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ABSTRACT

Operator learning seeks to approximate mappings from input functions to output
solutions, particularly in the context of partial differential equations (PDEs). While
recent advances such as DeepONet and Fourier Neural Operator (FNO) have
demonstrated strong performance, they often rely on regular grid discretizations,
limiting their applicability to complex or irregular domains. In this work, we
propose a Graph-based Operator Learning with Attention (GOLA) framework that
addresses this limitation by constructing graphs from irregularly sampled spatial
points and leveraging attention-enhanced Graph Neural Netwoks (GNNs) to model
spatial dependencies with global information. To improve the expressive capacity,
we introduce a Fourier-based encoder that projects input functions into a frequency
space using learnable complex coefficients, allowing for flexible embeddings
even with sparse or nonuniform samples. We evaluated our approach across a
range of 2D PDEs, including Darcy Flow, Advection, Eikonal, and Nonlinear
Diffusion, under varying sampling densities. Our method consistently outperforms
baselines, particularly in data-scarce regimes, demonstrating strong generalization
and efficiency on irregular domains.

1 INTRODUCTION

Learning mappings between function spaces is a fundamental task in computational physics and
scientific machine learning, especially for approximating solution operators of partial differential
equations (PDEs). Operator learning offers a paradigm shift by learning the solution operator directly
from data, enabling fast, mesh-free predictions across varying input conditions. Despite their success,
existing operator learning models such as DeepONet (Lu et al., 2019) and Fourier Neural Operator
(FNO) (Li et al., 2020a) exhibit notable limitations that restrict their applicability in more general
settings. A key shortcoming lies in their reliance on regular, uniform grid discretizations. FNO, for
instance, requires inputs to be defined on fixed Cartesian grids to leverage fast Fourier transforms
efficiently. This assumption limits their flexibility and generalization ability when applied to problems
defined on complex geometries, irregular meshes, or unstructured domains, which are common in
real-world physical systems. Furthermore, these models often struggle with sparse or non-uniformly
sampled data, leading to degraded performance and increased computational cost when adapting to
more realistic, heterogeneous scenarios.

To address these limitations, we propose a Graph-based Operator Learning with Attention (GOLA)
framework that leverages Graph Neural Networks (GNNs) to learn PDE solution operators over
irregular spatial domains. By constructing graphs from sampled spatial coordinates and encoding
local geometric and functional dependencies through message passing, the model naturally adapts to
non-Euclidean geometries. To enhance global expressivity, we further incorporate attention-based
mechanisms that can capture long-range dependencies more effectively and a Fourier-based encoder
that projects input functions into a frequency domain using learnable complex-valued bases. Our
model exhibits superior data efficiency and generalization, achieving smaller prediction errors with
fewer training samples and demonstrating robustness under domain shifts.

The main contributions of this work are as follows:

• We introduce GOLA, a unified architecture combining spectral encoding and attention-
enhanced GNNs for operator learning on irregular domains.
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• We propose a learnable Fourier encoder that projects input functions into a frequency domain
tailored for spatial graphs.

• Through extensive experiments, we demonstrate that GOLA generalizes across PDE types,
sample densities, and resolution shifts, achieving state-of-the-art performance in challenging
data-scarce regimes.

2 RELATED WORK

There are many latest research about graph and attention methods in scientific machine learning
(Xiao et al., 2024), (Kissas et al., 2022), (Boullé and Townsend, 2024), (Xu et al., 2024), (Jin and Gu,
2023), (Cuomo et al., 2022) (Kovachki et al., 2024), (Nelsen and Stuart, 2024), (Batlle et al., 2023).

