise polynomial or spline function where each
polynomial is of a lower degree (e.g., a cubic polynomial). We partition the eigen spectrum in [−1, 1]
(or [0, 2] as needed) into contiguous intervals and approximate the desired frequency response by
fitting a low degree polynomial in each interval. This process helps us to learn a more complex
shaped frequency response as needed for the task. Let S = {σ1, σ2, . . . , σm} denote a partition
set with m contiguous intervals and hi,ki(λ; γi) denote a ki-degree polynomial filter function of the
interval σi with polynomial coefficients γi. We define PP-GNN filter function as:

h(λ) =
∑
σi∈S

hi,ki(λ; γi) (2)

and learn a smooth filter function by imposing additional constraints to maintain continuity between
polynomials of contiguous intervals at different endpoints (aka knots). This class of filter functions is
rich, and its complexity is controlled by choosing intervals (i.e., endpoints and number of partitions)
and polynomial degrees. Given the filter function, we compute the node embedding matrix as:

Z =

m∑
i=1

UiHi(γi)U
T
i Z0(X; Θ) (3)

where Ui is a matrix with eigenvectors corresponding to eigenvalues that lie in σi, Hi(γi) is the
diagonal matrix with diagonals containing the hi evaluated at the eigenvalues and Z0(X; Θ) is an
MLP network with parameters Θ.

4.2 PRACTICAL AND IMPLEMENTATION CONSIDERATIONS

The filter function (3) requires computing eigendecomposition of Ã and is expensive, therefore, not
scalable for very large graphs. Thus, having finer control to learn complex frequency responses
comes with a high computational cost. We address this problem by devising a graph filter function
that enables a trade-off between computational cost and frequency response control. First, we make
the following observations:

1. Top-k and bottom-k eigenvalues represent k low and high frequencies. There are efficient
algorithms and off-the-shelf library packages available to get top-k and bottom-k eigenval-
ues and eigenvectors of sparse matrices.

4

Under review as a conference paper at ICLR 2022

2. GPR-GNN method also learns a graph filter but operates on the entire eigen spectrum
by sharing the filter coefficients across the spectrum. Therefore, it is a special case of
our proposed model (3). Since GPR-GNN learns a global polynomial by having shared
coefficients across the spectrum (like learning a global polynomial to fit a function), it
is not flexible enough to learn complex frequency responses, as needed in several practical
applications. Note that increasing the degree of the global polynomial does not help beyond
some high degree specific to tasks. We demonstrate this through extensive experiments on
benchmark datasets in the experiment and appendix sections. One important advantage
of GPR-GNN is that it does not require computation of eigendecomposition; therefore,
efficient.

3. Many recent works, including GPR-GNN, investigated the problem of designing robust
graph neural networks that work well across homophilic and heterophilic graphs. They
found that graph filters that amplify or attenuate low and high-frequency components of
signals (i.e., low-pass and high-pass filters) are critical to improving performance on several
benchmark datasets.

Efficient Variant. Using the above observations, we propose an efficient variant of (2) as:

h̃(λ) = ηl
∑
σi∈Sl

h
(l)
i (λ; γ

(l)
i) + ηh

∑
σi∈Sh

h
(h)
i (λ; γ

(h)
i) + ηgprhgpr(λ; γ) (4)

where Sl consists of partitions over low frequency components, Sh consists of partitions over high
frequency components, the first and second terms fit piece-wise polynomials1 in low and high
frequency regions, as indicated through superscripts. However, we do not want to lose any use-
ful information from other frequencies in the central region, yet maintain efficiency. We achieve
this by adding the GPR-GNN filter function, hgpr(λ; γ), which is computationally efficient. Since
hgpr(λ; γ) is a special case of (2) and the terms in (4) are additive, it is easy to see that (4) is same as
(2) with a modified set of polynomial coefficients. In practice, the required low and high-frequency
components are computed based on affordable computational cost. Furthermore, we can also con-
trol the contributions from each term by setting or optimizing over hyperparameters, ηl, ηh and
ηgpr. Thus, the proposed model offers richer capability and flexibility to learn complex frequency
response and balance computation costs over GPR-GNN.

Model Training. Like GPR-GNN, we apply SOFTMAX activation function on (3) and use the stan-
dard cross-entropy loss function to learn the sets of polynomial coefficients (γ) and classifier model
parameters (Θ) using labeled data. To ensure smoothness of the learned filter functions, we add a
regularization term that penalizes squared differences between the function values of polynomials of
contiguous intervals at each other’s interval end-points. More details can be found in the appendix
(A.4.1).

Computational Cost. There is some pre-training cost of computing the eigendecomposition for
top and bottom k eigenvalues. Most algorithms for this task utilize Lanczos’ iteration, convergence
bounds of which depends on the input matrix’ spectrum (Saad, 1980; LI, 2010), which although have
superlinear convergence, but are observed to be efficient in practice. We compute node embeddings
afresh whenever the model parameters are updated. This computation involves matrix multiplication
with eigenmatrices incurring an additional cost (over GPR-GNN) of O(nkL) where k and L denote
the number of selected low/high eigenvalues and classes, respectively.

4.3 ANALYSIS

We first give a simple theoretical justification for using multiple polynomials. We upper-bound the
approximation error achieved by using multiple polynomials by the error that the single polynomial
parameterization achieves. We relegate the proofs of all the theorems of this section to the appendix.

Theorem 4.1. For any frequency response h∗, and an integer K ∈ N, let h̃ := h + hf , with
hf having a continuous support over a subset of the spectrum, σf . Assume that h and hf are
parameterized by independent K and K ′-order polynomials, p and pf , respectively, with K ′ ≤ K.
Then there exists h̃, such that min ‖h̃−h∗‖2 ≤ min ‖h−h∗‖2, where the minimum is taken over the
polynomial parameterizations. Moreover, for multiple polynomial adaptive filters hf1 , hf2 , ..., hfm

1For brevity, we dropped the polynomial degree dependency.

5

Under review as a conference paper at ICLR 2022

parameterized by independentK ′-degree polynomials withK ′ ≤ K but having disjoint, contiguous
supports, the same inequality holds for h̃ = h+

∑m
i=1 hfi .

For a detailed proof please refer to A.4.3. We constructed waveforms of arbitrary complexity, ap-
proximated by first fitting a single globally-defined polynomial and then adding locally defined
polynomials on top of it. We assess the performance by varying the degrees of the local polyno-
mials. The corresponding plots (See Figure 8) indicate that use of lower-order filters achieves a
fit comparable to one by a relatively higher-degree polynomial. Since an actual waveform is not
observed in practice and instead, we estimate it by optimizing over the observed labels via learning
a graph filter, we theoretically show that the family of filters that we learn is a strict superset of the
polynomial filter family. The same result holds for the families of the resulting adapted graphs.
Theorem 4.2. Define H := {h(·) | ∀ possible K-degree polynomial parameterizations of h} to
be the set of all K-degree polynomial filters, whose arguments are n × n diagonal matrices,
such that a filter response over some Λ is given by h(Λ) for h(·) ∈ H. Similarly H′ :=

{h̃(·) | ∀ possible polynomial parameterizations of h̃} is set of all filters learn-able via PP-GNN ,
with h̃ = h + hf1 + hf2 , where h is parameterized by a K-degree polynomial supported over en-
tire spectrum, hf1 and hf2 are adaptive filters parameterized by independent K ′-degree polynomials
which only act on top and bottom t diagonal elements respectively, with t < n/2 and K ′ ≤ K; then
H and H′ form a vector space, with H ⊂ H′. Also, dim(H′)

dim(H) = K+2K′+3
K+1 .

Corollary 4.2.1. The corresponding adapted graph families G := {UTh(·)UT | ∀h(·) ∈ H} and
G′ := {UT h̃(·)UT | ∀h̃(·) ∈ H′} for any unitary matrix U form a vector space, with G ⊂ G′ and
dim(G′)
dim(G) = K+2K′+3

K+1 .

This implies that our model is learning from a more diverse space of filters and the corresponding
adapted graphs. Moreover, the dimension of the space increases significantly by using just two
adaptive filters. Note that learning from such a diverse region is feasible. This observation is possible
from the proofs of Theorem 4.2 (A.4.4) and Corollary 4.2.1 (A.4.5). Using the adaptive filters
without any filter with the entire spectrum as support results in learning a set of adapted graphs,
Ĝ. This set is disjoint from G, with G′ = G ⊕ Ĝ. We conduct various ablative studies where we
demonstrate the effectiveness of learning from Ĝ and G′.

5 EXPERIMENTS

We conduct comprehensive experiments to demonstrate the effectiveness and competitiveness of the
proposed PP-GNN model over state-of-the-art (SOTA) models/methods and answer the following
research questions.

1. [RQ1] Does the PP-GNN model outperform SOTA models/methods over a broad range of
datasets (homophilic/heterophilic)?

2. [RQ2] Does the proposed model learn better and complex frequency responses that im-
prove performance [Frequency response plots]?

3. [RQ3] With the PP-GNN model comprising of multiple filters, how does each filter con-
tribute to achieving improved performance?

4. [RQ4 and RQ5] Does the model learn better embedding, and do we need a large number
of eigenvalues/vectors and polynomials to get improved performance?

5. [RQ6] How does the training time of the PP-GNN and GPR-GNN models compare?

Datasets and Setup. We evaluate our model on several real-world heterophilic and homophilic
datasets including a few large graphs for the node classification task. Detailed statistics of the
benchmark datasets are provided in the appendix (A.5.1). The heterophilic datasets include Texas2,
Cornell2, Wisconsin2, Chameleon, Squirrel, (Rozemberczki et al., 2021) and Flickr. We use
the 10 random splits (48%/32%/20% of nodes for train/validation/test set) from Pei et al. (2020).
For Flickr, Ogbn-Arxiv, and Wiki-CS, we use the data splits from Kim & Oh (2021). We also

2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

6

Under review as a conference paper at ICLR 2022

evaluate on 8 homophilic datasets: Cora-Full, Ogbn-Arxiv, Wiki-CS, Citeseer, Pubmed, Cora,
Computer, and Photos borrowed from Kim & Oh (2021). For the remaining homophilic datasets,
we create 10 random splits for each dataset following Kim & Oh (2021). We use PCA node features
(Kim & Oh (2021)) for the Chameleon and Cora-Full datasets. We report mean and standard
deviation of test accuracy over splits to compare model performance.

