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Abstract

Quantifying predictive uncertainty with minimal computational overhead remains a sig-
nificant challenge for reliable deep learning applications in safety-critical systems. While
Bayesian neural networks (BNNs) are the gold standard for uncertainty quantification, they
require considerable training time and computational resources. Although a body of work
has focused on mitigating the computational cost of BNN inference via post-hoc approaches,
efforts to accelerate training and convergence remain limited. This paper proposes a partial
Bayesian training approach via mean-field variational inference (VI), enabling controllable
uncertainty modeling through sparse gradient representations. The selection of the varia-
tional Bayesian subnetwork is guided by a first-order gradient sensitivity analysis, which
is grounded in uncertainty propagation theory. Under mean-field assumptions, we demon-
strate how this framework effectively informs the selection of parameters that represent
the network’s predictive uncertainty. This criterion is also efficiently integrated into auto-
differentiation tools avoiding additional computational burdens. The resulting model con-
sists of a combination of deterministic and Bayesian parameters, facilitating an effective, yet
efficient, representation of uncertainty. We investigate the effects of varying the proportion
of Bayesian parameters (ranging from 1% to 95%) across diverse tasks, including regression,
classification, and semantic segmentation. Experimental results in MNIST, CIFAR-10, Im-
ageNet, and Cityscapes demonstrate that our approach achieves competitive performance
and uncertainty estimates compared to ensemble methods. While maintaining substantially
fewer parameters, approximately 50%, 80% less than full VI and ensembles, our approach
offers reduced training costs with faster convergence compared to full or partial VI trained
from scratch. Furthermore, we assess the robustness of predictive uncertainty in the presence
of covariate shifts and out-of-distribution data, demonstrating that our method effectively
captures uncertainty and exhibits robustness to image corruptions.

1 Introduction

Robust uncertainty quantification is essential to ensure reliable decision-making in safety critical systems
Nguyen et al. (2015); Guo et al. (2017); Yang et al. (2023); Cao et al. (2024), such as medical diagnosis
Rajpurkar et al. (2022) and self-driving cars Bojarski et al. (2016). Predictive uncertainty is a quantitative
metric, providing insights into the model’s confidence in its predictions and facilitating risk assessment for
real-world deployment. Risk assessment related to distributional shifts in real-world environments compared
to the training i.i.d. dataset is enabled through calibrated predictive uncertainty Malinin et al. (2021;
2022); Ovadia et al. (2019). Poorly calibrated probabilities are associated with silent failures, where models
exhibit overconfident false predictions Guo et al. (2017). Bayesian neural networks (BNN) Ghahramani
(2015) provide an approach to learning model uncertainty over parameter distributions; BNNs suffer from a
large parameter space, slow convergence, and noisy loss landscapes limited by sampling Jospin et al. (2022).
As a result, applications of BNNs to complex tasks such as large multi-class classification or segmentation
remain challenging Ovadia et al. (2019). Deterministic network pruning, predefined sparsity, and learning
sparse networks have shown success in preserving predictive performance while reducing computational
overhead Evci et al. (2020); Frankle & Carbin (2019); Mozer & Smolensky (1988); LeCun et al. (1989).
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Partial Bayesian networks are effective at preserving predictive uncertainty over full-BNNs; however, current
efforts rely on an iterative selection of the layer-wise subnetwork Zeng et al. (2018); Sharma et al. (2023),
constructing a low dimensional parameter space through PCA Izmailov et al. (2020), or on a computationally
limiting Hessian-based subnetwork selection Daxberger et al. (2021). We propose a computationally low-cost
method based on first-order gradients to select a sparse subnetwork for partial Bayesian inference to reduce
overparameterization in BNNs; our contributions are as follows:

1. Introduce an algorithm for training scalable partial Bayesian networks (PBN)1 that selectively as-
signs a small portion of Bayesian parameters based on first-order gradient analysis;

2. Conduct extensive empirical assessments on large scale classification, and semantic segmentation
tasks. We show a competitive performance while reducing the required Bayesian parameters by
> 95% compared to a full variational inference approach and 80% compared to ensembles;

3. Evaluate our predictive uncertainty and its reliability on out-of-distribution testing on covariate data
shifts and unseen classes.

2 Related works

Uncertainty Estimation. Predictive uncertainty can be quantified through various deep neural network
(DNN) architectures. Bayesian neural networks (BNN) learn parameter distributions as opposed to point
estimates, allowing estimation of the epistemic uncertainty (i.e. the model uncertainty) Abdar et al. (2021).
BNNs can be approximated via variational inference (VI) Blundell et al. (2015), Markov Chain Monte Carlo
(MCMC) Welling & Teh (2011), dropout Monte-Carlo samples Gal & Ghahramani (2016); Kingma et al.
(2015), and expectation propagation Hernández-Lobato & Adams (2015). A popular non-Bayesian predictive
uncertainty method is model-ensembling Lakshminarayanan et al. (2017), where multiple models are trained
deterministically, and their predictions are combined to estimate predictive uncertainty. Despite the plethora
of predictive uncertainty quantification methods Abdar et al. (2021), most exhibit high computational costs
at training and inference times.

