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Abstract

The success of Direct Preference Optimization (DPO) in mitigating hallucinations
in Vision Language Models (VLMs) critically hinges on the true reward gaps
within preference pairs. However, current methods, typically relying on ranking or
rewriting strategies, often struggle to optimize these reward gaps in a systematic
way during data curation. A core difficulty lies in precisely characterizing and
strategically manipulating the overall reward gap configuration, that is, the deliber-
ate design of how to shape these reward gaps within each preference pair across the
data. To address this, we introduce Topic-level Preference Rewriting (TPR), a novel
framework designed for the systematic optimization of reward gap configuration.
Through selectively replacing semantic topics within VLM responses with model’s
own resampled candidates for targeted rewriting, TPR can provide topic-level
control over fine-grained semantic details. This precise control enables advanced
data curation strategies, such as progressively adjusting the difficulty of rejected
responses, thereby sculpting an effective reward gap configuration that guides
the model to overcome challenging hallucinations. Comprehensive experiments
demonstrate TPR achieves state-of-the-art performance on multiple hallucination
benchmarks, outperforming previous methods by an average of ∼20%. Notably, it
significantly reduces hallucinations by up to 93% on ObjectHal-Bench, and also
exhibits superior data efficiency towards robust and cost-effective VLM alignment.

1 Introduction

Vision language models (VLMs) [1, 2, 3, 4, 5] have achieved remarkable success across a spectrum
of multimodal tasks, from visual question answering [4, 6] to image captioning [7, 8], becoming
foundational components in modern AI systems. Despite these advancements, even leading models
like GPT-4V [1] suffer from a critical limitation: visual hallucinations [9, 10, 11, 12]. Specifically,
they might confidently describe non-existent objects, misrepresent attributes, or misjudge spatial
relationships, contradicting visual inputs. This poses significant risks, especially in safety-critical
scenarios such as autonomous driving [13] and medicine applications [14].

Recent efforts to mitigate visual hallucinations [12, 15, 16, 17, 18, 19] increasingly leverage pref-
erence learning through alignment techniques such as Direct Preference Optimization (DPO) [20].
These methods aim to steer VLM behaviors towards desired outcomes by learning from meticu-
lously curated preference data. This data typically consists of preference pairs (yw, yl) for a given
input x, where response yw is preferred over yl. By aligning with these preference data, the policy
learned by DPO implicitly defines a reward function r(y;x) that reflects a probabilistic model like
Bradley-Terry p(yw ≻ yl|x) [21]. The quality of this learned reward function, as highlighted by
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Figure 1: (a) Topic-level Preference Rewriting. Based on varying chosen strategies, TPR selectively
replaces each topic using model’s internally resampled candidates. Here, “Greedy” denotes selecting
the highest- and worst-scored alternatives for a high-divergence reward gap, while “Curriculum”
gradually introduces harder-to-discern hallucinations in yl, thereby adjusting the reward gap to
master challenging and subtle hallucinations. (b) Data Efficiency. Apart from manual annotation
(RLHF-V [12]), TPR achieves the best data efficiency on visual hallucination reduction.

recent studies [19, 22, 23], hinges on the fidelity and magnitude of true reward gaps instantiated
by each preference pair in the curated data. Thus, during data curation, strategically designing the
reward gaps within each preference pair to shape an effective learning trajectory for the target reward
functions, is crucial for robust VLM alignment against hallucinations. We refer to this deliberate
process as the systematic optimization of overall reward gap configuration. Given that these reward
gaps are inherently shaped by the intrinsic data characteristics of yw and yl (such as informativeness,
trustworthiness, and explicit differences), optimizing reward gap configuration necessitates more than
mere preference collections, but carefully controlling the underlying data characteristics, thereby
sculpting an optimal reward function tailored for minimizing hallucinatory outputs.

However, existing methods for preference data curation often lack mechanisms for such deliberate
reward gap optimization. For example, ranking-based methods [15, 17, 19, 24] directly select yw
and yl from potentially flawed model outputs without correcting underlying hallucinations. This
may lead to low informativeness or insufficient reward gaps to penalize hallucinations, ultimately
providing weak signals for learning an effective reward function. Alternatively, rewriting-based
approaches, particularly those [58, 26, 27] employing external “black-box” models like GPT-4V [1],
encounter difficulties in precisely adjusting the generated responses (e.g., the type and magnitude
of the changes) and risk introducing hallucinations in yl that deviate from model’s intrinsic failure
modes. Consequently, both approaches may yield a suboptimal reward gap configuration across the
curated data, compromising the learning of robust reward functions.

To address these limitations, we propose Topic-level Preference Rewriting (TPR), a novel VLM
hallucination mitigation paradigm designed for systematically optimizing reward gap configura-
tion during data curation, as illustrated in Figure 1 (a). To provide precise, fine-grained control
over semantic details between yw and yl, TPR operates at the topic-level. Specifically, TPR first
decomposes responses into semantic units and clusters them into distinct topics. It then performs
intra-topic self-resampling using the model itself to avoid introducing external biases that may occur
with rewriting-based methods. Preference pairs (yw, yl) are subsequently constructed by selectively
replacing original semantic units with these alternatives from the same topic. This mechanism
allows for precise, fine-grained adjustment of semantic details between yw and yl, guided by various
chosen strategies. For example, a greedy strategy can establish highly discriminative reward gaps by
constructing yw and yl using the highest- or lowest-scored alternatives from their respective topics.

Moreover, this flexible control over fine-grained differences uniquely enables the formulation and
investigation of sophisticated strategies for achieving an optimal reward gap configuration. In this
work, we exemplify this capability with a simple yet effective curriculum learning strategy that
progressively adjusts the difficulty of hallucinations included in the yl. By implementing such hard
negative mining, the model can be trained to more effectively counteract subtle and challenging
hallucinations, showcasing the effectiveness of TPR. Crucially, this effectiveness is coupled with
superior data efficiency, stemming directly from TPR’s ability to curate high-quality preference pairs.
This enhanced data efficiency, clearly depicted in Figure 1 (b), underscores how TPR’s systematic
optimization of reward gap configuration leads to more performant and cost-effective VLM alignment.
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In summary, our contributions can be summarized as below:

• We underscore the importance of systematically optimizing reward gap configuration during
data curation for robust VLM alignment, an aspect often overlooked in prior studies.

• We propose Topic-level Preference Rewriting (TPR), a novel paradigm designed to offer
fine-grained control over individual reward gaps during data curation, achieved through
topic-level selective replacement with the model’s own resampled candidates.

• Benefiting from the fine-grained control afforded by TPR, we introduce a curriculum learning
strategy that optimizes the overall reward gap configuration by progressively adjusting the
difficulty of rejected responses yl, enhancing robustness against challenging hallucinations.

• Comprehensive experiments demonstrate that TPR achieves the state-of-the-art performance
on multiple visual hallucination benchmarks, outperforming previous methods in both
performance (by ∼20%) and data efficiency.

2 Related Work

Vision Language Models and Hallucinations. The advent of Large Language Models (LLMs) [28,
29, 30, 31] has driven the development of Vision Language Models (VLMs) [1, 2, 4, 5]. Through
multimodal alignment followed by supervised instruction tuning, VLMs achieve remarkable profi-
ciency in visual perception and comprehensive understanding. However, their tendency to produce
hallucinations [9, 10, 11, 32], i.e., generating responses that not factually grounded in the given image,
undermines their reliability and practicality in real-world applications. These hallucinations can be
attributed to multiple factors, including inherent biases inherited from LLMs [33], biased training
data [34, 35], insufficient multimodal alignment [36] and suboptimal inference strategies [37]. Efforts
to mitigate hallucinations broadly fall into training-free and training-based approaches.

Training-free Hallucination Reduction. Training-free approaches [38, 39, 40, 41, 42] aim to
reduce hallucinations without additional model training, typically by intervening during the inference
stage. These approaches often involve adjusting decoding strategies or implementing post-hoc output
correction mechanisms. For example, HallE-Switch [38] modifies the decoding process to suppress
object predictions with low confidence scores. MARINE [39] employs classifier-free guidance using
auxiliary object grounding features to enrich the visual context during generation. Woodpecker [40]
operates post-hoc, identifying and rectifying factual inconsistencies in generated text by leveraging
feedback from a more capable VLM. While efficient, these methods primarily address the symptoms
rather than the core deficiencies of hallucinations within the model itself and may offer limited
improvements against deeply ingrained hallucinatory tendencies.

Training-based Hallucination Reduction. Training-based methods [12, 15, 16, 17, 18, 19, 27, 43]
predominantly learning from preference through alignment techniques such as Direct Preference
Optimization (DPO) [20]. Preference data curation is central to these methods, as the policy’s learned
behavior depends significantly on the quality of the training supervision embedded in the preference
data. To construct high-quality preference data, these methods typically adopt ranking-based or
rewriting-based strategies. Ranking-based methods [17, 19, 24] often employ an auxiliary labeler
model to distinguish preferred responses. For example, RLAIF-V [17] implements a divide-and-
conquer strategy that aggregates scores from decomposed sub-responses, reducing dependence on
proprietary models. AMP [19] constructs multi-level preferences by contrasting outputs from models
of varying scales, enabling cross-level comparison. On the other hand, rewriting-based methods
involve modifying an initial response to create a preferred response yw or a rejected response yl.
This rewriting can be performed manually by human annotators [12, 16] or automated using AI
rewriters [58, 26, 27] like GPT-4V [1]. Exploring effective data curation approaches remains an
active area of research, motivating the development like TPR proposed in this work.

