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Abstract

Causality is an essential part of human cognition, enabling us to understand the
underlying causal structure of the environment. Investigating causality requires
the creation of computational models that represent causal structures and causal
relations. In this essay, we identified three features that a computational causal
model should possess, including an explainable structure, a probabilistic represen-
tation, and the ability to incorporate prior information effectively. And we present
a comprehend introduction of one computational causal model: Causal Bayes Net.

1 Introduction

The concept of causality is centered on the fundamental causal relationships between events. Causality
manifests itself in diverse domains, spanning from elementary physical causality, extracted during the
perceptual phase [6], to intricate social causality, characterized by the presence of numerous variables
[7]. Causality-based causal reasoning is a cognitive tool upon which individuals depend in their
daily lives, enabling them to comprehend their surroundings and make informed decisions regarding
how to interact with their environment. For instance, awareness of the causal relationship between
smoking and lung cancer explains why individuals who smoke are at a higher risk of developing lung
cancer. This understanding can, to a certain extent, serve as a deterrent against smoking, and prevent
individuals from it.

In the context of the aforementioned example, the causal structure of smoking and lung cancer
corresponds to a mental representation of a causal model. When explaining why smokers face an
elevated risk of lung cancer, we engage in causal inference rooted in this mental model. The choice
to reduce smoking can be regarded as a form of intervention or a manifestation of counterfactual
thinking. These concepts of causal inference, intervention, and counterfactual thinking hold substantial
importance in the field of causal reasoning. Causal inference equips individuals with the capacity to
generate data that aligns with the causal model. Intervention provides individuals with the means to
manipulate variables to achieve desired outcomes. Similar to intervention, counterfactual thinking
follows a paradigm akin to "if A happened, B would have happened", where A did not happen in
reality.

Causal reasoning equips individuals with the ability to adapt to unfamiliar environments through a
process known as causal transfer. Causal transfer allows individuals to extrapolate the causal structure
of a new environment by leveraging their understanding of the causal relationships in a familiar
setting, facilitating a swift and efficient adaptation to the novel environment.

The development of a computational model of causal relations and causal structures is essential to
the research in causality, offering indispensable mathematical tools. Griffiths and Tenenbaum [3]
discussed that a computational-level analysis focuses on abstract problems and logic, meaning that
the adoption of a computational model will free us from unnecessary debates about representations
and implementations within the human mind. In Sec. 2, we will delve into some essential features
of a computational causal model. Subsequently, in Section Sec. 3, we will provide a comprehensive
introduction to the implementation of a computational causal model known as the Causal Bayes Net.
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2 Essential features of a computational causal model

A computational model of causal relations and causal structures serves as a mathematical tool for
research in human causality, encompassing aspects like causal inference and causal induction. In
this section, we will explore three essential features of a computational causal model: explainable
structure, probabilistic representation, and sensitivity to prior information.

2.1 Explainable structure

The requirement for an explainable structure in a computational model arises from its role in
explaining the intricacies of the environment. In various fields of cognition, such as affordance
and intuitive physics, models like neural networks may reign supreme owing to their impressive
performance, even though they often lack an explainable structure. However, within the field of
causality, our pursuit focuses precisely on the absent component in neural networks: the underlying
causal relationships between events. This distinction clarifies why neural networks find limited utility
in the domain of causality research.

Furthermore, the presence of an explainable structure within a computational model enhances its
capacity for causal transfer. Edmonds et al. [1] demonstrated the limitations of model-free Reinforce-
ment Learning (RL) models in the tasks of causal transfer. Due to their reliance on actions and rewards,
model-free RL models lack explainable structures, resulting in shortcomings in generalization and
causal transfer. With an explainable structure, a computational model can swiftly and effectively adapt
its structure when confronted with a new environment, eliminating the need to relearn an entirely
new structure from scratch.

2.2 Probabilistic representation

The notion of a probabilistic representation is introduced in opposition to a deterministic representa-
tion. A probabilistic representation means that "if A cause B, then the occurrence of A will lead to
the occurrence of B with a probability of .8". On the contrary, a deterministic representation means
that "if A cause B, then the occurrence of A will definitely lead to the occurrence of B" [4].

