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Abstract—Few-shot image classification(FSIC) aims to recog-
nize novel classes given few labeled images from base classes. Re-
cent works have achieved promising classification performance,
especially for metric-learning methods, where a measure at only
image feature level is usually used. In this paper, we argue
that measure at such a level may not be effective enough to
generalize from base to novel classes when using only a few
images. Instead, a multi-level descriptor of an image is taken for
consideration in this paper. We propose a multi-level correlation
network (MLCN) for FSIC to tackle this problem by effectively
capturing local information. Concretely, we present the self-
correlation module and cross-correlation module to learn the
semantic correspondence relation of local information based
on learned representations. Moreover, we propose a pattern-
correlation module to capture the pattern of fine-grained images
and find relevant structural patterns between base classes and
novel classes. Extensive experiments and analysis show the
effectiveness of our proposed method on four widely-used FSIC
benchmarks.

Index Terms—Few-shot image classification; Metric Learning;

I. INTRODUCTION

Inspired by the human ability to recognize novel con-
cepts from few images, few-shot image classification (FSIC)
has attracted the interest of many researchers. FSIC aims
to classify unlabeled images from novel classes given only
few labeled images based on the trained model from base
classes [1–5]. Compared with traditional image classification
tasks, the biggest challenge of FSIC is that the label spaces
of base and novel classes are inconsistent, i.e., the labels
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Fig. 1. 5way 1shot and 5shot performance on different background(BG)
and foreground(FG) using two backbones of Conv4 and ResNet12 ProNet on
miniImagenet datasets.

of novel classes are not seen by base classes [6]. Most
works have been proposed to solve the problem and are
categorized, mainly divided into fine-tuning, meta-learning
and metric-learning methods. Fine-tuning methods [7, 8] use
non-episode training paradigm (pre-training + test-tuning) to
learn novel classes. Meta-learning methods [1, 9] use the bi-
level optimization with episodic-training paradigm. Metric-
learning methods [2–4] also use episodic training but use
distances to recognize novel classes in the embedding space.
In this paper, we consider metric-learning method because it
is simple and effective.

Recently, metric-learning methods have achieved excellent
performance by comparing the similarities (or distances) be-
tween the unlabeled (query set) and labeled (support set)



images in the embedding space. However, the similarity is
calculated using only the global information of images. If base
and novel classes have the distribution shift, the performance
of the trained model degrades. The main reason is that images
from the same class tend to share similar backgrounds, which
may cause them to be close to each other in the metric space.
The transferability of the model trained on base classes be-
comes worse, when novel classes have different backgrounds
from the base classes. We give a example in Fig. 1 to show
our motivation that the background is harmful. It can be
observed that under any condition, removing the background
consistently leads to improved performance. To alleviate the
influence of image background, the main challenge of metric-
learning methods is how to effectively capture the local
information, such as the foreground of the image, on top of
the global information.

To solve the challenge, in this paper, we propose a multi-
correlation network (MLCN) to learn enough local informa-
tion. Specifically, we present the self-correlation module and
cross-correlation module to learn the semantic correspondence
relations of local information based on the learned represen-
tation. Inspired by the way that human beings tend to instinc-
tively focus on the most relevant areas of a pair of labeled
and unlabeled images when trying to recognize a sample from
an unseen class using only a few images [10], we proposed
a pattern-correlation module to capture the regions of fine-
grained images and find relevant structural patterns between
base classes and novel classes. The proposed MLCN combines
the three correlation modules to improve the transferability
of learned representations and learn enough local information
to generalize to novel classes. Experiments on four standard
benchmark datasets demonstrate that the proposed MLCN can
effectively improve FSIC accuracy.

Contributions. To summarize, our contributions are:
• We verify that removing background consistently leads to

the performance consistently and significantly improved.
By taking this into consideration, we propose a multi-
level correlation network (MLCN).

• We present the self-correlation module and cross-
correlation module to learn the semantic correspondence
relation of local information. Moreover, we propose the
pattern-correlation module to capture the relevant struc-
ture of fine-grained images.

