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Abstract001

Inspired by early research on exploring natu-002
rally annotated data for Chinese Word Segmen-003
tation (CWS), and also by recent research on004
integration of speech and text processing, this005
work for the first time proposes to explicitly006
mine word boundaries from parallel speech-007
text data. We employ the Montreal Forced008
Aligner (MFA) toolkit to perform character-009
level alignment on speech-text data, giving010
pauses as candidate word boundaries. Based011
on detailed analysis of collected pauses, we012
propose an effective probability-based strategy013
for filtering unreliable word boundaries. To014
more effectively utilize word boundaries as015
extra training data, we also propose a robust016
complete-then-train (CTT) strategy. We con-017
duct cross-domain CWS experiments on two018
target domains, i.e., ZX and AISHELL2. We019
have also annotated about 900 sentences as the020
evaluation data of AISHELL2. Experiments021
demonstrate the effectiveness of our proposed022
approach.023

1 Introduction024

As a fundamental task in Chinese language pro-025

cessing, CWS aims to segment an input character026

sequence into a word sequence, since words, in-027

stead of characters, are the basic meaning unit in028

Chinese. Figure 1 gives an example of the CWS029

task, along with the speech signals.030

With the rapid progress of deep learning tech-031

niques, especially the proposal of pre-trained lan-032

guage models like BERT (Devlin et al., 2019),033

CWS models have achieve very high performance034

when there is abundant training data from the same035

domain with the test data (Tian et al., 2020; Huang036

et al., 2020b). Therefore, recent studies on CWS037

pay more attention to the cross-domain scenarios038

(Huang et al., 2020a; Ke et al., 2021).039

Meanwhile, considering the high cost of manu-040

ally annotating high-quality CWS data, it had been041

an attractive research direction to explore naturally042

yǒu rén zài xì xì de qīng tīng
有 人 在 细 细 地 倾 听

some  people is   carefully   listening

230ms 110ms

Figure 1: An example of speech-text alignment
data. The correct segmentation result is “有/人/在/细
细/地/倾听”, translated as “some people is carefully
listening”.

annotated CWS data from different channels. For 043

instance, anchor texts in HMLT-format web docu- 044

ments imply reliable word boundaries (Jiang et al., 045

2013; Yang and Vozila, 2014); domain-aware dic- 046

tionaries can match words accurately in target do- 047

main texts (Liu et al., 2014). These studies illus- 048

trate that such information can be used as partial 049

annotations for training CWS models. 050

Another interesting research line in recent years 051

is the multi-modal integration of speech and texts, 052

mainly due to the adoption of unified model archi- 053

tectures in both speech processing (Baevski et al., 054

2020; Hsu et al., 2021) and NLP fields (Devlin 055

et al., 2019; Lewis et al., 2020) in the deep learn- 056

ing era. These approaches can be broadly divided 057

into three categories, i.e., 1) using speech as extra 058

features for NLP (Zhang et al., 2021), 2) multi- 059

task learning (MTL) with cross-attention interac- 060

tion (Sui et al., 2021), and 3) end-to-end language 061

analysis from speech (Chen et al., 2022). Among 062

these, a work (Zhang et al., 2021) is closely related 063

with ours. They extract extra features from speech 064

to enhance CWS on corresponding texts. 065

Following previous Inspired by progress of re- 066

search directions discussed above, we propose for 067

the first time to explicitly utilizes pauses in speech 068

as word boundary annotations. The basic moti- 069
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vation is that when uttering a Chinese sentence,070