Overparameterization. Reducing the parameter complexity has proven to be a successful strategy when
training sparse deterministic neural networks Guo et al. (2016); Dey et al. (2019); Evci et al. (2020); LeCun
et al. (1989). For instance, achieving sparsity in deterministic models has been realized through connection
pruning Guo et al. (2016); LeCun et al. (1989), random pre-defined sparsity Dey et al. (2019), or training
sparse models with a dynamic drop-and-grow algorithm based on parameter saliency Evci et al. (2020).
Parameter saliency is frequently used to guide the selection of important parameters or to determine pruning
criteria Yeung et al. (2010). Parameter importance is assessed through sensitivity analysis, which examines
how perturbations in a parameter affect the output of the objective (or loss) function. Due to computational
constraints, sensitivity analysis typically relies on first- and second-order gradients due to the computational
burden associated with higher-order gradient computations Yeung et al. (2010). First- and second-order
based parameter sensitivity methods have been used to selectively prune neural network parameters without
impacting model performance as in-training Evci et al. (2020); Shi et al. (2020), post-hoc methods Mozer &
Smolensky (1988); Molchanov et al. (2019), and iterative pruning Frankle & Carbin (2019). These techniques
have primarily been applied within deterministic neural networks; we now discuss parameter reduction
strategies in the context of probabilistic (Bayesian) models.

Computational Demand of BNNs. Multiple techniques have successfully sped up inference times of
BNNs Jia et al. (2021); Subedar et al. (2021) as a post-hoc processing method. However, this approach is
limited as it relies on training a dense BNN as a first step and is followed by a post-hoc analysis for pruning
Sharma & Jennings (2021) or quantization of the network Subedar et al. (2021); Ferianc et al. (2021). Such
post-hoc solutions lead to additional computational costs. Another limitation is that BNNs are prone to
convergence issues and noisy loss landscapes driven by limited samples drawn from the posterior distribution
Jospin et al. (2022); Ovadia et al. (2019). In theory, increasing the number of samples drawn during training

1Partial Bayesian networks in this context refers to sparsity introduced into the sigma parameter, rendering the network
“partially" Bayesian.
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Figure 1: Our proposed method for training partial variational Bayesian networks (PBNs) consists of three
stages: (a) Train a deterministic model by minimizing the negative log-likelihood, with parameters θ ini-
tialized randomly. (b) Perform first-order gradient-based sensitivity analysis to compute ∇θ and identify
the top-k parameters by magnitude |∇θ|, which are then modeled as stochastic variables; the rest remain
deterministic. The learned weights from (a) are used to initialize this step. (c) Train the resulting PBN
using variational inference by maximizing the Evidence Lower Bound (ELBO).

leads to a more accurate approximation of the posterior weight distributions. However, the practicality of
this approach is often constrained by the computational overhead associated with drawing a large number
of samples for each gradient update step Jospin et al. (2022).

Partial Bayesian Networks. Partial Bayesian learning leverages the computational efficiency of determin-
istic networks with the probabilistic representation of Bayesian parameters. Zeng et al. (2018) investigated
the placement of Bayesian layers in active learning, showing that using one or two near the output out-
performs fully Bayesian models. A more recent study has explored partial Bayesian learning to estimate
uncertainty within a brain tumor segmentation model Prabhudesai et al. (2023). Daxberger et al. (2021) uti-
lizes a linearized Laplace approximation MacKay (1992) to infer a Bayesian subnetwork within a pre-trained
deterministic network. At inference, they employ an approximate Hessian with a generalized Gauss-Newton
(GGN)-Laplace method to infer a full-covariance Gaussian posterior. Their method is validated on regres-
sion and classification tasks on MNIST and CIFAR10 datasets. While achieving competitive uncertainty
quantification akin to ensembles, their approach requires the computation and storage of the full covariance
matrix, rendering it intractable for tasks such as semantic segmentation or large-multi-class classification.

Sharma et al. (2023) evaluated stochastic subset inference on a two-step training approach as Daxberger
et al. (2021) through Hamiltonian Monte Carlo (HMC) Neal (2012), Laplace Approximation, SWAG Maddox
et al. (2019) on regression and one step joint training using stochastic variational inference (SVI) Blundell
et al. (2015) on classification. They analyzed the impact of sub-stochastic parameter placement concluding
that stochastic input layers yield the highest accuracy, while stochastic last-ResBlock and output layers
have the lowest negative log-likelihood. More recently, a variational Bayesian last layer approach offering
sampling-free VI Harrison et al. (2024) proposes a more deterministic formulation for training Bayesian last
layers for addressing the sampling issue associated with BNNs, however the method introduces additional
hyperparameters that potentially limit its practical introduction for real-world applications.

Our contribution builds on prior work in subnetwork inference Daxberger et al. (2021); Abboud et al. (2024)
by introducing a computationally efficient, gradient-based sparsity criterion within variational Bayesian
neural networks. This approach reduces parameter complexity, accelerates convergence, and enables scalable
mean-field variational inference on large datasets such as ImageNet Deng et al. (2009).