• Experiments and analysis on four standard benchmarks
show that our method achieves the state of the art
and ablation studies validate the effectiveness of three
correlation modules.

II. RELATED WORK

Few-shot image classification. Few-shot image classifi-
cation (FSIC) aims to recognize unlabeled images from the
novel classes given few labeled images by transferring the
knowledge from the base classes. To solve this problem,
researchers have proposed various methods, such as fine-
tuning, meta-learning, and metric-learning methods. Fine-
tuning methods [7? , 8] are also called non-episode meth-

ods. These methods generally follow the standard transfer
learning procedure, consisting of two phases, i.e., pre-training
with base classes and test-tuning with novel classes. Meta-
learning methods [1, 9] adopt a learning-to-learn paradigm
to transfer the knowledge from the base classes to the novel
classes. Metric-learning methods [2–4] employ a learning-
to-compare paradigm to learn representations that can be
transferred between the base and novel classes. In this paper,
our proposed method belongs to the metric-learning methods.

Metric-learning methods. Metric learning [2–4] is the
method of learning a distance metric for the input space
of base classes from a collection of pairs of similar and
dissimilar points. Prototypical Network [3, 9] is widely used
in metric-based methods for FSIC. It takes the center point
of a support class as its prototype and conducts classification
by comparing similarities between query instances and support
prototypes. However, such a process does not take into account
the similarities between the query and support embedding.
The main idea of our work is to improve the transferability
of embedding by computing the similarities of the query and
support embedding.

Multi-level correlation network. Recent works [12, 13]
adopt self-similarity and cross-similarity as an intermediate
feature transformation for a deep neural network and show
that it helps the network learn an effective representation.
CAN [10] proposes a cross attention module to find the
semantic relevance between the query and support set. Unlike
the previous works [14], our multi-level correlation network
(MLCN) directly uses the correlation tensor to refine the
representation of the query and support set. Different from
[15] using the Expectation-Maximization algorithm to learn
features, we use the Bi-level optimization with episodic-
training paradigm. Different from [10, 13], we do not use the
projection module and the 4D convolution without additional
parameters to avoid overfitting for FSIC.

III. METHODOLOGY

A. Preliminary and Overview

In the standard few-shot image classification (FSIC) sce-
nario, a training data Dtrain from base classes Cbase and a
testing data Dtest from novel classes Cnovel are given, where
Cbase

⋂
Cnovel = ∅. Following [10, 13], we adopt the N-

way K-shot episodic paradigm to train and test FSIC models,
which has been demonstrated to be effective to enhance the
generalization performance. For each episode, we randomly
sample N classes and K labeled images per classes as the
support set S = {(xs

i , y
s
i )|i = 1, ..., N ×K} and a fraction

of the remaning Q images from the N classes as the query
set Q = {(xq

i , y
q
i )|i = 1, ..., N ×Q}. FSIC aims to learn a

classifier to classify images into target classes given only a
few images for each class. The key issue is to present each
support class and query sample and measure the similarity
between them for few-shot image classification.

In this section, we propose the multi-level correlation net-
work (MLCN) to address the challenge of generalization to
novel classes from a similarity perspective. As shown in Fig. 2,
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Fig. 2. The overview of our multi-level correlation network (MLCN) for few-shot image classification. The base representations, Fq and Fs are the base
representations of the backbone feature extractor. MLCN minimizes the self-correlation module loss LSC , the cross-correlation module loss LCC , the pattern-
correlation module loss LPC and the anchor-based classification loss LCE to improve the transferability of embedding and capture enough local information.

our MLCN has three complementary branches based on the
backbone. Then we present technical details of self-correlation
module, cross-correlation module and pattern-correlation mod-
ule in Sec.3.2, Sec.3.3 and Sec.3.4. Last, we introduce the
overall loss in Sec.3.5.

B. Self-correlation Module
To improve the generalizability of the representation, as

shown in Fig. 2, we propose the architecture of self-correlation
module. Here, we use it to transform the base representations,
Fq and Fs to self-correlation representations, Zq and Zs by
the self-correlation attention map Aq and As.