3 Topic-level Preference Rewriting

3.1 Preliminary: Preference Data and Alignment

Mitigating visual hallucinations in VLMs often involves aligning a policy model πθ with carefully
curated preference data, denoted as D = {(I, x, yw, yl)}. Typically, for a given image I and prompt
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x, these methods employ a base reference model πref to generate candidate responses. Human experts
or proxy AI labelers πlabel then evaluate these responses or rewrite them to form preference pairs
(yw, yl), where yw is preferred over yl. The target policy model πθ, often initialized from πref, is
subsequently fine-tuned on D using Direct Preference Optimization (DPO) [20].

The core idea of DPO is to optimize the policy πθ to satisfy the preferences in D, which are
assumed to follow a latent reward model that reflects the preference probability p(yw ≻ yl|x), while
simultaneously being constrained by a KL-divergence penalty to not stray too far from the initial
reference policy πref. The DPO loss function is formulated as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(1)

where β is a hyperparameter that controls the strength of the preference modeling versus the KL
constraint.

As highlighted by recent studies [19, 22, 23], the effectiveness of such alignment critically depends
on the true reward gaps, formally defined as the difference r(yw;x)− r(yl;x) within each preference
pair. The strategic configuration of reward gaps across the curated preference data provides substantial
training signals that not only reinforce desired behaviors but also accurately expose the model’s
genuine and harder-to-discern deficiencies. Therefore, to sculpt effective reward gaps, two key
principles should guide data curation: (1) The process must enable fine-grained control over data
characteristics in yw and yl to deliberately shape reward gaps. (2) The preference pairs should
accurately reflect desired behaviors while exposing model’s intrinsic failure modes.

Guided by these principles, we propose Topic-level Preference Rewriting (TPR), a novel framework
designed to systematically configure the reward gap by establishing fine-grained control over topic-
level semantic details within the response. TPR implements this through two core steps: topic-level
alternatives generation (Section 3.2) and selective topic replacement (Section 3.3). Building upon this
precise control, TPR enables the active exploration and strategic shaping of reward gap configuration,
exemplified by the curriculum learning strategy detailed in Section 3.4. For clarity, we provide a
detailed pseudo code of the complete TPR workflow in Algorithm 1.

Algorithm 1 Topic-level Preference Rewriting (TPR)

Require: Reference model πref, Labeler model πlabel, Source data Dsrc (Image I , Prompt x), Chosen
strategy ω (e.g., greedy, curriculum).

Ensure: Preference data Dpref = {(I, x, yw, yl)}.
1: Initialize Dpref ← ∅;
2: for each (I , x) in Dsrc do
3: Initialize initial responses Sy ← ∅, semantic units Su ← ∅, topic clusters SC ← ∅;
4: for i← 1 to M do
5: yi ← Sample(πref, I, x);
6: Add yi to Sy;
7: Add Decompose(πref, yi) to Su;
8: end for
9: SC ← TopicCluster(πref, Su);

10: for each cluster C in SC do
11: IntraTopicResample(πref, C);
12: Rank(πlabel, C);
13: end for
14: Initialize response template yk ← Randomly select from Sy;
15: Initialize replacements Sw ← ∅, Sl ← ∅;
16: for each unit uk ∈ C in yk do
17: (Sw, Sl)← SelectAlternatives(ω,C);
18: end for
19: yw ← InContextRewrite(πref, yk, Sw);
20: yl ← InContextRewrite(πref, yk, Sl);
21: Add (I , x, yw, yl) to Dpref;
22: end for
23: return Dpref
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Figure 2: Obtaining High-quality and Diverse Topic-level Alternatives. Initially, candidate
responses from VLM are decomposed into fine-grained semantic units. These units are then grouped
into distinct topic clusters based on textual consistency and visual correlation. A diverse pool of
topic-level alternatives is then generated via intra-topic self-resampling.

3.2 Topic-level Alternatives Generation

VLM responses comprise various semantic topics, encompassing diverse objects and attributes,
intricate spatial relationships, or subtle contextual implications. To offer flexible control over fine-
grained details within these responses, TPR operates precisely at the topic level. Such a topic-centric
approach is made viable by findings like those in RLAIF-V [17], which suggest topics within a
response often exhibit weak correlations, permitting their relatively independent manipulation. As
illustrated in Figure 2, TPR introduces a topic-level alternative generation approach designed to
provide a rich set of candidates for the subsequent selective replacement of individual semantic topics.

Decomposing into Topics. Following established protocol [12, 17], for an input image I and prompt
x, we begin by sampling multiple candidate responses {y1, . . . , yM} from the reference model πref.
We then utilize πref to decompose each candidate response ym into a set of fine-grained semantic
units {um,1, . . . , um,Nm}, where each semantic unit um,n corresponds to a distinct semantic topic.

Topic Clustering. To facilitate subsequent selective replacement of semantic units with alternatives
under the same topic, we group semantically related units from different candidate responses into
unique topic clusters, based on textual consistency and visual correlation. Textual consistency
between units um,n and up,q is assessed by querying the reference model πref, e.g., “Are um,n and
up,q describing the same topic?”. For visual correlation, we utilize features from the VLM’s visual
encoder (e.g., CLIP [44]) to verify whether both units refer to similar regions within the input image I .
It is essential for disambiguating textually similar units that describe visually distinct entities. Units
um,n and up,q are considered the same topic only if they satisfy both textual consistency and visual
correlation criteria. We then apply a greedy algorithm [45] for topic clustering, yielding topic cluster
{c}, each containing textually and visually related units. More details are provided in Appendix B.

Intra-Topic Self-Resampling. To enrich the pool of alternatives within each topic cluster, we employ
the reference model πref to perform self-resampling focused on individual topics. Specifically, for
each decomposed unit um,n, we prompt πref to first convert the unit into a relevant wh-question (e.g.,

“The time on the Big Ben is 3:30.” → “What time is on the Big Ben?”). We then query πref multiple
times with these topic-specific questions to obtain a set of candidate semantic units pertinent to that
topic, which avoids introducing potential biases or hallucinations from external models. Compared
to resampling entire responses, this intra-topic self-resampling offers two key advantages central to
TPR. First, by focusing πref on one topic at a time, it boosts the efficiency of obtaining valid and
diverse semantic units, bypassing the demands of simultaneous correctness across all units required in
entire response resampling. Second, generating alternatives at the topic level provides the necessary
granularity for the subsequent selective replacement, enabling systematic shaping of the desired
reward gaps in the resulting preference pairs.

3.3 Selective Topic Rewriting

Intra-Topic Ranking. To distinguish between accurate and potentially hallucinatory semantic
units within each topic cluster c, we adopt an intra-topic ranking strategy. For each semantic unit
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Figure 3: Constructing Preference Pairs by Selectively Replacement. Starting with a pool of
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the template. The specific alternatives are chosen based on strategies like greedy replacement, to
deliberately control over the resulting reward gap. In-context rewriting is then employed to seamlessly
integrate these chosen alternatives, ensuring fluent preference pairs for subsequent model alignment.

uc
m,n (including original and self-resampled alternatives), we prompt the πref to convert it into a

corresponding yes-no question (e.g., “The time on the Big Ben is 3:30.” → “Is the time on the
Big Ben 3:30?”). Given the input image I , we then query πlabel with converted yes-no questions,
obtaining probabilities pY and pN for “Yes” or “No” responses, respectively. Each unit uc

m,n is
assigned a score S(uc

m,n) = pY − pN, where a higher score indicates a higher likelihood that the
unit is factually accurate and non-hallucinatory for topic c.. Moreover, as noted in prior work [17],
evaluating fine-grained units tends to yield more reliable assessments, allowing even moderately
capable models (e.g., πref itself) to serve effectively as πlabel in TPR.

Selective Replacement. Leveraging the ranked semantic units within each topic, we construct
preference pairs (yw, yl) through a selective replacement mechanism. First, we randomly select
one of the initial candidate responses {y1, y2, . . . , yM} as a response template, denoted yk. This
template consists of its original semantic units {uc1

k,1, u
c2
k,2, . . . }, each associated with a topic. We

then generate yw and yl by selectively replacing units ucn
k,n with alternative units chosen from the

ranked pool within the same topic cluster cn. This selective replacement is the core mechanism
for providing fine-grained control over the semantic difference between yw and yl. For example,
a common strategy aimed at constructing highly discriminative pairs involves replacing each ucn

k,n

within the template with the highest- and lowest-scoring alternatives from their respective topic
clusters. By varying chosen strategies for replacement units, this mechanism allows for deliberate
adjustment of each semantic unit, consequently, the reward gap encoded within each (yw, yl) pair.

In-Context Rewriting. Directly substituting alternative units into the template could potentially
disrupt the natural language flow and stylistic consistency, producing awkward or incoherent re-
sponses. To mitigate this issue, we perform the selective replacement using in-context rewriting
guided by the reference model πref. Specifically, we instruct πref to integrate the semantic content of
the chosen replacement units into the template response, preserving logical structure and linguistic
style. This results in preference pairs (yw, yl) where the semantic differences related to specific topics
are precisely controlled while maintaining overall response quality. These high-quality preference
pairs, encoding intentionally designed reward gaps, are then used to fine-tune the policy model πθ via
DPO, effectively steering it away from generating visual hallucinations.

