
UAV-Flow Colosseo: A Real-World Benchmark for
Flying-on-a-Word UAV Imitation Learning

Xiangyu Wang1 2∗, Donglin Yang1 2∗, Yue Liao3 4∗, Wenhao Zheng1, Bin Dai2,
Wenjun Wu1 2, Hongsheng Li4, Si Liu1†

1Institute of Artificial Intelligence, Beihang University
2Hangzhou International Innovation Institute of Beihang University

3National University of Singapore 4MMLab, CUHK
{wangxiangyu0814,yangdonglin,liusi}@buaa.edu.cn,

30K Real-World Episodes
10K Simulation Episodes
3 Large-Scale Campuses

100+ Hours Recording

UAV Flow
Flying on a Word

Multiple	UAVs	&	Diverse	Envs

Synthetic	Evaluation Suite

Wide-Ranging	Flight	Skill	Tasks

Land on the left side of carFly around the tree ahead

Hover above the bridge Bypass the tree from right side

Teleoperation & Annotation

Manual
reviewFeedback

Pilot
operate

Figure 1: Overview of our UAV-Flow benchmark. It consists of a large-scale real-world dataset
for language-conditioned UAV imitation learning, featuring multiple UAV platforms, diverse en-
vironments, and a wide range of fine-grained flight skill tasks. To enable systematic experimental
analysis under the Flow task setting, we additionally provide a simulation-based evaluation protocol
and deploy VLA models on real UAVs. To the best of our knowledge, this is the first real-world
deployment of VLA models for language-guided UAV control in open environments.

Abstract

Unmanned Aerial Vehicles (UAVs) are evolving into language-interactive plat-
forms, enabling more intuitive forms of human-drone interaction. While prior
works have primarily focused on high-level planning and long-horizon navigation,
we shift attention to language-guided fine-grained trajectory control, where UAVs
execute short-range, reactive flight behaviors in response to language instructions.
We formalize this problem as the Flying-on-a-Word (Flow) task and introduce UAV
imitation learning as an effective approach. In this framework, UAVs learn fine-
grained control policies by mimicking expert pilot trajectories paired with atomic
language instructions. To support this paradigm, we present UAV-Flow, the first
real-world benchmark for language-conditioned, fine-grained UAV control. It in-
cludes a task formulation, a large-scale dataset collected in diverse environments, a
deployable control framework, and a simulation suite for systematic evaluation. Our
design enables UAVs to closely imitate the precise, expert-level flight trajectories of

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Start along the road,
turn left at the intersection,

fly across the bridge.
Then proceed to the end of the

road by following it to the right.

Instruction

Previous Aerial VLN Benchmark Real-world UAV-Flow Benchmark

Long-horizon Reasoning

High-level Planning

Fixed Action Sequence
Instruction

Fly to the left side of the nearest tree

Low-level Action

Expert Trajectory

Find the person across the river

Land on the right side of the streetlight

Circle around the person

Fly along the roadNot care about
motion path Focus on

Low-level control

Reactive Execution

Figure 2: Analysis of traditional UAV VLN and our Flow. Left: VLN tasks aim to reach distant
goals by planning long-horizon paths from instructions. Right: Flow focuses on executing short-range,
language-guided trajectories toward visually grounded targets within the current scene.

human pilots and supports direct deployment without sim-to-real gap. We conduct
extensive experiments on UAV-Flow, benchmarking VLN and VLA paradigms.
Results show that VLA models are superior to VLN baselines and highlight the
critical role of spatial grounding in the fine-grained Flow setting. As far as we are
aware, we present the first real-world deployment of a VLA system for language-
conditioned UAV control in open environments. Data, code, and real-world flight
demos are available on https://prince687028.github.io/UAV-Flow.

1 Introduction

Unmanned Aerial Vehicles (UAVs), as the most popular low-altitude flying platforms, offer new
perspectives for visual perception and assist humans in a wide range of tasks. With automated
control algorithms [1, 2, 3, 4], UAV operation has evolved from a skill requiring expertise to an
accessible, beginner-friendly technology. Today, a user can purchase a drone in the morning and
capture cinematic

footage by the afternoon. Beyond automation, the rise of large-scale AI models invites a new question:
"Can UAV manipulation become even more intuitive through language interaction?" Imagine simply
saying, “fly around me,” and the UAV understands and acts accordingly. This shift from automation
to intelligence marks a new frontier for human-drone interaction.

To enable language-interactive UAV control, recent research [5, 6, 7, 8, 9] has adapted vision-language
navigation (VLN) tasks from ground robots [10, 11, 12, 13, 14] to aerial platforms, typically using
simulated environments [15, 16] where UAVs interpret language instructions to search for targets
or reach distant destinations, as illustrated in Fig. 2. These efforts primarily focus on high-level
reasoning capabilities [17, 18, 19, 20] such as path planning and goal-directed navigation. They
assume that low-level control, which executes short atomic flight behaviors such as moving between
waypoints or responding to simple instructions, is already reliable for AI models. This assumption
often holds for ground robots, but not for UAVs, which face the complexities of 3D flight, including
high degrees of freedom and dynamic perspectives. Thus, language-guided low-level control emerges
as a critical yet underexplored direction toward enabling intelligent UAV systems.

To operationalize Flow, we formulate UAV imitation learning, where the UAV learns to execute
atomic language instructions by mimicking human pilot trajectories in real-world environments. As
illustrated in Fig. 1, we introduce UAV-Flow, a benchmark for imitation learning of UAV control
conditioned on language instructions, built around the Flow paradigm. It comprises a formal task
definition, the first real-world dataset for language-conditioned UAV imitation learning, a real-UAV-
deployable control framework, and a simulation suite for systematic evaluation.

To enable effective UAV imitation learning, we formulate the Flow task as mapping atomic language
instructions to executable UAV actions, grounded in two core capabilities: motion intent understand-
ing, which interprets low-level flight semantics (e.g., “move 5 meters at a 45-degree angle”), and
spatial context grounding, which links spatial references in language to visual observations (e.g., “fly

2

https://prince687028.github.io/UAV-Flow

Circle around the person
in clockwise direction

Travel through the street
lamp from the right side Land on the the platform ahead

Move back from the carHover above the fountain Fly close to the road sign

Approach

Surround

Retreat

Land

Hover

Pass
through

Figure 3: Visualization of Flow tasks. Given the same instruction, human pilots execute diverse
real-world trajectories. We show 2D flight paths over aerial scenes and reconstructed 3D trajectories.

to the right side of the marker”). Based on these capabilities, we define two corresponding task types
that separately evaluate motion-level and perception-grounded execution.

