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Abstract

Inspired by early research on exploring natu-
rally annotated data for Chinese Word Segmen-
tation (CWS), and also by recent research on
integration of speech and text processing, this
work for the first time proposes to explicitly
mine word boundaries from parallel speech-
text data. We employ the Montreal Forced
Aligner (MFA) toolkit to perform character-
level alignment on speech-text data, giving
pauses as candidate word boundaries. Based
on detailed analysis of collected pauses, we
propose an effective probability-based strategy
for filtering unreliable word boundaries. To
more effectively utilize word boundaries as
extra training data, we also propose a robust
complete-then-train (CTT) strategy. We con-
duct cross-domain CWS experiments on two
target domains, i.e., ZX and AISHELL2. We
have also annotated about 900 sentences as the
evaluation data of AISHELL2. Experiments
demonstrate the effectiveness of our proposed
approach.

1 Introduction

As a fundamental task in Chinese language pro-
cessing, CWS aims to segment an input character
sequence into a word sequence, since words, in-
stead of characters, are the basic meaning unit in
Chinese. Figure 1 gives an example of the CWS
task, along with the speech signals.

With the rapid progress of deep learning tech-
niques, especially the proposal of pre-trained lan-
guage models like BERT (Devlin et al., 2019),
CWS models have achieve very high performance
when there is abundant training data from the same
domain with the test data (Tian et al., 2020; Huang
et al., 2020b). Therefore, recent studies on CWS
pay more attention to the cross-domain scenarios
(Huang et al., 2020a; Ke et al., 2021).

Meanwhile, considering the high cost of manu-
ally annotating high-quality CWS data, it had been
an attractive research direction to explore naturally
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Figure 1: An example of speech-text alignment

data. The correct segmentation result is “# /A/4 /48
m/Ho/#7 97, translated as “some people is carefully
listening”.

annotated CWS data from different channels. For
instance, anchor texts in HMLT-format web docu-
ments imply reliable word boundaries (Jiang et al.,
2013; Yang and Vozila, 2014); domain-aware dic-
tionaries can match words accurately in target do-
main texts (Liu et al., 2014). These studies illus-
trate that such information can be used as partial
annotations for training CWS models.

Another interesting research line in recent years
is the multi-modal integration of speech and texts,
mainly due to the adoption of unified model archi-
tectures in both speech processing (Baevski et al.,
2020; Hsu et al., 2021) and NLP fields (Devlin
et al., 2019; Lewis et al., 2020) in the deep learn-
ing era. These approaches can be broadly divided
into three categories, i.e., 1) using speech as extra
features for NLP (Zhang et al., 2021), 2) multi-
task learning (MTL) with cross-attention interac-
tion (Sui et al., 2021), and 3) end-to-end language
analysis from speech (Chen et al., 2022). Among
these, a work (Zhang et al., 2021) is closely related
with ours. They extract extra features from speech
to enhance CWS on corresponding texts.

Following previous Inspired by progress of re-
search directions discussed above, we propose for
the first time to explicitly utilizes pauses in speech
as word boundary annotations. The basic moti-



vation is that when uttering a Chinese sentence,
people often pause after finishing some complete
meaning in the middle of the sentence, to breath
or to make the speech easier to understand. Con-
sidering that words are the basic meaning unit, we
hypothesize that the pause information can be uti-
lized to help CWS.

Following previous works on cross-domain
CWS, we employ Chinese Penn Treebank 5
(CTB5) (Xue et al., 2005) as the source domain,
and use the widely used ZhuXian (“Jade Dynasty”
in English, abbreviated as ZX) data as the target
domain (Zhang et al., 2014). We collect and clean
the parallel speech-text corpus of ZX for mining
word boundaries. To more thoroughly evaluate the
models, we use AISHELL?2 as the second target
domain, which is a publicly available data for auto-
matic speech recognition (ASR) (Du et al., 2018).
The contributions of our work are as follows.

* We have manually annotated about 900 sentences
as the dev/test evaluation data for the AISHELL?2
domain.

* We employ the MFA toolkit (McAuliffe et al.,
2017) to perform character-level alignment on
speech-text corpora, and conduct detailed analy-
sis on the collect pauses.

* We propose an effective probability-based strat-
egy for filtering unreliable word boundaries, and
a robust CTT strategy to make use of the word
boundaries as naturally annotated data.