3.4 Exploring Optimal Reward Gap Configuration

Constructing preference pairs (yw, yl) where corresponding semantic units exhibit maximal score
divergence provides a strong initial signal in DPO training. However, recent studies [19, 23] suggest
such a greedy strategy may not yield the optimal reward gap configuration for robust alignment.
Focusing exclusively on maximizing individual reward gaps might prioritize penalizing obvious,
easily detectable errors over the subtle, challenging hallucinations that the model genuinely struggles
with, potentially leading to inefficient learning. The systematic control over fine-grained semantic
difference afforded by TPR allows us to explicitly optimize the reward gaps embedded in the curated
data, thereby refining the model’s ability to avoid these harder-to-discern failure modes.

6



Table 1: Experimental Results on Several Hallucinations and General Capabilities Benchmarks.
The best and second best results are shown in bold and underlined, respectively.

Hallucination Benchmarks General Benchmarks
Model ObjHal MMHal AMBER POPE RefoMB LLaVA-B MMstar

CHs ↓ CHi ↓ Score ↑ Hall. ↓ Acc. ↑ F1 ↑ Adv. ↑ All ↑ Trust. ↑ Win. ↑ Acc. ↑ Acc. ↑
LLaVA-RLHF-13B [15] 38.1 18.9 2.02 62.5 79.7 83.9 82.3 81.9 26.3 17.2 61.5 34.2
RLHF-V-13B [12] 12.2 7.5 2.45 51.0 72.6 75.0 80.5 81.9 41.4 17.7 51.4 33.2
Silkie-10B [24] 27.1 13.4 3.19 32.3 82.2 87.6 80.3 81.1 38.9 21.2 73.2 33.6
POVID-7B [26] 48.1 24.4 2.08 56.2 82.9 87.4 84.0 85.8 44.4 13.6 62.2 34.3
MFPO-7B [57] 13.4 6.6 2.69 49.0 – – – – – – – –
HA-DPO-7B [58] 39.9 19.9 1.98 60.4 75.2 79.9 82.5 86.9 39.9 17.2 67.2 32.9
OPA-DPO-7B [59] 13.0 4.3 2.83 45.8 81.3 85.6 83.7 86.1 39.4 18.2 62.2 32.2
mDPO-7B [60] 35.7 9.8 2.39 54.2 – – – – – – – –
AMP-MEG-7B [19] 37.8 22.5 3.17 35.0 78.3 83.6 83.4 86.8 42.9 18.7 54.6 27.5
RLAIF-V-7B [17] 8.5 4.3 3.06 29.2 76.8 84.5 81.2 83.3 47.5 20.7 64.9 31.8
FGAIF-7B [18] 6.2 3.9 3.09 36.0 – – 79.9 83.4 – – – –
HSA-DPO-13B [27] 5.3 3.2 2.61 48.0 – – – – – – – –

LLaVA-1.5-7B [6] 53.6 25.2 2.36 51.0 73.5 77.6 84.5 85.9 30.8 12.1 59.7 30.3
+ TPR-7B 4.0 2.2 3.01 31.2 82.3 87.6 83.5 86.2 58.1 31.3 69.2 33.2
+ TPR-CL-7B 3.4 1.8 3.06 30.2 82.7 87.8 84.2 87.6 61.1 32.3 71.1 33.3

Leveraging this control, we propose a simple yet effective curriculum learning strategy, analogous to
hard negative mining in other domains, to optimize the reward gap configuration for hallucination
reduction. This strategy involves structuring the preference data curation and DPO training in stages.
Specifically, during an initial “Warm-Up” stage, we adopt the greedy strategy described above,
constructing (yw, yl) pairs with maximal score divergence between corresponding semantic units.
This provide a strong initial learning signal, encouraging faster convergence by clearly differentiating
between highly discriminative content. In a subsequent “Hard-Mining” stage, we gradually increase
the difficulty of the learning objective by constructing yl using incorrect alternative units that
have progressively higher scores, i.e., they are less obviously wrong and closer to the decision
boundary. Introducing these “hard negative” examples in yl challenges the model to make finer
distinctions during DPO training. By learning to differentiate preferred responses from subtly flawed
ones, the model can more effectively refine its ability to detect and avoid nuanced hallucinations,
ultimately improving robustness. This curriculum strategy systematically shape the overall reward
gap configuration over time, starting with broad distinctions and moving towards finer-grained ones
ultimately. Further details are provided in Appendix C.

4 Experiments

4.1 Experimental Setup

Models. In line with previous studies, we use LLaVA-1.5-7B [6] as both the reference model πref for
generating preference data, and as the policy model πθ that is subsequently fine-tuned. The labeler
model πlabel, used for intra-topic ranking described in Section 3.3, is LLaVA-NeXT-34B [3], a choice
consistent with recent approaches [17, 27]. In our experiments, we evaluate two variants of proposed
TPR: (1) TPR utilizes the greedy replacement strategy for data curation. (2) TPR-CL (Curriculum
Learning) utilizes a curriculum learning strategy for data curation, detailed in Section 3.4. We
compare TPR against a range of counterparts, including ranking-based methods [15, 17, 18, 19, 24]
and rewriting-based methods that rely on human experts [12] or external models [26, 27, 58, 59].

Data Source. Following Yu, et al. [12, 17], we curate preference data based on 7 publicly available
dataset sources: VQA v2 [46], MSCOCO [47], ShareGPT-4V [48], TextVQA [49], MovieNet [50],
OKVQA [51] and Google Landmark v2 [52]. We generate a total of 20,000 preference data instances
used for alignment. For the TPR-CL variant, 12,000 instances (60%) are constructed during “Warm-
Up” stage, and the remaining 8,000 (40%) are constructed during “Hard-Mining” stage.

Preference Learning. We apply Direct Preference Optimization (DPO) [20] for preference learning,
aligning the policy model with the preference data curated by TPR and its variants. We use the
AdamW [53] optimizer with a batch size of 8, a learning rate of 5×10−7 with the cosine decay
strategy. The policy model is fine-tuned for 1 epoch on 8 NVIDIA A100 GPUs.
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Table 2: Ablation Studies on Different Components in TPR. Multi-Rsp.: Sampling multiple
candidate responses before decomposition. Intra-Topic Rsp: Intra-topic self-resampling. SR:
Selective replacement. Both/Pref: Performing selective replacement for both preferred and rejected
responses or only for preferred responses while using original responses as rejected counterparts.
In-Ctx: In-context rewriting for selective replacement. Here, we choose (2a) as our baseline, and any
difference in other variants are emphasized in color.

Alternative Generate Preference Curation ObjHal AMBER
Multi-Res. Decompose Intra-Topic Rsp. Strategy In-Ctx. CHs ↓ CHi ↓ Acc. ↑ F1 ↑

(2a) ✓ ✓ ✓ SR+Both+Greedy ✓ 5.9 3.1 82.1 87.0
(2b) ✓ ✓ ✓ SR+Both+Random ✓ 29.7 13.1 78.9 84.1
(2c) ✓ ✓ ✓ SR+Pref+Greedy ✓ 6.4 3.2 76.8 84.7
(2d) ✓ ✓ ✓ SR+Both+Greedy 35.5 20.1 80.1 84.4

(2e) ✓ ✓ SR+Both+Greedy ✓ 7.2 4.0 80.2 86.4
(2f) ✓ ✓ SR+Both+Greedy ✓ 12.6 6.6 77.9 84.9

(2g) ✓ ✓ – Ranking – 9.7 4.8 80.9 85.9
(2h) ✓ – Ranking – 25.5 12.0 73.5 82.8
(2i) – Rewrite+Pref – 11.3 9.8 79.3 84.5
(2j) – Rewrite+Both – 15.6 12.4 78.4 83.6

Evaluation Benchmarks. We assess visual hallucinations mitigation on Object HalBench [54],
MMHal-Bench [15], AMBER [55] (discriminative part), RefoMB [17] and POPE [9]. We assess
general capabilities on LLaVA-Bench [2] (in-the-wild) and MMStar [56].

4.2 Main Results

Results in Table 1 demonstrate TPR significantly mitigates visual hallucinations in VLMs across
several benchmarks. The proposed TPR, in both its evaluated variants, achieves leading performance
in mitigating visual hallucinations when applied to LLaVA-1.5-7B. Notably, our TPR-CL variant
establishes new state-of-the-art results on several hallucination benchmarks, reducing hallucinations
by ∼93% on Object-HalBench and ∼41% on MMHal-Bench. This substantial improvements can
be consistently observed across other challenging hallucination benchmarks such as AMBER and
RefoMB, underscoring the efficacy of our proposed design. Moreover, models fine-tuned using
TPR-curated data not only maintain but sometimes enhance the base model’s performance on
general capability benchmarks. This outcome indicates that TPR can effectively suppresses visual
hallucinations without compromising general VLM capabilities.

The introduction of a curriculum learning strategy (TPR-CL) consistently yields superior performance
compared to the greedy variant across all evaluated metrics. By progressively exposing the model to
more difficult examples according to a curricular scheduler, TPR-CL compels it to discern fine-grained
details, complex contextual relationships, and subtle inconsistencies that often underpin persistent
and challenging visual hallucinations. Crucially, TPR’s unique capability to exercise fine-grained
control over reward gap configuration is the key to effectively implementing curriculum learning
strategy, thereby cultivating a more robust policy and delivering the state-of-the-art hallucination
mitigation demonstrated by TPR-CL.