Baselines. We compare our model against (a) filtering based approaches, GPR-GNN, FAGCN,
APPNP, and LGC, (b) other state-of-the-art models include SUPERGAT, TDGNN, H2GCN,
and GEOM-GCN, and (c) standard baselines, namely, LR (Logistic Regression), MLP (Multi Layer
Perceptron), GCN, and SGCN. Detailed descriptions for all the baselines, hardware and software
specifications are in the appendix (A.5.2 and A.5.5)

Hyperparameter Tuning. For the PP-GNN model, we separately partition the low-end and high-
end eigenvalues into several contiguous partitions and use shared filter parameters for frequencies
of each partition. The number of partitions, which can be interpreted as the number of filters, is
swept in the range [2,3,4,5,10,20]. The polynomial filter order is swept in the range [1,10] in steps
of size 1. The number of eigenvalues/vectors are swept in the range [32, 64, 128, 256, 512, 1024].
In our experiments, we set ηl = ηh and we vary them in range (0, 1) and set ηgpr = 1 − ηl.
We did hyperparameter tuning for other models as suggested in respective references and public
repositories. More details are in the appendix (A.5.5).

Test Acc Texas Wisconsin Squirrel Chameleon Cornell Flickr
LR 81.35 (6.33) 84.12 (4.25) 34.73 (1.39) 45.68 (2.52) 83.24 (5.64) 46.51

MLP 81.24 (6.35) 84.43 (5.36) 35.38 (1.38) 51.64 (1.89) 83.78 (5.80) 46.93
SGCN 62.43 (4.43) 55.69 (3.53) 45.72 (1.55) 60.77 (2.11) 62.43 (4.90) 50.75
GCN 61.62 (6.14) 58.82 (4.89) 47.78 (2.13) 62.83 (1.52) 62.97 (5.41) 53.4

SuperGAT 61.08 (4.97) 56.47 (3.90) 31.84 (1.26) 43.22 (1.71) 57.30 (8.53) 53.47
Geom-GCN 67.57* 64.12* 38.14* 60.90* 60.81* NA

H2GCN 84.86 (6.77)* 86.67 (4.69)* 37.90 (2.02)* 58.40 (2.77) 82.16 (4.80)* OOM
FAGCN 82.43 (6.89) 82.94 (7.95) 42.59 (0.79) 55.22 (3.19) 79.19 (9.79) OOM
APPNP 81.89 (5.85) 85.49 (4.45) 39.15 (1.88) 47.79 (2.35) 81.89 (6.25) 50.33

LGC 80.20 (4.28) 81.89 (5.98) 44.26 (1.49) 61.14 (2.07) 74.59 (3.42) 51.67
GPR-GNN 81.35 (5.32) 82.55 (6.23) 46.31 (2.46) 62.59 (2.04) 78.11 (6.55) 52.74

TDGNN 83.00 (4.50)* 85.57 (3.78)* 43.84 (2.16) 55.20 (2.30) 82.92 (6.61)* OOM
PP-GNN 89.73 (4.90) 88.24 (3.33) 56.86 (1.20) 67.74 (2.31) 82.43 (4.27) 55.17

Table 1: Results on Heterophilic Datasets. We underline the results for the best performing baseline
model. ‘*’ indicates that the results were borrowed from the corresponding papers.

Test Acc Cora-Full OGBN-ArXiv Wiki-CS Citeseer Pubmed Cora Computer Photos
LR 39.10 (0.43) 52.53 72.28 (0.59) 72.22 (1.54) 87.00 (0.40) 73.94 (2.47) 64.92 (2.59) 77.57 (2.29)

MLP 43.03 (0.82) 54.96 73.74 (0.71) 73.83 (1.73) 87.77 (0.27) 77.06 (2.16) 64.96 (3.57) 76.96 (2.46)
SGCN 61.31 (0.78) 68.51 78.30 (0.75 76.77 (1.52) 88.48 (0.45) 86.96 (0.78) 80.65 (2.78) 89.99 (0.69)
GCN 59.63 (0.86) 69.37 77.64 (0.49) 76.47 (1.33) 88.41 (0.46) 87.36 (0.91) 82.50 (1.23) 90.67 (0.68)

SuperGAT 57.75 (0.97) 55.1* 77.92 (0.82) 76.58 (1.59) 87.19 (0.50) 86.75 (1.24) 83.04 (1.02) 90.31 (1.22)
Geom-GCN NA NA NA 77.99* 90.05* 85.27* NA NA

H2GCN 57.83 (1.47) OOM OOM 77.07 (1.64)* 89.59 (0.33)* 87.81 (1.35)* OOM 91.17 (0.89)
FAGCN 60.07 (1.43) OOM 79.23 (0.66) 76.80 (1.63) 89.04 (0.50) 88.21 (1.37) 82.16 (1.48) 90.91 (1.11)
APPNP 60.83 (0.55) 69.2 79.13 (0.50) 76.86 (1.51) 89.57 (0.53) 88.13 (1.53) 82.03 (2.04) 91.68 (0.62)

LGC 61.84 (0.90) 69.64 79.82 (0.49) 76.96 (1.73) 88.78 (0.51) 88.02 (1.44) 83.44 (1.77) 91.56 (0.74)
GPR-GNN 61.37 (0.96) 68.44 79.68 (0.50) 76.84 (1.69) 89.08 (0.39) 87.77 (1.31) 82.38 (1.60) 91.43 (0.89)

TDGNN OOM OOM 79.58 (0.51) 76.64 (1.54)* 89.22 (0.41)* 88.26 (1.32)* 84.52 (0.92) 92.54 (0.28)
PP-GNN 61.42 (0.79) 69.28 80.04 (0.43) 78.25 (1.76) 89.71 (0.32) 89.52 (0.85) 85.23 (1.36) 92.89 (0.37)

Table 2: Results on Homophilic Datasets.

7

Under review as a conference paper at ICLR 2022

5.1 RQ1: PP-GNN VERSUS SOTA MODELS

We present several important observations from Tables 1 and 2. We observe that the PP-GNN
model consistently outperforms all models, including recent filtering approach based models on all
datasets (both heterophilic and homophilic) except Pubmed and Cornell, where it achieves simi-
lar performance. This result demonstrates the effectiveness and robustness of our model across a
wide variety of datasets. Furthermore, compared with the GPR-GNN model, learning piece-wise
polynomial filters improves performance significantly over learning a single polynomial filter. In
particular, PP-GNN achieves performance improvements of around 10% and 5% on the Chameleon
and Squirrel datasets.

5.2 RQ2: ADAPTABLE FREQUENCY RESPONSES

We computed the frequency responses (i.e., h(λ)) of learned polynomials of the PP-GNN and GPR-
GNN models on several datasets, including Squirrel and Citeseer datasets shown in Figure 2. We
observe from Figure 2a, though the GPR-GNN model can learn some variations at low/high fre-
quencies, it is insufficient to achieve higher classification accuracy. On the other hand, the PP-
GNN model can capture complex shapes at the low and high ends of the spectrum, enabling it to
achieve significantly improved test accuracy. We observed a similar phenomenon for the chameleon
dataset as well. To illustrate another behaviour, we present the frequency responses for the Citeseer
dataset in Figure 2b, and the responses are similar except for some variations at the low-end of the
spectrum. Note that the GPR-GNN model does well on several homophilic datasets. These obser-
vations suggest that the PP-GNN model adapts very well in learning desired frequency responses, as
dictated by the task at hand. We can observe such a behaviour for two other datasets in the appendix
(A.5.6).

(a) Squirrel (b) Citeseer

Figure 2: Visualization of adapted eigenspectrum by our proposed model and GPR-GNN

5.3 RQ3: PERFORMANCE COMPARISON OF DIFFERENT FILTERS

Recall that the PP-GNN model is a sum of polynomials model comprising of polynomial filters
operating at different parts of the spectrum. Here, we study the importance and effect of using a
combination of filters operating on different regions. For reference, we also compare the perfor-
mance of GPR-GNN model that operates on the entire spectrum using a single filter. Several inter-
esting observations are in order. From Table 3, we see that the best performance is achievable using
high-frequency signals alone for the heterophilic datasets (Squirrel and Chameleon), suggesting that
significant discriminatory information is available at high frequencies compared to low-frequency
signals. In contrast, homophilic datasets (Cora and Citeseer) exhibit a reverse trend. On comparing
the first (second) and third (fourth) row results, we see that having the GPR-GNN filter as part
of the PP-GNN filter helps to get improved performance over individual filters (PP-GNN(Low)
or PP-GNN (High)). Finally, the PP-GNN model can adapt well, capture contrasting information
bands across datasets, and outperform the GPR-GNN model.

8

Under review as a conference paper at ICLR 2022

(a) Varying No. of EVs (b) PP-GNN on Squirrel (c) GPR-GNN on Squirrel

Figure 3: Analyzing varying number of eigenvalues and the learned embeddings

Test Acc Squirrel Chameleon Citeseer Cora
PP-GNN (Low) 45.75 (1.69) 56.73 (4.03) 76.23 (1.54) 88.03 (0.79)
PP-GNN (High) 58.70 (1.60) 69.19 (1.88) 55.50 (6.38) 73.76 (2.03)

PP-GNN (GPR-GNN+Low) 50.96 (1.26) 63.71 (2.69) 78.07 (1.71) 89.56 (0.93)
PP-GNN (GPR-GNN + High) 60.39 (0.91) 67.83 (2.30) 78.30 (1.60) 89.42 (0.97)

GPR-GNN 42.06 (1.55) 56.29 (1.58) 76.74 (1.33) 87.93 (1.52)
PP-GNN 56.21 (1.79) 68.93 (1.95) 78.25 (1.76) 89.52 (0.85)

Table 3: Performance of different filters

5.4 RQ4 - RQ6: VARYING NO. OF EVS, LEARNED EMBEDDING AND TIMING COMPARISON

We conducted ablative studies to see the effect of varying different hyperparameters of the PP-GNN
model. From Figure 3a, we see that as small as 32 eigen components are sufficient to achieve near-
best performance on the homophilic datasets (Cora, Citeseer). On the other hand, peak performance
is achieved for some intermediate (≈250-500) number of eigen components for the Squirrel and
Chameleon datasets. Also, we note that we can achieve comparable performance to state of the art
models on large datasets (Flickr and OGBN-Arxiv) using only 1024 components (See Tables 1 and
2). This study suggests that the PP-GNN model is scalable at least for medium sized graphs (100K
nodes). More evaluation and investigation are needed to study performance versus computation cost
trade-off for very large graphs (millions of nodes).