To accurately capture the flexible and diverse flight behaviors exhibited by expert pilots, we depart
from conventional simulator-based data collection paradigms and construct the UAV-Flow dataset
directly in real-world environments. To the best of our knowledge, this is the first real-world dataset
explicitly designed for language-conditioned UAV imitation learning. Moreover, it enables accurate
imitation and direct deployment without a sim-to-real gap. Data is collected by professional pilots
across three large-scale campus environments selected for their architectural diversity and spatial
complexity. During collection, pilots perform flights by following language instructions within
the visual context. We record synchronized UAV onboard video and corresponding 6-DoF state
trajectories, resulting in comprehensive language-vision-action sequences.

While UAV-Flow provides a real-world foundation, deploying large-scale models onboard remains
challenging. To address this, we propose a ground-drone collaborative framework, where the UAV
streams state and visual inputs to a ground station for inference and receives control feedback with
low latency impact. Additionally, to support systematic evaluation and controlled comparisons, we
construct a simulation-based dataset under the same Flow task formulation.

We establish a comprehensive baseline benchmark for UAV-Flow by adapting representative methods
from two paradigms: traditional VLN approaches [7, 10, 21] for high-level planning, and recent VLA
methods [22, 23] designed for reactive control. These baselines are systematically transferred and
evaluated under the Flow setting. Our experiments span both simulation and real-world deployments,
enabling controlled comparisons and practical assessments. Results show that VLA models consis-
tently outperform VLN models in fine-grained control, achieving more stable, deployable behaviors
that align with the demands of real-world UAV systems.

2 UAV-Flow Benchmark

We shift the research focus for language-interactive UAV control from traditional “flying far”
paradigms, which are centered on long-horizon path planning, toward “flying better”, which empha-
sizes short-range, fine-grained trajectory control. To realize this, we integrate an imitation learning
framework into UAV control, enabling more precise and refined flight behaviors by mimicking the
patterns of expert pilots. To support this paradigm, we introduce a large-scale, real-world benchmark
for language-conditioned UAV imitation learning. We formalize the task setting and introduce a
real-world dataset collected by professional UAV pilots, complemented by a simulation dataset for
systematic evaluation under the Flow paradigm.

3

2.1 Flow Task Definition

To explore the “flying better” problem, we formalize a task that aligns language instructions with
fine-grained, short-range flight execution, emphasizing visually grounded interactions and simple,
human-like maneuvers (e.g., orbiting or passing around obstacles). We introduce the Flying-on-a-
Word (Flow) task setting, which evaluates a UAV agent’s ability to translate language instructions
into precise and dynamically feasible flight actions. Each Flow task instance provides the UAV with
three modalities at every time step: a natural language instruction I, the UAV’s 6-DoF state St, and
an egocentric visual observation Ot. The agent is expected to generate UAV action sequence that
reflects the intent of the instruction while satisfying dynamic feasibility, thereby emulating maneuvers
characteristic of expert pilots. To this end, we define the policy function:

πθ : (St,Ot, I) 7→ at, (1)

where at denotes the low-level control action executed at time t. Over the full execution of the in-
struction, the agent produces a sequence of control actions: A = {a1, a2, . . . , aT }, which collectively
constitute the agent’s response to the given instruction I.

We identify two core capabilities essential for completing the Flow task: motion intent understanding
and spatial context grounding. The former refers to the UAV’s ability to interpret and execute
basic flight behaviors, while the latter involves integrating visual perception with scene semantics to
produce environment-aware trajectories.

Following this formulation, we define two instruction types: primitive motion commands and object-
interactive commands. Primitive commands (e.g., takeoff, translation, rotation, diving) evaluate the
agent’s ability to follow basic motion directives. Object-interactive commands (e.g., approaching,
orbiting, passing through, hovering) assess its capacity for perception-driven spatial reasoning. We
present illustrative examples of trajectories corresponding to representative instructions in Fig. 3.

2.2 Real-World Data Collection

This section outlines the data collection and annotation pipeline used to construct the UAV-Flow
dataset, as summarized in Fig. 4.

Stage1

Stage3

Stage2

Visual Frames

Trajectory

Language

Flow DatasetTemporal
Synchronization
6-DoF Alignment

Record
Review&Label

Figure 4: Real-world UAV data collection pipeline.

High-Quality Trajectory Collection. We collect a real-world language-conditioned UAV control
dataset to support the Flow task, focusing on precise execution, perceptual alignment, and behavioral
diversity. This data forms the foundation for subsequent instruction annotation and model training.

We conduct data acquisition across three university campuses spanning 5.02 km2. Each campus serves
as a compact urban environment containing varied semantic elements such as pedestrians, vehicles,
vegetation, buildings, and other landmarks, enabling rich visual contexts for diverse flight behaviors.
All flights are manually operated by certified UAV pilots, each with over 800 hours of experience.
We employ three commercial-grade DJI camera drones, Mavic 3T, Air 3S, and Mini 4 Pro, equipped
with 4K cameras and RTK GPS modules, which provide high-resolution first-person-view video and
centimeter-level trajectory accuracy, both of which are essential for trajectory reconstruction and
multimodal alignment.

To guide flight execution, we curate a set of instruction templates spanning two categories: (1)
primitive motion commands (e.g., takeoff, shift, rotate), and (2) object-interactive behaviors (e.g.,
“orbit around a car”, “hover beside a landmark”). Pilots operate exclusively from the UAV’s first-
person view to ensure consistency between recorded inputs and model perception.

4

To enhance behavioral diversity, each instruction is executed from multiple starting positions. For
example, the command “pass the car from the left” may begin from different relative angles, requiring
the pilot to adapt trajectories while preserving semantic intent. This strategy-level variation enriches
the dataset with functionally equivalent but visually diverse executions.

All flights are synchronously recorded with onboard video and complete flight logs, producing
high-fidelity trajectories paired with visual observations for downstream annotation and learning.

