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ABSTRACT

Wasserstein metrics are increasingly being used as similarity scores for images
treated as discrete measures on a grid, yet their behavior under noise remains
poorly understood. In this work, we consider the sensitivity of the signed Wasser-
stein distance with respect to pixel-wise additive noise and derive non-asymptotic
upper bounds. Among other results, we prove that the error in the signed 2-
Wasserstein distance scales with the square root of the noise standard deviation,
whereas the Euclidean norm scales linearly. We present experiments that support
our theoretical findings and point to a peculiar phenomenon where increasing the
level of noise can decrease the Wasserstein distance. A case study on cryo-electron
microscopy images demonstrates that the Wasserstein metric can preserve the ge-
ometric structure even when the Euclidean metric fails to do so.

1 INTRODUCTION

Optimal Transport (OT) provides a principled way to measure the distance between probability mea-
sures, capturing not only pointwise differences but also the underlying geometry of the data. Re-
cent advances in computational approximation methods (Cuturi, 2013; Schmitzer, 2019) contributed
greatly to the rising popularity of optimal transport across many domains, such as computer vision
(Feydy et al., 2021), domain adaptation (Courty et al., 2017), and others. In imaging applications,
the Wasserstein metric can be used to measure similarity by treating images as discrete measures
on a grid, and assigning a point mass to every pixel, proportional to its value. One field where this
approach is gaining popularity is in single-particle cryo-electron microscopy (cryo-EM), a domain
characterized by extremely high noise levels, where OT-based methods have been successfully ap-
plied to fundamental tasks, including the alignment of 3D density maps (Riahi et al., 2022; Singer
& Yang, 2024), the clustering 2D tomographic projections (Rao et al., 2020), and the rotational
alignment of tomographic projections with heterogeneity (Shi et al., 2025). We believe that a major
driver for this adoption is that, empirically, the Wasserstein metric appears more robust to noise than
the standard Euclidean norm.

In machine learning, OT-based metrics have inspired approaches that exhibit improved stability in
training deep neural networks, most notably Wasserstein generative adversarial networks (WGAN)
(Arjovsky et al., 2017) and Wasserstein autoencoders (WAE) (Tolstikhin et al., 2017). In these
methods, the exact Wasserstein distance is not calculated, and is replaced by approximations, such
as adversarially learned critics in WGANS or penalized divergences in WAEs, that serve as proxies
for the true metric. The suggested explanation for their success is that a noise-robust metric creates
a smoother loss landscape, which prevents a model from overfitting to irrelevant perturbations in the
training data (Li et al., 2018). Despite these empirical successes, the theoretical understanding of
the noise sensitivity of OT-based metrics remains limited. This paper aims to be a first step to bridge
that gap.

Our contribution. On the theoretical side, we provide quantitative bounds relating the signed
Wasserstein cost (see equation 3) between noise-corrupted images and the signed Wasserstein cost
between the clean images. Focusing on a Gaussian noise model with fixed mass and pixel-wise
standard deviation proportional to o, we show that the signed p-Wasserstein metric between a noise-
corrupted n x n picture and its clean counterpart gives rise to an error term that scales like (no)!/?
up to log terms, see Theorem 3. For the 1-Wasserstein distance, considering a similar noise model,



Theorem 4 establishes that the distance between two noisy pictures deviate at most by an order
onlog, n from the distance between the clean ones. Theorem 5 gives a bound for the case of two
different measures and p > 1. We complement our theoretical results with simulations in Section 4,
showcasing the properties of the signed Wasserstein distance in a variety of cases.
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Figure 1: Distance ratios of L?, W7 and W5 on a pair of noised images as a function of the noise
level. L? diverges first, followed by W and lastly, W5 departs from the original distance between
the images, exhibiting more noise robustness. Above each marker we show the pair of images that
were compared using all 3 metrics. See Section 4.2 for more details.

2  WASSERSTEIN OVER NOISED AND SIGNED MEASURES

Wasserstein metric. Consider two probability measures p, v € P(X). For any p > 1 and given a
ground costd : X x X — R, , the Wasserstein metric between p and v is defined as

1/p
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where I'(u, v) is the set of measures with respective marginals p and v.

Under mild conditions—see Santambrogio (2015, Theorem 1.39), the Wasserstein distance admits
a dual formulation, i.e.,

d

WP(u,v) = sup /qs Jdu(z /f )y
peL (1)

where f4(y) := infeex (d(z,y)? — f(2)).

In the case of the 1-Wasserstein distance, the dual formulation further admits the simplified form

Wi(p,v) = sup (f,u—v), (2)

J€Lip,; (&)
where Lip, (X) is the set of 1-Lipschitz functions with respect to d on X'. The dual formulations

are particularly useful to study stability of optimal transport with respect to perturbations of the
marginals p and v.