To assess the quality of learned embedding, we also created t-SNE plots and made a visual inspec-
tion. From Figure 3b and 3c, we see that the clusters belonging to different classes of the Squirrel
dataset are better separated for the PP-GNN model compared to the GPR-GNN model. We also
measured the time taken by the GPR-GNN and PP-GNN models. We observed that the GPR-
GNN model is only (1.2 − 2)× faster than the PP-GNN model (using 1024 eigencomponents) on
many datasets. Thus, the extra training cost incurred by the PP-GNN model is not significantly
different for practical purposes. More details are in the appendix (A.6).

6 CONCLUSION

Several proposed models attempt to be robust to the correlations between graph and node labels.
We build on the filter-based approach of GPR-GNN (Chien et al., 2021). This work proposed
an effective polynomial filter design. We combine GPR-GNN with additional polynomials that
adapt specifically to low and high-frequency components. Our experiments demonstrate that such
an approach can learn filter functions that improve performance on the node classification task. Our
plots of these filter functions suggest that they are of high order on several datasets. It would be
interesting to analyze these filter plots and identify some common characteristics. These will enable
us to a] characterize the correlation of graphs and labels, b] further improve the performance and c]
build robust graph privacy models. We plan to do this as our future work.

9

Under review as a conference paper at ICLR 2022

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. First, we provide a detailed
description of our model in Section 4. Section 5 provides a brief description of the datasets utilized
in our experiments. A detailed description of the datasets, including their sources, statistics are
given in the appendix (A.5.1). We also provide details on the number of splits and the method used
to generate them. We also list out all the baselines utilized in the experiments in Section 5. A
detailed description of these baselines and the parameter sweep ranges are given in the appendix
(A.5.2). We also provide implementation detail of our model in the appendix (A.5.5). Additionally,
we share an anonymized URL of the code for our model, and the data splits in the appendix (A.1).

8 ETHICS STATEMENT

Social network graphs form the most exciting application for GNNs. GNNs can be used to reveal
user information that the user otherwise would have preferred to keep private. Privacy-preserving
methods might rely on obfuscating the graph by adding spurious edges, and these edges will, in turn,
reduce the graph’s correlation with the node labels. Earlier GNNs would likely not have predicted
the target label with reasonable accuracy under this setting. Thereby, such obfuscation methods
would give some level of privacy for the users. However, our model exhibits good performance even
in the presence of a lower correlation. Such methods can make simple obfuscation based privacy
approaches obsolete while still revealing important information about the users. On the other hand,
our model can also give insights into what makes graphs reveal certain information and develop a
more robust privacy model for graphs.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard,
Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolu-
tion architectures via sparsified neighborhood mixing. In International Conference on Machine
Learning (ICML), 2019a.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, and Joonseok Lee. N-gcn: Multi-scale graph
convolutionfor semi-supervised node classification. In Conference on Uncertainty in Artificial
Intelligence (UAI), 2019b.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. ArXiv, abs/1907.10902, 2019.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks
with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1–1, 2021. ISSN 1939-3539. doi: 10.1109/tpami.2021.3054830. URL http://dx.doi.
org/10.1109/TPAMI.2021.3054830.

Deyu Bo, X. Wang, Chuan Shi, and Hua-Wei Shen. Beyond low-frequency information in graph
convolutional networks. In Association for the Advancement of Artificial Intelligence (AAAI),
2021.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In International Conference on Learning Representations (ICLR),
2014.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 1407–1418. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/chamberlain21a.html.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations (ICLR), 2021.

10

http://dx.doi.org/10.1109/TPAMI.2021.3054830
http://dx.doi.org/10.1109/TPAMI.2021.3054830
https://proceedings.mlr.press/v139/chamberlain21a.html
https://proceedings.mlr.press/v139/chamberlain21a.html

Under review as a conference paper at ICLR 2022

Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yan-Tao Zheng. Nus-
wide: A real-world web image database from national university of singapore. In Proc. of ACM
Conf. on Image and Video Retrieval (CIVR’09), Santorini, Greece., July 8-10, 2009.

Jane K. Cullum and Ralph A. Willoughby. Lanczos Algorithms for Large Symmetric Eigen-
value Computations. Society for Industrial and Applied Mathematics, 2002. doi: 10.
1137/1.9780898719192. URL https://epubs.siam.org/doi/abs/10.1137/1.
9780898719192.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Neural Information Processing Systems (NeurIPS),
2016.

Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. Graph neural networks with
adaptive frequency response filter, 2021.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Neural Information Processing Systems (NeurIPS), 2017.

Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. Bernnet: Learning arbitrary graph
spectral filters via bernstein approximation, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design
with self-supervision. In International Conference on Learning Representations (ICLR), 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks
with personalized pagerank for classification on graphs. In International Conference on Learning
Representations (ICLR), 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Association for the Advancement of Artificial Intelligence (AAAI),
2018.

REN-CANG LI. Sharpness in rates of convergence for the symmetric lanczos method. Mathematics
of Computation, 79(269):419–435, 2010. ISSN 00255718, 10886842. URL http://www.
jstor.org/stable/40590409.

Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on non-
homophilous graphs. In The WebConf Workshop on Graph Learning Benchmarks (GLB-WWW),
2021.

Denis Lukovnikov and Asja Fischer. Improving breadth-wise backpropagation in graph neural net-
works helps learning long-range dependencies. In Marina Meila and Tong Zhang (eds.), Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pp. 7180–7191. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/lukovnikov21a.html.

Nicolò Navarin, Wolfgang Erb, Luca Pasa, and Alessandro Sperduti. Linear graph convo-
lutional networks. In 28th European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning, ESANN 2020, Bruges, Belgium, October 2-4,
2020, pp. 151–156, 2020. URL https://www.esann.org/sites/default/files/
proceedings/2020/ES2020-96.pdf.

11

https://epubs.siam.org/doi/abs/10.1137/1.9780898719192
https://epubs.siam.org/doi/abs/10.1137/1.9780898719192
http://www.jstor.org/stable/40590409
http://www.jstor.org/stable/40590409
https://proceedings.mlr.press/v139/lukovnikov21a.html
https://proceedings.mlr.press/v139/lukovnikov21a.html
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-96.pdf
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-96.pdf

Under review as a conference paper at ICLR 2022

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations (ICLR),
2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 2021.

Y. Saad. On the rates of convergence of the lanczos and the block-lanczos methods. SIAM Journal
on Numerical Analysis, 17(5):687–706, 1980. doi: 10.1137/0717059. URL https://doi.
org/10.1137/0717059.

David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.
doi: 10.1109/MSP.2012.2235192.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
2009.

Nicolas Tremblay, Paulo Gonçalves, and Pierre Borgnat. Design of graph filters and filterbanks,
2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations
(ICLR), 2018.

Yu Wang and Tyler Derr. Tree decomposed graph neural network. In Conference on Information
and Knowledge Management, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In International Conference on Machine Learning (ICML),
2019.

Yongyi Yang, Tang Liu, Yangkun Wang, Jinjing Zhou, Quan Gan, Zhewei Wei, Zheng Zhang,
Zengfeng Huang, and David Wipf. Graph neural networks inspired by classical iterative al-
gorithms. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 11773–11783. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/yang21g.html.

Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yuguang Wang, Pietro Lió, Ming Li, and Guido Mont-
ufar. How framelets enhance graph neural networks. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 12761–12771. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/zheng21c.html.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. In Neural
Information Processing Systems (NeurIPS), 2020.

Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai
Koutra. Graph Neural Networks with Heterophily. In Association for the Advancement of Artifi-
cial Intelligence (AAAI), 2021.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1137/0717059
https://doi.org/10.1137/0717059
https://proceedings.mlr.press/v139/yang21g.html
https://proceedings.mlr.press/v139/yang21g.html
https://proceedings.mlr.press/v139/zheng21c.html

Under review as a conference paper at ICLR 2022

A APPENDIX

The appendix is structured as follows. In Section A.1, we provide a URL with our code and data,
along with some information about the contents in the URL. In Section A.2, we present additional
evidence of the limitations of GPR-GNN. In Section A.3, we show a representative experiment
that motivates Section 4. In Section A.4, we provide proofs for theorems and corollaries defined
in Section 4.3. In Section A.5, we provide more details regarding the baselines, datasets and their
respective splits. We also provide implementation details and rank PP-GNN against current SoTA.
In Section A.6, we perform a timing analysis where we compare PP-GNN to GPR-GNN.

A.1 CODE AND DATASET

Our code, along with the datasets and their respective splits, is available at https://tinyurl.
com/PPGNN. A README file is available explaining how the code can be executed on various
datasets. The requirements.txt file lists all the necessary python packages required to execute
the code. The src folder also contains bash scripts to run the code on various datasets.

A.2 MOTIVATION

A.2.1 NODE FEATURE INDISTINGUISHABLY PLOTS

In the main paper (Figure 1a), we plot the average of pairwise distances between node features for
the Cora dataset, after computing ÃjX for increasing j values, and showed that the mean pairwise
node feature distance decreases as j increases. We observe that this is consistent across three more
datasets: Citeseer, Chameleon and Squirrel. This is observed in Figure 4.

(a) Chameleon (b) Squirrel (c) Citeseer

Figure 4: Average of pairwise distances between node features, after computing ÃjX , for increasing
j values

We also observed the mean of the variance of each dimension of node features, after computing
ÃjX , for increasing j values. We observe that this mean does indeed reduce as the number of hops
increase. We also observe that the variance of each dimension of node features reduces for Cora,
Squirrel and Chameleon as the number of hops increase; however, we don’t observe such an explicit
phenomenon for Citeseer. See Figure 5.

A.2.2 EFFECT OF VARYING THE ORDER OF THE GPR-GNN POLYNOMIAL

In the main paper (Figure 1a), we plot the test accuracies of the GPR-GNN model while increasing
the order of the polynomials for the Cora and Chameleon dataset, respectively. We observe that on
increasing the polynomial order, the accuracies do not increase any further. We can show a similar
phenomenon on two other datasets, Squirrel and Citeseer, in Figure 6.