people often pause after finishing some complete071

meaning in the middle of the sentence, to breath072

or to make the speech easier to understand. Con-073

sidering that words are the basic meaning unit, we074

hypothesize that the pause information can be uti-075

lized to help CWS.076

Following previous works on cross-domain077

CWS, we employ Chinese Penn Treebank 5078

(CTB5) (Xue et al., 2005) as the source domain,079

and use the widely used ZhuXian (“Jade Dynasty”080

in English, abbreviated as ZX) data as the target081

domain (Zhang et al., 2014). We collect and clean082

the parallel speech-text corpus of ZX for mining083

word boundaries. To more thoroughly evaluate the084

models, we use AISHELL2 as the second target085

domain, which is a publicly available data for auto-086

matic speech recognition (ASR) (Du et al., 2018).087

The contributions of our work are as follows.088

• We have manually annotated about 900 sentences089

as the dev/test evaluation data for the AISHELL2090

domain.091

• We employ the MFA toolkit (McAuliffe et al.,092

2017) to perform character-level alignment on093

speech-text corpora, and conduct detailed analy-094

sis on the collect pauses.095

• We propose an effective probability-based strat-096

egy for filtering unreliable word boundaries, and097

a robust CTT strategy to make use of the word098

boundaries as naturally annotated data.099

• Experiments on both ZX and AISHELL demon-100

strate the effectiveness of our proposed approach.101

Our code and newly annotated data will be released102

at github.103

2 Mining Word Boundaries from Speech104

This section describes how we collect speech105

pauses from parallel speech-text data, which con-106

sists of two steps. First,we prepare parallel speech-107

text data. Second, we utilize a GMM-HMM based108

model to obtain character-level speech-text align-109

ments. Based on the alignments, we can obtain110

the pause duration between characters. Finally, we111

conduct detailed analysis on pauses and propose a112

simple filtering strategy to keep reliable pauses as113

word boundaries.114

Corpus Item Train Dev Test

CTB5
# Sent 18,104 352 348
# Word 493,932 6,821 8,008

ZX
# Sent 788 1,394
# Word 20,393 34,355

AISHELL2 # Sent 300 581
(Annotated) # Word 2,091 3,821

Speech-text Data # Pause # Sent

ZX

all — 25,038
containing pause 203,842 25,016
after filtering (pB ≥ 0.1) 198,361 25,007
after filtering (pB ≥ 0.9) 197,540 24,964

AISHELL2

all — 847,662
containing pause 537,986 324,577
after filtering (pB ≥ 0.1) 457,007 294,694
after filtering (pB ≥ 0.9) 442,633 286,608

Table 1: Statistics of data used in our experiments. pB

means the probability threshold for filtering pauses.

2.1 Preparing Speech-Text Parallel Data 115

In this work, we use CTB as the source domain and 116

employ two target-domain datasets. Table 1 shows 117

the data statistics. 118

(1) ZX. The first dataset is the ZhuXian (ZX) 119

dataset for the web fiction domain, which was con- 120

structed by Zhang et al. (2014) and has been widely 121

used in previous works on cross-domain word seg- 122

mentation (Liu and Zhang, 2012; Ding et al., 2020; 123

Jiang et al., 2021) 124

The ZX dataset contains about 5K sentences in 125

total.1 The ZhuXian fiction consists of about 30K 126

sentences in total. In this work, we manage to de- 127

rive word boundaries from speech for the remaining 128

sentences that are not included in ZX-dev/test. 129

There are several versions of audio books for 130

the ZhuXian fiction on the Internet, in which some 131

reader reads aloud the texts. We select one version 132

that is of high quality and has little background 133

music. All audios are processed to be at a sampling 134

frequency of 16kHz. 135

Cleansing. We apply several data cleansing or 136

filtering strategies to improve the data quality. (1) 137

Numbers like “1200” are transformed into their 138

Chinese character form like “一千两百” (one thou- 139

sand and two hundred). (2) Silent and special 140

symbols in the texts like punctuation marks are 141

removed. (3) Irrelevant blanks or noises in the 142

1Among them, 2,373 sentences are reserved for training,
but usually are not used in cross-domain experiments.