Extension to signed measures. Some image modalities (such as cryo-EM) naturally involve neg-
ative pixels, but even in modalities where all pixels are positive, once pixel-wise noise is introduced,
negative pixels may appear. Since we identify pixel values with point masses, to study the effect of



pixel-wise noise we first need to explain how the Wasserstein metrics can be extended to support
negative masses. The problem of generalizing OT to signed measures is not new; Mainini (2012)
proposed to compute a Wasserstein-like distance between p and v by first constructing

Spy =+ +v_ and Ty =vy+ p_, 3)

where we assume that the total mass of i and v are equal and p4 (u—, resp.) denotes the positive
(resp. negative) part of ©. Mainini (2012) then introduced the signed Wasserstein cost,

WiE (1, v) = Wp(py + v, vp + pm) = Wy(Spw, T )

which the author denoted by W, (11, ). We note that Wf is a metric for p = 1 but not for p > 1,
since it does not satisfy the triangle inequality (Mainini, 2012, Proposition 3.4). The fact that the
1-Wasserstein metric combines nicely with the positive and negative parts can be deduced from
equation equation 2. The absence of triangle inequality might further lead to surprising behaviors as
seen in Figure 4.

Other approaches for generalizing the Wasserstein distance to signed measures were explored by
Engquist et al. (2016). Further, the usefulness of signed Wasserstein costs as defined above starts to
be acknowledged in the statistics literature as the recent preprint by Groppe et al. (2025) suggests.

The issue of noise. We model images as real-valued signals on a square grid G,, of n? pixels
which we identify with signed discrete measures. The aim of this work is to investigate how Wf
behaves when the images/measures p and v are corrupted. In particular, consider observing

fe :=p+e, and ve:=v+te, ®))
and constructing
Spewe = (e)+ + (ve)—  aswellas T, = (ve)4 + (pe) - (6)
Further set
Csi= 3 (1)+@) + w)-(2) and Cri= 3 @)+@)+ (w)-(). @
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Standardizing S,,_,_ by Cs and T}, ,. by Cr is necessary to ensure that both measures have the
same (unit) mass in the case where > o () # D cq. Ve(T). In the sequel, we will use the
notation

_ S, _ T, o
L= e, Ve d T o= He,Ve . 8
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We aim at understanding the relationship between Wf (p,v) and Wy(S,. v, Ty, v.). To put our
analysis into context, consider the standard squared L? distance, a common metric for image com-
parison. In the presence of additive Gaussian noise with variance o2, the expected squared L>
distance between a signal and its noisy version has a simple, direct relationship: it is exactly no.
This metric, however, is local and insensitive to the underlying geometric structure of the signal.
In contrast, the (signed) Wasserstein cost is claimed to capture this geometry, but its behavior un-
der noise is far more complex to characterize. This paper aims to bridge that gap by providing a
theoretical and empirical analysis of its robustness.

Dyadic bound on the Wasserstein distance. To get sharp estimates on the Wasserstein distance,
the following proposition is particularly useful. This is Proposition 1 of Weed & Bach (2019), but on
a domain with an arbitrary diameter (their formulation assumed diam(S) = 1). The bound is based
on the construction of a coupling at various scales, managing the mass imbalance in subdomains.
This construction yields sharp rates in a variety of cases.

Proposition 1. Let {Q*}1<i<y+ be a dyadic partition of a set S with parameter § < 1. Then, for
probability measures p and v supported on S,

o
WP (p,v) < diam(S)” (5”” Y0P (@) — V(Qf)l)- ©)
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Recall that a dyadic partition of a set S with parameter § < 1 is a sequence {Qk}lgkg k* possessing

the following properties. First, the sets in QF form a partition of S. Further, if Q € QF. then
diam(Q) < &*. Finally, if Q**! € Q! and Q¥ € QF, then either Q*T! C QF or Q*T1NQF = 0.



3 THEORETICAL CONTRIBUTIONS

Our main theoretical results are upper bounds in expectation on the effect that the noise has on
the signed Wasserstein cost between images. To avoid boundary effects and simplify some of our
analyses, we consider the pixel grid to have cyclic boundary conditions, i.e., the left-right and
top—bottom edges wrap. With this choice, each pixel has the same number of neighbors.

While the Wasserstein metric naturally extends to non-probability measures, it still requires that both
measures have the same mass, as described in the previous subsection. A standard i.i.d. noise model
comes with the need of rescaling the pictures, which we study in the following section.

Note that all proofs of the following results are collected in Appendix A.
3.1 THE IMPACT OF RESCALING.