Graph neural networks for scientific machine learning. (Battaglia et al., 2018) applies shared
functions over nodes and edges, captures relational inductive biases and generalizes across different
physical scenarios. (Bar-Sinai et al., 2019) learns data-driven discretization schemes for solving
PDEs by training a neural network to predict spatial derivatives directly from local stencils. By
replacing hand-crafted finite difference rules with learned operators, it adapts discretizations to the
underlying data for improved accuracy and generalization. (Sanchez-Gonzalez et al., 2020) predicts
future physical states by performing message passing over the mesh graph, capturing both local and
global dynamics without relying on explicit numerical solvers. Graph Kernel Networks (GKNs)
(Li et al., 2020b) directly approximates continuous mappings between infinite-dimensional function
spaces by utilizing graph kernel convolution layers. PDE-GCN (Wang et al., 2022) represents
partial differential equations on arbitrary graphs by combining spectral graph convolution with
PDE-specific inductive biases. It learns to predict physical dynamics directly on graph-structured
domains, enabling generalization across varying geometries and discretizations. The Message Passing
Neural PDE Solver (Brandstetter et al., 2022) formulates spatiotemporal PDE dynamics by applying
learned message passing updates on graph representations of the solution domain. Physics-Informed
Transformer (PIT) (Dos Santos et al., 2023) embeds physical priors into the Transformer architecture
to model PDE surrogate solutions. It leverages self-attention to capture long-range dependencies and
integrates PDE residuals as soft constraints during training to improve generalization. GraphCast
(Lam et al., 2024) learns the Earth’s atmosphere as a spatiotemporal graph and uses a graph neural
network to iteratively forecast future weather states based on past observations. It performs message
passing over the graph to capture spatial correlations and temporal dynamics, enabling accurate
medium-range forecasts.

Attention-based methods for scientific machine learning. U-Netformer (Liu et al., 2022) proposes
a hybrid neural architecture that combines the U-Net’s hierarchical encoder-decoder structure with
transformer-based attention modules to capture both local and global dependencies in PDE solution
spaces. Tokenformer (Zhou et al., 2023) reformulates PDE solving as a token mixing problem by
representing input fields as tokens and applying self-attention across them to model spatial correla-
tions. Adaptive Fourier Neural Operators (AFNO) (Guibas et al., 2021) are an efficient token-mixing
mechanism for vision transformers that perform resolution-independent global convolution in the
Fourier domain—enhanced by block-diagonal channel mixing, adaptive weight sharing, and fre-
quency sparsification—to deliver quasi-linear complexity and superior performance over traditional
self-attention on high-resolution image tasks. Our proposed GOLA combines the local relational
strengths of attention-enhanced GNNs and the global spectral capabilities of Fourier-based encod-
ing. This hybrid approach has shown notable improvements in generalization and data efficiency,
particularly under challenging data-scarce conditions on irregular domains.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Consider the general form of a PDE

N [u](x) = f(x), x ∈ Ω× [0,∞) (1)

where x denotes a compact representation of the spatial and temporal coordinates, Ω is the spatial
domain, and [0,∞) is the temporal domain. N is a differential operator, u(x) is the unknown solution,
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and f(x) is a given source term. The objective is to learn the solution operator G : F → U , where F
and U are Banach spaces. We assume access to a training dataset D = {(fn, un)}Nn=1, consisting of
multiple input-output function pairs, where each fn(·) and un(·) is represented by discrete samples
over a finite set of points.

While existing approaches such as DeepONet and FNO have demonstrated strong performance, they
typically rely on structured, grid-based discretizations of the domain. This assumption limits their
applicability to unstructured meshes, complex geometries, and adaptively sampled domains. To
overcome this limitation, we employ GNNs for operator learning by representing the domain as
a graph. This allows for modeling on arbitrary domains and sampling patterns. Once trained, the
operator learning model can efficiently predict the solution u for a new instance of the input f at
random locations.

Fourier
BasisFourier
BasisFourier
BasisFourier
BasisFourier
Basis

Fourier
BasisFourier
BasisFourier
BasisFourier
BasisFourier
Basis

Fourier
BasisFourier
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Figure 1: GOLA: Graph-based Operator Learning with Attention. The model first encodes input function
values sampled on irregular spatial coordinates using a learnable Fourier encoder to obtain spectral node features.
A graph is constructed based on spatial proximity, enabling message passing and multi-head self-attention to
capture local and global dependencies. A final attention-based message passing layer refines the representation
to predict the output solution values. GOLA effectively handles irregular domains and sparse samples, achieving
strong generalization for PDE operator learning.