3 Method

Given a dataset D, with input samples xi and targets yi, we aim to train a neural network fΘ(·), parame-
terized by Θ = θ1, θ2, ..., θN for a given task by minimizing the error E, such that:
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min
Θ

E(D, Θ) = min
Θ

E(y|x; Θ) (1)

To determine the uncertainty in the output y of the neural network fΘ(·), we must first account for the
uncertainties arising from its constituent parameters. This can be achieved by leveraging the theory of error
propagation Ku et al. (1966); Zurada et al. (1994). Given a network f , parameterized by Θ, the output y
varies with Θ such that fΘ(x) = y for a fixed input data point x. Our goal is to establish the relationship
between small perturbations in the network’s parameters ∆Θ and the output y. This relationship can be
expressed as the derivative of f with respect to Θ at a given data point xi, i.e., ∂f(xi)

∂Θ = ∂y
∂Θ . The uncertainty

in the output is directly proportional to this slope, and it can be propagated using the Taylor series expansion
of the variance of y:

(∆y)2 ≈
(

∂y

∂Θ

)2
(∆Θ)2 (2)

where (∆y)2 and (∆Θ)2 represent the variances in y and Θ, respectively. Since we are employing mean-
field theory, we can decompose the right-hand side into the individual network parameters, leveraging the
mean-field assumption of parameter independence Blei et al. (2017):

(∆y)2 ≈
(

∂y

∂θ1

)2
(∆θ1)2 +

(
∂y

∂θ2

)2
(∆θ2)2 + . . . +

(
∂y

∂θN

)2
(∆θN )2 (3)

∴ (∆y)2 =
N∑

i=1

(
∂y

∂θi

)2
(∆θi)2 (4)

In equation 4, (∆y)2 and (∆θi)2 represent the uncertainties in the output and the individual network pa-
rameters, respectively. The term ∂y

∂θi
quantifies the sensitivity of the output uncertainty to the uncertainty

in each parameter θi. Therefore, leveraging sensitivity analysis, we can identify a subset of network parame-
ters to which the output uncertainty exhibits the highest sensitivity. These parameters can then be trained
probabilistically, allowing us to capture the uncertainty of the network with a reduced set of parameters,
thereby improving efficiency while maintaining the ability to model the network’s predictive uncertainty.

To implement this, we propose a method for training Partial Bayesian Networks, as depicted in Figure 1
and Algorithm 1. Given a pre-trained deterministic model, a partial Bayesian model is then trained with
MFVI with a Gaussian prior, initializing the mean values µ with the point estimates from the deterministic
model. The selection of Bayesian parameters is based on first-order gradient sensitivity analysis, where the
number of Bayesian parameters is controlled by the hyperparameter rbayes, which adjusts the proportion of
Bayesian parameters in the final Partial Bayesian Network.

Algorithm 1 Partial Bayes with Sparse Gradients
1: Training Step 1: Deterministic
2: Input: Dataset D. Initialize Θd. Learn fΘd

by minimizing L(fθ(xi), yi). Output: fΘd

3: Training Step 2: Partial Bayesian
4: Input: Network fΘd

, dataset D, Bayesian rate rbayes, Posterior init parameters µpost, σpost

5: Initialize:
6: Θb; (µb, σb)← Bayes parameters
7: ∇ΘL ← compute gradients
8: k = Topk(|∇Θ|, k) ← Sensitivity Analysis (k = rbayes × Nθtotal )
9: µb,d = θd ← Θd, σb = log(1 + exp(ρb)), ρb ∼ N (µpost, σpost), σd = 0

10: Learn f(Θb, Θd) by minimizing L(fθ(xi), yi) + β ·KL(q(θb), p(θb))
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Notation: We aim to learn a partial Bayesian neural network fΘb
(·), where Θb is parameterized by (µb, σb) ∈

RN , and their respective means µb are initialized from a pre-trained deterministic neural network fΘd
,

where Θd ∈ RN . For weights designated as Bayesian, their corresponding sigma values are modeled as the
softplus (σ = log(1 + exp(ρ))) of a randomly initialized ρ parameter sampled from a Gaussian distribution
N (µpost, σpost) and minimized by the KL divergence against a standard normal prior Nprior(0, I). The loss
is defined by the evidence lower bound criterion (ELBO), LELBO =

∑
i L(fΘd

(xi), yi) + β ·KL(q(θb), p(θb)),
where q(θb), p(θb) are the posterior and prior terms over the parameters, β is the weight of the KL divergence
term. The KL weight term, β, is gradually annealed over training epochs, from an initial value βinit to a
target value βtarget according to the schedule βi = βtarget− (βtarget−βinit)× (epochi/epochtotal). Subscripts
b and d represent Bayesian and deterministic parameters, respectively.

Training the Deterministic Network: The first step in our approach is to train a deterministic model
on a given dataset D = {xn, yn}N

n=1 composed of i.i.d. data points. We train a neural network to model the
function fΘd

(·) parameterized by Θd, by minimizing the negative log-likelihood L(fΘd
(xi), yi) as a standard

neural network with point estimates.