An important fact is that the signed Wasserstein distance, by construction, has an intricate non-linear
behavior in terms of the noise when the mass of the latter is not fixed. By duality, observe that

Wg(gue,uevfue,ue) = Sl}P<f7 Sue,ue> + <fd7Tuf,ue> (10
<f7SM l/>+<fd7T V> 1 1 d
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This decomposition shows that the optimal dual function must balance two objectives at the same
time: the first one is the transport problem, and the second can be interpreted as a mass imbalance
penalization.

In the case of i.i.d. Gaussian noise, the result above can be refined and yields the following theorem.

Theorem 1. Consider two n X n images (v and v having at least )\n2_, X € (0, 1] nonzero pixels.
Assume that €,,, €, are N'(0,,2, 021,,2). Recall the definition of S cwer Ly, v, in equation 8. Then,

s 2 (AT (140, (2))) 02
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Even though the above result does not seem symmetric, we establish in the proof that
> Spew (@) = Ty () = Op(om), (13)
zeGy,
from which we deduce that the apparent absence of symmetry is merely an artifact of the proof.
In general, one can hope that the ratio o/n is small, so that the result suggests that understanding

the quantity sup (f, Sy, v.) + (f4, Ty, v.) under a suitable choice of noise is a first step to take
towards completely characterizing the impact of the noise.

3.2 NOISE MODEL

The previous section invites us to consider a noise model for which it is not necessary to rescale the
measures. To this end, we will consider slightly correlated Gaussian noise.

Assumption 1. Consider an image modeled as an n x n grid of pixels and set m = n?. Assume

that the noise vector N = (N1, ..., Np,) is drawn from a multivariate normal distribution N'(0, %),
where the covariance matrix X is an m X m matrix defined as
2 . . .
o ifi =
D T A (14)
T m—1 lfl 7& J-

Proposition 2 (Noise model properties). In the context of Assumption 1, the following holds.
1. The marginal distribution for each component is N; ~ N'(0, c?).

2. The sum of the components is zero : Zfil N; =0.



This last property is the crucial point enabling to focus on the impact of the noise, while setting
aside the potential questions pertaining to rescaling the measures whose behavior was captured in
Theorem 1.

3.3 MULTISCALE W, BOUND ON A SINGLE IMAGE AND ITS NOISY VERSION
We shall begin by proving bounds in the particular case where we compare one image with a noise
corrupted version of itself. We start with the case of p = 1.

Theorem 2. Let v : G,, — [0, 1] be a probability measure on the n x n unit grid G,, with cyclic
boundary conditions, and let € satisfy Assumption 1. Then

2 1
EWE(u,p+e) =EWi(et,e7) < ﬁanlog2n+ ﬁan. (15)

It is further possible to prove a result for p > 1. The rates differ substantially, as is clear from the
following theorem.

Theorem 3. Let i : G,, — [0, 1] be a probability measure on the n x n unit grid G,,. Let € be a
signed measure on the grid that satisfies Assumption 1. For convenience, we again assume that n is
a power-of-two. Then, for p > 1 withp € N,

E[(WE(p+em)'] < %na. (16)

Therefore, by Jensen’s inequality,

E[WE(u+ep) < (\;na> v :

3.4 MULTISCALE W, BOUND ON TWO IMAGES AND THEIR NOISY COUNTERPARTS

We now consider the practically relevant setting where two different images are each corrupted by
independent noise. Throughout, we assume that the noise model follows Assumption 1 and assume
that both images have unit mass. Our object of interest is thus

Wpi(/,t—kemv—key). (17)

In the case p = 1, one obtains the following result.

Theorem 4. Let pi, v : G,, — [0, 1] be two probability measures on the nxn unit grid G, with cyclic
boundary conditions and let €,,, €, : G, — R be signed noise measures that satisfy Assumption 1.
For convenience we assume that n is a power-of-two. Then

dnlogon+n V2
E (Wi (p+ €u,v +6,) — Wit(p,v)] < +o+ —. (18)

Even though the Wasserstein 2-distance is often used in applications and has nice theoretical prop-
erties in the continuous setting —such as the Brenier—McCann theorem (Brenier, 1991), its signed
counterpart does not enjoy the same metric properties as the signed Wasserstein 1-distance, as was
already hinted at in the introduction.

This absence of triangle inequality underlies the particular form of the following result.

Theorem 5. Let pi, v : G,, — [0, 1] be two probability measures on the nxn unit grid G, with cyclic
boundary conditions and let €,,, €, : G,, — R be signed noise measures that satisfy Assumption 1.
For convenience we assume that n is a power-of-two. Then

1-3
]E[W;t(que/“yﬁ»eu)] < <\/§> Wl(:“‘?”)