3.2 GRAPH CONSTRUCTION

To represent PDE solutions over irregular domains, we begin by randomly sampling a subset of
points {xi}Ni=1 from a uniform grid in 2D space. We then construct a graph G = (V,E) with nodes
V = {xi} and edges E determined by a radius r. Edges are created based on spatial proximity.
Two nodes are connected if the Euclidean distance between them is less than a threshold r such that
(i, j) ∈ E if and only if ∥xi − xj∥2 ≤ r. Each edge (i, j) carries edge attributes eij that encode
both geometric and feature-based information, such as the relative coordinates and function values at
nodes i and j such that eij = ∥(xi, xj , f(xi), f(xj)), where ∥ is the concatenation operation. This
graph-based representation allows us to model unstructured spatial domains and enables message
passing among nonuniform samples.
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3.3 FOURIER ENCODER

We define a set of learnable frequencies
{
ωm ∈ R2

∣∣m = 1, . . . ,M
}

.

For any coordinate x ∈ R2, the m-th basis function is given by the complex exponential

φm(x) = e2πi⟨ωm,x⟩ (2)

where ⟨·, ·⟩ denotes the standard Euclidean inner product, and i is the imaginary unit.

At the discrete level, for a batch of B samples and N points per sample, the basis matrix is defined as

Φ ∈ CB×N×M , Φb,i,m = e2πi⟨ωm,x
(b)
i ⟩ (3)

where x
(b)
i denotes the i-th coordinate point in the b-th batch sample.

Given the input f ∈ RB×Cin×N sampled at points {xi}, we first project onto the Fourier basis. We
compute the Fourier coefficients by

ûb,c,m =
1

N

N∑
i=1

fb,c,i φm

(
x
(b)
i

)
(4)

where (·) denotes complex conjugation.

We introduce a learnable set of complex Fourier coefficients W ∈ CCin×Cout×M . The spectral filtering
operation is

v̂b,o,m =

Cin∑
c=1

ûb,c,m Wc,o,m (5)

We reconstruct the output in the physical domain by applying the inverse transform

vb,o,i =

M∑
m=1

v̂b,o,m φm

(
x
(b)
i

)
(6)

Since v is complex-valued, we only take its real part for the output as h = Re(v) ∈ RB×Cout×N . The
output h serves as the input node features for the downstream GNN model.

3.4 MESSAGE PASSING

Given a node i ∈ V and its set of neighbors N (i), the pre-processed messages {mij}j∈N (i) are first
computed using a learnable neural network gΘ as

mij = gΘ(hi, hj , eij) (7)

where hi and hj are node features, and eij denotes edge attributes.

Then we aggregate message from neighbors such that

m̂ = ∥( 1

|N (i)|
∑

j∈N (i)

mij , max
j∈N (i)

mij , min
j∈N (i)

mij ,

√√√√ 1

|N (i)|
∑

j∈N (i)

(mij −
1

|N (i)|
∑

j∈N (i)

mij)2)

(8)

This concatenated feature vector is processed by a post-aggregation neural network γΘ to produce
the updated node representation by

h′
i = γΘ (hi, m̂) (9)

The updated node representation is passed through additional MLP layers with residual connections
to enhance expressiveness.
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3.5 MULTI-HEAD SELF-ATTENTION

We employ H independent attention heads. For each head h, the query, key and value functions are
computed as linear projections

q(h)(x) = Wqh
′(x), k(h)(y) = Wkh

′(y), v(h)(y) = Wvh
′(y) (10)

where Wq,Wk,Wv ∈ Rdh×Cout , q(h)(x), k(h)(y), v(h)(y) ∈ Rdh are learned head-specific features,
and dh is the dimension per attention head.

Before computing attention, the keys and values are normalized

k̃(h)(y) = Norm(k(h)(y)), ṽ(h)(y) = Norm(v(h)(y)) (11)

where Norm(·) denotes instance normalization.

