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ABSTRACT

Hypernetworks, neural networks that predict the parameters of another neural net-
work, are powerful models that have been successfully used in diverse applications
from image generation to multi-task learning. Unfortunately, existing hypernet-
works are often challenging to train. Training typically converges far more slowly
than for non-hypernetwork models, and the rate of convergence can be very sen-
sitive to hyperparameter choices. In this work, we identify a fundamental and
previously unidentified problem that contributes to the challenge of training hy-
pernetworks: a magnitude proportionality between the inputs and outputs of the
hypernetwork. We demonstrate both analytically and empirically that this can lead
to unstable optimization, thereby slowing down convergence, and sometimes even
preventing any learning. We present a simple solution to this problem using a
revised hypernetwork formulation that we call Magnitude Invariant Parametriza-
tions (MIP). We demonstrate the proposed solution on several hypernetwork tasks,
where it consistently stabilizes training and achieves faster convergence. Further-
more, we perform a comprehensive ablation study including choices of activation
function, normalization strategies, input dimensionality, and hypernetwork archi-
tecture; and find that MIP improves training in all scenarios. We also provide
easy-to-use code that can turn existing networks into MIP-based hypernetworks.

1 INTRODUCTION

Hypernetworks, neural networks that predict the parameters of another neural network, are increas-
ingly important models in a wide range of applications such as Bayesian optimization (Krueger
et al., 2017; Pawlowski et al., 2017), generative models (Alaluf et al., 2022; Zhang & Agrawala,
2023), amortized model learning (Bae et al., 2022; Dosovitskiy & Djolonga, 2020; Hoopes et al.,
2022), continual learning (Ehret et al., 2021; von Oswald et al., 2020), multi-task learning (Ma-
habadi et al., 2021; Serrà et al., 2019), and meta-learning (Bensadoun et al., 2021; Zhao et al.,
2020). Despite their advantages and growing use, training hypernetworks is challenging. Compared
to non-hypernetwork-based models, training existing hypernetworks is often unstable. At best this
increases training time, and at worst it can prevent training from converging at all. This burden lim-
its their adoption, negatively impacting many applications. Existing hypernetwork heuristics, like
gradient clipping (Ha et al., 2016; Krueger et al., 2017), are most often insufficient, while existing
techniques to improve standard neural network training often fail when applied to hypernetworks.

This work addresses a cause of training instability. We identify and characterize a previously unstud-
ied hypernetwork design problem and provide a straightforward solution to address it. We demon-
strate analytically and empirically that the typical choices of architecture and parameter initialization
in hypernetworks cause a proportionality relationship between the scale of hypernetwork inputs and
the scale of parameter outputs (Fig. 1a). The resulting fluctuations in predicted parameter scale lead
to large variability in the scale of gradients during optimization, resulting in unstable training and
slow convergence. In some cases, this phenomenon prevents any meaningful learning. To over-
come the identified magnitude proportionality issue, we propose a revision to hypernetwork models:
Magnitude Invariant Parametrizations (MIP). MIP effectively eliminates the influence of the scale
of hypernetwork inputs on the scale of the predicted parameters, while retaining the representational
power of existing formulations. We demonstrate the proposed solution across several hypernetwork
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Figure 1: (a) Proportionality Issue. With default formulations, the scale of the predicted parame-
ters θ (measured in standard deviation) is directly proportional to scale of the hypernetwork input γ
at initialization (initial), and even after training the model (final). Our proposed Magnitude Invari-
ant Parametrizations (MIP) mitigates this proportionality issue with respect to γ. (b) Convergence
Improvements. Using MIP leads to faster convergence and results in more stable training than the
default hypernetwork formulation. The latter experiences sporadic training instabilities (spikes in
the training loss).

learning tasks, providing evidence that hypernetworks using MIP achieve faster convergence and
more stable training than typical hypernetwork formulation (Fig. 1b).

Our main contributions are:

• We characterize a previously unidentified optimization problem in hypernetwork training,
and show that it leads to large gradient variance and unstable training dynamics.

• We propose a solution: Magnitude Invariant Parametrizations (MIP), a hypernetwork for-
mulation that addresses the issue without introducing additional training or inference costs.

• We rigorously study the proposed parametrization. We first compare it with the standard
formulation and against popular normalization strategies, showing that it consistently leads
to faster convergence and more stable training. We then extensively test it using various
choices of optimizer, input dimensionality, hypernetwork architecture, and activation func-
tion, finding that it improves hypernetwork training in all evaluated settings.

• We release our implementation as an open-source PyTorch library, HyperLight. Hyper-
Light facilitates the development of hypernetwork models and provides principled choices
for parametrizations and initializations, making hypernetwork adoption more accessible.
We also provide code that enables using MIP seamlessly with existing models.

2 RELATED WORK

Parameter Initialization. Deep neural networks experience unstable training dynamics in the pres-
ence of exploding or vanishing gradients (Goodfellow et al., 2016). Weight initialization plays a
critical role in the magnitude of gradients, particularly during the early stages of training. Com-
monly, weight initialization strategies focus on preserving the magnitude of activations during the
forward pass and maintaining the magnitude of gradients during the backward pass (Glorot & Ben-
gio, 2010; He et al., 2015). In the context of hypernetworks, early work made use of Glorot and
Kaiming initialization (Balažević et al., 2019; Pawlowski et al., 2017), while more recent work pro-
poses initializations that accounts for the architectural properties of the primary network (Beck et al.,
2023; Chang et al., 2019; Knyazev et al., 2021; Zhmoginov et al., 2022). However, most of these
works assume hypernetwork inputs to be categorical embeddings, which limits their applicability,
and makes their formulations susceptible to the proportionality issue that we identify in this work.

Normalization Techniques. Normalization techniques control the distribution of weights and acti-
vations, often leading to improvements in convergence by smoothing the loss surface (Bjorck et al.,
2018; Ioffe, 2017; Lubana et al., 2021; Santurkar et al., 2018). Batch normalization is widely used
to normalize activations using minibatch statistics, and methods like layer or group normalization
instead normalize across features (Ba et al., 2016; Ulyanov et al., 2016; Wu & He, 2018). Other
methods reparametrize the weights using weight-normalization strategies to decompose direction
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and magnitude (Qiao et al., 2019; Salimans & Kingma, 2016). As we show in our experiments,
these strategies fail to resolve the proportionality issue we study. They either maintain the propor-
tionality relationship, or eliminate proportionality by rendering the predicted weights independent
of the hypernetwork input, eliminating the utility of the hypernetwork itself.