2

github


beginning or end of the audio are removed. (4) Au-143

dios with background music are discarded. Finally,144

we collect 246 audio files amounting to 144 hours,145

each corresponding to a chapter of the fiction.146

(2) AISHELL2. For the second domain, we147

adopt the AISHELL2 (Du et al., 2018) mandarin148

Chinese speech corpus, which contains about 1,000149

hours of high-quality audio, corresponding to about150

one million transcription sentences.2 The corpus151

covers 12 different domains that are closely related152

with application of speech recognition in smart153

home, autonomous driving, industrial production,154

etc.155

One major feature of the AISHELL2 data, whose156

major use is as training data for ASR, is that157

the transcription texts do not contain punctuation158

marks. In fact, outputs of ASR models usually159

do not contain soundless symbols in written texts,160

including punctuation marks.161

Instead of injecting punctuation marks in162

AISHELL2 transcription texts, which would be163

highly time-consuming and prone to annotation er-164

rors, we decide to perform word segmentation on165

transcription texts directly. We believe this is an166

interesting and useful scenario for word segmenta-167

tion research. Text normalization procedures such168

as filling punctuation marks may be applied over169

the output word sequence.170

To alleviate the mismatch between the171

AISHELL2 data and the source-domain training172

data, i.e., CTB, regarding punctuation marks,173

we employ a simple strategy that can boost the174

performance of the baseline model by large margin.175

For each sentence in CTB-train, we remove the176

punctuation marks in the sentence. With this177

strategy, the trained model can handle transcription178

texts well.179

To evaluate the model on AISHELL2, we have180

manually annotated about 900 sentences in the181

original AISHELL2-dev/test, and use them as the182

dev/test evaluation datasets. We present more de-183

tails about data annotation in Section 4.1.184

2.2 Character-level Speech-Text Alignment185

In this paper, we try to derive word boundaries from186

speech based on pause information. The intuition187

is that if the speaker pauses for some time after188

uttering a char, then there may be a word boundary189

after the char. The key challenge for implementing190

2We sincerely thank the Beijing AISHELL Technology
Co., Ltd for sharing the data.

this idea is how to obtain accurate character-level 191

alignments between speech signals and the corre- 192

sponding sentence. 193

In the past decade, end-to-end Transformer 194

based models have become the dominate ASR 195

approach due to its superior performance (Gulati 196

et al., 2020; Zhang et al., 2023; Pratap et al., 2023). 197

With an extra connectionist temporal classification 198

(CTC) component, the model can explicitly pro- 199

duce alignment. However, our early experiments 200

reveal that the Transformer-CTC based models suf- 201

fer from a severe peak alignment issue, meaning 202

that every character is usually aligned to a single 203

speech frame, leaving most of the frames aligned 204

to blanks. This finding is consistent with previous 205

results (Senior et al., 2015; Zeyer et al., 2021). 206

Instead, we employ the MFA toolkit with its 207

GMM-HMM implementation to obtain alignment 208

between text and speech (McAuliffe et al., 2017). 209

We employ both monophone and triphone GMMs. 210

Given a speech, we use the default frame window 211

length of 25ms and the default frame offset of 10ms. 212

For each frame, the acoustic features are the stan- 213

dard Mel-frequency cepstral coefficients (MFCCs). 214

Formally, we represent speech as x = x0...xi...xn, 215

where xi is an MFCC feature vector, and the corre- 216

sponding transcription as y = y0...yi...ym, where 217

yi denotes a token. The objective of GMM-HMM 218

is two fold: 1) to determine which phonemes corre- 219

spond to a token, and 2) to determine which frames 220

(e.g., xk...xl) correspond to a phoneme. Com- 221

bining the results, we can obtain the time range 222

for each token. The model works under the un- 223

supervised scenario, and apply the expectation- 224

maximization (EM) algorithm (Moon, 1996) on 225

the training speech-text pairs. 226

We continue training the pre-trained mandarin 227

model in the MFA toolkit3 using our parallel 228

speech-text data at hand, either ZX or AISHELL2. 229

In our context, a token yi corresponds to a charac- 230

ter.4 Suppose yi is aligned to xbi ...xei , also denoted 231

as (bi, ei), where bi and ei are the beginning and 232

end indices of frames. Then we can calculate the 233

pause duration between two adjacent characters, 234

3https://mfa-models.readthedocs.io/en/latest/
acoustic

4By default, the mandarin model in the MFA toolkit can
only perform alignment at the word level, since the acous-
tic dictionary is word-based and polyphonic characters only
have one entry, corresponding to the most frequent pronuncia-
tion. To handle this issue, we extend the acoustic dictionary
by leveraging a Pinyin-based Chinese lexicon (both words
and characters). We will release the related resource and the
scripts.