* Experiments on both ZX and AISHELL demon-
strate the effectiveness of our proposed approach.

Our code and newly annotated data will be released
at github.

2 Mining Word Boundaries from Speech

This section describes how we collect speech
pauses from parallel speech-text data, which con-
sists of two steps. First,we prepare parallel speech-
text data. Second, we utilize a GMM-HMM based
model to obtain character-level speech-text align-
ments. Based on the alignments, we can obtain
the pause duration between characters. Finally, we
conduct detailed analysis on pauses and propose a
simple filtering strategy to keep reliable pauses as
word boundaries.

Corpus Item Train Dev Test
CTBS # Sent 18,104 352 348
# Word 493,932 6,821 8,008
7X # Sent 788 1,394
# Word 20,393 34,355
AISHELL?2 # Sent 300 581
(Annotated) # Word 2,091 3,821
Speech-text Data #Pause  # Sent
all — 25,038
7X containing pause 203,842 25,016
after filtering »® >0.1) 198,361 25,007
after filtering (P >0.9) 197,540 24,964
all — 847,662
AISHELL2 containing pause 537,986 324,577

after filtering (p® > 0.1) 457,007 294,694
after filtering (P8 > 0.9) 442,633 286,608

Table 1: Statistics of data used in our experiments. p?
means the probability threshold for filtering pauses.

2.1 Preparing Speech-Text Parallel Data

In this work, we use CTB as the source domain and
employ two target-domain datasets. Table 1 shows
the data statistics.

(1) ZX. The first dataset is the ZhuXian (ZX)
dataset for the web fiction domain, which was con-
structed by Zhang et al. (2014) and has been widely
used in previous works on cross-domain word seg-
mentation (Liu and Zhang, 2012; Ding et al., 2020;
Jiang et al., 2021)

The ZX dataset contains about 5K sentences in
total."! The ZhuXian fiction consists of about 30K
sentences in total. In this work, we manage to de-
rive word boundaries from speech for the remaining
sentences that are not included in ZX-dev/test.

There are several versions of audio books for
the ZhuXian fiction on the Internet, in which some
reader reads aloud the texts. We select one version
that is of high quality and has little background
music. All audios are processed to be at a sampling
frequency of 16kHz.

Cleansing. We apply several data cleansing or
filtering strategies to improve the data quality. (1)
Numbers like “1200” are transformed into their
Chinese character form like “— - M & (one thou-
sand and two hundred). (2) Silent and special
symbols in the texts like punctuation marks are
removed. (3) Irrelevant blanks or noises in the

1Among them, 2,373 sentences are reserved for training,
but usually are not used in cross-domain experiments.
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beginning or end of the audio are removed. (4) Au-
dios with background music are discarded. Finally,
we collect 246 audio files amounting to 144 hours,
each corresponding to a chapter of the fiction.

(2) AISHELL2. For the second domain, we
adopt the AISHELL2 (Du et al., 2018) mandarin
Chinese speech corpus, which contains about 1,000
hours of high-quality audio, corresponding to about
one million transcription sentences.”> The corpus
covers 12 different domains that are closely related
with application of speech recognition in smart
home, autonomous driving, industrial production,
etc.

One major feature of the AISHELL?2 data, whose
major use is as training data for ASR, is that
the transcription texts do not contain punctuation
marks. In fact, outputs of ASR models usually
do not contain soundless symbols in written texts,
including punctuation marks.

Instead of injecting punctuation marks in
AISHELL?2 transcription texts, which would be
highly time-consuming and prone to annotation er-
rors, we decide to perform word segmentation on
transcription texts directly. We believe this is an
interesting and useful scenario for word segmenta-
tion research. Text normalization procedures such
as filling punctuation marks may be applied over
the output word sequence.

To alleviate the mismatch between the
AISHELL?2 data and the source-domain training
data, i.e., CTB, regarding punctuation marks,
we employ a simple strategy that can boost the
performance of the baseline model by large margin.
For each sentence in CTB-train, we remove the
punctuation marks in the sentence. With this
strategy, the trained model can handle transcription
texts well.

To evaluate the model on AISHELL?2, we have
manually annotated about 900 sentences in the
original AISHELL2-dev/test, and use them as the
dev/test evaluation datasets. We present more de-
tails about data annotation in Section 4.1.