=

1
2/ 4 2 P
+\2[<nlog2n+n> o (19)
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4 NUMERICAL EXPERIMENTS AND RESULTS

4.1 QUANTITATIVE VALIDATION OF NOISE SCALING

The first experiment we conduct aims to quantitatively measure how the distance between an image
and its noisy counterpart scales when increasing noise variance. This allows for a direct comparison
between the empirical behavior of each metric and the theoretical scaling laws derived in Theorem 3.
The results are reported as Figure 2. All transport costs calculated are exact and were calculated by
using the POT python package Flamary et al. (2021)
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Figure 2: W, W5 and Ly (markers) distances plotted against their fits and their theoretical bounds
(dashed lines)

To this end, we performed 100 independent trials, each time selecting a new, random 32x32 pixel
image from the DOTMark 1.0 Microscopylmages dataset (Schrieber et al., 2017). For each image p,
we generated a noisy version p + € by adding zero-sum noise € satisfying Assumption 1, with
variances ranging from 10~7 to 1. We computed the difference between the original image and the
noisy one for L2, W5 and W; identifying the image with the torus. This empirical result, where
the W5 distance scales with an exponent of approximately 0.5, suggests that the bound derived in
Theorem 3 correctly captures the behavior of the signed 2-Wasserstein as a function of the noise
variability o.

4.2 VISUALIZING ROBUSTNESS OF INTER-IMAGE DISTANCES

We now investigate how well the different metrics preserve the original distance between two images
when the latter are progressively corrupted by noise. For this experiment, we selected two distinct
32 x 32 pixel images from the DOTMark dataset and simultaneously corrupted them with different
instances of zero-sum additive noise with a standard deviation ranging from 10=% to 1072, At
each noise level, we computed the Wy, W5 and L? distances between the two noisy images. The
results were averaged across 100 experiments. To evaluate stability, we computed a ‘“Distance Ratio”
by dividing the distance between the noisy images by the constant distance between the original,
clean images. A ratio that remains close to 1 indicates that the metric’s measurement reflects the
underlying signals rather than the noise. The output is displayed on Figure 1, which we already
exhibited in the introduction.

On that figure, the top panel visually depicts the degradation of the images as noise increases, while
the main plot shows the distance ratio for each metric. The L? ratio (salmon-colored line) is the first
to sharply diverge from 1, showing that the measured distance is quickly dominated by the noise.
The W5 ratio (blue line) is the most stable, remaining closest to the ideal ratio of 1 for the largest
range of noise levels. This experiment serves as a practical illustration of the scaling laws: as the Wy
distance grows more slowly with noise, the underlying distance between the clean signals is better
preserved.

Visualisation of the bound of the inter-image distance. To assess the bound established in The-
orem 5, we have plotted the distance between two cryo-EM images being gradually corrupted by
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Figure 3: Distances between two randomly sampled images from the DOTMark microscopy
dataset, both being noised with noise sampled from the zero-sum normal distribution, in dashed
(matching colors) we have the bounds for each p from Theorem 3.

noise with the same parameter . We see in Figure 3 how tight the bound might be for W7 (in the
case of small noise) while it seems to not be tight for W5 and W3. We postulate that this is because
the images used in this experiment are far from the “worst case scenario” in which where the images
are very similar to each other, or very far apart. The characterization of these scenarios where the
bound might be tighter comes from the analysis reported on Figure 7.

Characterizing metric behavior across image types. While W, is robust, its behavior is not
uniform. The purpose of the next experiment is to explore how the metrics’ robustness varies across
different classes of images and to highlight a key nuance of the signed W5 metric.

We repeated the distance ratio experiment from the previous section on four distinct image classes:
white noise, typical cryo-EM projections, classic microscopy images, and synthetic images of two
widely separated squares. These classes represent types of images which are ranging from pure
noise, to having all the mass centered in a single pixel. In this experiment we aim to show how Wy
scales favorably throughout the whole range.

White Noise Images Classic Images Cryo-EM Images Two Squares Images

Distance Ratio
o
5
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Figure 4: Ratios of the distance between the noisy images and the original images. Left: White
noise images. Center left: Classic images. Center right: Images from the field of cryo-em. Right:
Images of two squares which have all the mass centered in one place.

4.3  APPLICATION TO CRYO-EM IMAGE ALIGNMENT

For the final set of experiments, we have taken 20 different projections of the hsp90 protein in
different conformational states. The image data was generated with cryojax (CryoJAX Developers,
2025), relying on the structure from the Protein Data Bank, which is based on the work of Shiau
et al. (2006). The location of the protein was shifted and the pictures were corrupted with noise with
o = 0.01. Remark that the shift and very poor signal-to-noise ratio are not whimsical but accurately
depict the challenges in the field of cryo-EM.



The goal is to assess how well each metric can recover known geometric relationships between
particle images that undergo rotation and translation, all under a heavy-noise regime typical of real-
world data.