Trajectory-Visual Alignment. Aiming for precise matching between images and flight paths, we
synchronize raw flight logs with their corresponding aerial videos to construct frame-level pairs.
Using timestamps, we align each 6-DoF state, including GPS coordinates (latitude, longitude, altitude)
and orientation (roll, pitch, yaw), with the associated video frame via linear interpolation. For ease of
fine-grained trajectory control, we transform global GPS coordinates into a local Cartesian coordinate
system centered at the trajectory’s starting position. Relative orientation is also computed with respect
to the initial frame to capture heading dynamics. We uniformly sample the video at 5 Hz and pair
each frame with its aligned UAV state, resulting in a high-quality sequence of visual observations and
corresponding flight poses suitable for downstream learning and annotation.

Language Instruction Annotation. We organize a large-scale annotation team to review and label
the flight videos. Annotators first filter out video segments with ambiguous or incoherent flight
behavior. For the remaining valid clips, they compose precise and concise language instructions
that describe the UAV’s movement and its relation to the scene context. To enrich the diversity of
language instructions and support both fixed-form and open-form instruction understanding tasks, we
introduce a language diversification mechanism powered by large language models (LLMs). We first
construct a Fixed Command Set with standardized descriptions for each task category, e.g., all “side
traversal” tasks are labeled as “fly through the right side of the object.” We employ GPT series [24]
models to enrich the base instructions, thereby creating an Open Vocabulary Command Set that
includes diverse expressions.

Finally, we integrate language instructions, visual frames, and synchronized UAV flight states to
construct our comprehensive language-vision-action multimodal dataset, UAV-Flow, designed to
support fine-grained control tasks in real-world UAV scenarios.

2.3 Simulation Dataset under Flow Paradigm

To establish a unified evaluation benchmark, we follow the principles of Flow task and construct
a simulation dataset named UAV-Flow-Sim within a UE-based campus environment. We utilize
UnrealCV [16, 25] as the simulation environment for the UAV, controlling its motion through the
control interface provided by the simulator. This control scheme closely mimics the position-mode
control used in real-world UAV remote controllers, ensuring high fidelity to actual flight behavior.
Moreover, UnrealCV supports a variety of placeable and movable interactive objects (e.g., humans,
cars, quadruped robots), enabling the simulation of rich object interactions during data collection.

During the construction of the simulation dataset, we adopt a hybrid strategy. On one hand, human
pilots manually collect flight trajectories by actively locating landmarks in the simulated environment.
On the other hand, we leverage structured information available in simulation to implement rule-
based data collection. Specifically, the UAV can perform distance-constrained maneuvers guided
by its ground-truth state or using the target position within the scene to construct simulated data.
We follow the same standardized pipeline as real-world data collection to construct the simulation
dataset. Despite this, simulation environments still exhibit discrepancies from the real world in both
visual perception and flight control dynamics. Therefore, we primarily use simulated data in virtual
environments for model validation and analysis, while real-world UAV data is employed for training
and deploying models in real-world scenarios.

2.4 Data Analysis

We construct two datasets based on the Flow paradigm: the UAV-Flow real-world dataset and the UAV-
Flow-Sim simulation dataset. The real-world dataset contains 30692 flight trajectories categorized
into 8 major motion types, each exhibiting diverse trajectory patterns. The distribution of motion
types is shown in the left part of Fig. 5. We also provide a visual comparison between our dataset and
prior VLN [5] dataset, highlighting the key distinctions—the long-horizon, discrete actions, and non-

5

28%

6%

28%
14%

11%

6%
30K Real-World

Episodes

Fr
eq UAV-Flow

Distance/m 10K Simulation
Episodes

15%18%

20%

9%8%
7%

13%

UAV-Flow-SimFr
eq

Distance/m

d

UAV-FlowUAV VLN

Figure 5: Dataset statistics for UAV-Flow and UAV-Flow-Sim. We show the distribution of task
types (by percentage) and trajectory distances across both datasets.

dynamic simulation in traditional VLN tasks versus the short-range, fine-grained, and dynamically
realistic execution in Flow task. The UAV-Flow-Sim dataset includes 10109 trajectories, built by
referencing the typical actions in the real-world dataset and leveraging information accessible in
simulation environments. The motion type is presented on the right of Fig. 5. Given that the Flow
task emphasizes short-range, fine-grained control, most trajectories are within 20 meters in length,
as illustrated in the center of Fig. 5. Notably, due to the inclusion of instructions such as in-place
rotations, there remains a frequency of trajectories with near-zero displacement. Additionally, we
construct a simulation test set including 273 annotated trajectories, covering all major action types in
the simulation dataset, to facilitate systematic evaluation on the Flow task.

3 Flying-on-a-word (Flow) Colosseo

In this section, we introduce how to construct a Colosso—a unified “arena” for deploying and
comparing UAV control algorithms in both real-world and simulated environments. To this end, we
present a real-world UAV deployment strategy that enables large-scale model execution, along with a
simulation-based evaluation suite designed for systematic comparison within the same task setting.

3.1 Real-World Ground-Drone Collaborative Deployment of Large-Scale Models

Limited onboard compute makes it infeasible to deploy large models directly on UAVs. Unlike
stationary platforms, UAVs require lightweight, real-time control pipelines. As shown in Fig. 6,
we adopt a ground-drone collaborative strategy, where the UAV streams FPV video and state data
(via RTSP and MAVROS), and a ground station performs inference and returns low-level control
actions over a wireless link. This setup introduces perception-action latency, which is particularly
problematic for fast, continuous motion. Existing strategies include: (1) Stop-and-Infer, where the
UAV pauses during inference but breaks task continuity; and (2) Continuous Motion, where the UAV
continues moving but may suffer from delayed responses and control mismatch. To overcome these
limitations, we propose a Globally-Aligned Continuous Motion scheme with a look-ahead mechanism
for chunk-wise action prediction. Predicted target points are fused with the current UAV state to yield
global poses. We further filter out already-passed targets based on UAV motion delay, improving
control stability and execution accuracy under real-time constraints.