2.2 Character-level Speech-Text Alignment

In this paper, we try to derive word boundaries from
speech based on pause information. The intuition
is that if the speaker pauses for some time after
uttering a char, then there may be a word boundary
after the char. The key challenge for implementing

2We sincerely thank the Beijing AISHELL Technology
Co., Ltd for sharing the data.

this idea is how to obtain accurate character-level
alignments between speech signals and the corre-
sponding sentence.

In the past decade, end-to-end Transformer
based models have become the dominate ASR
approach due to its superior performance (Gulati
et al., 2020; Zhang et al., 2023; Pratap et al., 2023).
With an extra connectionist temporal classification
(CTC) component, the model can explicitly pro-
duce alignment. However, our early experiments
reveal that the Transformer-CTC based models suf-
fer from a severe peak alignment issue, meaning
that every character is usually aligned to a single
speech frame, leaving most of the frames aligned
to blanks. This finding is consistent with previous
results (Senior et al., 2015; Zeyer et al., 2021).

Instead, we employ the MFA toolkit with its
GMM-HMM implementation to obtain alignment
between text and speech (McAuliffe et al., 2017).
We employ both monophone and triphone GMMs.

Given a speech, we use the default frame window
length of 25ms and the default frame offset of 10ms.
For each frame, the acoustic features are the stan-
dard Mel-frequency cepstral coefficients (MFCCs).
Formally, we represent speech as x = xg...7;...Zn,
where x; is an MFCC feature vector, and the corre-
sponding transcription as y = ¥g...Y;--.Ym, Where
y; denotes a token. The objective of GMM-HMM
is two fold: 1) to determine which phonemes corre-
spond to a token, and 2) to determine which frames
(e.g., k...x;) correspond to a phoneme. Com-
bining the results, we can obtain the time range
for each token. The model works under the un-
supervised scenario, and apply the expectation-
maximization (EM) algorithm (Moon, 1996) on
the training speech-text pairs.

We continue training the pre-trained mandarin
model in the MFA toolkit® using our parallel
speech-text data at hand, either ZX or AISHELL?2.
In our context, a token y; corresponds to a charac-
ter.* Suppose y; is aligned to Tp,---Te,;, also denoted
as (b;, €;), where b; and e; are the beginning and
end indices of frames. Then we can calculate the
pause duration between two adjacent characters,

3ht’cps: //mfa-models.readthedocs.io/en/latest/
acoustic

*By default, the mandarin model in the MFA toolkit can
only perform alignment at the word level, since the acous-
tic dictionary is word-based and polyphonic characters only
have one entry, corresponding to the most frequent pronuncia-
tion. To handle this issue, we extend the acoustic dictionary
by leveraging a Pinyin-based Chinese lexicon (both words

and characters). We will release the related resource and the
scripts.
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for instance y; and y;41 as follows.
d(Yi, Yi+1) = (bit1 — €;) X 10ms (D

Figure 1 gives an example. There are two pauses
in the sentence, with duration of 230ms and /10ms
respectively.

2.3 Filtering Pauses

At the beginning, our plan was to filter unreliable
word boundaries based on a global pause duration
threshold. For instance, if d(y;, yiy1) < 50ms,
then we discard the pause and not consider it as a
boundaries. In other words, we only keep pauses
with d(y;, yi+1) > 50ms as boundaries. However,
our analysis shows that pauses with short duration
are equally helpful.

Then we turn to another simple probability-
based filtering strategy. The idea is to let the base-
line model trained on the source-domain data (i.e.,
CTB) to judge. If the baseline model has a very
small probability to support the boundary, then we
discard it.

Following previous works, we adopt the BERT-
based CRF model as our baseline model, and em-
ploy the label set of {B, M, E, S}, meaning “be-
ginning”, “middle”, “end”, and ‘“single-char”, re-
spectively. Given an input char sequence y =
Yo---Ym, We denote a label sequence as z = 2g...2,.
The marginal probability of a label bigram at given
positions ¢ and ¢ + 1, for instance E_S, is:

> pEly). @

z:2;=E,z;41=S

P(E_Sly, i) =

Then the probability that there is a boundary
between y; and y;41 is:

PP(y,i) = >

le{s_s, S_B, E_S, E_B}

p(lly,i). (3)

And the probability that there is no boundary is:

1_pB(y>i) = Z

le{B_M, B_E, M_M, M_E}

p(lly,i). 4

Please note that illegal label bigrams (a.k.a. illegal
transitions) such as B_B are forbidden and always
get zero probability.