To illustrate the difficulty of the task, Figure 5 shows a sample of the original, clean images alongside
their noisy counterparts. The noise level is high enough to make the underlying molecule almost
completely unrecognizable by eye, simulating the low signal-to-noise ratio of raw micrographs.

Original Images

Figure 5: Original images of the molecule on the left, noised images with o = 10~2 of the molecule
on the right.

For each metric, we compute all the pairwise distances, resulting in a 20x20 matrix which we can
see in Figure 6. The top row shows the ground-truth distance matrices from the clean images,
reflecting the structured of the transformations. The bottom row shows the matrices computed from
their noisy counterparts. Under heavy noise, the L? distance matrix degrades into a random pattern,
losing the original geometric structure. In contrast, the Wy distance matrix preserves the global
diagonal structure of the ground-truth matrix. This result is also described by our theoretical results.

L2 noiseless L2 noisy W1 noiseless W1 noisy W2 noiseless W2 noisy

o ANIN NN

Figure 6: Top panel: Distance matrices between the different structures in the absence of noise.
Bottom panel: averaged distances over 100 experiments. A more gradual blue-to-red gradient is
better, W performs best.

4.4 THE DECREASING DISTANCE PHENOMENON

Interestingly the estimated distance between images can even decrease when the noise increases.
One can see an example in Figure 7 where for p > 1 we get a “dip” in the distance, showing that the
images are getting closer together, similarly to the “two square images” in Figure 4.

This phenomenon, which at first sight might be surprising, can be explained by the fact that for
sparse pictures, the noise appearing between two structures can be used to “bridge” the transport
distance between them, like we see in Figure 8. Instead of having to transport the mass far away, a
large part of it is mapped to surrounding noise, this noise is matched with noise a bit further and so
on until all the mass is matched.
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Figure 7: Distances between two images, one has a mass of 1 in (8,8) and the other in (24,24) and
zero everywhere else, both being noised with noise sampled from the zero-sum normal distribution,
in dashed (matching colors) we have the bounds for each p from Theorem 5.

0=0.00e+00 0=4.00e-03 0=8.00e-03 0=1.60e-02
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Figure 8: Top - Source image, and where the mass of the original pixel (8,8) goes. Bottom - Target
image, and where the mass of the target pixel (24, 24) comes from for the optimal transport map
between noised versions of the single pixel images.

5 CONCLUSION AND FUTURE WORK

In this paper, we have investigated the behavior of the signed Wasserstein distance under noise
corruption of the pictures. Our theoretical contributions provide bounds for various situations of
interest. In particular, certain bounds establish a better noise robustness of the signed Wasserstein
distance than the ubiquitous L? metric. Our numerical experiments on the DOTMark dataset cor-
roborate these findings, with empirical results confirming that the W5 distance is more resilient to
noise than both L? and W, distances. These results make a strong case for its use in noise-plagued
applications like cryo-EM.

Despite these results, there remains venue for additional work. A primary challenge would be to
establish a (sharp) bound for IEIWIQAL (Le, Ve) — IEVV;t (1, v), which is hindered by the lack of triangle
inequality. The numerical experiments further suggest that our bounds, despite capturing the correct
behavior, are not tight. Finally, as our theory suggests that robustness increases with higher values
of p, the interest of such choices of exponents for practical applications should be investigated in
future works.
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A DEFERRED PROOFS

A.1 PROOF OF PROPOSITIONS

Proposition 3 (Wasserstein Distance Decomposition). Let i1 and v be two non-negative measures
on a space X with equal total mass. It holds that

WG, v) < WE (5= 0), (v = 1)) 0)

Proof of Proposition 3. We can decompose any two measures y and v into a common part and two
disjoint parts. Let m be the largest measure such that for all Borel set A

m(A) < u(A) and m(A) < v(A).

The remaining, disjoint parts of each measure are ¢t/ ;== p—m = (p —v)y and v/ := v —m =
(v — p) 4. Thus, we can write:

w=m+p v=m+1 (21)
Since p and v have the same total mass, it follows that p’ and v’ also have the same total mass.

We can then construct a valid transport plan 7 from g to v by handling the common and disjoint

parts separately. For the disjoint parts, let 7r(’)pt be the optimal transport plan from p’ to v/, whose cost

is, by definition, W} (u/,"). For the common part, we use the identity plan, 7jq, which transports
the mass at each point z to itself. The cost of this plan is [, d(z, z)Pdma(x) = 0.