In Section 3 of the main paper, we claim that due to the over-smoothing effect, even on increasing
the order of the polynomial, there is no improvement in the test accuracy. Moreover, in Figure 2
we can see that our model can learn a complicated filter polynomial while GPR-GNN cannot. This
section shows that even on increasing the order of the GPR-GNNpolynomial, neither does the test
accuracy increase nor does the waveform become as complicated as PP-GNN. See Figure 7.

13

https://tinyurl.com/PPGNN
https://tinyurl.com/PPGNN

Under review as a conference paper at ICLR 2022

(a) Cora (b) Citeseer

(c) Squirrel (d) Chameleon

Figure 5: Variance of each dimension of node features

(a) Citeseer (b) Squirrel

Figure 6: Accuracy of the GPR-GNN model on inceasing the order of the polynomial

A.3 FICTITIOUS POLYNOMIAL

In Section 4, we claim that having multiple disjoint low order polynomials can approximate a com-
plicated waveform better than a higher-order polynomial. We create a representative experiment that
shows this is indeed true by creating a fictitious complicated polynomial and trying to fit it using both
a single polynomial and the disjoint multi polynomial. We observe in Figure 8 that the lower order
disjoint polynomial fits the complicated waveform better than a higher-order single polynomial.

A.4 PROPOSED APPROACH

A.4.1 DETAILS REGARDING BOUNDARY REGULARIZATION

To induce smoothness in the learned filters, we add a regularization term that penalizes squared
differences between function values of polynomials at knots (endpoints of contiguous bins). Our
regularization term looks as follows:

14

Under review as a conference paper at ICLR 2022

(a) Chameleon (b) Citeseer

(c) Cora (d) Squirrel

Figure 7: Varying Polynomial Order in GPR-GNN

(a) Fitting single 10-degree polynomial (b) Fitting with 5-order adaptive filters

Figure 8: To demonstrate the adaptability of adaptive polynomial filter, we try to approximate a
complex waveform (blue dashed line) via (a) a single 10 degree polynomial, and (b) a 10-degree
polynomial with 10 adaptive filters of order 5. The waveform learnt via the filter is shown in a solid
dashed line. The corresponding RMSE are: (a) 3.9011, (b) 0.2800

m−1∑
i=1

exp−(σ
max
i −σmin

i+1)2(hi(σ
max
i)− hi+1(σmini+1))2 (5)

In equation 5, σmaxi and σmini refer to the maximum and minimum eigenvalues in σi (Refer to
Section 4). This regularization term is added to the Cross-Entropy loss. We perform experiments
with this model and report the performance in Table 4. We observe that we are able to reach similar
performance even without the presence of this regularization term. Therefore, majority of the results
reported in our Main paper are without this regularization term.

A.4.2 NOTATION USED

Vectors are denoted by lower case bold Roman letters such as x, and all vectors are assumed to be
column vectors. In the paper, h with any sub/super-script refers to a frequency response, which is

15

Under review as a conference paper at ICLR 2022

Test Acc Computer Chameleon Citeseer Cora Squirrel
PPGNN (With Reg) 83.53 (1.67) 67.92 (2.05) 76.85 (2) 88.19 (1.19) 55.42 (2.1)

PPGNN 85.23 (1.36) 67.74 (2.31) 76.74 (1.33) 89.52 (0.85) 56.86 (1.20)

Table 4: Results with and without boundary regularization

also considered to be a vector. A superscript T denotes the transpose of a matrix or vector; Matrices
are denoted by bold Roman upper case letters, such as M. A field is represented by K; sets of real
and complex numbers are denoted by R and C respectively. K[x1, . . . , xn] denotes a multivariate
polynomial ring over the field K, in indeterminates x1, . . . , xn. Set of n × n square matrices with
entries from some set S are denoted by Mn(S). Moore-Penrose pseudoinverse of a matrix A is
denoted by A†. Eigenvalues of a matrix are denoted by λ, with λ1, λ2, . . . denoting a decreasing
order when the eigenvalues are real. A matrix Λ denotes a diagonal matrix of eigenvalues. Set of
all eigenvalues, i.e., spectrum, of a matrix is denoted by σA or simply σ when the context is clear.
Lp norms are denoted by ‖ · ‖p. Frobenius norm over matrices is denoted by ‖ · ‖F . Norms without
a subscript default to L2 norms for vector arguments and Frobenius norm for matrices. ⊕ denotes
a direct sum. For maps fi defined from the vector spaces V1, · · · , Vm, with a map of the form f :
V 7→W , with V = V1⊕V2⊕· · ·⊕Vm, the the phrase ”f : V 7→W by mapping f(vi) to fi(g(vi))”
means that f maps a vector v = v1 + . . .+ vm with vi ∈ Vi to f1(g(v1)) + . . .+ fm(g(vm))

A.4.3 PROOF OF THEOREM 4.1

Theorem. For any desired frequency response h∗, and an integer K ∈ N, let h̃ := h + hf , with
hf having a continuous support over a subset of the spectrum, σf . Assuming h and hf to be pa-
rameterized by independent K and K ′-order polynomials p and pf respectively, with K ′ ≤ K, then
there exists h̃, such that min ‖h̃ − h∗‖2 ≤ min ‖h − h∗‖2, where the minimum is taken over the
polynomial parameterizations. Moreover, for multiple polynomial adaptive filters hf1 , hf2 , ..., hfm
parameterized by independentK ′-degree polynomials withK ′ ≤ K but having disjoint, contiguous
supports, the same inequality holds for h̃ = h+

∑m
i=1 hfi .

Proof. We make the following simplifying assumptions:

1. |σfi | > K, ∀i ∈ [m], i.e., that is all support sizes are lower bounded by K (and hence K ′)

2. All eigenvalues of the reference matrix are distinct

For methods that use a single polynomial filter, the polynomial graph filter, hK(Λ) = diag(Vγ)
where γ is a vector of coefficients (i.e, γ parameterizes h), with eigenvalues sorted in descending
order in components, and V is a Vandermonde matrix:

V =


1 λ1 λ21 · · · λK1
1 λ2 λ22 · · · λK2
...

...
...

. . .
...

1 λn λ2n · · · λKn


And to approximate a frequency response h∗, we have the following objective:

min ‖h− h∗‖22 := min
γ
‖diag(h∗)− diag(Vγ)‖2F = min

γ
‖h∗ −Vγ‖22 = min

γ
‖ep(γ)‖22

Where ‖‖F and ‖‖2 are the Frobenius and L2 norms respectively. Due to the assumptions, the
system of equations h∗ = Vγ is well-defined and has a unique minimizer, γ∗ = V†h∗, and thus

16

Under review as a conference paper at ICLR 2022

‖ep(γ∗)‖ = minγ ‖ep(γ)‖. Next we break this error vector as:

ep(γ
∗) := h∗ −Vγ∗

=

m∑
i=1

(h∗i −Viγ
∗) + (h∗L −VLγ

∗)

:=

m∑
i=1

e∗pi + e∗pL

Where e∗pi := (h∗i −Viγ
∗) with similar definition for epL ; h∗i is a vector whose value at components

corresponding to the set σ(hfi) is same as that of h∗ and rest are zero. Similarly, V∗i is a matrix
whose rows corresponding to the set σ(hfi) are same as that of V with other rows being zero.
Also, VL = V −

∑m
i=0 Vi and h∗L = h∗ −

∑m
i=0 h

∗
i . Note that as a result of this construction,

[ep∗i] ∪ ep∗L is a linearly independent set since the supports [σ(hfi)] form a disjoint set (note the
theorem statement). We split the proof in two cases:

Case 1: K ′ = K. We now analyze the case where we have m polynomial adaptive filters added, all
having an order of K, where the objective is min ‖h̃− h∗‖, which can be written as:

min
γ,[γi]

∥∥∥∥∥diag(h∗)− diag

(
Vγ +

m∑
i=0

Viγi

)∥∥∥∥∥
2

F

= min
γ,[γi]

∥∥∥∥∥h∗ −Vγ −
m∑
i=0

Viγi

∥∥∥∥∥
2

2

= min
γ,[γi]

‖eg(γ, [γi])‖22

Before characterizing the above system, we break a general error vector as:

eg(γ, [γi]) := h∗ −Vγ −
m∑
i=0

Viγi

=

m∑
i=1

(h∗i −Vi(γ + γi)) + (h∗L −VLγ)

:=

m∑
i=1

egi + egL

Where egi := (h∗i −Vi(γ + γi)) with similar definition for egL . Clearly, the systems of equations,
egi = 0, ∀i and egL = 0 are well-defined due to the assumptions 1 and 2. Since all the systems of
equations have independent argument, unlike in the polynomial filter case where the optimization is
constrained over a single variable; one can now resort to individual minimization of squared norms
of egi which results in a minimum squared norm of eg . Thus, we can set:

γ = V†Lh
∗
L = γ∗g γi = V†ih

∗
i −V†Lh

∗
L = γ∗i , ∀i ∈ [m]

to minimize squared norms of egi and egL . Note that [egi] ∪ egL is a linearly independent set since
the supports [σ(hfi)] form a disjoint set and by the above construction, this is also an orthogonal
set, and hence we have ‖eg‖2 =

∑m
i=1 ‖egi‖

2
+ ‖egL‖

2, and hence the above assignment implies:

‖eg(γ∗g , [γ∗i])‖ = min
γ,[γi]

‖eg(γg, [γi])‖ := min ‖h̃− h∗‖2

Hence, it follows that, minx ‖h∗i −Vix‖2 =
∥∥e∗gi∥∥2 ≤ ∥∥e∗pi∥∥2 = ‖h∗i −Viγ

∗‖2 and minx ‖h∗L −
VLx‖2 =

∥∥e∗gL∥∥2 ≤ ∥∥e∗pL∥∥2 = ‖h∗L −VLγ
∗‖2. Hence,

m∑
i=1

∥∥e∗gi∥∥2 +
∥∥e∗gL∥∥2 ≤ m∑

i=1

∥∥e∗pi∥∥2 +
∥∥e∗pL∥∥2

min ‖h̃− h∗‖ ≤ min ‖h− h∗‖

Case 2: K ′ < K. We demonstrate the inequality showing the existence of an h̃ that achieves a
better approximation error. By definition, the minimum error too will be bounded above by this

17

Under review as a conference paper at ICLR 2022

error. For this, we fix γ, the parameterization of h as γ = V†h∗ = γ∗p (say). Note that γp∗ =
arg minγ ‖ep(γ)‖. Now our objective function becomes

eg(γ
∗
p , [γi]) := h∗ −Vγ∗p −

m∑
i=0

V′iγi

=

m∑
i=1

(h∗i −Viγ
∗
p + V′iγi) + (h∗L −VLγ

∗
p)