4.3 Ablation Studies

To investigate how TPR optimizes the reward gap configuration by enabling deliberate control over
underlying data characteristics within preference pairs, we conduct a series of ablation studies. As
presented in Table 2, our investigations focus on addressing the following questions: (1) How do the
core components of TPR influence the quality and data characteristics of the resulting preference
pairs, which directly shape the individual reward gaps? (2) How does the selective replacement
mechanism in TPR impact final performance of the learned policy, when compared against other
preference curation approaches, such as ranking-based or rewriting-based methods? (3) How to
construct a high-quality rejected response yl in preference pair? Is it more effective to employ external
“black-box” rewriters common in rewriting-based methods or to utilize model’s internally resampled
candidates, as TPR does? (4) From a broader perspective, what is the data efficiency of preference
data curated by TPR, particularly when comparing its performance with that of other methods across
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Figure 4: (a) Quality of Overall Constructed Responses. We compare responses generated from
different preference curation strategies against strong “Ground Truth” responses from GPT-4V, where
win-rates exceeding 50% indicate superior to GPT-4V outputs. For a fair comparison, we use
LLaVA-NeXT-34B as the labeler or rewriter across all strategies, including “+Rank”, “+Rewrite”
and “+TPR(-CL)”. (b) Quality of Topic Alternatives. The numbers on the bars indicate the top-1
selections made by GPT-4V in term of informativeness and trustworthiness. (c) Hallucination Types.
Hallucinations introduced by external rewriters differ significantly from model’s own failure modes.

varying data volumes? For computational efficiency, these ablation studies are conducted using a
subset of 8,000 curated preference data instances. More ablations are provided in the Appendix G,
including using different model architectures, using the reference model itself as labeler, and etc.

Topic Alternatives Generation. We conduct ablations on different approaches for generating
topic alternatives. Results in Table 2 reveal that employing multiple initial candidate responses for
decomposition and subsequently performing intra-topic self-resampling proves highly beneficial
(exp 2a vs. 2e/f). It facilitates better coverage of edge cases, such as rarely mentioned attributes,
and ultimately yields a more diverse and comprehensive set of alternatives. Such diversity is crucial
for sculpting more sophisticated reward gap configuration during data curation. To quantify these
aspects, Figure 4 (b) provides a direct comparison, evaluating the underlying data characteristics like
informativeness and trustworthiness of these generated alternatives, based on GPT-4V reviews.

Preference Curation Approaches. We conduct ablations to analyze the impact of specific design
choices within the preference curation process, as detailed in Table 2. Deviations from our base
TPR variant (exp 2a), such as employing random selection for replacement (exp 2b), applying
selective replacement to only one side of preference pair (exp 2c, or omitting in-context rewriting (exp
2d), all degrade final model performance. These findings highlight that the purposeful, symmetric
replacement for both preferred and rejected responses, coupled with in-context rewriting, is crucial
for crafting reward gaps that provide strong and effective learning signals for DPO.

Moreover, TPR’s core mechanism of selective topic replacement demonstrably outperforms other
preference curation strategies, such as ranking-based or rewriting-based methods (exp 2a vs. 2g/h/i/j).
These performance advantages are further substantiated by quality assessments present in Figure 4
(a). In this evaluation, responses generated by different curation strategies are compared against
strong “ground truth” (GT) responses from GPT-4V. We calculate one-vs.-one win-rates to quantify
the quality of the generated responses, where win-rates exceeding 50% indicate that the respective
preference curation strategy generates responses superior to those of GPT-4V. Additionally, more
qualitative case studies are provided in Appendix E, offering an intuitive understanding of the quality
improvements achieved by TPR. Collectively, all these result confirm that TPR’s meticulous, topic-
focused curation not only leads to better performance but also genuinely enhances the intrinsic quality
of the preference data for robust VLM alignment.

Rejected Response yl. We conduct ablations to assess how different yl curation approaches influence
the nature of the resulting yl, particularly its fidelity in incorporating hallucinations that reflect the
base model’s genuine failure modes. Some rewriting-based methods [26] employ powerful external
models, such as GPT-4V, to modify responses, intending to create suitably “negative” yl instances.
However, a critical concern is that the hallucination patterns introduced by these external rewriters
may deviate from genuine deficiencies of the model that we aim to align. As illustrated in Figure 4
(c), the distribution of hallucination types in yl from these methods can differ significantly from
model’s intrinsic hallucination patterns. For instance, an external rewriter might introduce a more
imbalanced distribution of various hallucination types, while the model’s own intrinsic hallucination
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patterns exhibit a relatively uniform distribution. This discrepancy results in a mismatch between the
curated yl and model’s actual deficiencies, thereby impairing alignment efficiency (exp 2a vs. 2i vs. 2j)
because the model is not optimally trained against its specific hallucinatory tendencies. Conversely,
TPR performs intra-topic replacement on model-generated response template, ensuring that yl more
accurately mirror the model’s intrinsic failure distribution.

Data Efficiency. Building on the findings that TPR yields higher quality topic candidates and
overall responses, we further investigate its data efficiency, as illustrated in Figure 1 (b). While
RLHF-V [12], leveraging human annotation, demonstrates notable initial efficiency by achieving low
hallucination rates with only 1.4k data, its prohibitive costs inherently limit scalability. In contrast,
TPR, through its automated data curation process, facilitates a rapid reduction in hallucination levels
when scaling from 4k to 20k data, ultimately surpassing human-annotated data in both performance
and cost-effectiveness. Other automated methods generally exhibit inferior data efficiency. For
instance, RLAIF-V [17], despite appearing competitive with 22k data volume, actually necessitates
multiple rounds of data re-generation and retraining (effectively equivalent to an 88k data processing
effort), significantly inflating its computational cost compared to TPR. These observations underscore
how the enhanced data quality, achieved through TPR’s systematic optimization of reward gap
configuration, directly contributes to superior data efficiency.

5 Limitations and Future Prospects

Our work presents a promising direction for mitigating hallucinations, yet it also has limitations that
open avenues for future research.

Complexity of TPR Pipeline. The TPR involves several sequential steps, including response
decomposition, topic clustering, self-resampling, and in-context rewriting. While each stage is
integral to ensuring high-quality data curation, their combination increases the overall complexity and
computational overhead. In future work, we are committed to improving the framework’s efficiency
by simplifying the pipeline, e.g., by investigating the necessity of the clustering step, to further
enhance its throughput and reduce computational demands.

Explore Optimal Data Curation Dimensions. While our curriculum learning strategy in TPR-CL
demonstrates one effective way to leverage TPR’s control capabilities, the potential for optimizing
data curation extends further. Investigating more advanced data curation dimensions, predicated on
TPR’s flexible control over semantic details, remains a rich and promising direction for enhancing
VLM robustness against more challenging and complex hallucinations.

Hallucinations in Multimodal Reasoning Tasks. A critical next step is to extend these mitigation
strategies to address hallucinations in complex multimodal reasoning tasks [61, 62, 63]. TPR is
currently effective at reducing perceptual hallucinations, but adapting its topic-level control to handle
errors in logical or causal reasoning chains presents a significant and valuable challenge for future
exploration.

6 Conclusion

In this work, we introduce TPR, a novel paradigm designed for robust VLM alignment. By systemati-
cally controlling the reward gap configuration through topic-level alternatives generation and selective
topic rewriting, TPR facilitates the construction of high-quality preference pairs with precisely con-
trolled characteristics. This meticulous data curation is pivotal for generating effective training
signals that significantly enhance model performance in mitigating hallucinations. Comprehensive
experiments demonstrate that TPR, particularly when augmented with our proposed curriculum learn-
ing strategy (TPR-CL), achieves state-of-the-art performance on several hallucination benchmarks,
significantly reducing hallucinatory outputs from the reference model.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and instruction can reflect the paper’s contri-
butions. And these claims can match with the experimental results in Section 4.2.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a limitation subsection in Section 6. Besides, we follow the indepen-
dence assumptions in [17] that each decomposed semantic topics exhibit weak correlations
within a given response, so we can conduct fine-grained and systematic control over each
semantic units in responses (see Section 3.2). And experimental results on several hallucina-
tion benchmarks and general capabilities benchmarks prove its robustness. We also provide
data efficiency analysis in Section 4.3 and computation cost estimation in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the data curation process of TPR in Section 3, and provide
hyper-parameters and prompts used in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release the code and the related instructions anonymously in the supple-
mentary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide implementation and evaluation details in Section 4.1 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We compared a large number of methods in Table 1, none of which provided
statistical significance. It’s infeasible to calculate error bars for all these methods (and some
of them are not open sourced). Considering that TPR has demonstrated the effectiveness on
a large number of benchmarks and ablations in Table 2, we believe it can to some extent
prove the stability and robustness of TPR.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe it in Section 4.1, and also provide a estimated resources cost in
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics. The curated preference data
in TPR are sampled from publicly available academic datasets. And most of the visual
hallucinations we studied are related to perception errors.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We discuss broader impacts in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our released model are aligned for reducing visual hallucinations.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper related to dataset we used in TPR, see Section 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the documents related to the released code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the usage of LLMs in Section 3, and we also provide the prompts
in Appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Mathematical Grounding for Reward Gap Optimization

In this section, we provide a mathematical justification for the systematic optimization of the reward
gap, connecting the data curation strategies introduced in Section 3 to the underlying learning
dynamics of Direct Preference Optimization (DPO) [20].