Initialization of Partial Bayesian Network: Before training the partial Bayesian network, a gradient-
based sensitivity analysis Yeung et al. (2010) (Algorithm 1- Step 8) is used to select the weights with the
highest magnitude gradients, noted as Topk(|∇Θ|, k), where k is the number of parameters to set as Bayesian
based on an input hyperparameter rbayes which allows us to adjust the probabilistic extent of the network. We
use first-order gradients to select the parameters with the highest-magnitude gradients and reparameterize
them as variational parameters. The benefit of using first-order approximations is that it is provided by
automatic differentiation tools such as PyTorch at no additional computational cost to the workflow Paszke
et al. (2017).

The Topk first-order gradient selection method allows us to have mixed deterministic and Bayesian pa-
rameters within individual layers or filters, where, in practice, sparsity is introduced into the σ parameter.
Deterministic parameters are modeled as Ni(µi, 0) = δi(µi) delta functions, while Bayesian parameters are
modeled as Ni(µi, σi) distributions. The µi parameter values are initialized using the point estimates de-
rived from the deterministic model. This approach ensures a robust starting point for optimizing uncertainty
learning in the partial Bayesian network.

For every layer l in the model, a mask is generated using the gradient values of its weights. The masks set the
initial values for the σ parameter linked to each Bayesian weight and form the sparse gradient updates. ρ[l]

represents the ρ parameter for the lth layer in the model the associated mask is used to initialize the ρb values
of the Bayesian weights to a random value drawn from N (µposti

, σposti
) and ρd values of the deterministic

weights to be set to a near-zero value for numerical stability. The deterministic ρd values are not updated in
the computational graph; their gradients are set to zero and do not contribute to the KL Divergence term.
In effect, deterministic weights are modeled as δij(µij), while Bayesian weights are modeled as Nij(µij , σij).
The µij parameter values are initialized using the point estimates derived from the pre-trained model. This
approach ensures a robust starting point for optimizing uncertainty learning in the partial Bayesian network.

Training the Partial Bayesian Network: The partial Bayesian network (PBN)2 is trained using varia-
tional inference Kingma & Welling (2014) by employing the reparameterization trick Kingma et al. (2015).
Five posterior samples were chosen, as experimenting with more samples slightly improved performance but
significantly increased training time. Comparative 5-member ensembles were run as a comparative baseline.
The network is trained to minimize the -ELBO loss described in Algorithm 1 and Notation subsection above.
To ensure that the standard deviation σ remains strictly positive, we reparameterize it using a latent vari-
able ρ parameter, where σ = log(1 + exp(ρ)) i.e., the softplus transformation of ρ. During this step, both
deterministic and Bayesian parameters are jointly updated.

Sparse Gradient Updates: The layers of the PBN consist of a combination of deterministic and Bayesian
parameters requiring customization of the forward and backward passes. Sparse gradient representations
enable partial updates to the ρi parameters. The gradient tensor associated with the ρ tensor is then
converted into a sparse representation, where ∇ρd = 0; ∀θd instructing the optimizer to disregard these

2partial Bayesian network (PBN) with rbayes = R% is referred to in the paper as PBN R% or Partial R%
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elements within the computational graph. Consequently, the ρd elements associated with deterministic
weights remain unchanged in the computational graph, as their gradients are zero. This is in contrast with
the methods described by Prabhudesai et al. (2023); Zeng et al. (2018) that require calculating and storing
full gradients for each ρ parameter at each optimization step.

4 Experimental Results

The following experiments are designed to demonstrate the versatility of the proposed method across a range
of tasks, from simple regression to multi-class classification and complex multi-class segmentation, with net-
work sizes spanning from 102 to 107 parameters. It is important to note that the primary focus of these
experiments is not on achieving state-of-the-art performance; rather, the objective is to investigate the con-
vergence behavior of Partial Bayesian Networks (PBN) under varying levels of model stochasticity (rbayes).
Here, convergence refers to the minimization of the loss function to reach acceptable model performance.
Specifically, we explore whether models can converge to solutions that retain deterministic task-specific per-
formance, effectively capture uncertainty, and minimize the total number of parameters required. To evaluate
the robustness of the models, we also conduct stress tests using out-of-distribution datasets and covariate
distributional shifts. The key questions addressed in these experiments include: 1) What is the distribution
of the selected subnetwork parameters within the network, and how does it compare with previous work?
2) Does initializing the PBN’s mean (µ) parameter from deterministic point estimates facilitate faster con-
vergence? By systematically exploring these questions, we aim to provide deeper insights into the behavior
and performance of partial Bayesian models across different tasks and initialization strategies.

Datasets: We evaluated our methods on several benchmark datasets. For classification, we used MNIST
LeCun (1998), CIFAR-10 Krizhevsky et al. (2009), and ImageNet Deng et al. (2009). The segmentation
experiments were conducted on the Cityscapes dataset Cordts et al. (2016). To assess robustness under
covariate shift, we used the CIFAR-10-C and ImageNet-C datasets Hendrycks & Dietterich (2019) for out-
of-distribution (OOD) testing.