We compute

Gh =
N∑
j=1

k̃(h)(yj)
⊤ṽ(h)(yj)w(yj), (Khh

′)(xi) = q(h)(xi)Gh (12)

The outputs are concatenated and projected to the output space by

(Kh′)(xi) = ∥ ((K1h
′)(xi), . . . , (KHh′)(xi)) , ĥ(xi) = Wout(Kh′)(xi) (13)

where where Gh ∈ Rdh×dh , w is calculated by the number of points, Wout ∈ RCout×(Cout·H).

The result is then passed through a linear projection layer to update the node features.

3.6 MESSAGE PASSING WITH ATTENTION

We update node features and add a skip connection by

ĥ′
i = W1ĥi +

∑
j∈N (i)

αij

(
W2ĥj +W3eij

)
, ĥ′

i = ĥ′
i +Wsĥi (14)

The attention weights αij are computed using a scaled dot-product attention mechanism by

αij = softmaxj


(
W4ĥi

)⊤ (
W5ĥj +W3eij

)
√
d

 (15)

where d is the dimensionality of the head, and the softmax is applied over the set of neighbors
j ∈ N (i). Then we add a linear projection to produce the predicted solution û.

3.7 TRAINING

The model is trained to minimize the relative L2 error between predicted and true solutions by

L2(θ) =
∥u− Gθ(f)∥L2(Ω)

∥u∥L2(Ω)
(16)

4 THEORETICAL ANALYSIS

Following the universal approximation theorem for operators (Lu et al., 2019), neural operator
architectures can approximate any continuous operator G between Banach spaces when provided
with sufficient capacity.
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Proposition. Let G : F → U be a continuous nonlinear operator between separable Banach spaces.
Then, under sufficient model capacity, the GOLA architecture Gθ can approximate G arbitrarily well
in the L2(Ω) norm over a compact domain Ω, i.e., supf∈Fδ

∥G(f)−Gθ(f)∥L2(Ω) < ϵ, for any ϵ > 0
and compact subset Fδ ⊂ F .

Proof. Given a function f ∈ F ⊂ L2(Ω), we sample it at N spatial locations {xi}Ni=1 ⊂ Ω to obtain
a discrete representation fN = (f(x1), . . . , f(xN )) ∈ RN . Since Ω is compact, by increasing N the
point cloud {xi} becomes dense in Ω. Thus, fN can approximate f arbitrarily well in L2(Ω) norm
via interpolation over the sampling set.

Define a set of complex Fourier basis functions {ϕm(x) = e2πi⟨ωm,x⟩}Mm=1. The Fourier basis is
complete in L2(Ω), so for any f ∈ F and δ > 0, there exists M such that∥∥∥∥∥f(x)−

M∑
m=1

f̂mϕm(x)

∥∥∥∥∥
L2(Ω)

< δ.

This guarantees that the learnable Fourier encoder in GOLA can approximate the functional input f
to arbitrary precision.

Construct a graph G = (V,E) with node set V = {xi}Ni=1, where edges encode local spatial
relationships. According to universal approximation results for GNNs (Xu et al., 2019), (Morris et al.,
2019), for any continuous function defined on graphs, a GNN with sufficient depth and width can
approximate it arbitrarily well. Thus, the GNN decoder can approximate the mapping from input
features to solution values

(f(x1), . . . , f(xN )) 7→ (G(f)(x1), . . . ,G(f)(xN ))

Let TN denote the sampling operator, Fθ the Fourier encoder, and Dθ the GNN decoder. Then the
GOLA operator can be written as

Gθ = Dθ ◦ Fθ ◦ TN
Each component is continuous and approximates its target arbitrarily well. Since composition of
continuous approximations preserves continuity, and Fδ is compact, the total approximation error
can be made less than any ε > 0 by choosing N , M , and model capacity large enough such that

sup
f∈Fδ

∥G(f)− Gθ(f)∥L2(Ω) < ε

5 EXPERIMENTS

We evaluate the proposed model GOLA on four 2D PDE benchmarks including Darcy Flow, Nonlinear
Diffusion, Eikonal, and Advection. For each dataset, we simulate training data with 5, 10, 20, 30, 40,
50, 80, 100 samples and use 100 examples for testing. To construct graphs, we randomly sample 20,
30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 points from a uniform
128 × 128 grid over the domain [0, 1] × [0, 1]. The sampled points define the nodes of the graph.
Our model learns to approximate the solution operator from these irregularly sampled inputs. We
aim to test generalization under both limited data and resolution changes. We compare against the
following baselines including DeepONet (Lu et al., 2019), AFNO (Guibas et al., 2021) and Graph
Kernel Network (GKN) (Li et al., 2020b).