A.1 DPO Loss Function and Gradient Analysis

The DPO loss function is defined as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(2)

where σ is the sigmoid function and β is a hyperparameter controlling the deviation from the reference
model πref. For a single preference pair, let Mπθ

be the policy model’s estimated log-probability ratio
(or estimated reward gap):

Mπθ
= log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

(3)

The gradient of the loss with respect to the model parameters θ is then given by:

∇θLDPO = −β · σ(−βMπθ
) [∇θ log πθ(yw|x)−∇θ log πθ(yl|x)] (4)

The term [∇θ log πθ(yw|x)−∇θ log πθ(yl|x)] determines the direction of the update, encouraging
the model to increase the likelihood of the preferred response yw and decrease that of the rejected
response yl. The term σ(−βMπθ

) determines the magnitude of the gradient update. Our analysis
focuses on this magnitude term.

A.2 True Reward Gap in Learning Dynamics

Let r∗(y, x) represent an oracle or true reward function that perfectly captures the desired behavior
(e.g., factual accuracy). For any preference pair (yw, yl) we curate, we can define the true reward
gap as:

∆r∗ = r∗(yw, x)− r∗(yl, x) (5)
This ∆r∗ is an intrinsic property of the data pair that reflects its difficulty. A large ∆r∗ signifies an
“easy” pair (e.g., a factually correct response vs. a blatant hallucination), while a small ∆r∗ signifies
a “hard” pair (e.g., a correct response vs. a subtly flawed one).

The curriculum learning strategy in TPR (see Section 3.4) systematically manipulates ∆r∗ to optimize
the learning trajectory. We analyze the impact of this manipulation on the model’s estimated gap
Mπθ

and, consequently, the gradient magnitude.

Training with High Reward Gaps (Warm-Up Stage). Initially, the model is trained on pairs with a
large true reward gap (∆r∗ ≫ 0). The model quickly learns to differentiate these “easy” examples,
causing its estimated gap Mπθ

to become large and positive. As Mπθ
→∞, the gradient magnitude

term σ(−βMπθ
)→ 0. The learning signal for these easy examples diminishes, indicating the model

has mastered them.

Training with Low Reward Gaps (Hard-Mining Stage). After the warm-up stage, TPR introduces
“hard” pairs where yl is subtly incorrect, corresponding to a small true reward gap (∆r∗ → 0).
For these challenging pairs, the model initially struggles to distinguish yw from yl, resulting in
an estimated gap Mπθ

≈ 0. When Mπθ
is near zero, the gradient magnitude σ(−βMπθ

) is at its
maximum (≈ 0.5). This creates a strong learning signal, forcing the model to focus on the fine-
grained details it was previously ignoring and refine its decision boundary. In our curriculum strategy,
by progressively reducing the true reward gap in the training data, we keep the model training in a
high-gradient magnitude regime for increasingly difficult problems. This leads to a more robust and
fine-tuned policy against challenging hallucinations.

A.3 Comparison with Adjusting the Hyperparameter β

Based on Equation (4), an alternative way to amplify the learning signal when Mπθ
is large would be

to dynamically decrease the hyperparameter β. However, this approach has potential drawbacks. The
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parameter β is fundamentally designed to control the strength of the KL-divergence penalty between
the policy πθ and the reference πref. Aggressively lowering β to force learning on hard examples
could weaken this constraint, potentially leading to unforeseen distribution shifts away from the
reference model. In contrast, TPR’s approach of manipulating the data’s intrinsic reward gap ∆r∗ is
more direct. By using the reference model itself for every creative step (resampling, rewriting), TPR
ensures that even the “hard” preference pairs remain grounded in the model’s own failure modes and
capabilities, mitigating the risk of drastic policy divergence.

B Topic Clustering

To determine if two semantic units, um,n and up,q, belong to the same topic c, we evaluate their
textual consistency and visual correlation.

Textual Consistency. We assess textual consistency by querying the reference model πref to determine
if um,n and up,q describe the same core idea. The model is prompted as follows:

ptext(um,n, up,q) = πref(um,n, up,q| “Are {um,n} and {up,q} describing
the same topic? Please answer Yes or No.”)

(6)

ptext is considered True if πref outputs Yes, and False otherwise.

Visual Correlation. As illustrated in Figure 5, we also assess whether two semantic units visually
correspond to similar regions within the input image. To achieve this, we utilize the vision tower in
VLM, specifically CLIP [44], to extract pooled text embeddings for each candidate semantic unit u
and image embeddings for each vision token v. We then compute the similarity Sim(u, v) between
these text and image embeddings. Semantic units are considered visually correlated if their respective
similarity vectors, when compared to the image embeddings, exhibit a high correlation:

pvis(um,n, up,q) = Correlation
[
Sim(um,n, v), Sim(up,q, v)

]
> τvis (7)

Here, Correlation(·), implemented using Pearson correlation, measures the correlation between
these two similarity vectors. pvis is considered True if the pre-defined threshold τvis is satisfied, and
False otherwise. This visual correlation mechanism enables the distinction of multiple entities or
aspects within an image, even when their textual descriptions are similar, thereby categorizing them
into separate topics.

Greedy Clustering. Semantic units are considered to belong to the same topic if they exhibit both
textual consistency (as defined by ptext) and visual correlation (as defined by pvis). Specifically, we
adopt an approach analogous to the Louvain method [45]. Louvain method is a greedy, iterative
algorithm designed to optimize modularity, a metric quantifying the density of connections within
communities relative to connections between them. The process begins by assigning each semantic
unit to its own distinct community. Subsequently, for each unit, the algorithm evaluates whether
moving it to a neighboring community would increase the overall modularity. This step is repeated
iteratively until no individual move can further enhance modularity. This process, consequently,
results in a partitioning of the semantic units into distinct topic clusters.

Sensitivity Analysis. We conducted a sensitivity analysis to evaluate the impact of the hyperpa-
rameter τvis on the final performance. As detailed in Table 3, the results indicate that employing a
stricter threshold for matching candidate semantic units generally leads to improved performance.
Consequently, based on this analysis, we set τvis = 0.9 for all experimental setups.

C Curriculum Learning

To progressively refine model’s ability to discern subtle errors, TPR-CL (Curriculum Learning)
employs an iterative alignment approach. It incorporates a selective replacement mechanism for
semantic units, guided by a curriculum. This curriculum dictates the selection of alternative semantic
units and subsequently guides the construction of rejected responses yl paired with preferred ones yw.

Implementation Details. The TPR-CL process is divided into multiple iterations. In each iteration,
preference data is generated using a distinct subset of the overall data sources (as detailed in Section
4.1, containing images I and prompts x). This newly generated preference data is then used to
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Figure 5: Visual Correlation.

Table 3: Ablation studies on topic clustering.
We ablate the impact of ptext and pvis in topic clus-
tering, and conduct a sensitivity analysis of τvis,
used in visual correlation step of topic clustering.

Condition τvis
ObjHal AMBER

CHs ↓ CHi ↓ Acc. ↑ F1 ↑
(3a) ptext - 13.4 6.8 80.1 85.9
(3b) pvis 0.9 13.0 7.3 80.1 86.1

(3c)

ptext + pvis

0.6 8.3 4.1 80.8 86.1
(3d) 0.8 7.2 3.5 82.5 86.9
(3e) 0.9 5.9 3.1 82.1 87.0
(3f) 0.95 6.7 3.5 81.8 86.8

fine-tune the policy model πθ. The aligned policy model resulting from one iteration serves as
the reference model for the subsequent iteration. Note that unlike methods such as RLAIF-V [17]
which re-generates preferences using the entire data sources in each of its multiple iterations (a total
generation effort equivalent to Niterations × |D|), TPR-CL is designed so that preference data for any
given subset of the data sources is generated only once throughout the entire multi-iteration process
(a total generation effort equivalent to |D|).
During all iterations, preferred responses yw are constructed by consistently selecting the highest-
scored alternative semantic units. The strategy for constructing rejected responses yl varies according
to the curriculum: (1) In first 60% iterations (denoted as “Warm-Up” stage), yl is constructed by
replacing semantic units with the lowest-scored alternatives from the candidate pool, encouraging
faster initial convergence of the policy model. (2) In remaining 40% iterations (denoted as “Hard-
Mining” stage), the difficulty of the negative examples is gradually increased to further refine the
model. For iterations spanning 60% to 80% of the total, alternatives for yl are selected from those
scoring in the bottom 20% of the candidate pool. For the final 80% to 100% iterations, alternatives
for yl are selected from those scoring between the bottom 20% and bottom 40% of the candidate pool.
As the policy model πθ becomes more capable through these iterations, the progressively increasing
score threshold for negative examples challenges it to make finer distinctions.

Effectiveness of Hard Mining. To investigate the impact of curriculum learning on model’s ability
to avoid subtle errors, we conduct a quantitative analysis comparing effectiveness in reducing
hallucination across different types of varying difficulties. The RefoMB benchmark [17] is used for
this ablation, as its detailed categorizations allow us to pinpoint the benefits of curriculum learning
more precisely. The results in Figure 6 clearly demonstrate the progressive improvements achieved
through our proposed TPR method and curriculum learning strategy. On challenging hallucinations
for baseline LLaVA-1.5 model, i.e., “Quantities” (16.7%) and “Spatial Relations” (14.3%), the
introduction of curriculum learning in TPR-CL yields further substantial improvements, providing
an additional +20.8/+35.7 point increase over its greedy variant. For “Existence” and “Attributes”,
where the greedy variant already performed strongly, TPR-CL still offers valuable refinements, with
additional gains of +5.3 and +8.3 points respectively. These findings underscore the effectiveness of
the hard mining component within our curriculum learning strategy. This is especially crucial for
tackling more subtle and complex hallucinations related to quantities and spatial relationships, where
the baseline model and even the greedy TPR approach show limitations.