According to our experiments and analysis, our
final approach keeps all pauses having p® > 0.1,
regardless of the pause duration.

9.6% 79.3%) 99.1% 99.9%) Accuracy
2.7%) 0.4%) 2.0%) 92.5%) Overall perc
100 54
K - [500, )
B . [150-500)
3 80 s 432 [50, 150)
v . [10, 50)
b5} 333
2 60 26.0
T
€
2
£ a0 19.4 25.3 50
46.6
20
201 133
9.7
101 =
[0.0,0.1) [0.1,0.9) [0.9, 1.0) [1.0,)
Probabilit;
(a) zX Y
16.7% 2.6%) 2.8%) 77.9% Overall perc
100
8.0 9.3 10.1 8.8 [500, )
[150-500)
3 80 29.7 [50, 150)
S 33.4 322 34.2 110, 50)
o
2 60
T
€ 25.4
2 27.0 26.9 25.8
£ a0
2
0 e 303 30.8 312
[0.0, 0.1) [0.1,0.9) [0.9, 1.0) [1.0,)
Probability
(b) AISHELL2

Figure 2: Statistics of pauses regarding probabil-
ity/accuracy of being boundaries and duration distri-
bution. Probabilities are grouped into four bins, i.e.,
[0.0,0.1), [0.1,0.9), [0.9,1.0), and [1.0, ). The overall
percentage means the proportion of pauses belonging to
a given probability bin against all pauses. Pause dura-
tions are divided into four bins, i.e., [10, 50), [50, 150),
[150, 500), and [500, ), in the unit of ms. Given a proba-
bility bin, the internal percentage means the proportion
of pauses belonging to a given duration bin against all
pauses in the probability bin. For the ZX data, accu-
racy means the proportion of pauses that are really word
boundaries according to further verification.

2.4 Analysis of Pauses

The lower part of Table 1 presents the overall statis-
tics of pauses in both ZX and AISHELL?2, with and
witout filtering. One notable difference between
the two datasets is that pauses are much sparser
in the latter. Almost all sentences in ZX contain
pauses (> 10ms), and for sentences that do contain
pauses, the average number of pauses is about 8. In
contrast, less than 40% of sentences in AISHELL2
contain pauses, and the average number is only 1.7.
We believe the major reason is that the sentences
are much longer in ZX than in AISHELL2. Each
sentence contains about 25 words in average in the
former, while only about 7 in the latter.

Figure 2 provides more details about the pauses.
We group probability of [0.1,0.9) into one bin for
two reasons. First, the total percentage of pauses
falling into the bin is still not high. Second, pauses
in the bin scatter quite evenly in terms of proba-



bility. Our experiments show that despite the low
overall percentage, pauses in this bin are quite valu-
able for improving model performance.

From the aspect of overall percentage, the
most notable difference is that the percentages for
the first two probability bins, i.e., [0.0,0.1) and
[0.1,0.9), are much higher in AISHELL2 than in
ZX (2.7 — 15.7 and 0.4 — 2.6).

From the aspect of internal percentage, we can
see that pauses of different duration bins have
similar distribution in the four probability bins in
AISHELL2. In contrast, in ZX the percentages of
smaller pause duration, i.e., [10,50) and [50, 150),
decrease consistently as the probability increases.

For ZX, we also manage to report the accuracy
for each probability bin, in order to gain more in-
sights. Instead of performing manual annotation,
we notice that the ZX data with WS annotations
are a part of the transcription texts and thus eval-
uate the accuracy of pauses as word boundaries
over the overlapping sentences, using annotated
WS information as the gold-standard.’

It is clear that accuracy increases consistently
as the probability becomes higher. Most of pauses
falling into the [0.0,0.1) bin are incorrect bound-
aries, and thus should be excluded.

Pauses with high probability, i.e., [0.9,1.0) and
[1.0, ), have almost perfect accuracy and should be
included. However, from the perspective of model
training, we suspect that this part may not be very
useful, since the baseline model is already quite
certain about these boundaries.

Most importantly, pauses in the [0.1,0.9) have
79.3% accuracy, which is much higher than that
for the [0.0,0.1) bin. Our experiments show that
these pauses are very useful for the model.