3
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for instance yi and yi+1 as follows.235

d(yi, yi+1) = (bi+1 − ei)× 10ms (1)236

Figure 1 gives an example. There are two pauses237

in the sentence, with duration of 230ms and 110ms238

respectively.239

2.3 Filtering Pauses240

At the beginning, our plan was to filter unreliable241

word boundaries based on a global pause duration242

threshold. For instance, if d(yi, yi+1) < 50ms,243

then we discard the pause and not consider it as a244

boundaries. In other words, we only keep pauses245

with d(yi, yi+1) ≥ 50ms as boundaries. However,246

our analysis shows that pauses with short duration247

are equally helpful.248

Then we turn to another simple probability-249

based filtering strategy. The idea is to let the base-250

line model trained on the source-domain data (i.e.,251

CTB) to judge. If the baseline model has a very252

small probability to support the boundary, then we253

discard it.254

Following previous works, we adopt the BERT-255

based CRF model as our baseline model, and em-256

ploy the label set of {B, M, E, S}, meaning “be-257

ginning”, “middle”, “end”, and “single-char”, re-258

spectively. Given an input char sequence y =259

y0...ym, we denote a label sequence as z = z0...zm.260

The marginal probability of a label bigram at given261

positions i and i+ 1, for instance E_S, is:262

p(E_S|y, i) =
∑

z:zi=E,zi+1=S

p(z|y). (2)263

Then the probability that there is a boundary264

between yi and yi+1 is:265

pB(y, i) =
∑

l∈{S_S, S_B, E_S, E_B}

p(l|y, i). (3)266

And the probability that there is no boundary is:267

1− pB(y, i) =
∑

l∈{B_M, B_E, M_M, M_E}

p(l|y, i). (4)268

Please note that illegal label bigrams (a.k.a. illegal269

transitions) such as B_B are forbidden and always270

get zero probability.271

According to our experiments and analysis, our272

final approach keeps all pauses having pB ≥ 0.1,273

regardless of the pause duration.274

(a)  ZX

(b) AISHELL2

Figure 2: Statistics of pauses regarding probabil-
ity/accuracy of being boundaries and duration distri-
bution. Probabilities are grouped into four bins, i.e.,
[0.0, 0.1), [0.1, 0.9), [0.9, 1.0), and [1.0, ). The overall
percentage means the proportion of pauses belonging to
a given probability bin against all pauses. Pause dura-
tions are divided into four bins, i.e., [10, 50), [50, 150),
[150, 500), and [500, ), in the unit of ms. Given a proba-
bility bin, the internal percentage means the proportion
of pauses belonging to a given duration bin against all
pauses in the probability bin. For the ZX data, accu-
racy means the proportion of pauses that are really word
boundaries according to further verification.

2.4 Analysis of Pauses 275

The lower part of Table 1 presents the overall statis- 276

tics of pauses in both ZX and AISHELL2, with and 277

witout filtering. One notable difference between 278

the two datasets is that pauses are much sparser 279

in the latter. Almost all sentences in ZX contain 280

pauses (≥ 10ms), and for sentences that do contain 281

pauses, the average number of pauses is about 8. In 282

contrast, less than 40% of sentences in AISHELL2 283

contain pauses, and the average number is only 1.7. 284

We believe the major reason is that the sentences 285

are much longer in ZX than in AISHELL2. Each 286

sentence contains about 25 words in average in the 287

former, while only about 7 in the latter. 288

Figure 2 provides more details about the pauses. 289

We group probability of [0.1, 0.9) into one bin for 290

two reasons. First, the total percentage of pauses 291

falling into the bin is still not high. Second, pauses 292

in the bin scatter quite evenly in terms of proba- 293
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bility. Our experiments show that despite the low294