3.2 Closed-Loop Simulation Evaluation Metric

To evaluate the model’s capabilities on Flow tasks, we develop a closed-loop simulation testing
environment. We employ two metrics to evaluate the performance of baseline models: Success Rate
(SR) and Normalized Dynamic Time Warping (NDTW) [26]. For each evaluation, we record the
predicted trajectory and target point, render 2D and 3D visualizations, and determine the success rate

6

Wait until the
inference is completed

Model inference

(i) Stop-and-Infer Mode

Still in motion

Start inference
Inference complete

Correct direction

Actual movement
direction

(ii) Continuous Motion during Inference

Still in motion

Start inference
Inference complete

Look-ahead
mechanism

Backtrack

(iii) Globally-Aligned Continuous Motion

Get Image & State

Execute Actions

Inference

Inference
Get Image & State

Execute Actions

Get Image & State
Inference

Ground Station UAV

Ground Station
Server

Flight ControlMAVROS

GNSS RTK State
Info

Gimbal
Camera

FPV
Image

Action Sequence

Communication Link

(a) Fundamental Communication Framework (b) Temporal Communication Sequence

(c) UAV-Ground Station Interaction Scheme

State
estimate Input

InferenceExecute

Figure 6: Real-world UAV deployment of large-scale models. UAV streams visual input and state
to a ground station for inference, receiving control commands in return for real-time flight execution.

based on manual inspection of whether the trajectory semantically satisfies the instruction. Notably,
some trajectories may be considered semantically correct yet follow suboptimal or irregular paths. To
address this, we also compute NDTW to assess the similarity between the predicted and reference
trajectories. In our implementation, we represent each trajectory point as a 6D vector by concatenating
the position (x, y, z) with the cosine values of the orientation (roll, yaw, pitch), thereby capturing the
influence of both position and orientation.

4 Experiments

We present a comprehensive experimental analysis of the UAV-Flow benchmarks. We adapt recent
VLN and VLA methods to the Flow setting and evaluate them in the simulator. The selected methods
are validated on the real-world UAV-Flow dataset and demonstrate real UAV deployments.

4.1 Benchmark Methods

We build our UAV-Flow benchmark upon representative model paradigms from recent VLN and VLA
literature, and design task-specific adaptations to enable their effective use in UAV fine-grained control
scenarios. Given the task discrepancy, where VLN models are designed for long-horizon navigation
and VLA models for grounded robotic manipulation, we structurally modify and reconfigure these
models to meet the unique demands of the Flow setting. The resulting models form a unified and
extensible evaluation suite for benchmarking language-guided UAV imitation learning.

VLN Models. We first apply models originally designed for VLN tasks and adapt them to Flow
tasks. Specifically, we adopt Seq2Seq [10] and CMA [21] as classical base models. Seq2Seq is a
recurrent model that fuses image, instruction and previous action via a GRU to predict navigation
actions. CMA uses a bidirectional LSTM to jointly encode image, instruction and previous action,
and employs a cycle-attention mechanism to enhance performance. To adapt the models to our Flow
task, we modify their original classification-based outputs over fixed discrete actions into continuous
UAV pose regression. The resulting adapted versions are referred to as Seq2Seq-UAV and CMA-UAV.
We also adopt the Travel [7] model, which is built upon the MLLM architecture for processing
visual observations and textual inputs. By restructuring the input text to integrate both UAV state
information and language instructions, and modifying the output to directly predict UAV poses from
the fused feature, we obtain the adapted model termed Travel-UAV.

7

Move 4.0 meters at 30
degrees to the right.

Rotate 30 degrees
to the left.

Circle with a radius of 4.5
meters in the left direction.

Ascend to an altitude
of 7.0 meters.

Move to a position 2.5
meters from the dog.

Approach the car on
the right side.

Move back from the
building ahead.

Travel through the tree
from the left side.

Land on the front of
the sculpture.

Turn to face the person's
direction.

Figure 7: Comprehensive evaluation on the UAV-Flow-Sim dataset. We benchmark representative
VLN methods and VLA methods from robotic manipulation across 10 Flow task types, reporting
performance using the success rate (SR) metric.

VLA Models. We draw inspiration from recent advances in robotic manipulation and adopt Open-
VLA [22] and Pi-0 [23] as base VLA models for Flow task. For OpenVLA, we retain its single-frame
visual input design by feeding in the current image frame, while organizing the UAV state and
instruction into a unified text input. The action space is discretized into 256 tokens, and the model
predicts 6-DoF poses via token outputs. The adapted version is referred to as OpenVLA-UAV. For
Pi-0, which supports multi-frame inputs, we use the first frame of each task as a reference and
concatenate it with the current frame as visual input. The instruction and UAV state are encoded
separately, and the model outputs a 6-DoF action chunk using a flow matching [27] mechanism. The
adapted model is referred to as Pi-0-UAV. Further details of models are provided in Appendix B.

4.2 Results

We evaluate models on both the Fixed and Open Vocabulary Command Sets in a closed-loop
simulation environment, as shown in Fig. 7 and Fig. 8. We observe that the VLN models, Seq2Seq-
UAV and CMA-UAV, perform poorly on the Flow task. These models were originally designed
for VLN over a discrete action space. When adapted to pose-level regression, they struggle to
effectively fuse multimodal inputs for accurate pose prediction. Furthermore, due to their RNN-based
architecture, the predicted trajectories tend to inherit the previous motion direction, often resulting in
drifted or curved paths. These models also have difficulty predicting proper stopping points, causing
the agent to continue moving indefinitely even after reaching the intended goal. These issues can be
more clearly observed in trajectory visualizations in Appendix A.

Travel-UAV model differs from traditional VLN models by generating pose-level outputs directly from
current-frame visual inputs, making it more suitable for the Flow task. It demonstrates strong motion
intent understanding capabilities, effectively performing primitive motion instructions. However,
built upon the LLaMA-VID [28] architecture, it encodes vision into only 17 tokens, limiting its ability
to capture fine-grained visual semantics such as “turn to face the target”.

OpenVLA-UAV demonstrates strong spatial understanding and motion execution on the Flow task.
While it performs well in tasks requiring fine-grained motion control and visual grounding, its reliance
on single-frame visual input imposes limitations in certain scenarios—for example, it may struggle
to determine accurate stopping points when approaching specific sides of objects. Nevertheless, its
overall visual perception remains strong, as shown in Appendix A, where it continues flying through
two trees when failing to identify the termination condition.