3 Utilizing Pauses as Word Boundaries

Word boundaries as naturally annotated CWS
data. In fact, quite a few previous studies try
to explore word boundaries from different chan-
nels and use them as naturally annotated CWS data
(Jiang et al., 2013; Liu et al., 2014; Yang and Vozila,
2014). Under a sequence labeling framework, word
boundaries can be naturally treated as partial an-
notations and used to construct a constrained label
space.

SDue to several factors, including transcription mistakes,
difference in the fiction versions, difference in sentence seg-
mentation procedures, etc, we collect about 2K overlapping
sentences that appear both in the transcription texts and the
ZX evaluation data.
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Figure 3: Constrained label space for the sentence in
Figure 1, in which we obtain two boundaries “# A/%
¢m m /40 77 . Tllegal labels are marked as gray. The
red thick lines present a legal path that may be selected
by a model.

Figure 3 gives an example. Due to the boundary
“A (people)/#£ (is)”, the left-side char can only
be either a single-char word or the end of a word,
where as the right-side char can only be either a
single-char word or starting a word. A similar
explanation goes to the second boundary.

3.1 Problem with the Partial-CRF strategy

To make use of partially annotated training samples,
shown in Figure 3, we first employ the partial-CRF
strategy (Liu et al., 2014), which is theoretically
elegant. The basic idea is that instead of maximiz-
ing the probability of a single gold-standard label
sequence, the training objective is to maximize the
sum of probabilities of all legal paths in the con-
strained space, which can be efficiently computed
via a variant Forward algorithm.

However, our experiments show that this strategy
performs terribly when the model is trained on both
CTB-Train and the target-domain data with only
boundaries. Further analysis show that the models
predicts an extreme high percent of the S label to
the target-domain sentences (i.e., most words being
single-char). We suspect the major reason is that all
characters in the constrained space can be labeled
as “S” tags, as shown in Figure 3, and the model
fails to transfer from CTB to the target domain the
knowledge of when/how to compose multi-char
words.

3.2 The Complete-Then-Train (CTT) Strategy

To address the above issue, we present a simple
yet effective CTT strategy. The basic idea is con-
verting partial annotations into full annotations by
letting a basic model select an optimal sequence
in the constrained space. Figure 4 illustrates the
strategy, consisting of three steps. First, we train a
CWS model (i.e., baseline) on the basic CWS train-
ing dataset without using naturally annotated data.



Step 1: train the baseline model

/ CTB-Train |/

Baseline
Model

Step 2: complete the partial annotations into full annotations
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) Jl Baseline | Constrained | / Full /
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Step 3: train with the completed annotations
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Figure 4: The CTT training strategy.

Second, we employ the basic model to complete
partial annotations into full ones. More concretely,
the basic model selects an optimal label sequence
from the constrained space via constrained Viterbi
decoding. For example, we suppose the model se-
lects the path marked by red thick lines in Figure 3.
Finally, we use both basic CWS data and completed
data to train the full model.

4 [Experiments

4.1 Annotation Details for AISHELL2

Upon release, the AISHELL?2 data sets aside 2,500
sentences and 3,000 sentences, serving as the dev
and test sets, respectively. We apply the baseline
models and our full models to the 5,500 sentences.
From the sentences that receive different results
from a baseline model and a full model, we ran-
domly select 900 sentences for manual annotation.

Two postgraduate students participate the data
annotation. Our annotation process consists of two
stages. At the first stage, each sentence is anno-
tated by the two annotators, and the differences are
resolved by further discussion. During this stage,
the annotators becomes familiar with the segmenta-
tion guidelines of CTB (Xia, 2000). At the second
stage, one annotator (the first author of this sub-
mission) annotates all left sentences. We plan to
annotate more sentences to make the experiment
conclusions more solid.

To speed up annotation, we provide the results
of the two models with differences highlighted.
Meanwhile, the models’ results are randomly given,
so that the annotator cannot tell which results are
from which model, avoiding the risk of favoring our
own approach. Table 2 illustrates the annotation
process.