Adaptive Optimization. High gradient variance can be detrimental to model convergence in
stochastic gradient methods (Johnson & Zhang, 2013; Roux et al., 2012). Solutions to mitigate
this issue encompass adaptive optimization techniques, which aim to decouple the effect of gradient
direction and magnitude by normalizing by a history of gradient magnitudes (Kingma & Ba, 2014;
Zeiler, 2012). Similarly, applying momentum reduces the instantaneous impact of stochastic gradi-
ents by using parameter updates based on an exponentially decaying average of past gradients (Nes-
terov, 2013; Qian, 1999). These strategies are implemented by many widely-used optimizers, such
as Adam (Balles & Hennig, 2018; Kingma & Ba, 2014). We show experimentally that although
adaptive optimizers like Adam enhance hypernetwork optimization, they do not address the root
cause of the identified proportionality issue.

Fourier Features. High-dimensional Fourier projections have been used in feature engineer-
ing (Rahimi et al., 2007) and for positional encodings in language modeling applications to account
for both short and long range relationships (Su et al., 2021; Vaswani et al., 2017). Additionally,
implicit neural representation models benefit from sinusoidal representations (Sitzmann et al., 2020;
Tancik et al., 2020). Our work also uses low dimensional Fourier projections. We demonstrate their
use as a means to project hypernetwork inputs to a vector space with constant Euclidean norm.

Residual Forms. Residual and skip connections are widely used in deep learning models and often
improve model training, particularly with increasing network depth (He et al., 2016a;b; Li et al.,
2018; Vaswani et al., 2017). Building on this intuition, instead of the hypernetworks predicting
the network parameters directly, our proposed hypernetworks predict parameter changes, mitigating
part of the proportionality problem at hand.

3 THE HYPERNETWORK PROPORTIONALITY PROBLEM

Preliminaries. Deep learning tasks generally involve a model f(x; θ) → y, with learnable param-
eters θ. In hierarchical models using hypernetworks, the parameters θ of the primary network f
are predicted by a hypernetwork h(γ;ω) → θ based on a input vector γ. Instead of learning pa-
rameters θ of the primary network f , only the learnable parameters ω of the hypernetwork h are
optimized using backpropagation. The specific nature of the hypernetwork inputs γ varies across
applications, but regularly corresponds to a low dimensional quantity that models properties of the
learning task, and is often a simple scalar or embedding vector (Dosovitskiy & Djolonga, 2020;
Hoopes et al., 2022; Lorraine & Duvenaud, 2018; Ukai et al., 2018; Wang et al., 2021).

Assumptions. For analysis, we assume the following about the hypernetwork formulation: 1) The
architecture is a series of fully connected layers ϕ(Wx + b) where W are the parameters, b the
biases and ϕ(x) the non-linear activation function; 2) The nonlinear activation is a piece-wise linear
function with a single switch at the origin. Namely, it satisfies ϕ(x) = 1[x≥0](αx) + 1[x<0](βx),
for α, β > 0 (e.g., LeakyReLU) 3) Bias vectors b are initialized to zero. Existing hypernetworks
satisfy these properties for the large majority of applications (Dosovitskiy & Djolonga, 2020; Ha
et al., 2016; Lorraine & Duvenaud, 2018; MacKay et al., 2019; Ortiz et al., 2023; Ukai et al., 2018;
von Oswald et al., 2020; Wang et al., 2021).

Input-Output Proportionality. We demonstrate that under these widely-used settings, hypernet-
work inputs and outputs involve a proportionality relationship, and describe how this can impede
hypernetwork training. We show that 1) at initialization, any intermediate feature vector x(k) at
layer k will be proportional to hypernetwork input γ, even under the presence of non-linear activa-
tion functions, and 2) this leads to large gradient magnitude fluctuations detrimental to optimization.

We first consider the case where γ ∈ R is a scalar value. Let h(γ;ω) use a fully connected architec-
ture composed of a series of fully connected layers

h(γ;ω) = W (n)x(n) + b(n)

x(k+1) = ϕ(W (k)x(k) + b(k))

x(1) = γ

(1)
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where x(k) is the input vector of the kth fully connected layer with learnable parameters W (k) and
biases b(k). To prevent gradients from exploding or vanishing when chaining several layers, it is
common to initialize the parameters W (i) and biases b(i) so that either the magnitude of the activa-
tions is approximately constant across layers in the forward pass (known as fan in), or so that the
magnitude of the gradients is constant across layers in the backward pass (known as fan out) (Glorot
& Bengio, 2010; He et al., 2015). In both settings, the parameters W (i) are initialized using a zero
mean Normal distribution and bias vectors b(i) are initialized to zero. If γ > 0, and ϕ(x) has the
common form specified above, at initialization the ith entry of vector x(2) is

x
(2)
i = ϕ(W

(1)
i γ + b(1)) = γϕ(W

(1)
i ) ∝ γ, (2)

since b(1) = 0 and ϕ(W
(1)
i ) is independent of γ. Using induction, we assume that for layer k,

x
(k)
j ∝ γ ∀j, and show this property for layer k+1. The value of the ith element of vector x(k+1) is

x
(k+1)
i = ϕ

(
b
(k)
i +

∑
j W

(k)
ij x

(k)
j

)
= γ ϕ

(∑
j W

(k)
ij α

(k)
j

)
∝ γ, (3)

since b
(k)
i = 0, and the term inside ϕ is independent of γ. If γ is not strictly positive, we can reach

the same proportionality result, but with separate constants for the positive and the negative range.
This dependency holds regardless of the number of layers and the number of neurons per hidden
layer, and also holds when residual connections are employed. When γ is a vector input, we find a
similar relationship with the overall magnitude of the input and the magnitude of the output. Given
the absence of bias terms, and the lack of multiplicative interactions in the architecture, the fully
connected network propagates magnitude changes in the input.