Pi-0-UAV also demonstrates strong visual understanding and performs well in object-interactive
tasks. However, constrained by the flow-matching training paradigm, it exhibits relatively weaker

8

performance on fine-grained motion intent instructions, as the flexible specification of distances and
angles imposes higher demands on its semantic alignment capabilities—especially under limited
training data. Additionally, its denoising-based inference mechanism may introduce slight fluctuations,
compromising trajectory stability.

b) Open Vocabulary Command Seta) Fixed Command Set

Seq2Seq-UAV CMA-UAV Travel-UAV OpenVLA-UAV Pi-0-UAV

Land Pass

Retreat

Approach

Surround

Ascend / DescendRotate

Shift

Move

Turn

Land Pass

Retreat

Approach

Surround

Ascend / DescendRotate

Shift

Move

Turn

Figure 8: Comprehensive evaluation on the UAV-Flow-
Sim dataset based on the NDTW metric. The outer light
green area in the radar chart indicates object-interaction tasks,
while the orange area represents primitive motion tasks.

In summary, we observe that tradi-
tional VLN models are primarily de-
signed around fixed and long-horizon
action sequences, making them less
suitable for the Flow task. Travel-
UAV shares a similar paradigm with
VLA models by generating waypoints
from current visual inputs, but its lim-
ited capacity for fine-grained visual
understanding hinders its performance
in certain interactive tasks. In con-
trast, VLA models, originally devel-
oped for robotic manipulation tasks,
demonstrate strong visual understand-
ing and fine-grained control, leading
to better performance in Flow task.
Furthermore, we observe that training
with the open vocabulary command
set does not lead to an overall decrease in success rates for models like OpenVLA-UAV and Pi-0-UAV.
Instead, it enhances their language generalization and even improves performance on certain tasks.

4.3 Real-World Deployment

Due to the safety constraints of UAV flight and the variability of outdoor environments, it remains
challenging to adopt quantitative evaluation metrics in real-world scenarios. Nevertheless, we aim to
verify the deployability of our model under real-world conditions. To this end, we draw upon the
validation results from the simulation environment, and train the Pi-0-UAV model on the UAV-Flow
real-world dataset. Deployment is conducted via our proposed ground-drone collaborative framework.
The action chunk outputs of Pi-0-UAV integrate effectively with our look-ahead mechanism, enabling
smooth and delay-free continuous flight control. In Fig. 9, we present representative flight examples
and visualize the 3D trajectory sequences generated by the model, demonstrating its capability to
execute actions accurately in real-world conditions.

5 Related Work

Language-Guided UAV Tasks. Most existing language-guided UAV tasks fall under the VLN
paradigm [5, 6, 7, 29], adapting navigation strategies from ground agents and focusing on high-level
path planning. AerialVLN [5] provides sequential instructions for navigating long trajectories using
discrete actions (e.g., move forward, ascend). CityNav [6] shifts toward goal-directed search but still
relies on fixed action sets and long-range plans. Travel [7] introduces waypoint-level supervision

Figure 9: Visualization of real-world UAV flight demos. We deploy Pi-0-UAV, trained on UAV-Flow,
on a real UAV and visualize the resulting flight trajectories alongside third-person dynamic views.

9

for more realistic control but still depends on external assistance for extended tasks. In contrast,
language-guided low-level UAV control, which focuses on how UAVs react in real time to simple,
fine-grained commands, remains underexplored. To address this gap, we propose the Flow task,
which studies dynamic, low-level UAV behaviors grounded in natural language.

Simulation vs. Real-World UAV Datasets. Simulation environments [15, 16, 25, 30] are widely
used in UAV research for their low cost, controllability, and ease of annotation. However, most UAV
VLN datasets ignore flight dynamics, often collecting data from fixed drone positions. Some works
simulate continuous motion using Unreal Engine with plugins like AirSim [15] or UnrealCV [16],
but these setups still lack realistic flight dynamics and complex scenes. Meanwhile, real-world UAV
datasets mainly focus on perception tasks [31, 32, 33, 34, 35], with limited work on language-driven
dynamic control. To fill this gap, we collect a real-world language-vision-action dataset under the
proposed Flow task and build a simulation system for controlled evaluation and benchmarking.

6 Conclusion

In this work, we introduce UAV-Flow, a novel benchmark designed to explore how imitation learning
can enable UAVs to interpret language instructions and execute fine-grained dynamic motions. To
support this effort, we collect a real-world dataset with 30k flight trajectories, covering a diverse range
of motion types and environmental conditions. We further propose a ground-drone collaborative
deployment framework that enables an end-to-end pipeline from data collection to model training
and real-world UAV deployment. Additionally, we develop a complementary closed-loop simulation
suite to facilitate systematic evaluation of model performance on the Flow task.

Limitations. Several limitations remain and warrant further exploration. On one hand, due to
practical constraints such as flight safety and environmental variability, it remains challenging to
conduct systematic real-world experiments and establish consistent evaluation metrics. In future
work, we aim to develop a safer and fully closed-loop real-world evaluation framework to support
comprehensive performance assessments. On the other hand, our current efforts primarily focus on
short-range motion control within visual range. Integrating fine-grained short-range execution with
long-horizon planning is a key challenge toward building truly intelligent, language-driven UAV
systems, and will be a major direction for future research.

Acknowledgements This work was supported in part by the National Key R&D Pro-
gram of China (No. 2022ZD0115502), the National Natural Science Foundation of China
(No. 62461160308, U23B2010), the “Pioneer” and “Leading Goose” R&D Program of Zhejiang
Province (No. 2024C01161), and the Ningbo Science and Technology Innovation 2025 Major Project
(No. 2025Z034). It was also partially supported by the NSFC-RGC Project (No. N_CUHK498/24).

References
[1] Lun Quan, Luxin Han, Boyu Zhou, Shaojie Shen, and Fei Gao. Survey of uav motion planning. IET

Cyber-systems and Robotics, 2(1):14–21, 2020.

[2] Xin Zhou, Zhepei Wang, Hongkai Ye, Chao Xu, and Fei Gao. Ego-planner: An esdf-free gradient-based
local planner for quadrotors. IEEE Robotics and Automation Letters, 6(2):478–485, 2021.

[3] Xin Zhou, Jiangchao Zhu, Hongyu Zhou, Chao Xu, and Fei Gao. Ego-swarm: A fully autonomous and
decentralized quadrotor swarm system in cluttered environments. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 4101–4107, 2021.