Evaluation metrics: Accuracy and intersection-over-union (IoU) is used to evaluate classification and
segmentation performances, respectively. The Brier score is used as a proper scoring rule for measuring
uncertainty Brier (1950); Ovadia et al. (2019) for Brier Score = 1

N

∑N
i=1(δi=y − pθ(y = C | x))2. Negative

log-likelihood (NLL) is also used to evaluate the quality of uncertainty Ovadia et al. (2019). Entropy of
Expectation (EoE) is used to compute the total uncertainty EoE = −p (y = c | x) log (p (y = c | x)). Floating
point operations (FLOPs) and the number of model parameters are used to measure computational efficiency
(details in Appendix:C).
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Figure 2: Results on y = x3 + ϵ toy dataset. Predictions on toy data, the blue line is ground truth y = x3,
red dots are sample test predictions, and the gray shaded area is the 3σ confidence interval. The vertical
lines highlight the in- and out-of-distribution (ID, OOD) test points. The proposed model displays how
varying rbayes allows the model to capture the predictive uncertainty for ID and OOD samples. A figure
with a range of rbayes values is in Appendix: F.
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(a) 5% (b) 10% (c) 20% (d) 40% (e) 60% (f) 80% (g) 95% (h) VI (i) Ens.

Figure 3: MNIST Weight uncertainty (σ): heatmaps indicate the value of the weight uncertainty and
highlight the location of the (selected) Bayesian weights in PBN as a function of rbayes (a-g), fully VI (h),
and 5-member ensemble (i). The images highlight how partial Bayes focuses on the uncertainty of the
important features within the given dataset.

4.1 Regression on Toy Dataset

We first evaluate our approach qualitatively on a one-dimensional regression dataset. We follow the same
experimental setup described by Hernández-Lobato & Adams (2015). The toy dataset is drawn from y =
x3 + ϵ, where ϵ ∼ N (0, 9). 20 samples are uniformly drawn from a training interval [−4, 4]. 30,000 training
examples was used for training a multi-layer perception (MLP) with a single hidden layer of 100 units. The
model was tested with 10,000 samples drawn uniformly from [−6, 6]. Deterministic, VI, and partial Bayesian
models with various rbayes were trained. Figure 2 illustrates how the partial Bayesian approach is capable
of capturing the uncertainty with less than half of the parameters set as Bayesian.

4.2 MNIST Demo

For a demonstrative image classification, we use a LeNet LeCun et al. (1998) network to evaluate performance
on MNIST LeCun (1998) classification. Figure 4a shows performance trends of different models as a function
of rbayes. An increase in the Bayesian rate (rbayes) with a fixed number of training steps results in a
decline in test performance, particularly in model uncertainty. Figure 3 illustrates the evolution of weight
uncertainty (σ parameter) in the network’s initial layer as a function of rbayes. At rbayes = 5%, Bayesian
weights focus on central connections where the dominant MNIST features are located. With increasing rbayes

values approaching the VI model, weight uncertainty increases 4-fold, introducing randomness into weight
uncertainty representation. This loss may be due to insufficient optimization steps for network convergence
(Figure 3 and Figure 11). From an out-of-distribution (OOD) performance, we compare the performance of
the models with rotated versions of MNIST data simulating a covariate shift and also test the performance

En
s.

De
t.

0.
1%

0.
5% 1% 5% 10
%

20
%

40
%

60
%

80
%

95
% VI

10 40

10 35

10 30

10 25

10 20

10 15

10 10

10 5

(a) Brier Score on ID

En
s.

De
t.

0.
1%

0.
5% 1% 5% 10
%

20
%

40
%

60
%

80
%

95
% VI

10 19

10 16

10 13

10 10

10 7

10 4

10 1

ID
OOD

(b) Entropy ID vs. OOD

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

0.2

0.4

0.6

0.8

1.0 Ens.
Det.
Partial 5%
Partial 10%
Partial 20%
Partial 40%
Partial 80%
VI

(c) Accuracy vs Rot. (◦)

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ens.
Det.
Partial 5%
Partial 10%
Partial 20%
Partial 40%
Partial 80%
VI

(d) Brier Score vs. Rot. (◦)

Figure 4: Results on MNIST: (a) Brier score for test set with increasing stochasticity. (b) Entropy for MNIST
(ID: in-distribution) fashionMNIST (OOD: out-of-distribution). (c) Accuracy and (d) Brier score on Rotated
MNIST with angle in degrees on the x-axis. (Ens. = Ensemble, Det. = Deterministic, VI=Variational
Inference, Rot. (◦)= Rotation in degrees)
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Figure 5: Calibration under covariate distributional shift of CIFAR10 with models: (ours) Partial with
rbayes = 5%, Linearized Laplace Daxberger et al. (2021), ensemble, dropout. The x-axis is the corruption
intensity of the CIFAR10 for 19 different corruptions in CIFAR10-C, and the y-axis is (a) relative error rate,
(b) relative NLL, (c) relative Brier Score. The relative measure is with respect to the models’ performance
on the uncorrupted data. (d) Entropy for correctly and incorrectly classified examples for both ID and OOD
samples for proposed method (Partial VI) with rbayes=5% . Linearized Laplace, ensemble, and dropout
results are from Daxberger et al. (2021).

on a different dataset, where the model is trained on MNIST and tested on FashionMNIST, the entropy of
the in-distribution (ID) and OOD is shown in Figure 4. With respect to covariate shift (rotated MNIST),
ensembles display more robustness to data shift consistent with Ovadia et al. (2019) findings. In contrast,
when evaluated on entirely different OOD data, the PBN approach demonstrates superior performance, with
a larger entropy gap between ID and OOD samples, particularly for models with rbayes ≤ 5%, indicating
enhanced OOD detection capabilities.