Training implications. Since θ = x(n+1), this result leads to a proportionality relationship for the
magnitude of the predicted parameters ||θ||2 ∝ ||γ|| and their variance Var(θ) ∝ ||γ||2. As the scale
of the primary network parameters θ will depend on γ, this will affect the scale of the layer outputs
and gradients of the primary network. In turn, these large gradient magnitude fluctuations lead to
unstable training dynamics for stochastic gradient descent methods (Glorot & Bengio, 2010).

Further Considerations. Our analysis relies on biases being at zero, which only holds at initial-
ization, and does not include normalization layers that are sometimes used. However, in our experi-
ments, we find that biases remain near zero during early training, and hypernetworks with alternative
choices of activation function, input dimensionality, or with normalization layers, still suffer from
the identified issue and consistently benefit from our proposed parametrization (see Section 6).

4 MAGNITUDE INVARIANT PARAMETRIZATIONS

To address the proportionality dependency, we make two straightforward changes to the typical
hypernetwork formulation: 1) We introduce an encoding function that maps inputs into a constant-
norm vector space, and 2) we treat hypernetwork predictions as additive changes to the main net-
work parameters, rather than as the parameters themselves. These changes make the primary net-
work weight distribution non-proportional to the hypernetwork input and stable across the range of
hypernetwork inputs. Figure 2 illustrates these changes to the hypernetwork.

Input Encoding. To address the proportionality problem, we map the inputs γ ∈ [0, 1]
to a space with a constant Euclidean norm ||EL2(γ)||2 = 1 using the function EL2(γ) =
[cos(γπ/2), sin(γπ/2)]. With this change, the input magnitude to the hypernetwork is constant,
so ||x(1)|| ̸∝ γ. For higher-dimensional inputs, we apply this transformation to each input individu-
ally, leading to an output vector with double the number of dimensions. This transformation results
in an input representation with a constant norm, thereby eliminating the proportionality effect.

For our input encoding, we first map each dimension of the input vector to the range [0, 1] to maxi-
mize output range of EL2. We use min-max scaling of the input: γ′ = (γ − γmin)/(γmax − γmin).
For unconstrained inputs, such as Gaussian variables, we first apply the logistic function σ(x) =
1/(1 + exp(−x)). If inputs span several orders of magnitude, we take the log before the min-max
scaling as in (Bae et al., 2022; Dosovitskiy & Djolonga, 2020).

Output Encoding. Residual forms have become a cornerstone in contemporary deep learning ar-
chitectures (He et al., 2016a; Li et al., 2018; Vaswani et al., 2017). Motivated by these methods, we
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Figure 2: Magnitude Invariant Parametrizations for Hypernetworks. MIP first projects the
hypernetwork inputs γ to a constant norm vector space. Then the outputs of the hypernetwork ∆θ are
treated as additive changes to a set of independent learnable parameters θ0 to generate the primary
network weights θ. In blue we highlight the main components of MIP, the input encoding EL2 and
the residual formulation θ = θ0 +∆θ.

replace the standard hypernetwork framework with one that learns both primary network f parame-
ters (as is typically learned in existing formulations) and hypernetwork predictions, which are used
as additive changes to these primary parameters. We introduce a set of learnable parameters θ0, and
compute the primary network parameters as θ = θ0 + h(EL2(γ);ω).

Parameter Initialization We initialize the hypernetwork weights ω using common initialization
methods for fully connected layers that consider the number of input and output neurons to each
layer, such as Kaiming or Glorot initialization. Then, we initialize the independent parameters θ0

in the same manner that we would initialize the parameters of an equivalent regular network. We
provide further details and examples in section A of the supplement.

5 EXPERIMENTAL SETUP

5.1 TASKS

We evaluate our proposed parametrization on several tasks involving hypernetwork-based models.

Bayesian Neural Networks. Hypernetwork models have been used to learn families of func-
tions conditioned on a prior distribution (Ukai et al., 2018). During training, the prior representa-
tion γ ∈ Rd is sampled from the prior distribution γ ∼ p(γ) and used to condition the hypernetwork
h(γ;ω) → θ to predict the parameters of the primary network model f(x; θ). Once trained, the
family of posterior networks is then used to estimate parameter uncertainty or to improve model cal-
ibration. For illustrative purposes we first evaluate a setting where f(x; θ) is a feed-forward neural
network used to classify the MNIST dataset. Then, we tackle a more complex setting where f(x; θ)
is a ResNet-like model trained the OxfordFlowers-102 dataset (Nilsback & Zisserman, 2006). In
both settings, we use the prior N (0, 1) for each input.

Hypermorph. Learning-based medical image registration networks f(xm, xf ; θ) → ϕ register a
moving image xm to a fixed image xf by predicting a flow or deformation field ϕ between them.
The common (unsupervised) loss balances an image alignment term Lsim and a spatial regularization
(smoothness) term Lreg. The learning objective is then L = (1 − γ)Lsim(xm ◦ ϕ, xf ) + γLreg(ϕ),
where γ controls the trade-off. In Hypermorph (Hoopes et al., 2022), multiple regularization settings
for medical image registration are learned jointly using hypernetworks. The hypernetwork is given
the trade-off parameter γ as input, sampled stochastically from U(0, 1) during training. We follow
the same experimental setup, using a U-Net architecture for the primary (registration) network and
training with MSE for Lsim and total variation for Lreg. We train models on the OASIS dataset.
For evaluation, we use the predicted flow field to warp anatomical segmentation label maps of the
moving image, and measure the volume overlap to the fixed label maps (Balakrishnan et al., 2019).

Scale-Space Hypernetworks. We also use a hypernetwork to efficiently learn a family of models
with varying internal rescaling factors in the downsampling and upsampling layers, as done in Ortiz
et al. (2023). In this setting, γ corresponds to the scale factor. Given hypernetwork input γ, the
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Figure 3: Distributions of primary network parameters (a) and layer activations (b). Measure-
ments are taken at initialization for a default hypernetwork, our proposed MIP hypernetwork, and a
conventional neural network with the same primary architecture. Distributions are shown as kernel
density estimates (KDE) of the values because of the high degree of overlap between the distribu-
tions. The MIP strategy leads to little change across input values and its distribution closely matches
that of the non-hypernetwork model. Evolution of Gradients (c) Gradient magnitude with respect
to hypernetwork outputs ||∇θL|| during early training. Standard deviation is computed across mini-
batches in the same epoch. MIP leads to substantially smaller magnitude and standard deviation
compared to the default parametrization.

hypernetwork h(γ;ω) → θ predicts the parameters of the primary network, which performs the
spatial rescaling operations according to the value of γ. We study a setting where f(x; θ) is a
convolutional network with variable resizing layers, the rescaling factor is sampled from U(0, 0.5),
and evaluate using the OxfordFlowers-102 classification problem and the OASIS segmentation task.