Self-correlation Attention Map. To locate the discrimina-
tive object regions of query and support set, we firstly produce
a self-correlation attention map, Aq and As ∈ RC×HW ,
which generates the weights of base representations, Fq and
Fs ∈ RH×W×C .

Aq (xq) = softmax(Fq (xq)), (1)

where xq is position at the query feature map and As is
similarly computed by Eq.( 1). The self-correlation embed-
dings, Zs and Zq ∈ RC , are multiplied by the self-correlation
attention map Aq . Then, we compute the final self-correlation
embedding zq of query feature by using pooling:

zq =
1

HW

∑
xq

Aq (xq)⊗ Fq (xq) , (2)

where x denotes a position at the feature map. The final
embedding zs of support images is computed similarly by
Eq.( 2). In the N-way K-shot classification setting, this self-
correlation pooling generates a set of NK different views of

a query,
{
z̄
(n)
q

}N

n=1
, and a set of support embedding in the

context of the query,
{
z̄
(n)
s

}N

n=1
.

LSC : self-correlation module loss. We average the K
query and support embedding vectors, each of which is at-
tended in the context of kth support from nth class to compute

{
z̄
(n)
q

}N

n=1
and

{
z̄
(n)
s

}N

n=1
. The self-correlation module loss

guides the model to map a query embedding close to the
prototype embedding of the same class in the metric space,
so we have

LSC = − log
exp

(
sim

(
z̄
(n)
s , z̄

(n)
q

)
/τ1

)
∑N

n′=1 exp
(
sim

(
z̄
(n′)
s , z̄

(n′)
q

)
/τ1

) , (3)

where τ1 is a scalar temperature factor and sim (., .) is a cosine
similarity .

C. Cross-correlation Module

The self-correlation module localizes the discriminative
object regions of each query and support set may ignore the
semantic correspondence relation between them. To learn this
relation, as shown in Fig. 2, we use the cross-correlation
module to further find the reveal relevant contents between
the query and support set.

Cross-correlation Attention Map. To improve the trans-
ferability of embedding, we transform base representations Fs
and Fq into more compact representations by constructing a
4-dimensional correlation tensor Cos ∈ RH×W×H×W , which
computes the cosine similarity between two features. The
cross-correlation attention map Aq ∈ RH×W of the query
is computed by

Mq =
1

HW

∑
xs

exp (Cos(Fq (xq) , Fs (xs)))/γ)∑
xq′

exp (Cos(Fq (xq′) , Fs (xs))/γ)
, (4)

where γ is a scalar temperature parameter and Cos(., .) is a
matching score between the positions xq and xs of the Fq and
Fs. And the Ms is similarly computed by Eq.( 4). Similar to
Eq.( 2), we compute the cross-correlation of support feature
embedding cq ∈ RH×W×C by using the pooling:

cq =
1

HW

∑
xq

Mq (xq)⊗ Fq (xq) , (5)



where xq is a position at the query feature map. The final
embedding of the query, cs, is computed similarly by Eq.

( 5).
LCC : cross-correlation module loss. Similar to Eq. ( 2),

we compute the support feature embedding by multiplying
base representations Fs. Similar to self-correlation module
loss, we average the K query and support embedding vectors

as
{
c̄
(n)
q

}N

n=1
and

{
c̄
(n)
s

}N

n=1
. The cross-correlation module

loss guides the model to map a query embedding close to the
prototype embedding of the same class:

LCC = − log
exp

(
sim

(
c̄
(n)
s , c̄

(n)
q

)
/τ2

)
∑N

n′=1 exp
(
sim

(
c̄
(n′)
s , c̄

(n′)
q

)
/τ2

) , (6)

where sim(., .) indicates the cosine similarity and τ2 is a scalar
temperature factor.