Using the gluing principle, we can form a complete transport plan m = g + 7r(’)pl. This is a valid
plan transporting p to v. Its total cost is the sum of the costs of its components:

Cost(m) = Cost(mia) + Cost(mgy) = 0+ W] (1, v) (22)

By the definition of the Wasserstein distance as the infimum of costs over all possible transport plans,
the true optimal cost must be less than or equal to the cost of this specific plan:

!/ /!
WE (p,v) < WE',v') (23)
Substituting the definitions of p’ and v/ completes the proof. O

Proposition 4. Let p,v : Gy, — [0,00) be images on the square grid G, with spacing h = 1/n,
and let €, €, satisfy Assumption 1. Identifying G, with the 2-torus, let D := diam(G,,) = v/2/2.
Then, for anyp > 1,

=

Wi+ v+ 6,) < D77 (Wilpyv) + Wileh, €))7, € i=eu—e,  (24)
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Proof. By definition of the signed distance,
Wi+ euy v+ €) = Wy((pten) 4 + (vte) -, (vte)s + (ute,)-). (25)

Applying the decomposition inequality of Proposition 3 (which “drops the overlap™) to these non-
negative arguments gives

Wpi(u +eu v+ 6) < Wy([uteu—v—ely, [v+e,—p—euly). (26)

For general p > 1 on a bounded domain of diameter D we use the standard comparison

W,(a, B) < D" Wi(a, B)*. @7)

Applying this to (o, f) = ([p+e,—v—e€,]+, [ute,—v—e,] ) yields

1 P

Wy(lpte—v—el4, [pte—v—e]-) < D% (Wl([ﬂ+6;t_y_€V]+v [nteu—v—e]-)

(28)
Using Proposition 6, we conclude
1
D' (Wit vl oo -v-al)
1 »
< D3 (Wilpn) + Wi (e — ) (00— )
Since both €, and €, are normally distributed, we can say that €* := €, — €, is also normally

distributed, with cov(e*) = 2 cov(e,). Thus,
D5 (Wi (v) + Wi(en = €)1, (6w — €,)-)) " < D77 (Wi, v) + Wile}, €))7, (29)
O
A.2 PROOF OF THEOREMS

Proof of Proposition 2. We prove each point separately.

1. The marginal variance of each component V; is given by the diagonal entry ¥;;, which is
o2 by definition. Since the parent distribution is a multivariate normal with a mean vector
of zero, each component is marginally distributed as N(0, o2).

2. We compute the variance of the sum of the components:

M M M
Var (2 N,-) = " Cov(N;, N;) = z; 2 i (30)
1= =1 7=

4,J
M
= ZVar(Ni) + ZCOV(NZ-, N;) (31)
i=1 i#j
2 o?
M-o*+M(M-1) Ml) (32)

The expectation of the sum is E [Zf\il Nz} = S°M E[N;] = 0. A random variable with

. M
zero mean and zero variance must be equal to zero almost surely. Therefore, > ;" | N; =
0.

Proposition 5. Let i : G, — [0, 1] be a probability measure on the n x n unit grid G, with cyclic
boundary conditions and let € : G,, — R be a signed noise measure that satisfy Assumption 1. Then,
forp>1,

W (o +€) < Wy(eo,e4). (34)
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Proof of proposition 5. By definition,

W+ = W7 (s G+ 40 ). (35)

Thus, using Proposition 3 on p + (1t + €)— and (i + €) 4, we get
W (1t et -Gt o)) 36)
(ot 0 = e+ ) (b 0 = Gk 0490), ) @
(e et O = e 0 (k= (et O =), ) G
= 5((#—(u+6))+,(u+e—u)+) (39)
=g ((0es ) = Wp(een) =

Proof of Theorem 2. Using the Kantorovich-Rubinsten duality,

WE(u,p+e) = sup (f,e) = Wi(et,e™). (40)
f€Lip,

The first equality is the signed dual form with 4« — (u + ¢) = —e. For the second, [¢ = 0 implies
e = ¢t — ¢~ with equal masses, so the balanced duality gives Wi(e*,e7) = sup;cr,p, (f; €)

Letm = e (G,,) = ¢ (G,,). By homogeneity of W1,

Wi e ) =mWi (5,5 ). @1

Apply Proposition 1 to the probability measures et /m and e~ /m. There exists an integer k* with
k* =< log, n such that

et e V2 . W2 i et e~
Wi(—,—)< ——=27F £ T2\ o7k — - . 42
et = <D B 2D DR CEEEI(2)] “2)
k=0 QED;,
Multiplying by m gives
V2 Ve
+ - —k —k
Wit e7) < SomaH £ 3237k ) ‘Za(w)‘. 43)
k=0 Q€D 2€Q
Taking expectations and using independence and zero mean of the noise,
V2, e V2
+ - —k —k
EWi(e",e7) < -2 Em+ 32307k Y- E’Zs(x)’. (44)
k=0 QeD),  z€Q

Since each £() is Gaussian with variance o2, one has E| > weq (@) < 0/|Q]y/2/m and Em =
> sec, E(e(z))y = n0/v/2m. Furthermore, the dyadic family Dy has [Dy| = 22* cubes of
cardinality |Q| = n?/2%F. Therefore

3 E’Zg(x)‘ga\/g 3 \/@:U\/g~22k-2%za\/%n2k. (45)

QeDy r€Q QEDy,

Plugging this into the multiscale sum yields

k=0 QEDy  z€Q
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With k* =< log, n this gives the on log, n contribution.