5.2 EXPERIMENT DETAILS

Model. We implement the hypernetwork as a neural network with fully connected layers and
LeakyReLU activations for all but the last layer, which has linear output. Hypernetwork weights
are initialized using Kaiming initialization on fan out mode and biases are initialized to zero. Unless
specified otherwise, the hypernetwork architecture has two hidden layers with 16 and 128 neurons
respectively. We use this implementation for both the default (existing) hypernetworks, and our
proposed (MIP) hypernetworks.

Training. We use two popular choices of optimizer: SGD with Nesterov momentum, and Adam.
We search over a range of initial learning rates and report the best performing models; further details
are included in section B of the supplement.

Implementation. An important contribution of our work is HyperLight, our PyTorch hypernetwork
framework. HyperLight implements the proposed hypernetwork parametrization, but also provides
a modular and composable API that facilitates the development of hypernetwork models. Using
HyperLight, practitioners can employ existing non-hypernetwork model definitions and pretrained
model weights, and can easily build models using hierarchical hypernetworks. Anonymized source
code is available at https://github.com/anonresearcher8/hyperlight.

6 EXPERIMENTAL RESULTS

6.1 EFFECT OF PROPORTIONALITY ON PARAMETER AND GRADIENT DISTRIBUTIONS

First, we empirically show how the proportionality phenomenon affects the distribution of predicted
weights θ and their corresponding gradients for the Bayesian neural networks on MNIST. Figures 3a

6
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and 3b compare the distributions of the primary network weights and layer outputs for a range of
values of hypernetwork input γ. The default hypernetwork parametrization is highly sensitive to
changes in the input, in contrast, MIP eliminates this dependency, with the resulting distribution
closely matching that of the non-hypernetwork models. Figure 1a (in the introduction), shows that
using the default formulation, the scale of the weights correlates linearly with the value of the hy-
pernetwork input, and that, crucially, this correlation is still present after the training process ends.
In contrast, MIP parametrizations lead to a weight distribution that is robust to the input γ, both at
the start and end of training.

We also analyze how the proportionality affects the early phase of hypernetwork optimization by
studying the distribution of gradient norms during training. Figure 3c shows the norm of the pre-
dicted parameter gradients ||∇θL|| as training progresses. Consistent with our analysis, hypernet-
works with default parametrization experience large swings in gradient magnitude because of the
proportionality relationship between inputs and predicted parameters. In contrast, the MIP strategy
leads to a substantially smaller variance and more stable gradient magnitude.

6.2 MODEL TRAINING IMPROVEMENTS

In this experiment, we analyze how MIP affects model convergence for the considered tasks. For all
experiments, we found that MIP hypernetworks did not introduce a measurable impact in training
runtime, so we report per-epoch steps.

Figure 1b (in the introduction) shows the training loss for Bayesian networks trained on MNIST.
We find that MIP parametrizations result in smaller loss sooner during training, and the default
parametrization suffers from sporadic training instabilities (spikes in the training loss), while MIP
leads to stable training. Similarly, Figure 4a shows the test accuracy for Bayesian networks trained
on OxfordFlowers. In this task, MIP also achieves faster convergence and better final model accu-
racy for both choices of optimizer.

Figures 4b and 4c present convergence curves for the other two tasks. For Hypermorph, MIP
parametrizations are crucial when using SGD with momentum since otherwise the model fails to
meaningfully train. For all choices of learning rate the default hypernetwork failed to converge,
whereas with MIP parametrization it converged for a large range of values. With Adam, networks
train meaningfully, and MIP models consistently achieve similar Dice scores substantially faster.
They are less sensitive to weight initializations. Though the Adam optimizer partially mitigates
the gradient variance issue by normalizing by a history of previous gradients, the MIP parametriza-
tion leads to substantially faster convergence. Furthermore, for the Scale-Space segmentation, we
find that for both optimizers MIP models achieve substantially faster convergence and better final
accuracy compared to those with the default parametrization.

Comparison to normalization strategies. We compare the proposed parametrization to popular
choices of normalization layers found in the deep learning literature. Using the default formulation,
where the predicted weights start proportional to the hypernetwork input, we found that existing nor-
malization strategies fall into two categories: they either keep the proportionality relationship present
(such as batch normalization), or remove the proportionality by making the predicted weights inde-
pendent of the hypernetwork input (such as layer or weight normalization). We provide further
details in Section C of the supplemental material.

We test several of these normalization strategies. BatchNorm-P, adds batch normalization layers
to the primary network. LayerNorm-P, adds feature normalization layers to the primary network.
LayerNorm-H, adds feature normalization layers to the hypernetwork layers. WeightNorm, per-
forms weight normalization, which decouples the gradient magnitude and direction, to weights pre-
dicted by the hypernetwork (Ba et al., 2016; Ioffe, 2017; Salimans & Kingma, 2016). Figure 5a
shows the evolution of the test accuracy for the Scale-Space hypernetworks trained on OxfordFlow-
ers. We report wall clock time, since some normalization strategies, such as BatchNorm, substan-
tially increase the computation time required per iteration. For networks trained with SGD, these
normalization strategies enable training, but do not significantly improve on default hypernetworks
when trained with Adam. Models trained with SGD momentum and hypernetwork feature nor-
malization (LayerNorm-H) diverged early into training for all considered hyperparameter settings.
Models trained with the proposed MIP parametrization lead to substantially faster convergence and
better final model accuracy.
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Figure 4: Models Convergence Improvements. Comparison between default hypernetworks and
hypernetworks with MIP for the Bayesian networks on OxfordFlowers-102 (a), HyperMorph (b) and
Scale-Space hypernetworks trained on OASIS (c). In all cases, we find that the MIP parametrization
leads to faster model convergence without any sacrifice in final model accuracy compared to the
default parametrization. In all cases we observe that MIP improves convergence and final model
accuracy. We also find that for default hypernetworks using the Adam optimizer substantially helps
the training process, however, incorporating MIP leads to even better training dynamics.