[4] Vladyslav Usenko, Lukas Von Stumberg, Andrej Pangercic, and Daniel Cremers. Real-time trajectory
replanning for mavs using uniform b-splines and a 3d circular buffer. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 215–222. IEEE, 2017.

[5] Shubo Liu, Hongsheng Zhang, Yuankai Qi, Peng Wang, Yanning Zhang, and Qi Wu. Aerialvln: Vision-
and-language navigation for uavs. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 15384–15394, October 2023.

[6] Jungdae Lee, Taiki Miyanishi, Shuhei Kurita, Koya Sakamoto, Daichi Azuma, Yutaka Matsuo, and
Nakamasa Inoue. Citynav: Language-goal aerial navigation dataset with geographic information. arXiv
preprint arXiv:2406.14240, 2024.

10

[7] Xiangyu Wang, Donglin Yang, Ziqin Wang, Hohin Kwan, Jinyu Chen, Wenjun Wu, Hongsheng Li, Yue
Liao, and Si Liu. Towards realistic uav vision-language navigation: Platform, benchmark, and methodology.
arXiv preprint arXiv:2410.07087, 2024.

[8] Yunpeng Gao, Chenhui Li, Zhongrui You, Junli Liu, Zhen Li, Pengan Chen, Qizhi Chen, Zhonghan Tang,
Liansheng Wang, Penghui Yang, et al. Openfly: A versatile toolchain and large-scale benchmark for aerial
vision-language navigation. arXiv preprint arXiv:2502.18041, 2025.

[9] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. Vision-and-dialog navigation.
In CRL, 2020.

[10] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-grounded
navigation instructions in real environments. In CVPR, 2018.

[11] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Think global, act
local: Dual-scale graph transformer for vision-and-language navigation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 16537–16547, June 2022.

[12] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural language
navigation and spatial reasoning in visual street environments. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12538–12547, 2019.

[13] Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room: Multi-
lingual vision-and-language navigation with dense spatiotemporal grounding. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4392–4412, 2020.

[14] Muhammad Zubair Irshad, Chih-Yao Ma, and Zsolt Kira. Hierarchical cross-modal agent for robotics
vision-and-language navigation. In 2021 IEEE international conference on robotics and automation
(ICRA), pages 13238–13246. IEEE, 2021.

[15] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In Marco Hutter and Roland Siegwart, editors, Field and Service
Robotics, pages 621–635, Cham, 2018. Springer International Publishing.

[16] Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao, Tae Soo Kim, and Yizhou Wang.
Unrealcv: Virtual worlds for computer vision. In Proceedings of the 25th ACM International Conference on
Multimedia, MM ’17, page 1221–1224, New York, NY, USA, 2017. Association for Computing Machinery.

[17] Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language navigation
with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pages 7641–7649, 2024.

[18] Gengze Zhou, Yicong Hong, Zun Wang, Xin Eric Wang, and Qi Wu. Navgpt-2: Unleashing navigational
reasoning capability for large vision-language models. In European Conference on Computer Vision, pages
260–278. Springer, 2024.

[19] Xinshuai Song, Weixing Chen, Yang Liu, Weikai Chen, Guanbin Li, and Liang Lin. Towards long-horizon
vision-language navigation: Platform, benchmark and method. arXiv preprint arXiv:2412.09082, 2024.

[20] Bingqian Lin, Yunshuang Nie, Ziming Wei, Jiaqi Chen, Shikui Ma, Jianhua Han, Hang Xu, Xiaojun Chang,
and Xiaodan Liang. Navcot: Boosting llm-based vision-and-language navigation via learning disentangled
reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

[21] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-graph:
Vision-and-language navigation in continuous environments. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages 104–120, Cham, 2020.
Springer International Publishing.

[22] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source vision-language-action
model. arXiv preprint arXiv:2406.09246, 2024.

[23] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow model for general
robot control. arXiv preprint arXiv:2410.24164, 2024.

11

[24] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

[25] Fangwei Zhong, Kui Wu, Churan Wang, Hao Chen, Hai Ci, Zhoujun Li, and Yizhou Wang. Unrealzoo:
Enriching photo-realistic virtual worlds for embodied ai. arXiv preprint arXiv:2412.20977, 2024.

[26] Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie, and Jason Baldridge. General evaluation for
instruction conditioned navigation using dynamic time warping. In Visually Grounded Interaction and
Language (ViGIL), NeurIPS 2019 Workshop, 2019.

[27] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In The Eleventh International Conference on Learning Representations, 2023.

[28] Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
models. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol,
editors, Computer Vision – ECCV 2024, pages 323–340, Cham, 2025. Springer Nature Switzerland.

[29] Fanglong Yao, Yuanchang Yue, Youzhi Liu, Xian Sun, and Kun Fu. Aeroverse: Uav-agent benchmark
suite for simulating, pre-training, finetuning, and evaluating aerospace embodied world models. arXiv
preprint arXiv:2408.15511, 2024.

[30] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In IROS, 2004.

[31] Dawei Du, Pengfei Zhu, Longyin Wen, Xiao Bian, Haibin Lin, Qinghua Hu, Tao Peng, Jiayu Zheng,
Xinyao Wang, Yue Zhang, et al. Visdrone-det2019: The vision meets drone object detection in image
challenge results. In Proceedings of the IEEE/CVF international conference on computer vision workshops,
pages 0–0, 2019.

[32] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Learning social etiquette:
Human trajectory understanding in crowded scenes. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14, pages 549–565.
Springer, 2016.

[33] Bing Cao, Haiyu Yao, Pengfei Zhu, and Qinghua Hu. Visible and clear: Finding tiny objects in difference
map. In European Conference on Computer Vision, pages 1–18. Springer, 2024.

[34] UT Benchmark. A benchmark and simulator for uav tracking. In European conference on computer vision,
volume 7, 2016.

[35] Pengfei Zhu, Tao Peng, Dawei Du, Hongtao Yu, Libo Zhang, and Qinghua Hu. Graph regularized flow
attention network for video animal counting from drones. IEEE Transactions on Image Processing,
30:5339–5351, 2021.