4.3 Large Scale Networks

To assess whether our approach holds on large-scale models such as ResNet18He et al. (2016). As in previous
sections, we demonstrate that very low percentages of Bayesian parameters exhibit competitive performance;
therefore, in this section, we evaluate our method with rbayes ≤5%. We train and evaluate ResNet18 on
CIFAR10 with rbayes = 5% on test data, and on corrupted data from CIFAR10-C Hendrycks & Dietterich
(2019). Figure 5 shows our method’s robustness against corruption, where relative to the model’s performance
on uncorrupted data, the model’s error rate, Brier score, and NLL are less impacted than the performance of
subnetwork inference by linearized Laplace Daxberger et al. (2021). The robustness of our partial Bayesian
networks trained with variational inference (VI) is consistent with conclusions from the uncertainty study
by Ovadia et al. (2019), where models converge to a lower accuracy but are much more robust to data shifts.

Our approach relies on pre-trained point estimates for the selection of the Bayesian parameters, but does
initializing the PBN model with deterministic weights also help speed up the training of PBN? To answer
this question, we compare the training FLOPs of a full VI network to a partial Bayesian network with 5%
Bayesian parameters. For the partial Bayesian network, we evaluate two initialization strategies: one where
the network is initialized with deterministic weights, as described in section 3, and another is randomly
initialized, with both the µ and ρ trainable parameters set to random values. By training a ResNet18 on
CIFAR10 on all three models, we find that our method accelerates convergence over randomly initialized
5% network, with an equal number of variational parameters and distribution over the network, and over
standard full VI network, achieving a lower NLL and higher accuracy at a significantly lower training cost
(see Figure 7).

We further evaluate the scalability of our method on the ImageNet classification task Deng et al. (2009) using
ResNet50 He et al. (2016). In contrast to full VI Ovadia et al. (2019) and linearized Laplace approximations
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Figure 6: Results for ImageNet with respect to covariate shift performance. (a) error, (b) NLL relative
to uncorrupted performance, with Partial 1% displaying more robustness to covariate shifts. (c) Entropy
values for correctly vs. incorrectly classified inputs for uncorrupted and corrupted data for Partial 1%
model, displaying calibration under covariate shift, with increasing entropy (uncertainty) with increasing
data corruption. Ensemble and Dropout results shown are pulled from Ovadia et al. (2019)

Daxberger et al. (2021), which face challenges in scaling to large datasets, our proposed partial Bayesian
approach with low Bayesian rates offers an effective trade-off between computational efficiency and reliable
uncertainty estimation. As shown in Figure 6, our method maintains robustness under covariate shift on
large-scale data, outperforming ensembles and dropout (Figures 6a and 6b). Additionally, Figure 6d demon-
strates that our model exhibits increased predictive entropy with higher levels of corruption on ImageNet-C
Hendrycks & Dietterich (2019), particularly for misclassified inputs—indicating well-calibrated uncertainty
under distributional shift.

4.4 Segmentation on CityScapes

We demonstrate our method on a large-scale, complex task, specifically multi-class pixel-level segmentation.
Due to the high computational demands, general approaches for estimating uncertainty in segmentation are
often limited to approximations such as ensembles and Monte Carlo dropout Abdar et al. (2021) rather than
variational Bayesian methods. Our first-order gradient selection criterion and PBN training enable seamless
segmentation and uncertainty estimation. This contrasts with the method proposed by Daxberger et al.
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Figure 7: Test accuracy (a) and NLL (b) as a function of number of training iterations, for a full variational
inference network (VI), a partial Bayesian network with 5% Bayesian parameters initialized from determin-
istic weights (Partial VI 5% (proposed)), and another 5% partial Bayesian network initialized from random
(Partial VI 5% Rand init). (ResNet18 on CIFAR10)
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Figure 8: Cityscapes pixel-wise segmentation samples: from left to right: ground truth segmentation, seg-
mentation and uncertainty for ensemble, Partial 1% (ours), and full VI model. Low uncertainty is depicted
as dark, while yellow-red indicates higher uncertainty. Note: the VI model is trained for an additional
4-fold number of iterations. Uncertainty is measured by entropy. (see additional qualitative examples in
Appendix:10)