Initialization Schemes. We compare MIP and the default hypernetworks to hypernetworks that
use the Hyperfan-in and Hyperfan-out initialization strategies from Chang et al. (2019). The Hy-
perfan initialization takes into account the hypernetwork and primary network architectures when
initializing model weights, improving model convergence and training stability. However, Hyperfan
initializations are not designed for magnitude-encoded inputs, so they are susceptible to the propor-
tionality issue we identify.

Figure 5b presents convergence results for the Hypermorph task with SGD and Adam. We find that
Hyperfan initializations do not resolve the training challenges when using SGD. For hypernetworks
trained with Adam, MIP outperforms both Hyperfan variants.

Ablation Analysis. We study the contribution of each of the two main components of the MIP
parametrizations: input encoding and additive output formulation. Figure 5c shows the effect on
convergence for two tasks. We found that both components reduce the proportionality dependency
between the hypernetwork inputs and outputs, and that each component independently achieves
substantial improvements in model convergence. However, we find that best results (fastest conver-
gence) are consistently achieved when both components are used jointly during training.

6.3 ROBUSTNESS ANALYSIS

Hypernetwork Input Dimensionality. We study the effect of the number of dimensions of the
input to the hypernetwork model. We evaluate on the Bayesian neural network task, and we vary
the number of dimensions of the input prior. We train models with geometrically increasing number
of input dimensions, dim(γ) = 1, 2, . . . , 32. Figure 6 (in section C.1 of the supplement) shows that
the proposed MIP strategy leads to improvements in model convergence and final model accuracy
as we increase the dimension of the hypernetwork input γ.

Choice of Hypernetwork Architecture. We assess model performance when varying the properties
of the hypernetwork architecture. We vary the width (number of hidden neurons per layer) and depth
(number of layers)– fully connected networks with 3, 4 and 5 layers and with 16 and 128 neurons
per layer, as well as an exponentially growing number of neurons per layer Dim(xn) = 16 · 2n.
Figures 7 and 8 (in section C.2 of the supplement) show that the MIP improvements generalize to
the all tested hypernetwork architectures with analogous improvements in model training.
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Figure 5: (a) Normalization Strategies. Comparison of hypernetworks trained with various nor-
malization strategies for Scale-Space hypernetworks trained of OxfordFlowers-102. MIP provides
substantially better results than the considered normalization strategies, achieving faster model con-
vergence and better final test accuracy. (b) Initialization Scheme. Comparison of hypernetworks
with the default, MIP, Hyperfan-In and Hyperfan-Out initialization schemes on the Hypermorph
task. Models with MIP train substantially better than models with Hyperfan initializations, espe-
cially when using the SGD optimizer. (c) Ablation Analysis. Convergence results for separate
components of MIP on the Scale-Space Hypernetworks on OASIS using the Adam optimizer, and
on the Bayesian networks trained with SGD on the OxfordFlowers-102 classification problem. Each
component of the parametrization leads to improvements in final model accuracy as well as training
convergence, and best results are achieved when using both components simultaneously.

Choice of Nonlinear Function Activation. While our method is motivated by the training in-
stability present in hypernetworks with (Leaky)-ReLU nonlinear activation functions, we explored
applying it to other common choices of activation functions found in the literature: Tanh, GELU
and SiLU (Hendrycks & Gimpel, 2016; Ramachandran et al., 2017). Figure 9 (in section C.3 of the
supplement) shows that MIP consistently helps for all choices of nonlinear activation function, and
the improvements are similar to those of the LeakyReLU models.

7 LIMITATIONS

All hypernetwork models used in our experiments are composed of fully connected layers and use
activation and initialization choices commonly recommended in the literature. Similarly, we focused
on two optimizers in our experiments, SGD with momentum and Adam. We believe that we would
see similar results for other less common architectures and optimizers, but this remains to be inves-
tigated. Furthermore, we focus on training models from scratch. As hypernetworks become popular
in transfer learning, we believe this will be an interesting avenue for future analysis of MIP.

8 CONCLUSION

We showed through analysis and experimentation that traditional hypernetwork formulations are
susceptible to training instability, caused by the effect of the magnitude of hypernetwork input val-
ues on primary network weights and gradients, and that standard methods such as batch and layer
normalization do not solve the problem. We then proposed the use of a new method, Magnitude
Invariant Parametrizations (MIP), for addressing this problem. Through extensive experiments, we
demonstrated that MIP leads to substantial improvements in convergence times and model accuracy
across multiple hypernetwork architectures, training scenarios, and tasks. Given that using MIP
never reduces model performance and can dramatically improve training, we expect the method to
be widely useful for training hypernetworks.
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APPENDIX

A MIP PARAMETER INITIALIZATION

Parameter initialization strategies for regular neural networks have remained fairly stable over the
past half decade. The prevalent method consists of using Glorot or He initializations that are de-
signed to preserve the magnitude of activations during the forward pass and maintain the magnitude
of gradients during the backward pass (Glorot & Bengio, 2010; He et al., 2015).

Typically, the assumptions of these initialization schemes do not hold when applied to hypernet-
work settings. This has prompted the development of several specialized initialization schemes
tailored for hypernetwork formulations (Beck et al., 2023; Chang et al., 2019; Knyazev et al., 2021).
Crucially, these techniques require incorporating the knowledge of the primary network when per-
forming the initialization, and are designed for categorical inputs represented as embedding vectors.
The guarantees these schemes provide do not hold when using magnitude-encoded inputs such as
scalars.

We propose a simple yet effective initialization scheme based on the recommendations from the neu-
ral network literature. First, the hypernetwork weights ω are initialized using common initialization
methods for fully connected layers. Then, the independent parameters θ0 are initialized taking into
consideration their role in the primary network.

We illustrate our initialization rules using examples with the Kaiming He fan-out scheme. Using He
fan-out init, the weights and biases of a neural network layer with nin input neurons and nout output
neurons are sampled

W ∼ N
(
0,

G
√
nout

)
b = 0, (4)

where G is the relative gain of the non-linearity function ϕ(x). For ReLU, we have G = 2 whereas
linear or sigmoid, we have G = 1.