Comparisons with baselines. Table 1 reports the averaged test errors over 5 runs with different seeds
across four PDE benchmarks—Darcy Flow, Advection, Eikonal, and Nonlinear Diffusion—in the low-
data regime of 100 training samples with sample density = 1000 randomly selected from a uniform
128× 128 grid over the domain [0, 1]× [0, 1]. The proposed GOLA method consistently achieves
the lowest error across all datasets. For Darcy Flow, GOLA attains an error of 0.1088 ± 0.0027,
representing a 40.8% relative improvement over the best baseline, GKN (0.1840 ± 0.0040). In
Advection, GOLA achieves 0.2227± 0.0185, reducing the error by 26.7% compared to GKN and
by over 77% relative to AFNO and DeepONet. For Eikonal, GOLA obtains 0.0657 ± 0.0011,
a 45.7% improvement over GKN, while Nonlinear Diffusion exhibits the largest relative gain—
0.0430± 0.0005, which is 59.2% lower than GKN. Moreover, GOLA maintains standard deviations
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on par with or below those of the best-performing baselines, indicating both superior accuracy and
stable convergence.

Table 1: Test errors for different models in irregular sampling points trained on 100 training data samples with
sample density=1000 across various PDE benchmarks. The results are averaged over 5 runs in this paper.

Dataset AFNO DeepONet GKN Ours(GOLA)

Darcy Flow 0.4310± 0.0040 0.5897± 0.0026 0.1840± 0.0040 0.1088± 0.0027
Advection 0.9845± 0.0007 0.9979± 0.0001 0.3043± 0.0041 0.2227± 0.0185
Eikonal 0.1828± 0.0017 0.1918± 0.0004 0.1210± 0.0043 0.0657± 0.0011
Nonlinear Diffusion 0.1686± 0.0016 0.2781± 0.0005 0.1052± 0.0038 0.0430± 0.0005

Figure 2: Error reduction heatmaps across training data sizes and sample densities for PDE Benchmarks.
Nonlinear Diffusion consistently shows the highest error reduction across all training sizes and densities and it
becomes more prominent at high sample densities even under very small training size 10.

Generalization across sample densities. From Table 2, we use 100 training data, and choose three
types of sampling densities 20, 500, 1000 which represent small, medium and high sample densi-
ties. We observe a consistent trend that increasing sample density leads to significant performance
improvements across all PDEs. The results highlight that higher sampling density substantially
improves generalization, particularly for PDEs with more complex solution manifolds such as Darcy
flow and nonlinear diffusion, and that even moderate densities 500 are sufficient to close much of the
performance gap for Eikonal equations.

Table 2: Test errors for small, medium, and high sampling densities with training data size=100.

Sample Density 20 500 1000

Darcy flow 0.4422± 0.0213 0.1298± 0.0043 0.1088± 0.0027
Advection 0.4374± 0.0177 0.2654± 0.0163 0.2227± 0.0185
Eikonal 0.1267± 0.0019 0.0675± 0.0020 0.0657± 0.0011
Nonlinear diffusion 0.1901± 0.0060 0.0542± 0.0015 0.0430± 0.0005

Resolution generalization. From Table 3 and Figure 3, we use 100 training data and sample 1000
training sample points, then we test the relative L2 error in different test sample densities 100, 500,
1000, 2000, 4000. We observe that higher test sample densities consistently reduce the error for all
PDE families, reflecting improved approximation accuracy with denser test points.

7
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Table 3: Test errors for different test sampling densities with training sample density=1000.