Item Sentence

Bk LR AT

Invite friends to host a dinner party

B[ L AR I ) A TR
Results of Model 1 Invite / please up / friends / to host /

a/ dinner party

Box [ Ex ) L IAR ) AT B
Results of Model 2 Invite / please / up / friends / to host /

a / dinner party

Annotation Results A LI I AR
“ Invite / friends / to host / a / dinner party

Table 2: Illustration of the annotation process of the
AISHELL?2 dev/test data. Please notice that results of
models are randomly given, so that the annotator cannot
favor our own approach.

After removing sentences that cannot be labeled
due to noise or transcription errors, we obtain 881
sentences in total. We split them into a dev set and
a test set. Table 1 shows the data statistics.

4.2 Settings

For the evaluation, we employ the standard metrics
of precision (P), recall (R), and the F1 score.

As discussed in Section 2.3, we regard CWS as a
sequence labeling task and employ the BERT-CRF
baseline model.® We use AdamW with an initial
learning rate of 5e-5, and a mini-batch size of 1000
characters. The dropout ratio is 0.1 for all models.
We train each model for 10 epochs.

Following previous works on cross-domain word
segmentation on ZX, we use CTB5-train as the
training data, and use the target-domain dev data to
select the best epoch number.

To be more convincing, we train each model
three times with three different random seeds and
present the average and standard deviation.’

4.3 Results

Table 3 presents the main results. Compared with
previous results on ZX, our baseline model already
achieve very good performance.

Most importantly, we can see that our final
models using filtered pauses as word boundary
(p® > 0.1) achieves significant improvement boost
by 0.45 and 1.44 in F1 score on ZX-test and
AISHELL2-test, respectively, compared with the
baseline models.

6https: //huggingface.co/bert-base-chinese
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P R F1 P R Fl1
Models ZX-dev ZX-test
Baseline 94.16 9439 94271021 93.16 93.82 93.49..92
Using word boundaries
w/o filtering 94.18 9434 94264049 93.69 94.03 93.8610.36
w/ filtering (p® > 0.9)  94.27 94.64 9445020 93.46 94.08 93.7710.95
w/ filtering (p® > 0.1)  94.23 9478 94.50L097 93.56 94.32 93.94.
Previous Results
Ding et al. (2020) — 90.90
Luo et al. (2022) — 91.11
Higashiyama et al. (2020) — 93.30

Models AISHELL2-dev AISHELL2-test
Baseline 83.56 86.25 84.86:‘:1.55 86.11 88.94 87.48:&1.76
Using word boundaries
w/o filtering 85.04 88.07 86.524107 8629 89.21 87.71i112
w/ filtering (p® > 0.9)  85.38 87.87 86.60+043 87.64 89.72 88.6610.20
w/ filtering (p® > 0.1)  85.65 87.77 86.69.045 87.94 89.94 88.92.( 39

Table 3: Main results on both datasets.

Effect of filtering pauses. Compared with the
results of models without filtering pauses, our final
models (p® > 0.1) are consistently superior in F1
scores.

Usefulness of pauses with probability of
[0.1,0.9). On the one hand, compared with using
p® > 0.9, our final models (p® > 0.1) are con-
sistently superior in F1 scores. On the other hand,
compared with not filtering pauses, the models only
using pauses of p® > 0.9 have even lower F1 score
in ZX-test and AISHELL2-test. These two aspects
reflect the usefulness of pauses with probability of
[0.1,0.9).

5 Related Works

5.1 Integrated Speech and Text Processing

In the deep learning, the Transformer-based model
architecture becomes popular in both speech pro-
cessing and NLP fields. The same architecture
makes it convenient to process speech and textual
data in an integrated manner. Intuitively, speech
and text can provide complementary useful fea-
tures. We summarize recent works into three cate-
gories.

(1) Speech as extra features for NLP. The most
straightforward way is to extract features from
speech and use them as extra inputs for an NLP

model. Zhang et al. (2021) present an interesting
pioneer effort and use speech features to help CWS,
which is closely with our work. Their approach re-
quires parallel speech-text data in both training and
test phases, with WS annotations and the character-
frame alignments. They manually annotate 250
sentences and split them into training-test data. Ex-
periments show that extra speech features are bene-
ficial.

Different from their work, ours emphasis on the
use of pause information in speech. We do not
need WS annotations for the text data and automat-
ically derive character/frame alignments. In the test
phase, our CWS model performs on on text data,
rather than parallel speech-text data.