D. Pattern-correlation Module

As shown in Fig. 2, we use the pattern-correlation module to
find relevant structural pattern between base classes and novel
classes. Pattern-correlation module is defined as a probability
mixture model which linearly combines probabilities from
base distributions as:

p (si|θ) =
∑K

k=1wkpk (si|θ) , (7)

where wk denotes the mixing weights satisfying 0 ≤ wk ≤ 1
and

∑K
k=1wk = 1. θ denotes the model parameters which are

learned by the backbone for extracting embedding. si ∈ S
denotes the ith feature samples and pk (si|θ) denotes the kth

base model. Thus, we calculate the pk (si|θ) as :

pk (si|θ) = β (θ) edistance, (8)

where β (θ) is the normalization coefficient, and the distance
is defined as the euclidean distance of µk and si. Here, µk is
the mean vector of the kth model, and k denotes the concen-
tration parameter. Pattern-correlation module is estimated by
using the bi-level optimization, which includes iterative inner
optimization and outer optimization. In inner optimization
step, we use the pk (si|θ) to extract sample features as

Pik =
pk (si|θ)∑K
k=1pk (si|θ)

, (9)

where k denotes the concentration parameter and is set as
k =25 in experiments. In outer optimization, we use the
Pik to update the mean vectors as uk ∈ RH×W×C , which
is computed by

µk =

∑N
i=1 Piksi∑N
i=1 Pik

, (10)

where si denotes the ith feature samples and N denotes the
number of samples.

LPC : pattern-correlation module loss. The final embed-
dings of and query pq and support ps are computed by pooling
of the µk. Similar to Eq. ( 6) and Eq. ( 3), we average the K

query and support embedding vectors for each class to obtain
a set of prototype embedding {p̄q

n}Nn=1 and {p̄n
s }

N
n=1. LPC

is computed by cosine similarity between a query and support
prototypes:

LPC = − log
exp

(
sim

(
p̄
(n)
s , p̄

(n)
q

)
/τ3

)
∑N

n′=1 exp
(
sim

(
p̄
(n′)
s , p̄

(n′)
q

)
/τ3

) , (11)

where sim(., .) is cosine similarity and τ3 is a scalar temper-
ature factor.

E. Overall Loss
the anchor-based classification loss LCE is computed with

an additional fully-connected classification layer on top of
average-pooled based feature Fq . It guides the model to
classify a query class of class c ∈ Cbase, so we have

LCE = − log
exp

(
w⊤

c Fq + bc

)∑|Cbase |
c′=1 exp

(
w⊤

c′Fq + bc′
) , (12)

where
[
wT

1 , ...,w
T
|Cbase|

]
and

[
b1, ...,b|Cbase|

]
are weights

and biases in the fully-connected layer. In summary, the final
loss of each episode is defined as :

Ltotal = LCE + αLSC + βLCC + γLPC, (13)

where, α, β and γ are weighting factor to balance the loss
terms.

IV. EXPERIMENT

A. Datasets and Implementation Details
Datasets. For experiment evaluation, we use four standard

benchmarks for few-shot image classification: miniImageNet,
tieredImageNet, CUB-200-2011 and CIFAR-FS. Following
previous works[10, 13], we adopt the ResNet12 as our back-
bone, which consists of 4 residual blocks. The backbone
network takes an image with spatial size of 84 × 84 as an
input and provides a base representation F ∈ R5×5×640

followed by shifting its channel activation by the channel
mean of an episode. For the N-way K-shot evaluation, we
test 15 query samples for each class in an episode and report
average classification accuracy with 95 % confidence intervals
of randomly sampled 2000 test episodes. The model is trained
for 100 epochs. For optimization, we use stochastic gradient
descent (SGD) with a momentum of 0.9, a weight decay of
5× 10−4, a learning rate of 5× 10−2. We set the temperature
scaling factor τ1 , τ2 and τ3 are set to 0.5 for all four datasets.
The ratio in the loss is set as α:β:γ = 4:2:1.

B. Performance Comparison
We compare the performance of MLCN with several

state-of-the-art models including meta-learning and metric
learning methods. For fair comparisons, we compare with
other methods in the same backbone or smaller backbone in
both 5-way-1shot and 5-way-5shot settings on miniImageNet,
tiredImageNet, CUB-200-2011 and CIFAR-FS datasets. As
is shown in Tables 2-5, our method is superior to existing
methods and achieves the best performance than both on meta-
based methods and metric-based methods.