Test Sample Density 100 500 1000 2000 4000

Darcy flow 0.2475± 0.0041 0.1304± 0.0020 0.1088± 0.0027 0.0971± 0.0033 0.0895± 0.0035
Advection 0.3641± 0.0117 0.2505± 0.0149 0.2227± 0.0185 0.2218± 0.0202 0.2182± 0.0141
Eikonal 0.0790± 0.0031 0.0672± 0.0020 0.0657± 0.0011 0.0654± 0.0024 0.0654± 0.0019
Nonlinear diffusion 0.0893± 0.0020 0.0511± 0.0015 0.0430± 0.0005 0.0386± 0.0012 0.0368± 0.0015

Figure 3: Test error trend with test sample density Figure 4: Test error trend with train data size

Data Efficiency. From Table 4, we use 2000 sample points and change different training data size
to test the performance. From Figure 4, we report the results for 4000 sample points with different
training data size. In Figure 5, we report the results for test error trend with respect to training data
size in test sample points ∈ {200, 300, 400, 500, 600, 700, 800, 900}. Across all PDEs, we observe a
clear trend of decreasing test error with increasing training data size, indicating effective data scaling
behavior.

Table 4: Test errors under varying numbers of training data size with sample density=2000.

Training data size 20 40 60 80 100

Darcy flow 0.2027± 0.0161 0.1372± 0.0095 0.1071± 0.0073 0.0983± 0.0057 0.0913± 0.0029
Advection 0.5253± 0.0273 0.4026± 0.0182 0.3192± 0.0388 0.2709± 0.0243 0.2228± 0.0172
Eikonal 0.1029± 0.0047 0.0763± 0.0033 0.0678± 0.0028 0.0648± 0.0023 0.0647± 0.0021
Nonlinear diffusion 0.0815± 0.0139 0.0538± 0.0023 0.0429± 0.0036 0.0394± 0.0033 0.0360± 0.0013

Figure 5: Test error trends across varying sample densities for PDE benchmarks.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Visualizations for graph with 1000 sample points on Advection.

Graph Visualizations. We visualize graph construction in Figure 6. We randomly sample 1000 node
positions in the unit square and use ball connectivity with a fixed radius 0.2 to construct graph. These
results are shown on the top row. Then in this graph, we visualize input function values on the graph,
ground-truth solution, and model prediction on the bottom row. Figure 6 demonstrates that (i) the
graph construction preserves locality and global connectivity; (ii) the learned model generalizes well
to unseen node configurations and accurately reconstructs the solution field; (iii) visual comparison
between ground truth and predictions reveals minimal discrepancy, supporting the effectiveness of
our proposed model GOLA.

Time Complexity and Memory Cost. We analyze the computational complexity of the GOLA
architecture in terms of the number of spatial points N , Fourier modes M , feature channels C, and
edges E ∼ O(Nk), where k is the average number of neighbors in the sparse spatial graph. The time
complexity for GOLA is O(MNC) +O(NkC2) +O(NkC). The count of parameters for GOLA
is 2,900,249.

6 CONCLUSION

In this work, We introduce Graph-based Operator Learning with Attention (GOLA) framework,
which combines a learnable Fourier encoder with attention-enhanced message passing to solve PDEs
over irregular domains. By representing the spatial domain as a proximity graph and embedding
inputs into a learnable spectral basis, GOLA effectively captures both local and global dependencies,
enabling accurate operator approximation even under sparse sampling and complex geometries.
Through comprehensive experiments across diverse PDE benchmarks including Darcy Flow, Ad-
vection, Eikonal, and Nonlinear Diffusion, GOLA consistently outperforms baselines including
AFNO, DeepONet, GKN particularly in data-scarce regimes. We demonstrate GOLA’s superior
generalization, resolution scalability, and robustness to sparse sampling. These results highlight
the potential of combining spectral encoding and localized message passing with attention to build
continuous, data-efficient operator approximators that adapt naturally to non-Euclidean geometries.
This study demonstrates that graph-based representations provide a powerful and flexible foundation
for advancing operator learning in real-world physical systems with irregular data.
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