Besides performing causal inference, people learn causal models from evidence and actions, which
is an inverse problem of causal inference called causal induciton [2] [3]. If we were to employ
a deterministic representation in computational models, it would be challenging to discern the
correct and suitable causal structure from the myriad of potential structures that align with the
evidence patterns. Conversely, by embracing a probabilistic representation, we can identify the
most plausible causal structure based on the posterior probabilities of these potential structures,
significantly simplifying the inverse problem, causal induction [2].

2.3 Sensitivity to prior information

In the domain of causal induction, numerous potential causal structures may align to the observed
evidence patterns. Discerning the correct and suitable causal structure could demand a substantial
amount of data, often unattainable in practice. To address this challenge, individuals leverage prior
information, thereby reducing the range of potential causal structures to a limited space of hypothe-
ses. Similarly, a computational causal model should exhibit the sensitivity to prior information to
effectively narrow down the space of hypotheses [3].

3 An implementation: Causal Bayes Net

In this section, we will present an exemplar of a computational causal model: the Causal Bayes
Net (CBN), as articulated by Pearl et al. [5]. This model has garnered significant use in the field
of causality research. However, it’s important to recognize that the Causal Bayes Net is just one of
numerous potential implementations of computational causal models, and new models may attain
more impressive performance than CBN.

Within the framework of a CBN, the foundational structure for representing causal relationships
is an acyclic directed graph. In this graphical model, nodes represent pertinent states, while the
arrows connecting two nodes signify the causal relationship between these states, with the arrow
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pointing from the causal factor to the effect. Each relationship is assigned with a functional form,
indicating how causal factors affect the effect. If we note a node as s, its causal factors as pa(s), and
the probability distribution function as P , then a functional form F can be expressed as

F (pa(s)) = P (s | pa(s))

.

With a foundational understanding of CBN, we can delve into the process of conducting causal
inference with CBN. Causal inference within the CBN framework is essentially a top-down problem.
Leveraging the probabilistic distribution of certain initial variables, we can compute the probabilistic
distribution of the target variable by employing the graphical structure and functional forms defined
within the model [2]. When engaging in more intricate causal inference tasks, such as interventions
and counterfactual thinking, it becomes necessary to manually fix specific variables within the graph.
By doing so, we eliminate the target variable’s relationships with its causal factors. For example,
consider the scenario where playing video games leads to staying up late, which subsequently results
in lower grades. If we perform intervention on the variable "staying up late", then no matter whether
we play video games, we will sleep at the same time, indicating the elimination of the relationship
between "playing video games" and "staying up late". The intervention on the variable s is denoted
as do(s). When performing interventions or counterfactual thinking on s about a target variable t, we
are actually calculating

P (t | do(s))
.

CBN makes it possible to perform causal induction, which means infer the graphical structure and
parameters of functional forms from accessible data and actions [2]. The causal induction of CBN
relies on Bayesian inference:

P (c | data) ∝ P (data | c)P (c)

, where c denote a hypothesis of a CBN. Therefore, we can calculate the posterior probability of a
hypothesis based on the prior probability and the likelihood of the data, and infer the most possible
CBN within the hypothesis space. Edmonds et al. [1] have utilized Bayesian inference to infer the
causal structures of the OpenLock problems. In their work, they learn the likelihood P (data | c) and
calculate the prior probability P (c) based on the distribution of atomic structures. They planned the
action based on the posterior probability and updated the distributions and parameters based on the
outcomes of the action, until the model could solve the OpenLock problems.

Nonetheless, CBN faces a challenge associated with their expansive hypothesis space, often demand-
ing substantial computational resources for Bayesian inference [3] [8] [1]. In response to this issue,
Griffiths and Tenenbaum [3] introduced theory-based causal induction, a method that effectively
harnesses prior environmental knowledge to simplify the causal inference process. With such prior
knowledge including ontology, plausible relations, and functional forms, the size of hypothesis space
is reduced to an acceptable scale.

4 Conclusion

In this essay, we have explored the field of computational models designed to represent causal
structures and relations. We have highlighted key challenges within the domain of causality research,
specifically in the context of causal inference and causal induction. Furthermore, we have identified
and elucidated crucial features that a computational causal model should possess, including an
explainable structure, a probabilistic representation, and the ability to incorporate prior information
effectively. Lastly, we have introduced an exemplary instantiation of a computational causal model,
the Causal Bayes Net.
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