12

A Trajectory Visualization of Experimental Results

As shown in Fig. 10, We project the flight trajectories onto a 2D plane from a bird’s-eye view and
visualize examples for both object-interactive and primitive motion tasks. Overall, Seq2Seq-UAV and
CMA-UAV struggle to interpret the motion semantics of the instructions, while Travel-UAV appears
to learn fixed instruction-action mappings. In contrast, OpenVLA-UAV and Pi-0-UAV demonstrate
stronger visual perception and motion capabilities, achieving more accurate instruction execution.

llamaua
v

OpenVLA-UAV Pi-0-UAVCMA-UAV Travel-UAVSeq2Seq-UAV

“Approach to the
person from

the left side”

“Pass through
the tree from

the right side”

“Move 2.0 meters
at 15 degrees

to the right”

Can't stop

Overfitting
paradigm

If the starting point is to the left of the target, a straight-line flight is sufficient to fulfill the instruction.

Can't stop

Incorrect
end-point
estimation

Just go straight

Pass from the right side and return to the prior path.

Unstoppable
straight path

Can't change
direction

Insufficient
spatial

awareness

Continue to
pass the
next one

Pass and
return

Can't stop and
wrong direction

Can't stop
Slight distance

deviation
Positional and
angular error

Accurate
motion

Move the required distance in the direction of the instruction.

“Circle with a radius
of 4.0 meters in the

right direction”
Motion

misaligned

Motion
misaligned Well Aligned Well Aligned

Slight Deviation

Execute a full orbit around the target at a specified radius.

Figure 10: Visualization of experimental trajectories. We show representative examples from two
categories: blue trajectories correspond to object-interactive tasks, while red trajectories illustrate
primitive motion tasks.

B Model Structure

As shown in Fig. 11, We adapt and modify existing VLN and VLA models in detail to support the
proposed Flow task.

For the Seq2Seq and CMA models, we replace their original discrete action classification outputs
with continuous UAV pose regression. We also restructure the dataloader to match this formulation
and adopt an MSE loss for training. While we experiment with incorporating the current UAV
state (position and orientation of the UAV relative to the coordinate system of the first frame) as
an additional encoded input concatenated with image and language features, we find that this leads
to worse trajectory performance. As a result, we retain the original input design and construct the
adapted versions named Seq2Seq-UAV and CMA-UAV.

For the Travel model, we preserve its visual encoder and modify the text input to integrate both UAV
state and language instruction into a unified prompt. We also fine-tune the prompt template as shown
in Fig. 12. On the output side, we modify the model to directly generate a sequence of 6-DoF UAV
poses, resulting in Travel-UAV.

13

MLLM Encoder

<special token>

LoRA waypoint

feature

MLP

ImageState + Instruction 6-DoF
UAV Pose

VLM Encoder

Text Tokenizer

LoRA

First
frame State

State
Encoder

Action Expert

Vision Encoder

Current	
frame Instruction

Text Tokenizer Vision Encoder

Chunk-wise
6-DoF UAV Pose

MLLM Encoder

Text Tokenizer

LoRA

Vision Encoder

State + Instruction

6-DoF UAV Pose

Image

Action De-Tokenizer

Seq2Seq / CMA Encoder

Vision
Encoder

Text
Encoder

Prev action
Encoder

State
Encoder

MLP

Image Instruction Previous
action

RNN State

6-DoF
UAV Pose

a) Seq2Seq-UAV/CMA-UAV

c) OpenVLA-UAV d) Pi-0-UAV

b) Travel-UAV

Figure 11: Adapted model architectures. We modify representative VLN and VLA models to
support the requirements of Flow tasks.

In: Current State: {state},
What action should the uav take to {instruction} ?

Out:

OpenVLA-UAV Prompt

A chat between an user and an intelligent UAV agent. The agent output the UAV
pose according to the user's instructions.
USER:

Current state: {state}
Current image: <image>
Instruction: {instruction}

AGENT:

Travel-UAV Prompt

Figure 12: Prompt templates for different models. We illustrate how prompt formats are structured
for OpenVLA-UAV and Travel-UAV.

For the OpenVLA model, we align the data format with its original setup used for robotic manip-
ulation, and incorporate both state and instruction information as the textual input as illustrated
in Fig. 12. This differs from the original design that used only instruction input. We maintain its
single-frame visual input design and preserve the discrete 256-token-based prediction format for
UAV poses prediction. This adapted version is referred to as OpenVLA-UAV.

For the Pi-0 model, we preserve its multi-frame visual input paradigm. Although the original Pi-0
uses multi-view images, our dataset contains only UAV FPV images. We address this by treating
the first frame as a "reference frame" and combining it with the current frame for multi-frame input,
suitable for short-range tasks. Additionally, we retain Pi-0’s language and state encoders and train the
model using the flow matching paradigm with a chunk size of 10. The resulting version is denoted as
Pi-0-UAV.

C Training Implementation

We design a corresponding training strategy for each baseline model, minimising changes to the
training settings in the original paper to ensure fairness and validity of the comparison.

14

Parameter Value
Batch Size 32
Epochs 10
Learning Rate 1e-4
GPU 1 × RTX 4090

Table 1: Seq2Seq-UAV and CMA-UAV training
config.

Parameter Value
Epochs 2
Batch Size 32
Max Learning Rate 5e-4
LoRA True
LoRA Rank 32
GPU 8 × A100

Table 2: Travel-UAV training config.

Parameter Value
Batch Size 32
Learning Rate 5e-4
LoRA True
LoRA Rank 32
Max Training Steps 200000
GPU 8 × A100

Table 3: OpenVLA-UAV training config.

Parameter Value
Batch Size 16
Epochs 12
Learning Rate 5e-5
LoRA Enabled True
LoRA Rank 32
Horizon Steps 10
GPU 8 × RTX 4090

Table 4: Pi-0-UAV training config.

D Inference Latency of Models

We measure the inference time of different models, covering the full pipeline from image input
processing to trajectory generation. This provides a comprehensive reflection of the models’ latency
in real-world deployment. Notably, we set the Pi-0-UAV model to output an action chunk size of 10,
allowing it to predict actions for 10 future time steps per inference.

Model Inference Latency (s)
Seq2Seq-UAV 0.057
CMA-UAV 0.067
Travel-UAV 0.188
OpenVLA-UAV 0.172
Pi-0-UAV 0.289

Table 5: Inference latency of different models.
Average forward-pass time on a RTX 4090 GPU.