=

m∑
i=1

e′gi + e′gL

Where h∗i , h
∗
L,Vi,VL have same definitions as that in case 1 and V′i is a matrix containing first

K ′ + 1 columns of Vi as its columns (and hence has full column rank), and, γi ∈ RK′+1. By this
construction, we have

‖eg(γ∗p ,0)‖ = min
γ
‖ep(γ)‖ = ‖ep(γ∗p)‖

Our optimization objective becomes min[γi] ‖eg(γ∗p , [γi])‖, which is easy since the problem is well-
posed by assumption 1 and 2. The unique minimizer of this is obtained by setting

γi = V′†i (h∗i −Viγ
∗
p) = γ∗i (say) ∀i ∈ [m]

Now,
‖eg(γ∗p , [γ∗i])‖ = min

[γi]
‖eg(γ∗p , [γi])‖ ≤ ‖eg(γ∗p ,0)‖ = min

γ
‖ep(γ)‖ = min ‖h− h∗‖

By the definition of minima, minγ,[γi] ‖eg(γ, [γi])‖ ≤ min[γi] ‖eg(γ∗p , [γi])‖, and by the definition,
min ‖h̃− h∗‖ = minγ,[γi] ‖eg(γ, [γi])‖, we have:

min ‖h̃− h∗‖ ≤ min ‖h− h∗‖

A.4.4 PROOF OF THEOREM 4.2

Theorem. Define H := {h(·) | ∀ possible K-degree polynomial parameterizations of h} to be
the set of all K-degree polynomial filters, whose arguments are n × n diagonal matrices,
such that a filter response over some Λ is given by h(Λ) for h(·) ∈ H. Similarly H′ :=

{h̃(·) | ∀ possible polynomial parameterizations of h̃} is set of all filters learn-able via PP-GNN ,
with h̃ = h + hf1 + hf2 , where h is parameterized by a K-degree polynomial supported over en-
tire spectrum, hf1 and hf2 are adaptive filters parameterized by independent K ′-degree polynomials
which only act on top and bottom t diagonal elements respectively, with t < n/2 and K ′ ≤ K; then
H and H′ form a vector space, with H ⊂ H′. Also, dim(H′)

dim(H) = K+2K′+3
K+1 .

Proof. We start by constructing the abstract spaces on top of the polynomial vector space. Consider
the set of all the univariate polynomials having degree at most K in the vector space over the ring
Kxn := K[x1, . . . , xn] where K is the field of real numbers. Partition this set into n subsets, say
V1, . . . , Vn, such that for i ∈ [n], Vi contains all polynomials of degree up to K in xi. It is easy
to see that V1, . . . , Vn are subspaces of K[x1, . . . , xn]. Define V = V1 ⊕ V2 ⊕ · · · ⊕ Vn where ⊕
denotes a direct sum. Define the matrix Di[c] whose (i, i)th entry is c and all the other entries are
zero. For i ∈ [n], define linear maps φi : Vi → Mn (Kxn) by f(xi) 7→ Di[f(xi)]. Im(φi) forms a
vector space of all diagonal matrices, whose (i, i) entry is the an element of Vi. Generate a linear
map φ : V → Mn(Kxn) by mapping φ(f(xi)) to φi(f(xi)) for all i ∈ [n] as the components of the
direct sum present in its argument. Note that φi for i ∈ [n] are injective maps, making φ an injective
map. This implies that H ⊂ Im(φ) is a subspace with basis Bh := {φ(x01 + · · ·+ x0n), φ(x1 + · · ·+
xn), . . . , φ(xK1 + · · ·+xKn)}, making dim(H) = K+1. Similarly we have, H′ ⊂ Im(φ), a subspace
with basis Bh′ := Bh

⋃
{φ(x01 + · · ·+x0t +0+ · · ·+0), φ(x1 + · · ·+xt+0+ · · ·+0), . . . , φ(xK

′

1 +

· · ·+xK
′

t + 0 + · · ·+ 0)}
⋃
{φ(0 + · · ·+ 0 +x0n−t+1 + · · ·+x0n), φ(0 + · · ·+ 0 +xn−t+1 + · · ·+

xn), . . . , φ(0+ · · ·+0+xK
′

n−t+1 + · · ·+xK
′

n)} where x0i and 0 are the corresponding multiplicative
and additive identities of Kxn, implying H ⊂ H′ and dim(H′) = K + 2K ′ + 1.

18

Under review as a conference paper at ICLR 2022

A.4.5 PROOF OF COROLLARY 4.2.1

Corollary. The corresponding adapted graph families G := {UTh(·)UT | ∀h(·) ∈ H} and G′ :=

{UT h̃(·)UT | ∀h̃(·) ∈ H′} for any unitary matrix U form a vector space, with G ⊂ G′ and
dim(G′)
dim(G) = K+2K′+3

K+1 .

Proof. Consider the injective linear maps f1, f2 : Mn(Kxn) → Mn(Kxn) as f1(A) = UTA and
f2(A) = AU. Define f3 : H → Mn(Kxn) and f4 : H′ → Mn(Kxn) as f3(A) = (f1 ◦ f2)(A) for
A ∈ H and f4(A) = (f1 ◦ f2)(A) for A ∈ H′. Since U is given to be a unitary matrix, f3 and f4
are monomorphisms. Using this with the result from Theorem 4.2, H ⊂ H′, we have G ⊂ G′.

A.5 EXPERIMENTS

A.5.1 DATASETS

We evaluate on multiple benchmark datasets to show the effectiveness of our approach. Detailed
statistics of the datasets used are provided in Table 5. We borrowed Texas, Cornell, Wisconsin
from WebKB3, where nodes represent web pages and edges denote hyperlinks between them. Actor
is a co-occurrence network borrowed from Tang et al. (2009), where nodes correspond to an ac-
tor, and and edge represents the co-occurrence on the same Wikipedia page. Chameleon, Squirrel
are borrowed from Rozemberczki et al. (2021). Nodes correspond to web pages and edges cap-
ture mutual links between pages. For all benchmark datasets, we use feature vectors, class labels
from Kim & Oh (2021). For datasets in (Texas, Wisconsin, Cornell, Chameleon, Squirrel, Actor),
we use 10 random splits (48%/32%/20% of nodes for train/validation/test set) from Pei et al. (2020).
We borrowed Cora, Citeseer, and Pubmed datasets and the corresponding train/val/test set splits
from Pei et al. (2020). The remaining datasets were borrowed from Kim & Oh (2021). We follow
the same dataset setup mentioned in Kim & Oh (2021) to create 10 random splits for each of these
datasets. We also experiment with two slightly larger datasets Flickr Chua et al. (July 8-10, 2009)
and OGBN-arXiv Hu et al. (2020). We use the publicly available splits for these datasets.

Properties Texas Wisconsin Actor Squirrel Chameleon Cornell Flickr Cora-Full OGBN-arXiv Wiki-CS Citeseer Pubmed Cora Computer Photos
Homophily Level 0.11 0.21 0.22 0.22 0.23 0.30 0.32 0.59 0.63 0.68 0.74 0.80 0.81 0.81 0.85

#Nodes 183 251 7600 5201 2277 183 89250 19793 169343 11701 3327 19717 2708 13752 7650
#Edges 492 750 37256 222134 38328 478 989006 83214 1335586 302220 12431 108365 13264 259613 126731

#Features 1703 1703 932 2089 500 1703 500 500 128 300 3703 500 1433 767 745
#Classes 5 5 5 5 5 5 7 70 40 10 6 3 7 10 8
#Train 87 120 3648 2496 1092 87 446625 1395 90941 580 1596 9463 1192 200 160
#Val 59 80 2432 1664 729 59 22312 2049 29799 1769 1065 6310 796 300 240
#Test 37 51 1520 1041 456 37 22313 16349 48603 5487 666 3944 497 13252 7250

Table 5: Dataset Statistics.

A.5.2 BASELINES

We provide the methods in comparison along with the hyper-parameters ranges for each model. For
all the models, we sweep the common hyper-parameters in the same ranges. Learning rate is swept
over [0.001, 0.003, 0.005, 0.008, 0.01], dropout over [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], weight decay
over [1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2, 1e− 1], and hidden dimensions over [16, 32, 64].
For model-specific hyper-parameters, we tune over author prescribed ranges. We use undirected
graphs with symmetric normalization for all graph networks in comparison. For all models, we
report test accuracy for the configuration that achieves the highest validation accuracy. We report
standard deviation wherever applicable.

LR and MLP: We trained Logistic Regression classifier and Multi Layer Perceptron on the given
node features. For MLP, we limit the number of hidden layers to one.

GCN: We use the GCN implementation provided by the authors of Chien et al. (2021). Note: We
observe discrepancies in performance with various implementations of GCN. We make a note of
this in Section A.7.

3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb

19

Under review as a conference paper at ICLR 2022

SGCN: SGCN (Wu et al., 2019) is a spectral method that models a low pass filter and uses a linear
classifier. The number of layers in SGCN is treated as a hyper-parameter and swept over [1, 2].

SUPERGAT: SUPERGAT (Kim & Oh, 2021) is an improved graph attention model designed to also
work with noisy graphs. SUPERGAT employs a link-prediction based self-supervised task to learn
attention on edges. As suggested by the authors, on datasets with homophily levels lower than 0.2
we use SUPERGATSD. For other datasets, we use SUPERGATMX. We rely on authors code4 for our
experiments.

GEOM-GCN: GEOM-GCN (Pei et al., 2020) proposes a geometric aggregation scheme that can
capture structural information of nodes in neighborhoods and also capture long range dependen-
cies. We quote author reported numbers for Geom-GCN. We could not run Geom-GCN on other
benchmark datasets because of the unavailability of a pre-processing function that is not publicly
available.

H2GCN: H2GCN (Zhu et al., 2020) proposes an architecture, specially for heterophilic settings,
that incorporates three design choices: i) ego and neighbor-embedding separation, higher-order
neighborhoods, and combining intermediate representations. We quote author reported numbers
where available, and sweep over author prescribed hyper-parameters for reporting results on the rest
datasets. We rely on author’s code5 for our experiments.

FAGCN: FAGCN (Bo et al., 2021) adaptively aggregates different low-frequency and high-
frequency signals from neighbors belonging to same and different classes to learn better node rep-
resentations. We rely on author’s code6 for our experiments.