D Computational Cost

To evaluate the practical viability of TPR, we conduct a comprehensive computational cost analysis.
As illustrated in Figure 7, TPR demonstrates the most favorable efficiency trajectory, achieving
a rapid and substantial reduction in hallucinations at a minimal cost. This superior efficiency is
rooted in our data generation pipeline, with a detailed breakdown provided in Table 4. The process
of generating our 20k preference dataset on 8 NVIDIA A100 GPUs requires 71.05 hours, a time
significantly reduced to just 26.04 hours with the integration of the vLLM [66] inference engine. This
culminates in a highly efficient rate of 4.7 GPU-seconds per generated pair.
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Table 4: Computational Cost Breakdown. We pro-
vide the total computational cost of TPR generating
full 20k dataset in each stage. vLLM is applied
as inference engine in TPR for acceleration. All
results are obtained using 8 NVIDIA A100 GPUs.

Stage TPR TPR w/ vLLM
Response Generation 10.27h 1.36h
Decomposition 8.91h 3.57h
Wh-question Convertion 7.95h 3.17h
Self-resampling 7.48h 2.96h
Topic Cluster 10.84h 6.71h
Scoring & Ranking 23.43h 7.42h
In-context Rewriting 2.17h 0.85h

Total 71.05h 26.04h
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Figure 8: Larger Base Model. We provide the
results of 7B/13B base model on 2k∼20k data.

When compared with methods relying on proprietary APIs, TPR’s advantage is pronounced. As
shown in Figure 7, while a rewriting approach using GPT-4V yields a significant performance
improvement, it comes at a much higher price. TPR achieves a comparable level of hallucination
reduction at approximately one-third of the estimated API cost required by the GPT-4V approach
(roughly $10 for TPR vs. over $30 for GPT-4V). Furthermore, TPR is also more cost-effective than
other open-source alternatives like RLAIF-V. Under the same hardware conditions, generating a 22k
dataset with the official RLAIF-V implementation takes approximately 66 hours. Although RLAIF-V
involves fewer distinct stages, its process is dominated by a computationally expensive scoring phase
using a 34B parameter labeler model. More critically, its iterative refinement strategy introduces
significant overhead: the policy model must be repeatedly retrained between data generation rounds,
a resource-intensive process that cannot be accelerated by inference engines like vLLM. This inherent
inefficiency explains the gentler decline in its performance-to-cost curve shown in Figure 7.

In summary, these findings clearly indicate that TPR not only achieves state-of-the-art hallucination
reduction but does so with significantly greater computational and financial efficiency than existing
methods, highlighting its practical value for large-scale VLM alignment.

E Qualitative Case Studies

We provide qualitative case studies to illustrate two key aspects: (1) The differences between
preference pairs generated by TPR and those generated by its curriculum learning variant, TPR-CL.
See Figure 9 and 10. (2) The enhanced quality of responses from the policy model fine-tuned with
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TPR-curated data, particularly when compared against both the LLaVA-1.5-7B baseline and the
larger LLaVA-NeXT-34B model. See Figure 11 and 12.

F More Implementation Details

F.1 Data Curation

Hyper-Parameters. For preference data curation, we utilize instruction prompt x from RLHF-V [12]
to guide the reference model πref in generating M = 10 candidate responses {y1, y2, · · · , yM}
for each image I . After these responses are decomposed into semantic units, πref is queried with
wh-questions derived from each unit to self-resample one additional candidate per topic. For
the TPR-CL variant, 12,000 instances (60%) are constructed during “Warm-Up” stage, and the
remaining 8,000 (40%) are constructed during “Hard-Mining” stage. For initial candidate re-
sponses sampling and intra-topic resampling, we follow RLHF-V [12] to set the parameters as:
temperature=0.7,top_p=0.95,do_sample=True. Other parameters like top_k are left at their
default values.

Prompts. Within the TPR paradigm, the reference model πref is prompted to perform several key
operations: candidate response generation, response decomposition, topic clustering, in-context
rewriting and the conversion of semantic units into both wh-questions and yes-no questions. The
specific prompts utilized to guide πref for these tasks are detailed in Table 5 and Table 6.

F.2 Evaluation

Benchmarks. We evaluate TPR on several benchmarks:

• Object-HalBench. Rohrbach, et al. [54] is designed for common object hallucinations
in detailed image descriptions. We follow Yu, et al. [17, 12] to use 8 diverse prompts
to improve the stability during evaluation. We report the CHAIRs (the percentage of
hallucinatory responses) and CHAIRi (the percentage of hallucinated objects).

• MMHal-Bench. Sun, et al. [15] evaluates hallucinations and informativeness by using
GPT-4 [28] to compare model outputs with human annotations.

• AMBER. Wang, et al. [55] evaluates the object existence, attributes and relations in the
image description. We use discriminative part of AMBER for evaluation, and report the
accuracy and F1 metric.

• RefoMB. Yu, et al. [17] consists of 120 images, each paired with 3 instructional annotations,
and evaluates 8 fundamental competencies covering both hallucination and reasoning.

• POPE. Li, et al. [9] evaluates the object existence through querying the VLM with close-
ended yes-no questions. Note that we use original prompts in POPE during evaluation for
stability. We report the F1 score and accuracy on three different sampling strategies in
POPE, i.e., adversarial, popular and random sampling. We also report the overall F1 score.

• LLaVA-Bench. We use LLaVA-Bench [2] (in-the-wild) to evaluate VLMs in multimodal
conversation, detailed descriptions and reasoning aspects. We report the overall score.

• MMStar. Chen, et al. [56] evaluates VLMs on 6 core capabilities and 18 specific aspects
related to general capabilities. We report the overall score.

Comparison Counterparts. We compare our TPR with multiple RLHF/RLAIF methods:

• LLaVA-RLHF. Sun, et al. [15] first fine-tunes LLaVA [2] with manual-annotated instruc-
tion tuning datasets, i.e., VQA-v2 [46], A-OKVQA [51] and Flickr30k [64], to enhance its
general capabilities. Subsequently, it trains a reward model on 10k preference data derived
from human feedback and applies PPO [65] on 72k factually augmented data for preference
learning.

• RLHF-V. Yu, et al. [12] collects 1.4k fine-grained preference data in the form of segment-
level corrections on hallucinations through manual annotation. It then aligns the VLMs
using the proposed dense DPO.
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Table 5: Prompts Used in Topic-level Alternative Generation. Here, {question}, {answer} and
{sentence} are placeholders that will be replaced when inputted into the reference model.

Candidate Response Generation (Modified from RLHF-V)
We randomly select a following question to use as input for the reference model, prompting it to
generate responses based on the image.

### Questions:
- What is the setting or environment in which the image takes place?
- Provide an intricate description of every entity in the image.
- Can you point out the details that make this image unique?
- What are the main elements in this image? Describe them thoroughly.
- Identify and describe each object in the image in detail.
- Analyze this art image, describing its spatial arrangement, interactive elements, and conceptual
message.
- Detail the texts and other components in the image in depth, explaining their relevance to the overall
picture.
- Look at the image and describe the celebrity’s facial expressions, clothing, and any distinctive features.
- · · ·

Response Decomposition (Modified from RLAIF-V)
You are an expert in extracting facts from the given question-answer pair for an image. Your task is to
extract and rewrite the facts mentioned in the answers into self-contained sentences. Exclude opinions
or subjective statements.

You should present your result in the following format:
### Facts:
- {Extracted fact 1}
- {Extracted fact 2}
- · · ·
### Question-answer pair:
Question: {question}
Answer: {answer}

Wh-Question Converting
You are an expert at modifying a given declarative sentence into a wh-question sentence. Your task is
to modify the given declarative sentences one by one into a wh-question form. Do not change tenses
or add extra content.

You should present your result in the following format:
### Converted questions:
- {Converted question 1}
- {Converted question 2}
- · · ·
### Declarative sentences:
- {sentence 1}
- {sentence 2}
- · · ·

• Silkie. Li, et al. [24] adopts GPT-4V [1] to assess the responses generated by multiple
VLMs regarding helpfulness, visual faithfulness and ethical considerations. It then applies
DPO [20] to train Qwen-VL-Chat [4] over 80k GPT-4V preferences.

• POVID. Zhou, et al [26] emphasizes the importance of rejected responses and generates
high-quality rejected responses by distorting the image and injecting additional hallucina-
tions using GPT-4V. It then fine-tunes the LLaVA-1.5-7B with generated 17k preference
data.
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Table 6: Prompts Used in Topic Selective Rewriting. Here, {sentence}, {tip}, {question}
and {answer} are placeholders that will be replaced when inputted into the reference model.

Yes-no Question Converting
You are an expert at modifying a given declarative sentence into a general question sentence. Your task
is to modify the given declarative sentences one by one into a general question form. Do not change
tenses or add extra content.

If the given declarative sentence contains not, no or negative meaning words, you need to check the
modified general interrogative sentence to make sure that the generated general question sentence
retains words with not, no or negative meaning words.