overall percentage, pauses in this bin are quite valu-295

able for improving model performance.296

From the aspect of overall percentage, the297

most notable difference is that the percentages for298

the first two probability bins, i.e., [0.0, 0.1) and299

[0.1, 0.9), are much higher in AISHELL2 than in300

ZX (2.7 → 15.7 and 0.4 → 2.6).301

From the aspect of internal percentage, we can302

see that pauses of different duration bins have303

similar distribution in the four probability bins in304

AISHELL2. In contrast, in ZX the percentages of305

smaller pause duration, i.e., [10, 50) and [50, 150),306

decrease consistently as the probability increases.307

For ZX, we also manage to report the accuracy308

for each probability bin, in order to gain more in-309

sights. Instead of performing manual annotation,310

we notice that the ZX data with WS annotations311

are a part of the transcription texts and thus eval-312

uate the accuracy of pauses as word boundaries313

over the overlapping sentences, using annotated314

WS information as the gold-standard.5315

It is clear that accuracy increases consistently316

as the probability becomes higher. Most of pauses317

falling into the [0.0, 0.1) bin are incorrect bound-318

aries, and thus should be excluded.319

Pauses with high probability, i.e., [0.9, 1.0) and320

[1.0, ), have almost perfect accuracy and should be321

included. However, from the perspective of model322

training, we suspect that this part may not be very323

useful, since the baseline model is already quite324

certain about these boundaries.325

Most importantly, pauses in the [0.1, 0.9) have326

79.3% accuracy, which is much higher than that327

for the [0.0, 0.1) bin. Our experiments show that328

these pauses are very useful for the model.329

3 Utilizing Pauses as Word Boundaries330

Word boundaries as naturally annotated CWS331

data. In fact, quite a few previous studies try332

to explore word boundaries from different chan-333

nels and use them as naturally annotated CWS data334

(Jiang et al., 2013; Liu et al., 2014; Yang and Vozila,335

2014). Under a sequence labeling framework, word336

boundaries can be naturally treated as partial an-337

notations and used to construct a constrained label338

space.339

5Due to several factors, including transcription mistakes,
difference in the fiction versions, difference in sentence seg-
mentation procedures, etc, we collect about 2K overlapping
sentences that appear both in the transcription texts and the
ZX evaluation data.
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Figure 3: Constrained label space for the sentence in
Figure 1, in which we obtain two boundaries “有人/在
细细地/倾听”. Illegal labels are marked as gray. The
red thick lines present a legal path that may be selected
by a model.

Figure 3 gives an example. Due to the boundary 340

“人 (people)/在 (is)”, the left-side char can only 341

be either a single-char word or the end of a word, 342

where as the right-side char can only be either a 343

single-char word or starting a word. A similar 344

explanation goes to the second boundary. 345

3.1 Problem with the Partial-CRF strategy 346

To make use of partially annotated training samples, 347

shown in Figure 3, we first employ the partial-CRF 348

strategy (Liu et al., 2014), which is theoretically 349

elegant. The basic idea is that instead of maximiz- 350

ing the probability of a single gold-standard label 351

sequence, the training objective is to maximize the 352

sum of probabilities of all legal paths in the con- 353

strained space, which can be efficiently computed 354

via a variant Forward algorithm. 355

However, our experiments show that this strategy 356

performs terribly when the model is trained on both 357

CTB-Train and the target-domain data with only 358

boundaries. Further analysis show that the models 359

predicts an extreme high percent of the S label to 360

the target-domain sentences (i.e., most words being 361

single-char). We suspect the major reason is that all 362

characters in the constrained space can be labeled 363

as “S” tags, as shown in Figure 3, and the model 364

fails to transfer from CTB to the target domain the 365

knowledge of when/how to compose multi-char 366

words. 367

3.2 The Complete-Then-Train (CTT) Strategy 368

To address the above issue, we present a simple 369

yet effective CTT strategy. The basic idea is con- 370

verting partial annotations into full annotations by 371

letting a basic model select an optimal sequence 372

in the constrained space. Figure 4 illustrates the 373

strategy, consisting of three steps. First, we train a 374

CWS model (i.e., baseline) on the basic CWS train- 375

ing dataset without using naturally annotated data. 376
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CTB-Train Training
Baseline 