APPNP: APPNP (Klicpera et al., 2019) is an improved message propagation scheme derived from
personalized PageRank. APPNP’s addition of probability of teleporting back to root node permits
it to use more propagation steps without oversmoothing. We use GPR-GNN’s implementation of
APPNP for our experiments.

LIGHTGCN: LIGHTGCN (Navarin et al., 2020) is a spectrally grounded GCN that adapts the entire
eigen spectrum of the graph to obtain better node feature representations.

GPR-GNN: GPR-GNN (Chien et al., 2021) adaptively learns weights to jointly optimize node
representations and the level of information to be extracted from graph topology. We rely on author’s
code7 for our experiments.

TDGNN: TDGNN (Wang & Derr, 2021) is a tree decomposition method which mitigates feature
smoothening and disentangles neighbourhoods in different layers. We rely on author’s code8 for our
experiments.

ARMA: ARMA (Bianchi et al., 2021) is a spectral method that uses K stacks of ARMA1 filters
in order to create an ARMAK filter (an ARMA filter of order K). Since (Bianchi et al., 2021)
do not specify a hyperparameter range in their work, following are the ranges we have followed:
GCS stacks (S): [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], stacks’ depth(T): [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. However
we only select configurations such that the number of learnable parameters are less than or equal
to those in PP-GNN. The input to the ARMAConv layer are the node features and the output is the
number of classes. This output is then passed through a softmax layer. We use the implementation
from the official PyTorch Geometric Library 9

BernNet: BernNet (He et al., 2021) is a method that approximates any filter over the normalised
Laplacian spectrum of a graph, by a Kth Order Bernstein Polynomial Approximation. We use the
model specific hyper-parameters prescribed by the authors of the paper. We vary the Propagation
Layer Learning Rate as follows: [0.001, 0.002, 0.01, 0.05]. We also vary the Propagation Layer

4https://github.com/dongkwan-kim/SuperGAT
5https://github.com/GemsLab/H2GCN
6https://github.com/bdy9527/FAGCN
7https://github.com/jianhao2016/GPRGNN
8https://github.com/YuWVandy/TDGNN
9https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_

geometric/nn/conv/arma_conv.html#ARMAConv

20

https://github.com/dongkwan-kim/SuperGAT
https://github.com/GemsLab/H2GCN
https://github.com/bdy9527/FAGCN
https://github.com/jianhao2016/GPRGNN
https://github.com/YuWVandy/TDGNN
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/arma_conv.html#ARMAConv
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/conv/arma_conv.html#ARMAConv

Under review as a conference paper at ICLR 2022

Dropout as follows: [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. We rely on the authors code 10 for our experi-
ments.

AdaGNN: AdaGNN (Dong et al., 2021) is a method that captures the different importance’s for
varying frequency components for node representation learning. We use the model specific hyper-
parameters prescribed by the authors of the paper. The No. of Layers hyper-parameter is varied as
follows: [2, 4, 8, 16, 32, 128]. We rely on the authors code11 for our experiments.

A.5.3 COMPARISON AGAINST ADDITIONAL BASELINES

We performed experiments over the same datasets using three new baselines: ARMA (Bianchi et al.
(2021)), BernNet (He et al. (2021)) and AdaGNN (Dong et al. (2021)). Details about these baselines
are given in Section A.5.2. The results are reported in Tables 6 and 7. The results are obtained after
thorough optimization over the respective hyperparameters, the details of which are listed in A.5.2:

Test Acc Texas Wisconsin Squirrel Chameleon Cornell Flickr
BernNET 83.24 (6.47) 84.90 (4.53) 52.56 (1.69) 62.02 (2.28) 80.27 (5.41) 52.35
ARMA 79.46 (3.65) 82.75 (3.56) 47.37 (1.63) 60.24 (2.19) 80.27 (7.76) 53.79

AdaGNN 71.08 (8.55) 77.70 (4.91) 53.50 (0.96) 65.45 (1.17) 71.08 (8.36) 52.30
GPR-GNN 81.35 (5.32) 82.55 (6.23) 46.31 (2.46) 62.59 (2.04) 78.11 (6.55) 52.74
PP-GNN 89.73 (4.90) 88.24 (3.33) 56.86 (1.20) 67.74 (2.31) 82.43 (4.27) 54.44

Table 6: Results on Heterophilic Datasets.

Test Acc Cora-Full (PCA) OGBN-ArXiv Wiki-CS Citeseer Pubmed Cora Computer Photos
BernNET 60.77 (0.92) 67.32 79.75 (0.52) 77.01 (1.43) 89.03 (0.55) 88.13 (1.41) 83.69 (1.99) 91.61 (0.51)
ARMA 60.23 (1.21) 69.49 78.94 (0.32) 78.15 (0.74) 88.73 (0.52) 87.37 (1.14) 78.55 (2.62) 90.26 (0.48)

AdaGNN 59.57 (1.18) 69.44 77.87 (4.95) 74.94 (0.91) 89.33 (0..57) 86.72 (1.29) 81.27 (2.10) 89.93 (1.22)
GPR-GNN 61.37 (0.96) 68.44 79.68 (0.50) 76.84 (1.69) 89.08 (0.39) 87.77 (1.31) 82.38 (1.60) 91.43 (0.89)
PP-GNN 61.42 (0.79) 69.28 80.04 (0.43) 78.25 (1.76) 89.71 (0.32) 89.52 (0.85) 85.23 (1.36) 92.89 (0.37)

Table 7: Results on Homophilic Datasets.

For AdaGNN and BernNet, we use the authors code and tune it over the hyperparameters as provided
in the paper. For ARMA, we use the official PyTorch Geometric implementation (see A.5.2). As a
sanity check, we also tested ARMA on the node classification datasets described in the paper and
were able to reproduce similar numbers.

A.5.4 COMPARISON AGAINST GENERAL FIR FILTERS

Instead of using a polynomial filter, we can use a general FIR filter (GFIR) which is described by
the following equation:

Z =

K∑
k=0

SkXHk

where S is the graph shift operator (which in our case is Ã), X is the node feature matrix and Hk’s
are learnable filter matrices. One can see GCN, SGCN, GPR-GNN as special cases of this GFIR
filter, which constrain the Hk in different ways.

We first demonstrate that constraint on the GFIR filter is necessary for getting improvement in
performance, particularly on heterophilic datasets. Towards this, we build two versions of GFIR:
one with regularization (constrained), and the other without regularization (unconstrained). We
ensure that that the number of trainable parameters in these models are comparable to those used in
PP-GNN. We provide further details of the versions of the GFIR models below and report the results
in Table 8 below:

10https://github.com/ivam-he/BernNet
11https://github.com/yushundong/AdaGNN

21

https://github.com/ivam-he/BernNet
https://github.com/yushundong/AdaGNN

Under review as a conference paper at ICLR 2022

• Unconstrained Setting: In this setting, we do not impose any regularization constraints
such as dropout and L2 regularization.

• Constrained Setting: In this setting, we impose dropouts as well as L2 regularization
on the GFIR model. Both dropouts and L2 regularization were applied on the Hk’s (the
learnable filter matrices from the above equation).

We also compare PP-GNN (the proposed model) as well as GPR-GNN to the General FIR filter
model (GFIR).

Train Acc /Test Acc Computers Chameleon Citeseer Cora Squirrel Texas Wisconsin
GFIR (Unconstrained) 78.39 (1.09) 51.71 (3.11) 75.83 (1.94) 87.93 (0.90) 36.50 (1.12) 73.24 (6.91) 77.84 (3.21)
GFIR (Constrained) 79.57 (2.12) 61.27 (2.42) 76.24 (1.43) 87.46 (1.26) 41.12 (1.17) 74.59 (4.45) 79.41 (3.10)

GPR-GNN 82.38 (1.60) 62.59 (2.04) 76.84 (1.69) 87.77 (1.31) 46.31 (2.46) 81.35 (5.32) 82.55 (6.23)
PP-GNN 85.23 (1.36) 67.74 (2.31) 78.25 (1.76) 89.52 (0.85) 56.86 (1.20) 89.73 (4.90) 88.24 (3.33)

Table 8: Comparing PP-GNN and GPR-GNN against the GFIR filter models.

We can make the following observation from the results reported in Table 8:

• Firstly, constrained GFIR performs better than the unconstrained version, with performance
lifts of up to ∼10%. This suggests that regularization is important for GFIR models.

• GPR-GNN outperforms the constrained GFIR version. It is to be noted that GPR-GNN
further restricts the space of graphs explored as compared to GFIR. This suggests that
regularization beyond simple L2/dropout kind of regularization (polynomial filter) is bene-
ficial.

• PP-GNN performs better than GPR-GNN. Our model slightly expands the space of graphs
explored (as compared to GPR-GNN, but lesser than GFIR), while retaining good perfor-
mance. This suggests that there is still room for improvement on how regularization is
done.

PP-GNN has shown one possible way to constrain the space of graphs while improving performance
on several datasets, however, it remains to be seen whether there are alternative methods that can do
even better. We hope to study and analyze this aspect in the future.

A.5.5 IMPLEMENTATION DETAILS

In this subsection, we present several important points that are useful for practical implementation
of our proposed method and other experiments related details. Our approach is based on adaptation
of eigen graphs constructed using eigen components. Following Kipf & Welling (2017), we use a
symmetric normalized version (Ã) of adjacency matrix A with self-loops: Ã = D̃−

1
2 (A + I)D̃−

1
2

where D̃ii = 1 + Dii, Dii =
∑
j Aij and D̃ij = 0, i 6= j. We work with eigen matrix and eigen

values of Ã.

To reduce the learnable hyper-parameters, we separately partition the low-end and high-end eigen
values into several contiguous bins and use shared filter parameters for each of these bins. The
number of bins, which can be interpreted as number of filters, is swept in the range [2, 3, 4, 5, 10, 20].
The orders of the polynomial filters are swept in the range [1, 10] in steps of 1. The number of EVD
components are swept in the range [32, 64, 128, 256, 512, 1024]. In our experiments, we set ηl = ηh
and we vary the ηl parameter in range (0, 1) and ηgpr = 1− ηl.
For optimization, we use the Adam optimizer (Kingma & Ba, 2015). We set early stopping to
200 and the maximum number of epochs to 1000. We utilize learning rate with decay, with decay
factor set to 0.99 and decay frequency set to 50. All our experiments were performed on a machine
with Intel Xeon 2.60GHz processor, 112GB Ram, Nvidia Tesla P-100 GPU with 16GB of memory,
Python 3.6, and PyTorch 1.9.0 (Paszke et al., 2019). We used Optuna (Akiba et al., 2019) to optimize
the hyperparameter search.