Figure 13: UAV deployment plat-
form in real-world operation.

E UAV Hardware Setup

The UAV deployment platform is equipped with a complete set of hardware components, featuring a
wheelbase of 600 mm and a payload capacity of approximately 3.7 kg. It integrates a LiDAR sensor
and a gimbal camera for environmental perception. To achieve high-precision localization, the system
includes an RTK module, a GPS module, and a dual-antenna GNSS setup. Onboard computation
is powered by an NVIDIA Jetson Orin NX module, which supports the execution of lightweight
models and flight control. RTK communication and the deployment of larger models are managed
via a mobile ground station equipped with high-performance computing capabilities.

F Details of the Continuous Motion Scheme

Globally-Aligned Continuous Motion Scheme. As illustrated in Fig. 6, our model predicts future
flight trajectories as relative displacements with respect to the drone’s local coordinate system at
the current time step. To guarantee spatial consistency and enable accurate long-horizon planning,
we establish a global coordinate system anchored at the drone’s initial position and orientation.

15

This global coordinate system provides a fixed spatial reference throughout the flight, allowing all
predicted trajectories to be interpreted within a consistent coordinate frame.

At inference time, the drone’s current pose is transformed into this global coordinate system, and the
predicted relative displacements are accumulated accordingly. This design ensures that the planned
trajectory remains precisely aligned with the drone’s true motion history, maintaining global spatial
coherence across time steps and mitigating drift or accumulated prediction errors.

Look-Ahead Mechanism. To further improve robustness during inference, we incorporate a look-
ahead mechanism. As the drone moves forward, it may have already traversed certain predicted
waypoints from earlier planning stages. To avoid redundant execution of these past waypoints, we
employ a heuristic filtering strategy that dynamically discards the traversed ones, while retaining only
the meaningful future targets. This mechanism enhances the smoothness and temporal continuity of
the drone’s motion, leading to more stable and efficient trajectory tracking in dynamic environments.

G Human Annotation and Flight Labor Cost

To support high-quality data collection and annotation, we hire experienced UAV pilots and profes-
sional annotators. Each pilot is responsible for operating UAVs in complex environments, executing
flight instructions in Flow tasks. Annotators are tasked with reviewing, verifying, and correcting
video-instruction pairs to ensure semantic alignment and accuracy. We pay both UAV pilots and
annotation personnel $100 per hour. This rate is aligned with industry practices for skilled technical
labor in robotics and machine learning data pipelines.

H Ethical Considerations

Privacy Protection in Data Collection. Prior to data collection, we obtained formal approval from
campus administrators to ensure that the recording of buildings and environmental elements was
fully authorized. During the collection process, we deliberately selected sparsely populated areas and
avoided capturing bystanders or students to minimize the risk of inadvertent privacy exposure. In post-
processing, all recorded images were carefully reviewed, and any potentially sensitive content—such
as identifiable human faces, vehicle license plates, or signposts—was anonymized using standard
blurring techniques. From the Supplementary Materials, all demo videos have undergone such
blurring to safeguard personal privacy. The same anonymization procedure was applied consistently
to all collected data to ensure responsible handling and compliance with privacy standards.

Broader Impact and Misuse Prevention. We acknowledge the potential risks associated with
UAV technologies, including misuse for surveillance, military operations, or harassment. While our
research focuses on advancing language-conditioned UAV control to improve intuitive human-drone
interaction—primarily for applications such as aerial photography, inspection, and cinematogra-
phy—the risks mentioned are general to UAV operation and not specific to our system. Nevertheless,
to promote ethical alignment, we explicitly state that the released dataset and methods are intended
solely for academic and non-commercial research. Appropriate license restrictions and usage guide-
lines will be included to prohibit any use for malicious or unethical purposes. We remain committed
to responsible data stewardship and will continue to address community concerns related to data
ethics and societal impact.

16

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the following sections, we systematically present: (1) the formal definition
and motivation of the Flow task, (2) the construction of the UAV-Flow dataset, (3) the
proposed real-world deployment strategy, and (4) a closed-loop simulation framework
for evaluation. We also provide extensive results from both simulation and real-world
experiments. These align well with the contributions stated in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses its limitations and potential future directions in the
conclusion. Specifically, we highlight the need for a standardized and safe real-world
evaluation framework for UAVs, as well as the importance of integrating low-level control
with high-level planning.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

17

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not involve theoretical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release the training and testing data, simulation environment, and detailed
training configurations of our models, ensuring that all experiments in this paper are fully
reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

18

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-source all data, simulation and testing environments, and model
training procedures to support the reproducibility of our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We use publicly available models as baselines and provide detailed training
configurations in the appendix. Both the training and test sets are fixed to ensure fair and
consistent evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report only the average performance on test results without applying
statistical significance testing.

Guidelines:

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details about the computational resources required for model
training in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the ethics guidelines and ensured that our research
complies with them.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

20

https://neurips.cc/public/EthicsGuidelines

Justification: In our paper, we propose that this task will advance the development of
intelligent UAVs and enhance human-UAV interaction capabilities.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not include the release of high-risk components and therefore
does not require specific safeguards for responsible release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly cited all original papers corresponding to the models used in
our work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

21

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, all new assets introduced in the paper are thoroughly documented, and
the documentation is provided alongside the released assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Yes, for drone pilots and instruction annotators, we have specified the compen-
sation provided in the appendix, which is $100 per hour.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study does not include human subject experiments.

22

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is not a core component of methods in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	UAV-Flow Benchmark
	Flow Task Definition
	Real-World Data Collection
	Simulation Dataset under Flow Paradigm
	Data Analysis

	Flying-on-a-word (Flow) Colosseo
	Real-World Ground-Drone Collaborative Deployment of Large-Scale Models
	Closed-Loop Simulation Evaluation Metric

	Experiments
	Benchmark Methods
	Results
	Real-World Deployment

	Related Work
	Conclusion
	Trajectory Visualization of Experimental Results
	Model Structure
	Training Implementation
	Inference Latency of Models
	UAV Hardware Setup
	Details of the Continuous Motion Scheme
	Human Annotation and Flight Labor Cost
	Ethical Considerations