(2021), which utilizes linearized Laplace and selects the subnetwork based on the second-order Hessian. This
process is computationally prohibitive for complex segmentation applications. To demonstrate our method
on Cityscapes segmentation, we use a vanilla UNet architecture Ronneberger et al. (2015), with 5 downward
and upward convolutional blocks, for a total number of parameters of over 31.38M (to put in perspective,
ResNet50 has 25.56M parameters). We compare the performance of the deterministic, VI, 5-member en-
semble, and PBN with rbayes = 1%. Figure 8 shows the qualitative comparison of the ensembles, PBN-1%,
and VI segmentation performance. Qualitatively, the PBN-1% segmentation uncertainty consistent with
errors in the prediction and at class boundaries. PBN-1% is also consistent with uncertainty estimations by
ensembles, while utilizing 80% fewer trainable parameters. Quantitatively, PBN has less than 5% degrada-
tion in IoU performance compared to the deterministic model, while the full VI model performs very poorly
with a 40% degradation in performance 9. The performance of the PBN on the segmentation task is both
quantitatively and qualitatively comparable to that of ensembles. Examining the distribution of selected
parameters in the subnetwork, Topk|∇θ| at low rbayes < 5% aligns with Sharma & Jennings (2021), showing
that the highest magnitude gradients are near the network edges, both input and output. For ResNet18
with CIFAR-10, Bayesian weights are selected from layers near the input and output blocks, consistent with
Sharma & Jennings (2021) findings. The distribution of the variational parameters as a function of layer
depth is shown in Appendices 12 and 13.

5 Scope and Limitations

Our method relies on pre-trained point estimates to initialize the partial Bayesian networks, similar to
Daxberger et al. (2021), however applied in the context of variational inference as opposed to Linearized
Laplace. While the partial Bayesian formulation effectively reduces parameter complexity in large probabilis-
tic models, its advantages diminish for smaller networks. As demonstrated in the toy example in Section 4.1,
the added computational overhead may outweigh the benefits, particularly for uncertainty estimation in
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Figure 9: Comparative results on Cityscapes: per class IoU and mean IoU for each method. Partial method
proposed with 1% variational parameters performing within 4% of Deterministic performance and 7% of
Ensembles. On the other hand variational Bayesian method with 4-fold additional FLOPs performs 43%
worse than Partial 1% model and 47% worse than Ensembles.

out-of-distribution (OOD) regions. For small to medium-sized models, ensembles remain more effective for
both in-distribution (ID) and OOD settings, as their relative computational cost is negligible.

A current limitation of our approach is the reliance on posterior sampling via multiple forward passes
(N-samples) to estimate uncertainty, as the method does not yet address the posterior sampling challenge
inherent to Bayesian neural networks. Recent work on sampling-free variational Bayesian last layers Harrison
et al. (2024) introduces a more deterministic alternative for this issue. In parallel, we are actively exploring
improvements to reduce the sampling-related training and inference FLOPs in our implementation.

Currently, our method supports linear and convolutional layers, making it suitable for regression, classifi-
cation, and segmentation tasks. Extension to recurrent architectures remains an open direction for future
work.

6 Conclusion

We introduced a scalable algorithm for training partial Bayesian neural (PBN) networks using variational
inference. Starting from a pre-trained deterministic model, our method selects a subnetwork of parame-
ters to treat as Bayesian, guided by first-order gradients obtained through standard automatic differentia-
tion—without additional computational overhead. This approach enables control over the degree of Bayesian
modeling via a simple hyperparameter.

For small- to medium-scale networks (104–105 parameters), ensembles remain more effective in delivering
well-calibrated predictive uncertainty. However, in larger models (106–107 parameters), our approach pro-
vides a cost-effective alternative for uncertainty quantification. With fewer than 5% of parameters designated
as Bayesian, our approach achieves up to a 50% reduction in trainable parameters compared to a full VI
network and up to 80% compared to ensembles—while maintaining reliable uncertainty estimates.

Partial (sparse) VI demonstrates strong robustness to data corruption and outperforms or matches estab-
lished techniques such as ensembles, dropout, and linearized Laplace approximations Daxberger et al. (2021).
Additionally, we validate the scalability of our approach on large-scale tasks, including classification on Ima-
geNet and semantic segmentation, where traditional Bayesian neural network methods (e.g., VI or MCMC)
often become infeasible. This work opens new avenues for efficient and scalable uncertainty estimation in
deep learning, particularly in safety-critical domains where full Bayesian modeling remains impractical.
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A Additional Segmentation Results

Ground Truth Ensemble Partial 1% Bayesian

Figure 10: Cityscapes fine-segmentation samples: from left to right: ground truth segmentation, segmen-
tation and uncertainty for ensemble, 1% PBN (ours), and full VI model (Bayesian). Low uncertainty is
depicted as dark overlays, while yellow-red indicates higher uncertainty. Note: the full VI network is trained
for an additional 4-fold Epochs.
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Table 1: Compute and memory costs relative to the deterministic model. N denotes the number of posterior
samples, fd denotes the FLOPs required for a single forward pass, M is the number of ensemble members,
and m is the memory required to store a deterministic model (m ∼ fd) Ovadia et al. (2019)

Model #Parameters Relative FLOPS Memory
Deterministic θ 3fd m
M-Ensemble Mθ 3Mfd M×m
VI 2θ 2× (N + 2)fd 2×m
PBN (1 + rbayes)θ 3fd × epochspretrain + (1 + rbayes)(N + 2)fd 2×m

B Parameter Complexity

Given a deterministic model of θ parameters as a baseline. A fully Bayesian model increases the number of
parameters to 2θ, where each layer is characterized by two distinct parameters, accounting for the distribu-
tion’s mean and standard deviation. For models employing partial Bayesian techniques, a singular Bayesian
layer results in a parameter count of θ + Lnumel < 2θ where Lnumel represents the number of elements
in a parameter layer. In partial Bayesian models with n Bayesian weights, the parameter count becomes
θ + n = (1 + rbayes)θ.