TABLE I
ABLATION EXPERIMENTS ON miniIMAGENET, CIFAR-FS AND CUB200-2011 DATASETS. LCE IS THE ANCHOR-BASED CLASSIFICATION LOSS. LSC ,

LCC AND LPC ARE THE LOSS OF THE SELF-CORRELATION MODULE, CROSS-CORRELATION MODULE AND PATTERNS-CORRELATION MODULE.

LCE LSC LCC LPC
miniImageNet CIFAR-FS CUB200-2011

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot√
57.89 ± 0.44 76.94 ± 0.34 61.25 ± 0.48 79.63 ± 0.34 69.92 ± 0.43 73.64 ± 0.36√ √
64.31 ± 0.44 81.11 ± 0.31 71.19 ± 0.45 86.37 ± 0.33 73.91 ± 0.44 87.33 ± 0.28√ √ √
64.41 ± 0.45 81.54 ± 0.31 70.58 ± 0.46 86.55 ± 0.32 74.40 ± 0.67 89.19 ± 0.27√ √ √
64.89 ± 0.44 81.33 ± 0.30 72.60 ± 0.46 85.78 ± 0.33 76.00 ± 0.45 89.12 ± 0.26√ √ √ √
65.54 ± 0.44 81.94 ± 0.31 74.36 ± 0.47 87.24 ± 0.31 77.96 ± 0.44 91.20 ± 0.24

TABLE II
RESULTS ON THE miniIMAGENET DATASET.

Mthod Backbone 5-way 1-shot 5-way 5-shot
Versa [16] ResNet12 55.71 70.05
LEO [19] ResNet12 56.62 69.99
BOIL [18] ResNet12 58.87 72.88
R2D2 [17] ResNet12 59.52 74.61
MTL [20] ResNet12 62.67 79.16
TPN [21] ResNet12 59.46 75.65
CC [7] ResNet12 55.43 ± 0.81 77.18 ± 0.61
TapNet [10] ResNet12 61.65 ± 0.15 76.36 ± 0.10
MetaOptNet [22] ResNet12 62.64 ± 0.82 78.63 ± 0.46
MatchNet [2] ResNet12 63.08 ± 0.80 75.99 ± 0.60
ProtoNet [23] ResNet12 62.39 ± 0.21 80.53 ± 0.14
CAN [10] ResNet12 63.85 ± 0.48 79.44 ± 0.34
RFS-simple [24] ResNet12 62.02 ± 0.63 79.64 ± 0.44
MLCN(ours) ResNet12 65.54 ± 0.43 81.63 ± 0.31

TABLE III
RESULTS ON THE tieredIMAGENET DATASET.

Mthod Backbone 5-way 1-shot 5-way 5-shot
Versa [16] ResNet12 57.14 75.48
LEO [19] ResNet12 64.75 81.42
BOIL [18] ResNet12 64.66 80.38
R2D2 [17] ResNet12 65.07 83.04
MTL [20] ResNet12 68.68 84.58
TPN [21] ResNet12 59.91 ± 0.94 73.30 ± 0.75
CC [7] ResNet12 61.49 ± 0.91 82.37 ± 0.67
TapNet [10] ResNet12 63.08 ± 0.15 80.26 ± 0.12
MetaOptNet [22] ResNet12 65.99 ± 0.72 81.56 ± 0.53
MatchNet [2] ResNet12 68.50 ± 0.92 80.60 ± 0.71
ProtoNet [23] ResNet12 68.23 ± 0.23 84.03 ± 0.16
CAN [10] ResNet12 69.89 ± 0.51 84.23 ± 0.37
RFS-simple [24] ResNet12 71.61 ± 0.49 85.29 ± 0.24
MLCN(ours) ResNet12 71.62 ± 0.49 85.58 ± 0.35

C. Ablation Study and Visualization

Ablation Study. In this subsection, we study the effective-
ness of different components in our method on three datasets.
All the results are summarized in Table 1. The results in Table
1 show a signification improvement in the performance of
our proposed method compared to the baseline, which only
uses the LCE . Specifically, using three modules on the LCE

and LSC improves the accuracy by an average of 7.2 % (1-
shot) and 8.6 % (5-shot) on the three datasets. This allows the
representation to generalize better than that only needed for
the classification on LCE . Then, we then use the LCC and

TABLE IV
RESULTS ON THE CUB-200-2011 DATASET.