22

Under review as a conference paper at ICLR 2022

A.5.6 ADAPTABLE FREQUENCY RESPONSES

In Figure 2 of the main paper, we observe that PP-GNN learns a complicated frequency response
for a heterophilic dataset (Squirrel) and a simpler frequency response for a homophilic dataset (Cite-
seer). We observe that this trend follows for two other datasets Chameleon (heterophilic) and Com-
puter (homophilic). See Figure 9.

(a) Chameleon (b) Computer

Figure 9: Learnt Frequency Responses

A.5.7 DOES THE POLYNOMIAL INITIALIZATION MATTER FOR GIVING GOOD
PERFORMANCE?

In our experiments, we have varied the polynomial initialization schemes namely: [PPR, NPPR
and Random], as described in GPRGNN paper Chien et al. (2021). To understand whether
this polynomial initialization is important, we perform an ablative study to compare the various
initialization schemes. We observe that our model (PP-GNN) retains similar performance across
all initialization schemes. For brevity, we report results on six datasets (Cora, Citeseer, Squirrel,
Chameleon, Texas and Wisconsin). The results can be found in Table 9. Our experiment results
suggest that tuning polynomial initialization for each partition can indeed be avoided without
compromising on the performance.

Test Acc Chameleon Citeseer Cora Squirrel Texas Wisconsin
PP-GNN (NPPR) 66.73 (1.86) 78.41 (1.54) 89.52 (0.85) 57.93 (1.46) 88.38 (3.61) 87.25 (2.96)

PP-GNN (Random) 68.71 (2.47) 78.28 (1.70) 89.42 (0.98) 57.59 (1.56) 88.38 (3.48) 88.63 (2.58)
PP-GNN (PPR) 67.74 (2.31) 78.25 (1.76) 89.52 (0.85) 56.86 (1.20) 89.73 (4.90) 88.24 (3.33)

Best Performing Baselines
65.45 (1.17)

AdaGNN
78.15 (0.74)

ARMA
88.26 (1.32)*

TDGNN
53.50 (0.96)

AdaGNN
84.86 (6.77)*

H2GCN
86.67 (4.69)*

H2GCN

Table 9: Results for PP-GNN using different polynomial (gamma) initializations versus the best
performing baseline models. The names of the best performing baseline models are given right
below the test accuracy, in the ‘Best Performing Baselines’ row.

A.5.8 DOES THE MLP EVEN MATTER?

In PP-GNN there is a two layered MLP (that transforms the input node features) followed by a single
graph filtering layer similar to GPR-GNN.

To understand MLP’s significance, we ran an additional experiment, where we have used a single
linear layer, instead of the two layered MLP. We continue to observe competitive (with respect to our
original PP-GNN model) performance, across most datasets. The results can be found in Table 10.
Also, the two layer MLP is not the significant contributor towards performance. This can also be
seen by comparing GPR-GNN’s performance with that of LGC’s. LGC can be interpreted as a linear
version of GPR-GNN, and achieves comparable performance as GPR-GNN.

Note that PP-GNN (Linear) was not thoroughly trained as the PP-GNN (Original) due to time con-
straints. The hyperparameter ranges are explained right below the next paragraph.

23

Under review as a conference paper at ICLR 2022

Computers Chameleon Citeseer Cora Squirrel Texas Wisconsin
GPR-GNN 82.38 (1.60) 62.59 (2.04) 76.84 (1.69) 87.77 (1.31) 46.31 (2.46) 81.35 (5.32) 82.55 (6.23)
LGC 83.44 (1.77) 61.14 (2.07) 76.96 (1.73) 88.02 (1.44) 44.26 (1.49) 80.20 (4.28) 81.89 (5.98)
PP-GNN (Original) 85.23 (1.36) 67.74 (2.31) 78.25 (1.76) 89.52 (0.85) 56.86 (1.20) 89.73 (4.90) 88.24 (3.33)
PP-GNN (Linear) 84.27 (1.19) 67.88 (1.62) 77.86 (1.74) 88.43 (0.69) 55.11 (1.72) 85.58 (4.70) 86.24 (3.23)

Table 10: Comparision of Linear GPR-GNN and Linear PP-GNN with respect to other pertinent
baselines.

Table 10 above seems to suggest that PP-GNN (Linear) is competitive to PP-GNN (Original). We
believe the difference in performance is an artifact of inadequate tuning. We can infer that adding
MLP may give marginal improvements over the linear version. This phenomenon is also observed in
GPR-GNN. To illustrate this, we can compare GPR-GNN with LGC (linear version of GPR-GNN).
We can observe in the above table that GPR-GNN and LGC are comparable in performance.

For this additional set of experiments (Linear PP-GNN), due to time constraints, we have reduced
the ranges for several hyper-parameters of our model, while also reducing the number of Optuna
Trials to 50. These reduced ranges are as follows:

• Learning Rate: [0.003, 0.005]
• Weight Decay : [0.0001, 0.001]
• Dropout: [0.3, 0.5]
• Hidden Dims: [32, 64]
• Order of the Polynomial: [2, 4]
• No. of Partitions (Buckets): [2, 4]
• Number of Eigen Value: [256, 1024]
• η: Sampled uniformly between [0, 1] using Optuna

Despite this smaller hyper-parameters search space, we are only shy by a few percentage points on
the Texas dataset. We believe this difference can be recovered with thorough tuning.

A.6 TRAINING TIME ANALYSIS

In the following subsections, we provide comprehensive timing analysis.

Computational Complexity: Listed below is the computational complexity for each piece in our
model for a single forward pass. Notation n: number of nodes, |E|: the number of edges, A:
symmetric normalized adjacency matrix, F : features dimensions, d: hidden layer dimension, C:
number of classes, e∗ denotes the cost of EVD, K: polynomial order/hop order, l: number of
eigenvalues/vectors in a single partition of spectrum (for implementation, we keep l same for all
such intervals), m: number of partitions of a spectrum.

• MLP: O(nFd+ ndC)

• GPR-term: O(K|E|C) + O(nKC). The first term is the cost for computing AKf(X) for
sparse A. The second term is the cost of summation

∑
k A

kf(X).
• Excess terms for PP-GNN: O(mnlC). This is obtained by the optimal matrix multiplica-

tion present in Equation 3 of the main paper (Ui is n× l, Hi(γi) is l × l, Z0() is n× C).
The additional factorm is because we havem different contiguous intervals/different poly-
nomials. Note that typically n is much larger than l.

• EVD-term: e∗, the complexity for obtaining the eigenvalues/vectors of the adjacency
matrix, which is usually very sparse for the observed graphs. Most publicly available
solvers for this task utilize Lanczos’ algorithm (which is a specific case of a more general
Arnoldi iteration). However, the convergence bound of this iterative procedure depends
upon the starting vectors and the underlying spectrum (particularly the ratio of the absolute
difference of two largest eigenvalues to the diameter of the spectrum) [Saad (1980), LI

24

Under review as a conference paper at ICLR 2022

(2010), Cullum & Willoughby (2002)]. Lanczos’ algorithm is shown to be a practically
efficient way for obtaining extreme eigenpairs for a similar and even very large systems.
We use ARPACK’s built-in implementation to precompute the eigenvalues/vectors for
all datasets before training, thus amortizing this cost across training with different
hyper-parameters configuration.

Per Component Timing Breakup: In Table 11, we provide a breakdown of cost incurred in
seconds for different components of our model. Since the eigenpairs’ computation is a one time
cost, we amortize this cost over the total hyper-parameters configurations and report the effective
training time in the last column on of Table 11.

Average Training Time: In Table 12, we report the training time averaged over 100 hyper-
parameter configurations for several models. To understand the relative performance of our model
with respect to GCN, we compute the relative time taken and report it in Table 13. We can observe
in Table 13 that PP-GNN is ∼ 4x slower than GCN, ∼ 2X slower than GPR-GNN and BernNET,
and ∼ 2X faster than AdaGNN. However, it is important to note that in our average training time,
the time taken to compute K top and bottom eigenvalues/vectors is amortized across the number of
trials

Can we cut down the total training cost for PP-GNN? To study this, we analyzed the chosen
hyper-parameters for our 100 configurations experiments and prescribe below the new ranges for
hyperparameters. Reduced hyperparameters space:

• Learning Rate: [0.003, 0.005]

• Weight Decay : [0.0001, 0.001]

• Dropout: [0.3, 0.5]

• Hidden Dims: [32, 64]

• Order of the Polynomial: [2, 4]

• No. of Partitions (Buckets): [2, 4]

• Number of Eigen Value: [256, 1024]

• η: Sampled uniformly between [0, 1] using Optuna

We further restrict the total number of Optuna trials to 20. Note that as shown in Section A.5.7, our
model is insensitive to the polynomial initialization scheme. Hence we use ‘random’ initialization,
thereby reducing the number of hyperparameters even further. The total time taken by PP-GNN (in-
cluding the one-time cost for obtaining eigenpairs) for training (and performing hyperparameter op-
timization) over 20 hyper-parameter configurations is reported in Table 14. For comparison, we also
show the total training time for the 100 configurations experiments in Table 15 which too includes
the time taken to obtain min(n, 1024) eigenpairs. From Tables [14,15] we can observe that the
total training time has reduced by ∼ 5x. In Table 16, we can observe that even with the reduced
hyper-parameter range, our model performs competitively or better.

A.7 DISCREPANCIES IN PERFORMANCE BETWEEN DIFFERENT GCN IMPLEMENTATIONS

We tested three different implementations of GCN(s) (Kipf & Welling, 2017) provided by 1) Thomas
Kipf and Max Welling 12 (In TensorFlow), 2) The implementation13 of the authors of the GPR-GNN
paper (Chien et al., 2021) (in PyTorch), 3) The code base 14 publicly available at the OGBN-ArXiv
leader-board 15 (in PyTorch), on the OGBN-ArXiv dataset.