You should present your result in the following format:
### Converted questions:
- {Converted question 1}
- {Converted question 2}
- · · ·
### Declarative sentences:
- {sentence 1}
- {sentence 2}
- · · ·

Textual Consistency Evaluation
You are an expert at determining if the given two declarative sentences are consistent in textual
semantics. Your task is to determine if the topic described in these two sentences are consistent. If
you can confirm that two sentences are consistent, please output “consistent”. Otherwise, output
“unrelated”.
### Declarative sentences:
- {sentence 1}
- {sentence 2}

In-Context Rewriting
You are an expert at modifying a declarative answer with several tips. Your task is to modify the
original answer, which is used to answer the question, based on the image and the provided tips. The
given tips will relate to a specific part of the original answer, and you should use the tips to overwrite
the corresponding part. If there is a conflict between the tips and the image, remember to follow the
tips first.

You should make minimal modifications and maintain style and format with the original answer. Only
output the modified answer.
### Tips:
- {tip 1}
- {tip 2}
- · · ·
### Question-answer pair:
Question: {question}
Original Answer: {answer}

• MFPO. Jiang, et al. [57] introduces image-related rewards in preference data and constructs
1.4k image preference data upon RLHF-V. It then aligns the VLMs with proposed modality-
fair preference optimization (MFPO).

• AMP. Zhang, et al. [19] designs an automated pipeline that generates multi-level preference
data for multi-level comparison. It then uses 11k multi-level preference data to align VLMs
with proposed multi-level DPO.

• RLAIF-V. Yu, et al. [17] adopts a divide-and-conquer strategy that determines the overall
response score by aggregating the decomposed sub-response scores, mitigating the expensive
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Table 7: More Ablations on Self-Labeling and Different Model Architecture.

Hallucination Benchmarks General Benchmarks
Model ObjHal MMHal AMBER RefoMB POPE LLaVA-B MMstar

CHs ↓ CHi ↓ Score ↑ Hall. ↓ Acc. ↑ F1 ↑ Trust. ↑ Win. ↑ F1 ↑ Overall ↑ Overall ↑
LLaVA-1.5-7B 53.6 25.2 2.36 51.0 73.5 77.6 30.8 12.1 85.9 59.7 30.3

+ TPR-SL 5.8 3.0 2.67 44.8 81.7 86.7 53.5 30.3 86.1 73.7 32.8

Qwen-VL-2B [4] 42.4 36.3 2.85 47.9 68.3 81.0 48.5 20.7 86.5 83.2 29.1
+ Naive RLAIF 36.5 31.7 2.81 49.0 70.9 81.8 52.5 23.7 87.0 83.2 30.3
+ TPR-SL-2B 19.5 13.7 2.98 43.8 74.3 84.3 56.6 28.3 87.1 83.8 31.2

demand for ultra-large proprietary VLMs. It generates 28k preference data for preference
learning with proposed iterative DPO.

• HSA-DPO. Xiao, et al. [27] first trains a hallucination detection model on hallucination
datasets built by GPT-4V, and then follows a detect-then-rewrite pipeline to construct 6k
preference data. It then aligns VLMs with proposed hallucination severity-aware DPO.

G More Ablation Studies

Larger Base Model. To investigate the scalability of our method, we applied TPR-CL to both 7B and
13B variants of the base model across data scales from 2k to 20k. As illustrated in Figure 8, the 13B
model consistently outperforms its 7B counterpart at every data point, achieving better hallucination
scores in both ObjHal [54] and AMBER [55] benchmarks. This result confirms that the performance
gains from TPR are complementary to the inherent capabilities of larger models, highlighting its
strong scalability.

Self-Labeling: Using the Reference Model Itself as Labeler. The approach of scoring fine-grained
semantic units within our intra-topic ranking mechanism potentially alleviates the demand for an
exceptionally capable labeler model [17]. This prompted an exploration into the effectiveness of
using the reference model itself for scoring and ranking after self-resampling, thereby investigating
the boundaries of model self-improvement. Accordingly, we introduce TPR-SL (Self-Labeling),
a variant of TPR that leverages the base LLaVA-1.5-7B model [6] as its own preference labeler,
instead of a more powerful one like LLaVA-NeXT-34B [3] used in our main experiments. The
performance of TPR-SL compared to the LLaVA-1.5-7B baseline is presented in Table 7. Specifically,
TPR-SL achieves substantial improvements over the baseline LLaVA-1.5-7B across both hallucina-
tion mitigation and general VLM capabilities. These findings are significant as they highlight the
effectiveness of TPR in a self-labeling scenario. It validates a practical and efficient paradigm for
VLM self-improvement that minimizes reliance on human annotations or powerful external models.

Generalization on Different Model Architecture. To verify the generalizability of the TPR
paradigm, we apply it to a different model architecture, Qwen-VL-2B [4]. Specifically, Qwen-
VL-2B serves as the reference model for both generating topic-level alternatives and subsequent
selective replacement, with intra-topic ranking performed by Qwen-VL-2B itself (self-labeling). The
preference data curated through this process is then used to fine-tune Qwen-VL-2B. As presented in
Table 7, we compare this aligned policy model against the original Qwen-VL-2B baseline and the
same base model fine-tuned using a naïve RLAIF approach (which employs an external LLaVA-NeXT-
34B model for ranking). The results clearly demonstrate the effectiveness and generalizability of
applying TPR paradigm, even in a self-labeling setup, to improve performance on both hallucination
and general benchmarks. This aligns with the conclusions outlined in our main results (see Section
4.2). Therefore, it is affirmed that the TPR paradigm is not confined to a specific model architecture
like LLaVA. Its core data curation design can be effectively adapted to other models such as Qwen-
VL-2B, leading to significant reductions in hallucinations while maintaining or improving general
VLM capabilities.
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H Broader Impacts

The research presented in this paper aims to enhance the reliability of Vision Language Models
(VLMs). By significantly reducing visual hallucinations, TPR leads to more factually accurate and
contextually coherent outputs, which in turn can bolster user trust. These improvements are pivotal
for unlocking safer and more effective VLM applications across diverse domains, from assistive
technologies to educational tools, transforming these models into more reliable instruments. However,
the deployment of this technology require careful consideration of potential societal impacts and
technical trade-offs.

Potential for Misuse. A primary concern is that the synthetic “rejected” responses (yl) generated
by TPR, which are designed to contain plausible hallucinations, could be isolated and misused
for creating disinformation if taken out of context. To mitigate this risk, we are committed to
responsible asset release. Any public distribution of our curated preference dataset will be governed
by a strict, research-focused license prohibiting malicious use. Furthermore, the dataset will be
accompanied by comprehensive documentation that explicitly warns users that the negative examples
are synthetic, generated solely for model alignment, and are factually incorrect and unsuitable for any
other application.

Environmental and Computational Cost. Large-scale data curation and model alignment inevitably
have an environmental cost due to the required computational resources. As detailed in our analysis
(see Section D), TPR is applied during the post-training alignment phase, making its environmental
impact substantially lower than that of pre-training a VLM from scratch. Crucially, our work
emphasizes data efficiency. By generating high-quality preference pairs that provide strong learning
signals, TPR achieves state-of-the-art performance with less data than many competing methods,
thereby promoting a smaller environmental footprint for VLM alignment.

Technical Safeguards. Besides, a key technical consideration when applying TPR is ensuring that
targeted improvements in factuality do not compromise the model’s broader general capabilities.
Although our experiments (see Table 1) show that our approach maintains or even enhances general
performance, achieving this balance requires ongoing research and careful validation.

Successfully navigating these challenges is essential for the responsible development and widespread
beneficial adoption of advanced VLM technology.
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Raw Response:
In the image, there is a dining table with two pizzas prominently placed on it. One 
pizza is located towards the left side of the table, while the other pizza is positioned 
more towards the center. In addition to the pizzas, there is a fork and a knife on the 
table, ready for use. There are two people in the scene, with one person located on 
the left side and the other person on the right side of the table. A cup can be seen 
on the right side of the table, and a bowl is placed near the top part of the table. A 
bottle is also visible on the right side, adding to the variety of items on the table. 

Rejected Response (Curriculum Strategy): 
In the image, there is a dining table with two pizzas prominently placed on it. One pizza is located towards the left side of 
the table, while the other pizza is positioned more towards the center. In addition to the pizzas, there is a fork and a 
knife on the table, ready for use. A cup can be seen on the right side of the table, and a bowl is placed near the top part 
of the table. A bottle is also visible on the right side, adding to the variety of items on the table.

What are the main 
elements in this image? 

Rejected Response (Greedy Strategy): 
The main elements in this image are a dining table with two pizzas placed on top of paper plates. One pizza is larger and 
takes up most of the table surface, while the other pizza is smaller and located towards the left side of the table. There 
is a fork, a knife, a cup, and a bowl on the table, indicating that the table is set for a meal. Two people can be spotted in 
the scene, with one person on the left side and the other person on the right side of the table. Additionally, a bottle is 
visible on the right side of the table.

Preferred Response:
In the image, there is a dining table with two pizzas prominently placed on it. One pizza is located towards the left side of 
the table, while the other pizza is positioned more towards the center. In addition to the pizzas, there is a fork and a 
knife on the table, ready for use. A cup can be seen on the right side of the table, and a bottle is visible on the right side, 
adding to the variety of items on the table.

Raw Response:
The image shows a large group of people walking outside of a crowded building, with 
several individuals holding umbrellas to shield themselves from the elements. The 
crowd consists of people of various heights and positions, many of them wearing 
backpacks. The bustling street is full of people engaged in their daily activities, while 
others are carrying handbags. The area has a lively atmosphere, with some individuals 
walking around, and others standing or sitting on benches. The scene captures the 
essence of urban life and the diversity of people present in the city.