Mthod Backbone 5-way 1-shot 5-way 5-shot
RelationNet [4] ResNet18 68.58 ± 0.94 84.05 ± 0.56
CloserLook [7] ResNet18 47.12 ± 0.74 64.16 ± 0.71
Baseline++[7] ResNet18 67.02 ± 0.90 83.58 ± 0.50
MixtFSL [25] ResNet18 73.94 ± 1.10 86.01 ± 0.50
MAML [1] ResNet34† 67.28 ± 1.08 83.47 ± 0.59
S2M2 [26] ResNet34† 72.92 ± 0.83 86.55 ± 0.51
CC [7] ResNet12 67.30 ± 0.86 84.75 ± 0.60
ProtoNet [23] ResNet12 66.09 ± 0.92 82.50 ± 0.58
MatchNet [2] ResNet12 71.87 ± 0.85 85.08 ± 0.57
FEAT [27] ResNet12 73.27 ± 0.22 85.77 ± 0.14
DeepEMD [28] ResNet12 75.65 ± 0.83 88.69 ± 0.50
MLCN(ours) ResNet12 77.96 ± 0.44 91.20 ± 0.24

TABLE V
RESULTS ON THE CIFAR-FS DATASET.

Mthod Backbone 5-way 1-shot 5-way 5-shot
S2M2 [26] ResNet34† 62.77 ± 0.23 75.75 ± 0.13
MAML[1] ConvNet 58.90 ±1.90 71.50 ± 1.00
DeepEMD[28] ResNet12 46.47 ±0.70 63.22 ± 0.71
R2D2 [17] ResNet12 65.30 ± 0.02 78.30 ± 0.02
RelationNet[4] ResNet12 55.50 ±1.00 69.30 ± 0.80
CC [7] ResNet12 60.39 ± 0.28 72.85 ± 0.65
RFS-simple [24] ResNet12 71.50 ± 0.80 86.00 ± 0.50
ProtoNet [23] ResNet12 72.20 ± 0.70 83.50 ± 0.50
MetaOptNet [22] ResNet12 72.60 ± 0.70 84.30 ± 0.50
MLCN(ours) ResNet12 74.36 ± 0.46 87.24 ± 0.31

LPC to capture local information of foreground images. The
result jointly based on LCC and LPC are further enhanced
by an average of 1.4 % (1-shot) and 1.3 % (5-shot) on the
three datasets. The results indicate that our method increases
the transferability of embedding on novel classes.

Visualization. We give a visualization to validate the trans-
ferability of embedding produced by our framework on novel
classes. Fig. 3 visualizes the gradient-weighted class activation
mapping (Grad-CAM) [29] from four loss functions under
a ResNet12 feature extractor. It is observed that using LSC

and LCC pays more attention to the relevant salient object of
the local information between query and support images. It
further shows that using LPC captures the relevant pattern of
query and support images. Therefore, the proposed multi-level
correlation network helps the metric-learning methods to use
correct visual features.



Fig. 3. GradCAM [29] visualization of the self-correlation module loss LSC ,
the cross-correlation module loss LCC and the pattern-correlation loss LPC .
The overall is the combined loss used in our MLCN.

V. CONCLUSION

In this paper, we propose multi-level correlation network
(MLCN) for few-shot image classification (FSIC), which
levrages the self-correlation module, cross-correlation mod-
ule and pattern-correlation module. By combining the three
modules, our method effectively captures local information for
FSIC. Extensive experiments demonstrate the effectiveness of
our method on widely used FSIC benchmarks.
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