Model

Step 1: train the baseline model

Partial

Annotations

Constrained

Decoding

Step 2: complete the partial annotations into full annotations

Baseline 

Model

Full

Annotations

Training

Step 3: train with the completed annotations

Full

Annotations

Our Model

CTB-Train

Figure 4: The CTT training strategy.

Second, we employ the basic model to complete377

partial annotations into full ones. More concretely,378

the basic model selects an optimal label sequence379

from the constrained space via constrained Viterbi380

decoding. For example, we suppose the model se-381

lects the path marked by red thick lines in Figure 3.382

Finally, we use both basic CWS data and completed383

data to train the full model.384

4 Experiments385

4.1 Annotation Details for AISHELL2386

Upon release, the AISHELL2 data sets aside 2,500387

sentences and 3,000 sentences, serving as the dev388

and test sets, respectively. We apply the baseline389

models and our full models to the 5,500 sentences.390

From the sentences that receive different results391

from a baseline model and a full model, we ran-392

domly select 900 sentences for manual annotation.393

Two postgraduate students participate the data394

annotation. Our annotation process consists of two395

stages. At the first stage, each sentence is anno-396

tated by the two annotators, and the differences are397

resolved by further discussion. During this stage,398

the annotators becomes familiar with the segmenta-399

tion guidelines of CTB (Xia, 2000). At the second400

stage, one annotator (the first author of this sub-401

mission) annotates all left sentences. We plan to402

annotate more sentences to make the experiment403

conclusions more solid.404

To speed up annotation, we provide the results405

of the two models with differences highlighted.406

Meanwhile, the models’ results are randomly given,407

so that the annotator cannot tell which results are408

from which model, avoiding the risk of favoring our409

own approach. Table 2 illustrates the annotation410

process.411

Item Sentence

邀请上朋友办个晚宴
Invite friends to host a dinner party

Results of Model 1 邀* /请上* /朋友 /办 /个 /晚宴 /
Invite / please up / friends / to host /
a / dinner party

Results of Model 2 邀* /请* /上* /朋友 /办 /个 /晚宴 /
Invite / please / up / friends / to host /
a / dinner party

Annotation Results 邀请 /上 /朋友 /办 /个 /晚宴 /
Invite / friends / to host / a / dinner party

Table 2: Illustration of the annotation process of the
AISHELL2 dev/test data. Please notice that results of
models are randomly given, so that the annotator cannot
favor our own approach.

After removing sentences that cannot be labeled 412

due to noise or transcription errors, we obtain 881 413

sentences in total. We split them into a dev set and 414

a test set. Table 1 shows the data statistics. 415

4.2 Settings 416

For the evaluation, we employ the standard metrics 417

of precision (P), recall (R), and the F1 score. 418

As discussed in Section 2.3, we regard CWS as a 419

sequence labeling task and employ the BERT-CRF 420

baseline model.6 We use AdamW with an initial 421

learning rate of 5e-5, and a mini-batch size of 1000 422

characters. The dropout ratio is 0.1 for all models. 423

We train each model for 10 epochs. 424

Following previous works on cross-domain word 425

segmentation on ZX, we use CTB5-train as the 426

training data, and use the target-domain dev data to 427

select the best epoch number. 428

To be more convincing, we train each model 429

three times with three different random seeds and 430

present the average and standard deviation.7 431

4.3 Results 432

Table 3 presents the main results. Compared with 433

previous results on ZX, our baseline model already 434

achieve very good performance. 435

Most importantly, we can see that our final 436

models using filtered pauses as word boundary 437

(pB ≥ 0.1) achieves significant improvement boost 438

by 0.45 and 1.44 in F1 score on ZX-test and 439

AISHELL2-test, respectively, compared with the 440

baseline models. 441

6https://huggingface.co/bert-base-chinese
7σ =

√
1

n−1

∑n
k=1(xi − x̄)2
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P R F1 P R F1