(2) MTL with cross-attention interaction.
Given parallel speech-text data, Sui et al. (2021)
present a multi-task learning approach that per-
forms NER and ASR at the same time. They first
use separate encoders for the two types of inputs,
and then employ the cross-attention mechanism to
achieve multi-model interaction.

(3) End-to-End language analysis from speech.
Several works propose to directly derive language
analysis results from speech inputs in an end-to-
end manner. Ghannay et al. (2018) embed NE
labels into texts and train a model that transcribes



speech into texts and treats NE labels as normal
tokens. They conduct experiments on French NER.
Yadav et al. (2020) applie the approach to English
NER and propose a new label embedding scheme.
Chen et al. (2022) present a Chinese datasets of
parallel speech-text data with NE annotations, and
systematically compare the pipeline and end-to-end
approaches.

Wu et al. (2022) propose an end-to-end rela-
tion extraction model that transcribes speech into
(entity, entity, relation) triples, and totally ignores
the full text (not performing ASR). However, their
experiments show that the end-to-end approach is
inferior to the pipeline model, i.e., first ASR and
then relation extraction on texts.

Utilizing speech pauses. Fleck (2008) make use
of speech pauses to help English ASR, and more
specifically to help transforming phonemes into
words. The pauses are output by a previous ASR
component and are embedded in the phoneme se-
quence. They propose to use the pauses to segment
the phoneme sequence into several fragments and
transform them into words separately.

5.2 Naturally annotated CWS data

Mining naturally annotated data. Previous
studies try to mine naturally annotated CWS data
from different channels. Jiang et al. (2013) hy-
pothesize that anchor texts (i.e., for hyperlinks) in
HTML-format web documents are very likely to
correspond to complete meaning units, and thus can
be explored to obtain at least two word boundaries.
In the cross-domain scenario, Liu et al. (2014) use
a domain-related dictionary and perform maximum
matching on unlabeled target-domain text, treating
matched texts as annotated words.

Utilizing naturally annotated data. Above nat-
urally annotated data are in two forms. In the first
form, some word boundaries in the sentence are
given, whereas in the second, some words are given.
Both forms can be treated as partial annotations,
in contrast to full annotations, and be encoded as
constrained label space as shown in Figure 3.

Jiang et al. (2013) proposes a constrained de-
coding approach to learn from partially annotated
data with word boundaries. They use a max-margin
training loss. For each training sentence, they first
obtain an optimal label sequence from the con-
strained space and use it as gold-standard reference
in an online fashion.

Some researchers employ the CRF (Liu et al.,
2014; Yang and Vozila, 2014) to extend the loss
for learning from partial/incomplete annotations.
In this work, we also use this approach, but obtain
inferior performance probably due to the issue of
pervasive “S” labels. We propose a simple yet
effective CTT strategy.

6 Conclusion

This paper for the first time proposes to explicitly
mine word boundaries from speech-text data as
extra naturally annotated training data for cross-
domain CWS. Initially, we collect speech-text data
from the web fiction domain (ZX) and annotate
a part of original AISHELL2-dev/test datasets for
CWS evaluation. Secondly, we perform character-
level alignment on the speech-text data to mine
word boundaries. Thirdly, we employ the base-
line to calculate the marginal probability of word
boundaries. By analyzing the accuracy across four
probability range, we filter out word boundaries
with probabilities lower than 0.1. Finally, we em-
ploy a CTT method to leverage mined word bound-
aries as extra training data to improve CWS model
performance in cross-domain scenarios. Our ex-
periments demonstrate that mined word boundaries
significantly enhance CWS via the CTT method.
Upon analysis, we find that filtering boundaries is
crucial to the efficacy of the CTT method.

Limitations

We believe our work has built a solid foundation
for future research on this direction. Meanwhile
we are aware that our work is limited in and can be
improved from several aspects.

First, our approach relies on accurate character-
level alignment between speech and texts. So
far, we use MFA as a black-box and our early
trails showed that the end-to-end Transformer-CTC
model is inferior. Therefore, our proposed ap-
proach may be more effective with improved align-
ment quality.

Second, this work only utilizes pauses detected
by character-level aligner to derive word bound-
aries, but ignore other rich features in speech. For
example, intonation or pitch change may also be
helpful.

Finally, as discussed in 4.1, we plan to annotate
more evaluation data for AISHELL?2 to make the
experiments more solid.
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