We differentiate the following cases:

• Intermediate Hypernetwork Layer - We initialize a (nin, nout) layer in the hypernetwork
following the scheme we just outlined, i.e., W ∼ N (0, G/(

√
nout) and b = 0.

• Final Hypernetwork Layer – We consider two cases, but we do not consider biases be-
cause they are redundant with θ0.

1. Layer predicting a primary network weight of shape (nin, nout):

W ∼ N
(
0,

1
√
ninnout

)
(5)

2. Layer predicting a primary network bias: W = 0

• Independent Weights θ0 – For fully connected layer with (nin, nout) neurons, we initialize
W ∼ N (0, G/(

√
nout), and b = 0.

From this initialization, we can observe that the set of independent weights θ0 is initialized as if they
were the weights of a regular neural network. Alternatively, if the primary network corresponds to a
pretrained model, the independent weights θ0 are initialized using the pretrained values, and can be
optionally frozen during training.

A.1 IMPLEMENTATION CONSIDERATIONS

Since the θ0 weights are redundant with the bias parameters of the final hypernetwork layer, we
remove bias parameters from the final hypernetwork layer. In our implementation, we use a single
final layer, but we initialize its weights as if it were the multiple smaller layers, since otherwise the
initialization would not follow the recommendations outlined in the previous section.

Under some hypernetwork configurations, all the primary network parameters are predicted in a
single forward pass of the hypernetwork. In this scenario, we implement the parameters θ0 as the
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bias vector terms of the last layer b(n), which proves to be as efficient as the default formulation.
This is correct because we do not have b(n) in our formulation, and b(n) is equivalent to θ0 in the
computational graph, receiving the same gradients. Hence, we initialize b(n) as a one-dimensional
representation of the primary network parameters, subsequently reshaping it to construct θ.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 DATASETS

MNIST. We train models on the MNIST digit classification task. We use the official MNIST
database of handwritten digits. The MNIST database of handwritten digits comprises a training
set of 60,000 examples, and a test set of 10,000 examples. We use the official train-test split for
training data, and further divide the training split into training and validation using a stratified 80%-
20% split. We use the digit labels and consider the 10-way classification problem.

OxfordFlowers-102. We use the OxfordFlowers-102 dataset, a fine-grained vision classification
dataset with 8,189 examples from 102 flower categories (Nilsback & Zisserman, 2006). We utilize
this dataset as it poses a non-trivial learning task that does not quickly converge, and allows us
to better study learning dynamics. We use the official train-test split for training data, and further
divide the training split into training and validation using a stratified 80%-20% split. We perform
data augmentation by considering random square crops of between 25% and 100% of the original
image area and resizing images to 256 by 256 pixels. Additionally, we perform random horizontal
flips and color jitter (brightness 25%, contrast 50%, saturation 50%). For evaluation we take the
central square crop of each image and resize to 256 by 256 pixels.

OASIS We use a version of the open-access OASIS Brains dataset (Hoopes et al., 2022; Marcus
et al., 2007), a medical imaging dataset containing 414 MRI scans from separate individuals, com-
prised of skull-stripped and bias-corrected images that are resampled into an affinely-aligned, com-
mon template space. For each scan, segmentation labels for 24 brain substructures in a 2D coronal
slice are available. We use 64%, 16% and 20% splits for training, validation and test.

B.2 BAYESIAN NEURAL NETWORKS

Primary Network. For the MNIST task, we use a LeNet architecture variant that uses ReLU acti-
vations as they have become more prevalent in modern deep learning models. Moreover, we replace
the first fully-connected layer with two convolutional layers of 32 and 64 features. We found this
change did not impact test accuracy in non-hypernetwork models, but it lead to more stable initial-
izations for the default hypernetworks.

For the OxfordFlowers-102 task, the primary network f features a ResNet-like architecture with
five downsampling stages with (16, 32, 64, 128, 128) feature channels respectively. For experiments
including normalization layers, such as BatchNorm and LayerNorm, the learnable affine parameters
of the normalization layers are not predicted by the hypernetworks and are optimized like in regular
neural networks via backpropagation.

Training. We train using a categorical cross entropy loss. For both optimizers we use learning
rate η = 3× 10−4. Nevertheless, we found consistent results with the ones we report using learning
rates in the range η = [10−4, 3× 10−3]. We sample γ from the uniform distribution U [0, 1].
Evaluation. For evaluation we use top-1 accuracy on the classification labels. In order to get a more
fine-grained evolution of the test accuracy, we evaluate on test set at 0.25 epoch increments during
training. We report results with five model replicas with different random seeds.

B.3 HYPERMORPH

HyperMorph, a learning based strategy for deformable image registration learns models with differ-
ent loss functions in an amortized manner. In image registration, the γ hypernetwork input controls
the trade-off between the reconstruction and regularization terms of the loss.

Primary Network. For our primary network f we use a U-Net architecture (Ronneberger et al.,
2015) with a convolutional encoder with five downsampling stages with two convolutional layers
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per stage of 32 channels each. Similarly, the convolutional decoder is composed of four stages
with two convolutional layers per stage of 32 channels each. We found that models with more
convolutional filters performed no better than the described architecture.

Training. We train using the setup described in HyperMorph (Hoopes et al., 2022) using mean
squared error for the reconstruction loss and total variation for the regularization of the predicted
flow field. For the Adam optimizer we use β1 = 0.9 and β2 = 0.999 with decoupled de-
cay Loshchilov & Hutter (2017) and η = 10−4, but we found that learning rates [10−4, 3 × 10−3]
lead to similar convergence results. For SGD with momentum, we tested learning rates η =
{3× 10−2, 10−2, 3× 10−3, 10−3, 3× 10−4, 10−4, 3× 10−5, 10−5, }. In all cases the default hyper-
network formulation failed to meaningfully train. We train for 3000 epochs, and sample γ uniformly
in the range [0, 1] like in the original work.

Evaluation. Like Hoopes et al. (2022), we use segmentation labels as the main means of evaluation
and use the predicted flow field to warp the segmentation label maps and measure the overlap to
the ground truth using the Dice score (Dice, 1945), a popular metric for measuring segmentation
quality. Dice score quantifies the overlap between two regions, with a score of 1 indicating perfect
overlap and 0 indicating no overlap. For multiple segmentation labels, we compute the overall Dice
coefficient as the average of Dice coefficients for each label. We report results with five model
replicas with different random seeds.