For the coarse term choose k* so that 27%" =< 1/n. Then

2 i 1 n? 2
iz—k Em,\if na iﬂ’ 47)
2 2 n Vor 2 \em

which is the on contribution.
Collecting the two contributions and absorbing absolute constants into the displayed coefficients
yields
2 1
onlogyn + —=on. (48)

NG NG

In this derivation the factor m appears only in the coarse term and contributes to the on piece after
expectation. In the oscillation terms it cancels with the normalization, so no additional dependence
on m remains. There is no additive grid term independent of o, hence no 1/ (\/in) tail. O

EW;(et,e7) <

Proof of Theorem 3. By Proposition 5, we only need to upper bound W, (e4,e_).
By the assumption on the noise noise have total zero mass, this quantity is well defined.

Then, by the multiscale bound of Proposition 1

p ) =27P/2 P s = !
W(es o) +(GnW; <e+<an>’e+<Gn> w
R (G 2 W2Z2 DS e (@) e (@) (50
QkEQk
§2—pk*—1/2 +2 p/QZQ p(k—1) Z | Qk (28
QkEQk

Now, the proof is extremely similar to the previous one and by the same argument,

2
E )| < 4k Zo2nk, 52
> lE@I<4h /=0 (52)

Qe

2 [3 1
Ee, (Gy) = ”2\/;0,/1 - (53)

k™

104 [2 /2
k*—1/2 2 1)k
EWP(ey,e-) <27PF 71/ 2\[ + 2m27/ E 2~ (P—1) —o (54)

1
2”’“**1/2 fa+2"2p/2\f 1_2(,, . (55)

As in the previous proof,

Altogether,

(56)
We take k* = 7 again to get
EWP(eq,e_) < 9—(p=1)no—-1/22_ 27 1 o+ 2n2p/2\[ _ (57)
pA - 2 \/E 2r—1 _3/2

on ) 9(p+1)/2

£ -(p-m-3/2 . 2
< ﬁo <2 + T 1) . (58)
Remark that 2~ (P~17=3/2 < 1/2 and that 22::1)_/12 is decreasing with value 21/2 at 2. The claim

follows. O
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Proposition 6. For any two images p,v : G, — [0,00) and independent noises €, €, as in As-
sumption 1,

Wi(lp+en—v—elw,vte —p—ely)
< Wi(u,v)+ W ((% —e)", (eu — eu)_).

Proof of Proposition 6. By Kantorovich—Rubinstein duality,

Wi(lp+e,—v—els,[V+e —pu—ele) = sup /f —v) /f €, —€).  (59)
[IfllLip<1
For the first term, by KR duality,
swp [ (=) < W) (60)
[[fllLip<1

For the second term, via the Jordan decomposition,

sup [ e =) < Willer = a)" (o)) (61)
lfllLip<1
Adding these together, we receive the desired bound. O

Proof of Theorem 4. Recall that I/VljE satisfies the triangle inequality, so

Wi+ € v+ ) S Wi (i ey ) + Wi (u,0) + Wi (v, v + €). (62)
By symmetry
EWE(u+ €, p) = EWE(w,v +¢,) (63)
Therefore,
EW (1 + €4, v + €) = Wi (u,v)] < 2EWE (1, o + €,). (64)
We proceed to upper-bound the RHS. By the definition of the signed Wassetein metric,
Wi (i g+ €) = Wiy + (n+€)—, (n+ €)1 + o) (65)
=Wilp+(p+e) -, (L+e)y) (since pup = prand i = 0).  (66)

We now use the dyadic upper bound in equation 9. The image is partitioned into 4 quadrants re-
cursively, thus 6 = 1/2. Our domain has diameter V2 /2 since it is the discrete n X n unit grid
G, C [0,1] x [0, 1] € R? with cyclic boundary conditions. The inequality only holds for probability
measures, so we need to rescale.

(67)

Wli(u,ue)(u+e)+(Gn)Wlﬂ:(N+(M+6)— (1+e)s )

(,u + 6)+(Gn) 7 (M + €)+(Gn)

k
<22t (G) + 2D 27 ST [t (€ )(@QF) — (n+ €4 (QF)].