12https://github.com/tkipf/gcn
13https://github.com/jianhao2016/GPRGNN
14https://github.com/snap-stanford/ogb/tree/master/examples/

nodeproppred/arxiv
15https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv

25

https://github.com/tkipf/gcn
https://github.com/jianhao2016/GPRGNN
https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/arxiv
https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/arxiv
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv

Under review as a conference paper at ICLR 2022

PP-GNN Training Time EVD Cost Number of EV’s obtained Effective Training Time
Texas 11.89 0.00747 183 (All EVs) 11.89

Cornell 11.63 0.03271 183 (All EVs) 11.63
Wisconsin 12.08 0.01225 251 (All EVs) 12.08
Chameleon 21.44 3.71883 2048 21.48

Squirrel 31.38 15.8152 2048 31.54
Cora 22.46 54.3684 2048 23.01

Citeseer 20.51 56.9744 2048 21.08
Cora-Full 63.98 155.304 2048 65.53
Pubmed 52.54 256.71 2048 55.11

Computers 28.63 76.2738 2048 29.39
Photo 19.3 48.3683 2048 19.78
Flickr 161.16 304.114 2048 164.20
ArXiv 189.94 412.504 1024 194.06

WikiCS 27.92 65.4376 2048 28.57

Table 11: PP-GNN’s per component timing cost. Training Time refers to the end to end training
time (without eigen decomposition) averaged across 100 trials. EVD cost refers to the time taken to
obtain x top and bottom eigenvalues. This x can be found in the ‘Number of EV’s obtained’ column.
Since EVD is a one time cost, we average this cost over the total number of trials and add it to the
training time. We refer to this cost as the Effective Training Time.

Dataset GPR-GNN PP-GNN MLP GCN BernNet ARMA AdaGNN
Texas 9.27 11.89 1.08 3.46 5.59 6 13.97

Cornell 9.41 11.63 1.06 3.69 5.37 5.51 12.56
Wisconsin 9.67 12.08 1.07 3.42 5.69 5.36 13.57
Chameleon 14.69 21.48 2.6 6.42 12.46 7.84 28.77

Squirrel 18.94 31.54 5.04 7.52 17.82 28.87 90.36
Cora 12.9 23.01 1.95 5.94 12.25 10.67 22.15

Citeseer 10.62 21.08 3.72 4.56 9.52 19.5 35.34
Cora-Full 24.98 65.53 7.77 8.01 31.26 40.21 175.58
Pubmed 14 55.11 6.21 11.73 12.64 27.76 162.01

Computers 7.67 29.39 2.24 6.68 7.48 27.76 118.43
Photo 8.58 19.78 1.68 5.1 7.95 14.34 45.46
Flickr 42.64 164.20 21 30.4 62.11 119.3 178.7371
ArXiv 118.35 194.06 78.9 102.88 693.92 771.59 307.84

WikiCS 14.37 28.57 3.34 10.8 11.43 30.79 73.63

Table 12: Training Time (in seconds) across Models

Note that the authors of the leader-board code report a test accuracy of 71.74% on the OGBN-ArXiV
dataset. Extensive tuning was done on the Kipf and Welling implementation in order to match the
results of the leaderboard code. However, even after extensive hyper-parameter tuning, the test
accuracy increased to only 65.53%, which is still much lesser.

Two other implementations that we tested were: a) The GCN implementation from the authors
of the GPR-GNN paper (Chien et al., 2021) (in PyTorch) b) The leader-board implementation (in
PyTorch). The results for all the three implementations on the OGBN-ArXiv Dataset can be found
in Table 17.

26

Under review as a conference paper at ICLR 2022

Dataset GPR-GNN PP-GNN MLP GCN BernNet ARMA AdaGNN
Texas 2.68 3.44 0.31 1.00 1.62 1.73 4.04

Cornell 2.55 3.15 0.29 1.00 1.46 1.49 3.40
Wisconsin 2.83 3.53 0.31 1.00 1.66 1.57 3.97
Chameleon 2.29 3.35 0.40 1.00 1.94 1.22 4.48

Squirrel 2.52 4.19 0.67 1.00 2.37 3.84 12.02
Cora 2.17 3.87 0.33 1.00 2.06 1.80 3.73

Citeseer 2.33 4.62 0.82 1.00 2.09 4.28 7.75
Cora-Full 3.12 8.18 0.97 1.00 3.90 5.02 21.92
Pubmed 1.19 4.70 0.53 1.00 1.08 2.37 13.81

Computers 1.15 4.40 0.34 1.00 1.12 4.16 17.73
Photo 1.68 3.88 0.33 1.00 1.56 2.81 8.91
Flickr 1.40 5.40 0.69 1.00 2.04 3.92 5.88
ArXiv 1.15 1.89 0.77 1.00 6.74 7.50 2.99

WikiCS 1.33 2.65 0.31 1.00 1.06 2.85 6.82
Average 2.03 4.09 0.50 1.00 2.19 3.18 8.39

Table 13: Training Time of models relative to the training time of GCN

Dataset Chameleon Citeseer Computers Cora Cora-Full Photo Pubmed Squirrel Texas Wisconsin OGBN-ArXiv
Time 00:03:46 00:10:17 00:34:37 00:05:24 00:59:29 00:10:31 00:57:40 00:10:38 00:02:27 00:02:33 01:03:20

Table 14: End to end training time (HH:MM:SS) for optimizing over 20 hyperparameter configura-
tions

Besides different implementations of GCN(s), we find that batch normalization is done in the
implementation used in the GCN leader-board code. We see that (in Table 17) the performance
numbers vary depending on the implementation. Also, batch normalization helps to get nearly 2%
improvement for this dataset. Since we did not perform batch normalization in all our experiments
we find a performance gap of ∼ 2% for this dataset in results reported in our paper (against the
leader-board code).

We have also compared the GCN implementation from Kipf and Welling as well as the GCN imple-
mentation from the authors of the GPR-GNN across various datasets in Table 18.

We can see that both the TensorFlow and the PyTorch implementations lead to a similar performance
for most of the datasets. However, there are some differences in performance for some datasets
(Wisconsin, Cora-Full (PCA), OGBN-ArXiv, Computer and Photos). We have ensured that hyper-
parameters, preprocessing steps etc., are same across both these implementations. We believe that
these differences can be attributed to the different internal workings of TensorFlow and PyTorch.

A further study is required to understand where these gaps are coming from.

Note: In the main paper (in Tables [1, 2]), we report the results obtained on the GCN implementation
by the authors of the GPR-GNN paper.

27

Under review as a conference paper at ICLR 2022

Dataset Chameleon Citeseer Computers Cora Cora-Full Cornell Flickr Photo Pubmed Squirrel Texas Wikics Wisconsin OGBN-ArXiv
Time 01:23:24 01:21:26 01:51:41 01:30:31 04:03:35 00:44:00 03:39:57 01:15:25 03:24:29 01:59:20 00:44:03 00:41:04 00:46:58 05:06:5

Table 15: End to end training time (HH:MM:SS) for optimizing over 100 hyperparameter configu-
rations

Texas Squirrel Chameleon Cora-Full (PCA) OGBN-ArXiv Citeseer Pubmed Cora Photos (Amazon)
PP-GNN 85.14 (2.30) 59.15 (1.91) 69.10 (1.37) 60.93 (0.83) 69.1 77.87 (1.93) 89.43 (0.47) 88.87 (0.90) 92.18 (0.58)

Best Performing Baseline
84.86 (6.77)*
H2GCN

53.50 (0.96)
AdaGNN

65.45 (1.17)
AdaGNN

61.84 (0.90)
LGC

69.37
GCN

77.07 (1.64)*
H2GCN

89.59 (0.33)*
H2GCN

88.26 (1.32)
TDGNN

92.54 (0.28)
TDGNN

Table 16: Comparison of PP-GNN trained on a reduced hyper-parameter space against the best
performing baseline models. Note that the best performing baseline models are trained on the full
(original hyper-parameter set) and also for 100 Optuna Trials. The names of the best performing
baseline models are given below the value of the test accuracy, in the ‘Best Performing Baseline’
row.

OGBN-ArXiv Framework Batch Norm Test Accuracy
GCN (Kipf and Welling) TensorFlow True 65.84
GCN (Kipf and Welling) TensorFlow False 65.53

GCN (Leaderboard Code) PyTorch True 71.88
GCN (Leaderboard Code) PyTorch False 70.23

GCN (GPR-GNN) PyTorch True 71.05
GCN (GPR-GNN) PyTorch False 69.37

Table 17: GCN results with different implementations.

Texas Wisconsin Squirrel Chameleon Cornell Cora-Full (PCA) Ogbn-arxiv Citeseer Pubmed Cora Computer Photos
GCN (GPR-GNN, PyTorch) 59.73 (4.89) 58.82 (4.89) 47.78 (2.13) 62.83 (1.52) 60.00 (4.90) 59.63 (0.86) 69.37 76.47 (1.34) 88.41 (0.46) 87.36 (0.91) 82.50 (1.23) 90.67 (0.68)

GCN (Kipf and Welling, TensorFlow) 61.62 (6.14) 53.53 (4.73) 46.04 (1.61) 61.43 (2.70) 62.97 (5.41) 45.44 (1.01) 63.48 76.47 (1.33) 87.86 (0.47) 86.27 (1.34) 78.16 (1.85) 86.38 (1.71)

Table 18: Comparing different GCN implementations. (GPR-GNN implementation vs Kipf and
Welling Implementation)

28

	Introduction
	Related Works
	Problem Setup and Motivation
	Proposed Approach
	Piece-wise Polynomial/Spline Graph Filter Function
	Practical and Implementation Considerations
	Analysis

	Experiments
	RQ1: PP-GNN versus SOTA Models
	RQ2: Adaptable Frequency Responses
	RQ3: Performance comparison of Different Filters
	RQ4 - RQ6: Varying No. of EVs, Learned embedding and Timing Comparison

	Conclusion
	Reproducibility Statement
	Ethics Statement
	Appendix
	Code and Dataset
	Motivation
	Node Feature Indistinguishably Plots
	Effect of varying the order of the GPR-GNN Polynomial

	Fictitious Polynomial
	Proposed Approach
	Details regarding boundary regularization
	Notation Used
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Corollary 4.2.1

	Experiments
	Datasets
	Baselines
	Comparison against Additional Baselines
	Comparison against general FIR filters
	Implementation Details
	Adaptable Frequency Responses
	Does the Polynomial Initialization matter for giving good performance?
	Does the MLP even matter?

	Training Time Analysis
	Discrepancies in Performance between Different GCN Implementations