B.4 SCALE-SPACE HYPERNETWORKS

We evaluate on a task where the hypernetwork input γ controls architectural properties of the pri-
mary network. We use γ to determine the amount of downsampling in the pooling layers. Instead of
using pooling layers that rescale by a fixed factor of two, we replace these operations by a fractional
bilinear sampling operation that rescales the input by a factor of γ.

Primary Network. For classification tasks, our primary network f features a ResNet-like archi-
tecture with five downsampling stages with (16, 32, 64, 128, 128) feature channels respectively.
For experiments including normalization layers, such as BatchNorm and LayerNorm, the learnable
affine parameters of the normalization layers are not predicted by the hypernetworks and are opti-
mized like in regular neural networks via backpropagation.

For segmentation tasks, we model the primary network f using a U-Net architecture (Ronneberger
et al., 2015) with a convolutional encoder with five downsampling stages with two convolutional
layers per stage of 32 channels each. Similarly, the convolutional decoder is composed of four
stages with two convolutional layers per stage of 32 channels each.

Training. We sample the hypernetwork input γ uniformly in the range [0, 0.5] where γ = 0.5
corresponds to downsampling by 2. We train the multi-class classification task using a categorical
cross-entropy loss, and train with a weight decay factor of 10−3, and with label smoothing Good-
fellow et al. (2016); Szegedy et al. (2016) the ground truth labels with a uniform distribution of
amplitude ϵ = 0.1. For the segmentation tasks we train using a cross-entropy loss and then fine-
tune using a soft-Dice loss term, as in Ortiz et al. (2023). For both optimizers we use learning
rate η = 1× 10−4. Nevertheless, we found consistent results with the ones we report using learning
rates in the range η = [1× 10−4, 3× 10−3].

16



Published as a conference paper at ICLR 2024

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 NUMBER OF INPUT DIMENSIONS

In this experiment, we study the effect of the number of dimensions of the input to the hypernetwork
model on the hypernetwork training process, both for the default parametrization and for our MIP
parametrization. We evaluate using the Bayesian Hypernetworks, since we can vary the number of
dimensions of the input prior without having to define new tasks. We train models with geometrically
increasing number of input dimensions, dim(γ) = 1, 2, . . . , 32. We apply the input encoding to each
dimension independently. We study two types of input distribution: uniform U(0, 1) and Gaussian
N (0, 1). For MIP, we apply a sigmoid to the Gaussian inputs to constrain them to the [0,1] range as
specified by our method. We evaluate on the Bayesian hypernetworks task on the OxfordFlowers-
102 dataset with a primary convolutional network optimized with Adam.

Figure 6 shows the convergence curves during training. Results indicate that the proposed MIP
parametrization leads to improvements in model convergence and final model accuracy for all num-
ber of input dimensions to the hypernetwork and for both choices of input distribution. Moreover, we
observe that the gap between MIP and the default parametrization does not diminish as the number
of input dimensions grows.

(a) Uniform Inputs (Γi = U(0, 1))

0 2000 4000
Epoch

1.5

2.0

2.5

3.0

3.5

Te
st

 L
os

s

dim( ) = 1

0 2000 4000
Epoch

dim( ) = 2

0 2000 4000
Epoch

dim( ) = 4

0 2000 4000
Epoch

dim( ) = 8

0 2000 4000
Epoch

dim( ) = 16

0 2000 4000
Epoch

dim( ) = 32

Hypernet
Default
MIP (ours)

0 2000 4000
Epoch

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

dim( ) = 1

0 2000 4000
Epoch

dim( ) = 2

0 2000 4000
Epoch

dim( ) = 4

0 2000 4000
Epoch

dim( ) = 8

0 2000 4000
Epoch

dim( ) = 16

0 2000 4000
Epoch

dim( ) = 32

Hypernet
Default
MIP (ours)

(b) Gaussian Inputs (Γi = N (0, 1))
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Figure 6: Number of dimensions of hypernetwork input. Test loss (top row) and test accuracy
(bottom row) for Bayesian hypernetworks trained on the OxfordFlowers classification task for in-
creasing number of dimensions of the hypernetwork input γ. We report results for different prior
input distributions: Uniform (a) and Gaussian (b). For each setting, we train 3 independent repli-
cas with different random initialization and report the mean (solid line) and the standard deviation
(shaded region). We see significant improvements in model training convergence when the hyper-
network uses the proposed MIP parametrization.
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C.2 CHOICE OF HYPERNETWORK ARCHITECTURE

In this experiment we test whether increasing the choice of hypernetwork architecture size has an
effect on the improvements achieved by incorporating Magnitude Invariant Parametrizations (MIP).
We study varying the width (the number of neurons per hidden layer) and the depth (the number
of hidden layers) independently as well as jointly. For the depth, we consider networks with 3, 4
and 5 layers. For width, we consider having 16 neurons per layer, 128 neurons per layer, or having
an exponentially growing number of neurons per layer (exp), following the expression Dim(xn) =
16 · 2n.

We compare training networks using the default hypernetwork parametrization and MIP for the
HyperMorph task. Figure 7 shows convergence curves for the evaluated settings, for several random
initializations. Additionally, Figure 8 shows the distribution of final model performances for the
range of inputs γ ∈ [0, 1]. We find that MIP models converge faster without sacrificing final model
accuracy.
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Figure 7: Model convergence for several configurations of depth and width of the hypernetwork
architecture for default and MIP hypernetworks. Results are for HyperMorph on OASIS. Shaded
regions measure standard deviation across hypernetwork initializations.
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Figure 8: Test dice score for several configurations of depth and width of the hypernetwork ar-
chitecture for default and MIP hypernetworks. Results are for HyperMorph on OASIS. Box-plots
are reported over the range of hypernetwork inputs γ. For all hypernetwork architectures, MIP
parametrizations consistently lead to more accurate models.
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C.3 CHOICE OF NONLINEAR ACTIVATION FUNCTION

While our method is motivated by the training instability present in hypernetworks with (Leaky)-
ReLU nonlinear activation functions, we explored applying it to other popular choices of activation
functions. We consider popular activation functions GELU and SiLU (also known as Swish) that are
close to the ReLU formulation, as well as the Tanh nonlinear function Hendrycks & Gimpel (2016);
Ramachandran et al. (2017).