Models ZX-dev ZX-test

Baseline 94.16 94.39 94.27±0.21 93.16 93.82 93.49±0.22

Using word boundaries
w/o filtering 94.18 94.34 94.26±0.49 93.69 94.03 93.86±0.36

w/ filtering (pB ≥ 0.9) 94.27 94.64 94.45±0.20 93.46 94.08 93.77±0.25

w/ filtering (pB ≥ 0.1) 94.23 94.78 94.50±0.27 93.56 94.32 93.94±0.20

Previous Results

Ding et al. (2020) — 90.90
Luo et al. (2022) — 91.11
Higashiyama et al. (2020) — 93.30

Models AISHELL2-dev AISHELL2-test

Baseline 83.56 86.25 84.86±1.55 86.11 88.94 87.48±1.76

Using word boundaries
w/o filtering 85.04 88.07 86.52±1.07 86.29 89.21 87.71±1.12

w/ filtering (pB ≥ 0.9) 85.38 87.87 86.60±0.43 87.64 89.72 88.66±0.20

w/ filtering (pB ≥ 0.1) 85.65 87.77 86.69±0.45 87.94 89.94 88.92±0.39

Table 3: Main results on both datasets.

Effect of filtering pauses. Compared with the442

results of models without filtering pauses, our final443

models (pB ≥ 0.1) are consistently superior in F1444

scores.445

Usefulness of pauses with probability of446

[0.1, 0.9). On the one hand, compared with using447

pB ≥ 0.9, our final models (pB ≥ 0.1) are con-448

sistently superior in F1 scores. On the other hand,449

compared with not filtering pauses, the models only450

using pauses of pB ≥ 0.9 have even lower F1 score451

in ZX-test and AISHELL2-test. These two aspects452

reflect the usefulness of pauses with probability of453

[0.1, 0.9).454

5 Related Works455

5.1 Integrated Speech and Text Processing456

In the deep learning, the Transformer-based model457

architecture becomes popular in both speech pro-458

cessing and NLP fields. The same architecture459

makes it convenient to process speech and textual460

data in an integrated manner. Intuitively, speech461

and text can provide complementary useful fea-462

tures. We summarize recent works into three cate-463

gories.464

(1) Speech as extra features for NLP. The most465

straightforward way is to extract features from466

speech and use them as extra inputs for an NLP467

model. Zhang et al. (2021) present an interesting 468

pioneer effort and use speech features to help CWS, 469

which is closely with our work. Their approach re- 470

quires parallel speech-text data in both training and 471

test phases, with WS annotations and the character- 472

frame alignments. They manually annotate 250 473

sentences and split them into training-test data. Ex- 474

periments show that extra speech features are bene- 475

ficial. 476

Different from their work, ours emphasis on the 477

use of pause information in speech. We do not 478

need WS annotations for the text data and automat- 479

ically derive character/frame alignments. In the test 480

phase, our CWS model performs on on text data, 481

rather than parallel speech-text data. 482

(2) MTL with cross-attention interaction. 483

Given parallel speech-text data, Sui et al. (2021) 484

present a multi-task learning approach that per- 485

forms NER and ASR at the same time. They first 486

use separate encoders for the two types of inputs, 487

and then employ the cross-attention mechanism to 488

achieve multi-model interaction. 489

(3) End-to-End language analysis from speech. 490

Several works propose to directly derive language 491

analysis results from speech inputs in an end-to- 492

end manner. Ghannay et al. (2018) embed NE 493

labels into texts and train a model that transcribes 494

7



speech into texts and treats NE labels as normal495

tokens. They conduct experiments on French NER.496

Yadav et al. (2020) applie the approach to English497

NER and propose a new label embedding scheme.498

Chen et al. (2022) present a Chinese datasets of499

parallel speech-text data with NE annotations, and500

systematically compare the pipeline and end-to-end501

approaches.502

Wu et al. (2022) propose an end-to-end rela-503

tion extraction model that transcribes speech into504

(entity, entity, relation) triples, and totally ignores505

the full text (not performing ASR). However, their506

experiments show that the end-to-end approach is507

inferior to the pipeline model, i.e., first ASR and508

then relation extraction on texts.509