QFeok

By considering the two cases (12 + €)(Q¥) > 0 and (1 + €)(QF) < 0 it is easy to see that the term
(4 (1 +€))(QF) — (u+ €)1 (QF) is equal to —e(QF), so the bound above simplifies to

WE (1) <275 "2 (0 + )4 (G 22 F=D3 " 1e(@F)]- (68)
QkEQk
Rewrite the noise as € = ¢’ — € where €’ is i.i.d. A'(0, 0?) at each pixel and € € R is the mean of all
¢ terms across the entire image. Since Q¥ is a square region of size 27~% x 27~* and € is the mean
of 47 i.i.d. Gaussian noise terms, it follows that €' (Q¥) ~ N(0,47%52) and € ~ N(0,0%/4") =
N(0,02/n?). Recall that E| X| = 01/2/m when X ~ N(0,02).
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Since €*(QF) = > zeqr € () — 4n=ke,

42(n—k) 42(n—k)
* k = 2 nik -
Var ((QF)) = o (4 R ) (69)
Thus,
9 1/2
* kY| — < _on—k 24—k
Ele*(QF)] = |/ =02 (1 n24 ) . (70)

Summing over the 4F cells at level ,

E Y (@ —4’“[ 91~ k(1 n24_k)1/2. (71)

Qe

Plugging this back into the RHS of equation 68 and recalling that 27 = n gives

-
(k=1) V2o gk 2 gnek
§:2 > @] <5 Y2 45/ =02 (72)

QIeQk k=1
2ty
= k*. 73
r (73)
We take £* = 1 = log, n to obtain the bound
1 2nlog, n
EWE (u, 1) < —E [(1+ €)1 (Gn)] + —=22— 74
1(uu)_ﬁn [(1+ €)+(Gn)] NG (74)
‘We now bound the first term in the RHS.
E[(p+ €)4+(Gn)] < E[py (Gn)] + Ele4 (Gn)] (75)
=1+E[e1(Gyp)] (76)

where the last equality follows from the fact that x4 is a (non-negative) probability measure. By a
symmetry argument

Eer(Gn) = $Ele|(Gn). (77)

Further set . = 3 Y, |e(x)| and recall that e(z) ~ N(0,02(1 — 1/n?)) to derive

n®> /2 1
= — - 1_ T 7
2 7TU n2 (78)

Thus,
B[40+ (Ga)l S o + (79)
_— c N R
Plugging this back into equation 74 gives
2nlogon +n/2 1
EWE (u, ) < 2 o+ . 80
r (k) < NG Ton (80)

Note that the same bound applies to EW:E (v, v 4 €,). By subtracting Wit (u, v) from both sides of
equation 62 and taking expectations, we have

E [Wi (ne, ve) = Wit (1, v)] < EWS (e, ) + EWE (v, ve)

S4nlog2n—|—na+ﬁ. -
LS n
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Proof of Theorem 5. Using Proposition 4
1
E[WE(u+€uv+e)] < ]E[Dl » (Wi (p,v) + Wileh, e)) } (81)

The function ¢ — #1/P is concave on [0, ), hence by Jensen:

E[Dl S (W, )+W1(ei,e*))’l’} <D'"% (E[Wl(u, V) +W1(ei,e*)]>p (82)

By the linearity of expectation,

D% <]E[W1(/L, V) + Wl(ei,e*_)}) " _pi <W1(u, v) + E[Wl(ei,ei)]> (83)

Finally, using Theorem 2 we get that

1-3 <W1(M, v) +E[Wi(ef, 6*_)]> ’ <D % (Wl(,u, v) +27\/§an10g2 n+ \/Ean) ' (84)
LS T

Using Jensen,

+ V2.1 1 V24 2 Py
E[Wy (u+euv+e)] < (7) P Wip,v)r + 5 <ﬁnlog2n + =) (85)
O
Proof of Theorem 1. First let us remark that
Z Spewe( Tyew.(z) = Z w(@) + eu(z) —v(z) — 6 (2) (86)
zcGy zcGyp
=0+ Z eu(z) — e, (z (87)
zeGp,
as
Do) +v(@)= > vi()+p () (88)
z€Gy z€Gy
and thus
> wla) —v(x) = 0. (89)
zeGy,
Remark that under our assumptions,
D eulz) —en(x) ~ N(0,20°N?). (90)

zeGy,
Because of this, one has that

S @)= 3 T (0) <1+ = Oy (o) ) o)

z€Gnp 2€Gy, z€G, Ty . (z)

Owing to our assumption on the signals, notice that

Y T (@) = O(N?). 92)
zeGy
Therefore,
Wl(gﬂsaye’THeaVe) = Sup S He Ve Ne Ve f> (93)
J€Lip,
T
Neyl’e He,sVe
= sup - f 94)
fELipl < LEGn ILF sVe (I) Z.’L‘EGn Tl"ev”e (l’) >

O, (oN)
= SUp ( Sy = Tpewe | 1+ 55— )0
ZIEGn SIJ/67V€ (I‘) f€Lipy < g g ( ZaxEGn TH67V6 (.’E)
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