Rejected Response (Curriculum Strategy): 
The image shows a large group of people walking outside of a crowded building, with several individuals holding umbrellas 
to shield themselves from the elements. The crowd consists of people of various heights and positions, many of them 
wearing backpacks. The bustling street is full of people engaged in their daily activities, while others are carrying handbags. 
The area has a lively atmosphere, with some individuals walking around, and others standing or sitting on benches. The 
scene captures the essence of urban life and the diversity of people present in the city.

Provide description of 
every entity in the image.

Rejected Response (Greedy Strategy): 
The image depicts a lively city scene with a large group of people walking around in front of a crowded building. Various 
individuals are carrying umbrellas to protect themselves from the elements, and several backpacks are visible among the 
crowd. The atmosphere is bustling, with people engaged in their daily activities, walking, and standing or sitting on 
benches. In total, there are 13 people in the image, including individuals near the left, center, and right sides of the 
scene. The presence of numerous umbrellas and backpacks suggests that it is raining.

Preferred Response:
The image shows a large group of people walking outside of a crowded building. The crowd consists of people of various 
heights and positions, many of them wearing backpacks. The bustling street is full of people engaged in their daily activities, 
while others are carrying handbags. The area has a lively atmosphere, with some individuals walking around, and others 
standing or sitting on benches. The scene captures the essence of urban life and the diversity of people present in the city.

Figure 9: Qualitative Results of Preferred and Rejected Responses Generated by TPR and
TPR-CL. Correct answers and hallucinations are highlighted in color respectively.
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Raw Response:
The image showcases a small kitchen with various appliances and furnishings. There is 
a white dishwasher located towards the right side of the room, and a small 
microwave situated in the middle of the kitchen. A sink can be seen in the left 
corner of the kitchen. Numerous cabinets and cupboards are present in the kitchen, 
providing ample storage space. There is a refrigerator positioned in the middle of 
the kitchen, and a toaster and a bowl can be seen on a countertop. The layout of the 
appliances creates an organized and functional kitchen space.

Rejected Response (Curriculum Strategy): 
The image showcases a small kitchen with various appliances and furnishings. There is a small microwave situated in the 
middle of the kitchen and a sink can be seen in the right side of the kitchen. Numerous cabinets and cupboards are 
present in the kitchen, providing ample storage space. There is a refrigerator positioned in the middle of the kitchen, and 
a toaster and a bowl can be seen on a countertop. The layout of the appliances creates an organized and functional 
kitchen space.

Describe the elements 
in the image.

Rejected Response (Greedy Strategy): 
The image showcases a small kitchen with various appliances and furnishings. There is a white dishwasher located 
towards the right side of the room and a sink can be seen in the left corner of the kitchen. The cabinets are open and 
dark brown in color, giving the kitchen a rustic look. A microwave is placed on top of a refrigerator. There is a refrigerator 
positioned in the middle of the kitchen, and a toaster and a bowl can be seen on a countertop. The layout of the 
appliances creates an organized and functional kitchen space.

Preferred Response:
The image showcases a small kitchen with various appliances and furnishings. There is a small microwave situated in the 
middle of the kitchen and a sink can be seen in the right side of the kitchen. Numerous cabinets and cupboards are 
present in the kitchen, providing ample storage space. The layout of the appliances creates an organized and functional 
kitchen space.

Raw Response:
In the image, a person is skiing down a snowy trail with several other skiers and 
snowboarders around. The person in focus is wearing a red and white outfit, with a 
pair of skis and poles visible in the scene. The skier appears to be skiing downhill in 
a fast and controlled manner. Other people can be seen around the skiing area, 
some of them also snowboarding or skiing. The location seems to be a popular spot 
for winter sports, offering an exciting outdoor experience for the people involved.

Rejected Response (Curriculum Strategy): 
In the image, a person is skiing down a snowy path wearing a red and white outfit. He is holding ski poles and looking at 
the camera. Several other skiers and snowboarders are also present in the scene, creating a lively atmosphere, further 
emphasizing the popularity of winter sports in this location.

Describe elements in 
the image in depth.

Rejected Response (Greedy Strategy): 
In the image, a person is skiing down a snowy trail, wearing a red and white suit and carrying skis and poles. The skier 
appears to be skiing downhill in a fast and controlled manner. Several other skiers and snowboarders are also present in 
the scene, some of them riding their snowboards down the hill. The location seems to be a popular spot for winter sports, 
providing an exciting outdoor experience for the people involved.

Preferred Response:
In the image, a person is skiing down a snowy path wearing a red and white outfit. He is holding ski poles and looking at 
the camera. The scene also includes several other people nearby, creating a lively atmosphere, further emphasizing the 
popularity of winter sports in this location.

Figure 10: Qualitative Results of Preferred and Rejected Responses Generated by TPR and
TPR-CL. Correct answers and hallucinations are highlighted in color respectively.
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[图片]

TPR-7B (Ours): 
The image features a city street with multiple buses parked or driving along the road. The buses are of various colors, 
including red, orange, green, and white. They are lined up next to each other, creating a sense of a busy urban 
transportation scene. A person holding a handbag is standing by the bus, perhaps waiting for the bus.  The street is 
lined with trees, adding a touch of nature to the urban setting. The street appears to be well-maintained, and the buses 
seem to be an essential part of the city's public transportation system. The presence of multiple buses on the street 
suggests that it could be a popular route or a hub for public transportation in the city.

Detail the image's components with 
particular focus on each entity.

LLaVA-1.5-7B: 
The image depicts a busy city street with two buses driving down the road. One of the buses is red and white, while the 
other is orange and white. Both buses are traveling in the same direction, with the red and white bus slightly ahead of 
the orange and white bus. There are several people visible on the street, with some standing near the buses and others 
walking along the sidewalk. One person is carrying a handbag, adding to the bustling atmosphere of the city. The scene 
captures a typical day in an urban environment with public transportation and pedestrians going about their daily 
routines.

LLaVA-NeXT-34B: 
The image depicts a city street scene with a focus on public transportation. There are three buses visible:  1. In the 
foreground, there is a red bus with a digital display on the front that reads "C10 JUR PABLO II." This suggests that the 
bus is on the C10 route and is heading towards a stop named "PABLO II." 2. In the middle of the image, there is a white 
bus with a digital display on the front that reads "C10 JUR PABLO II." This indicates that this bus is also on the C10 route 
and is heading towards the same stop as the red bus.  3. In the background, there is an orange bus with a digital display 
on the front that reads "C10 JUR PABLO II." This bus is also on the C10 route and is heading towards the same stop as 
the other two buses. The buses are parked along the side of the street, which is lined with trees that have autumn-
colored leaves, suggesting that the photo was taken during the fall season. There is a building with a green awning in the 
background, and a person can be seen walking on the sidewalk near the building. The presence of multiple buses on the 
same route indicates a well-developed public transit system, which is essential for reducing traffic congestion and 
providing accessible transportation options for the city's population.

Figure 11: Qualitative Results of TPR Compared with LLaVA-1.5-7B and LLaVA-NeXT-34B.
Correct answers and hallucinations are highlighted in color respectively.
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[图片]

TPR-7B (Ours):
The image depicts a man riding a bicycle on a city street at night. The cyclist is riding down the street, possibly near a 
crosswalk. There is another bicycle parked or leaning against a wall nearby, closer to the left side of the image. The 
scene appears to be in black and white, adding a sense of nostalgia or timelessness to the image. The scene takes place 
at night, which adds a sense of atmosphere to the image. The man riding the bicycle is the main focus of the scene, and 
the overall mood of the image conveys a sense of nighttime urban activity.

What are the main elements in this 
image? Describe them thoroughly.

LLaVA-1.5-7B: 
The image depicts a man riding a bicycle down a city street at night. He is wearing a black jacket and appears to be the 
main focus of the scene. Another bicycle can be seen parked on the side of the street, closer to the left side of the image. 
The street is lined with buildings on both sides, creating an urban atmosphere. There are also two traffic lights visible in 
the scene, one on the left side and the other on the right side of the street. Additionally, a handbag can be spotted near 
the center of the image, possibly belonging to the man riding the bicycle or someone else in the vicinity.

LLaVA-NeXT-34B:
The image is a black and white photograph capturing a moment on a city street. The main elements in the image are:  1. 
A person riding a bicycle: The cyclist is in motion, pedaling down the street. They are wearing a dark-colored jacket and 
appear to be carrying a backpack.  2. Two bicycles parked on the sidewalk: One bicycle is closer to the foreground, while 
the other is a bit further back. Both bicycles are leaning against the wall of a building. 3. A street sign: There is a street 
sign visible in the image, although the specific details of the sign are not clear due to the angle and distance.  4. A 
building facade: The wall of a building forms the backdrop of the image. The building has a rough texture and appears to 
be made of concrete or a similar material. 5. Shadows and lighting: The image is well-lit, with shadows cast by the 
bicycles and the cyclist, suggesting that the photo was taken during the day with natural light. Overall, the image 
conveys a sense of everyday life in a city, with a focus on cycling as a mode of transportation.

Figure 12: Qualitative Results of TPR Compared with LLaVA-1.5-7B and LLaVA-NeXT-34B.
Correct answers and hallucinations are highlighted in color respectively.
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