Utilizing speech pauses. Fleck (2008) make use510

of speech pauses to help English ASR, and more511

specifically to help transforming phonemes into512

words. The pauses are output by a previous ASR513

component and are embedded in the phoneme se-514

quence. They propose to use the pauses to segment515

the phoneme sequence into several fragments and516

transform them into words separately.517

5.2 Naturally annotated CWS data518

Mining naturally annotated data. Previous519

studies try to mine naturally annotated CWS data520

from different channels. Jiang et al. (2013) hy-521

pothesize that anchor texts (i.e., for hyperlinks) in522

HTML-format web documents are very likely to523

correspond to complete meaning units, and thus can524

be explored to obtain at least two word boundaries.525

In the cross-domain scenario, Liu et al. (2014) use526

a domain-related dictionary and perform maximum527

matching on unlabeled target-domain text, treating528

matched texts as annotated words.529

Utilizing naturally annotated data. Above nat-530

urally annotated data are in two forms. In the first531

form, some word boundaries in the sentence are532

given, whereas in the second, some words are given.533

Both forms can be treated as partial annotations,534

in contrast to full annotations, and be encoded as535

constrained label space as shown in Figure 3.536

Jiang et al. (2013) proposes a constrained de-537

coding approach to learn from partially annotated538

data with word boundaries. They use a max-margin539

training loss. For each training sentence, they first540

obtain an optimal label sequence from the con-541

strained space and use it as gold-standard reference542

in an online fashion.543

Some researchers employ the CRF (Liu et al., 544

2014; Yang and Vozila, 2014) to extend the loss 545

for learning from partial/incomplete annotations. 546

In this work, we also use this approach, but obtain 547

inferior performance probably due to the issue of 548

pervasive “S” labels. We propose a simple yet 549

effective CTT strategy. 550

6 Conclusion 551

This paper for the first time proposes to explicitly 552

mine word boundaries from speech-text data as 553

extra naturally annotated training data for cross- 554

domain CWS. Initially, we collect speech-text data 555

from the web fiction domain (ZX) and annotate 556

a part of original AISHELL2-dev/test datasets for 557

CWS evaluation. Secondly, we perform character- 558

level alignment on the speech-text data to mine 559

word boundaries. Thirdly, we employ the base- 560

line to calculate the marginal probability of word 561

boundaries. By analyzing the accuracy across four 562

probability range, we filter out word boundaries 563

with probabilities lower than 0.1. Finally, we em- 564

ploy a CTT method to leverage mined word bound- 565

aries as extra training data to improve CWS model 566

performance in cross-domain scenarios. Our ex- 567

periments demonstrate that mined word boundaries 568

significantly enhance CWS via the CTT method. 569

Upon analysis, we find that filtering boundaries is 570

crucial to the efficacy of the CTT method. 571

Limitations 572

We believe our work has built a solid foundation 573

for future research on this direction. Meanwhile 574

we are aware that our work is limited in and can be 575

improved from several aspects. 576

First, our approach relies on accurate character- 577

level alignment between speech and texts. So 578

far, we use MFA as a black-box and our early 579

trails showed that the end-to-end Transformer-CTC 580

model is inferior. Therefore, our proposed ap- 581

proach may be more effective with improved align- 582

ment quality. 583

Second, this work only utilizes pauses detected 584

by character-level aligner to derive word bound- 585

aries, but ignore other rich features in speech. For 586

example, intonation or pitch change may also be 587

helpful. 588

Finally, as discussed in 4.1, we plan to annotate 589

more evaluation data for AISHELL2 to make the 590

experiments more solid. 591
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