We evaluate on the Bayesian hypernetworks task on the OxfordFlowers-102 dataset with a primary
convolutional network trained optimized with Adam. Figure 9 shows the convergence curves for
Bayesian hypernetworks with a primary convolutional network trained on the OxfordFlowers clas-
sification task optimized with Adam. We see that MIP consistently helps for all choices of nonlinear
activation function, and the improvements are similar to those of the LeakyReLU models.
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Figure 9: MIP on alternative nonlinear activation functions Test loss (top row) and test accu-
racy (bottom row) for Bayesian hypernetworks trained on the OxfordFlowers classification task for
various choices of nonlinear activation function in the hypernetwork architecture: GELU, SiLU and
Tanh. For each setting, we train 3 independent replicas with different random initialization and
report the mean (solid line) and the standard deviation (shaded region). We see significant improve-
ments in model training convergence when the hypernetwork uses the proposed MIP parametriza-
tion.

C.4 FINAL MODEL PERFORMANCE

Table 1: Final model results on the test set for the considered tasks and models. We report the
average performance averaged across the range of γ inputs. We find MIP does not decrease model
performance in any setting, while providing substantial improvements in several of them, especially
when using the SGD optimizer. Standard deviation across random initializations is included in
parentheses.

Adam SGD
Task Data Default MIP Default MIP

Bayesian NN MNIST 98.1 (1.1) 99.1 (0.3) 99.2 (0.2) 99.0 (0.2)
OxfordFlowers-102 78.1 (1.9) 83.2 (0.3) 1.4 (0.1) 75.4 (0.5)

HyperMorph OASIS 71.0 (0.3) 72.1 (0.3) 54.3 (0.4) 70.5 (0.2)

Scale-Space HN OASIS 81.4 (0.3) 84.4 (0.6) 75.3 (2.7) 78.8 (1.4)

19



Published as a conference paper at ICLR 2024

C.5 NORMALIZATION STRATEGIES

Before developing MIP parametrizations we tested the viability of existing normalization strategies
(such as Layer or Weight normalization) to deal with the identified proportionality phenomenon.
While normalizing inputs and activations is a common practice in neural network training, hyper-
networks present different challenges, and applying these techniques can actually be detrimental
to the training process. Hypernetworks predict network parameters, and many of the assumptions
behind parameter initialization and activation distribution do not easily translate between classical
networks and hypernetworks.

An important distinction is that the main goal of our formulation is to ensure that the hypernetwork
input has constant magnitude, not that is normalized (i.e., zero mean, unit variance). A normal-
ized variable z ∼ N (0, 1) does not have constant magnitude (i.e., L2 norm), over its support, so
normalization techniques do not solve the identified magnitude dependency and can actually lead
to undesirable formulations. To show this, let x ∈ Rk be a hypernetwork activation vector, and
γ ∈ [0, 1] the hypernetwork input. Then, according to the identified proportionality in Section 3.2,
we know that x = γz. Here x is the activation when the input is γ and z is a vector independent of
γ. The normalization output will be

Norm(x) =
x− E[x]
Stdev[x]

=
γz − E[γz]
Stdev[γz]

=
γz − γE[z]
|γ|Stdev[z]

=
z − E[z]
Stdev[z]

,

making the output independent of the hypernetwork input γ. Following this reasoning, strategies like
layer norm, instance norm or group norm in the hypernetwork will make the output of the model
independent of the hypernetwork input, rendering the hypernetwork unusable for scalar inputs. For
batch normalization cases it depends upon whether different hypernetwork inputs are used for each
element in the minibatch. If not, the same logic applies as in the feature normalization strategies.
Otherwise, the proportionality will still hold as the batch mean and standard deviation will be the
same for all entries in the minibatch. Our experimental results confirm this. Hypernetworks with
layer normalization fail to train in most settings. In contrast, we found consistently that training
substantially improves when using our MIP formulation. See Figure 5a in the main body which
shows that none of the tested normalization strategies is competitive with MIP in terms of model
convergence or final model accuracy.

Batch Normalization - Applying batch normalization fails to deal with the proportionality phe-
nomenon because it normalizes statistics that are independent of the magnitude of γ keeping the
proportionality (Ioffe, 2017). In our experiments, batch normalization performed similar to the
default formulation when included in either the hypernetwork or the primary network, failing to
address the proportionality relationship. For instance, all of the results in Figure 6 use batch nor-
malization layers, as recommended for ResNet-like architectures. In this case, MIP still provides a
substantial improvement in terms of model convergence and training stability.

Feature Normalization - Feature normalization techniques such as layer normalization, instance
normalization or group normalization do remove the proportionality phenomenon we identify (Ba
et al., 2016; Ulyanov et al., 2016). However, by doing so they make the predicted weights indepen-
dent of the input hyperparameter, limiting the modeling capacity of the hypernetwork architecture.
Moreover, in our empirical analysis, networks with layer normalization in the hypernetwork layers
failed to train entirely, with the loss diverging early in training.

Weight Normalization - We also considered techniques that decouple the gradient magnitude and
direction such as weight normalization (Qiao et al., 2019). Performing weight normalization on the
hypernetwork predictions effectively decouples the gradient magnitude and direction. We find that
convergence is substantially lower compared to the default parametrization. Moreover, final model
performance does not match the default parametrization.

20


	Introduction
	Related Work
	The Hypernetwork Proportionality Problem
	Magnitude Invariant Parametrizations
	Experimental Setup
	Tasks
	Experiment Details

	Experimental Results
	Effect of Proportionality on Parameter and Gradient Distributions
	Model Training Improvements
	Robustness Analysis

	Limitations
	Conclusion
	MIP Parameter Initialization
	Implementation Considerations

	Additional Experimental Details
	Datasets
	Bayesian Neural Networks
	HyperMorph
	Scale-Space Hypernetworks

	Additional Experimental Results
	Number of Input Dimensions
	Choice of Hypernetwork Architecture
	Choice of Nonlinear Activation Function
	Final Model Performance
	Normalization Strategies