C FLOPs Count

The floating point operations (FLOPs) are computed as the sum of tensor additions and multiplications.
The FLOPs for a forward pass include calculating the loss for a single batch for the given set of parameters
θi at epoch i. In the backward pass, the loss is used to calculate the gradients of the parameters ∇θi and the
gradient of the activations. Therefore, to account for the total FLOPs for a single forward-backward pass, it
would cost 3fd for a single sample, where fd is the number of FLOPs for a fully-dense deterministic forward
pass for a given architecture. For a given architecture, we can compute the following:

• Ensemble Given M−ensemble members, the cost for a single sample scales with 3×M × fd.

• VI Given N−posterior samples, the cost for a single sample scales with 2×N × fd + 2(2× fd)) =
2× fd(N + 2), where the 2× term accounts for the addition of the uncertainty σ parameter.

• Partial Bayesian Given a Bayesian rate 0 < rbayes < 1 the number of FLOPs for the forward
method is (1 + rbayes)×N × fd, where N is the number of posterior samples, and backward method
costs 2×(1+rbayes)×fd for a total of (1+rbayes)fd(N +2)+3fd×epochspretrain where the second term
accounts for the deterministic pre-training step. FLOPs associated with the intermediate sensitivity
analysis step (algorithm 1 line 8) are not taken into account as the contribution to the total FLOPs
is negligible.
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Figure 11: Test Accuracy vs. training FLOPs with the ensemble performance highlighted with the intersec-
tion of the dotted red lines for MNIST. The Legend = rbayes values, and Bayes for the fully Bayesian model.
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D Sparse Bayesian Parameter Distribution - ResNet
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Figure 12: Sparsity values of ResNet18(50) layers with rbayes = 1%]. Layers with a sparsity value of 0.99-1.0
are fully deterministic.
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E Sparse Bayesian Parameter Distribution - UNet
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Figure 13: Sparsity values of UNet with encoder/decoder blocks of feature [64, 128, 256, 512, 1024] layers
with rbayes = [1%, 5%]. Layers with a sparsity value of 0.99-1.0 are fully deterministic.
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F Toy Regression Dataset

6 4 2 0 2 4 6300

200

100

0

100

200

300

(a) Deterministic

6 4 2 0 2 4 6300

200

100

0

100

200

300

(b) VI

6 4 2 0 2 4 6300

200

100

0

100

200

300

(c) rbayes = 10%

6 4 2 0 2 4 6300

200

100

0

100

200

300

(d) rbayes = 20%

6 4 2 0 2 4 6300

200

100

0

100

200

300

(e) rbayes = 40%

6 4 2 0 2 4 6300

200

100

0

100

200

300

(f) rbayes = 80%

Figure 14: Results on y = x3 + ϵ toy dataset. (a-d) Predictions on toy data, the blue line is ground
truth y = x3, red dots are sample test predictions, and the gray shaded area is the 3σ confidence interval.
Predictions on (a) Deterministic, (b) Full VI Bayesian approach, (c-f) Partial Bayesian models with different
Bayes rates. Note that the dotted lines highlight the in- and out-of-distribution test points. The partial
Bayes model displays how varying rbayes allows the model to capture the predictive uncertainty for in- and
-out of distribution samples.
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G Learned Weight Distribution

We evaluated the weight distribution using a Gaussian Mixture Model (GMM) for the 5-member ensemble
and PBN-1%. Figure 15a shows that the ensemble’s weight distribution is slightly narrower than that of
the PBN-1%. A Kolmogorov–Smirnov (KS) test was used to quantify the difference between the two GMM
distributions. Figure 15b plots the cumulative distribution functions (CDFs) of the weight GMMs. The
KS statistic for PBN-1% compared to the 5-ensemble is 0.07 (with p-value < 1e − 10), indicating a high
similarity between the two distributions.
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Figure 15: (a) Gaussian Mixture Model (GMM) for CIFAR10 ResNet models from PBN-1%, 5-member
ensemble. (b) Kolmogorov–Smirnov (KS) cumulative distribution function for PBN-1% with a KS statistic
of 0.07 and a p-value < 1e − 5. The KS-test provides supporting evidence for the similarity of the learned
models by assessing the similarity of their weight distributions.

H Additional Model and Training Details

H.1 Hardware and Software

Models were trained with an NVIDIA RTX A6000 GPU with Pytorch 2.0.1 version.

H.2 Model Details

H.2.1 MNIST

Standard LeNet 300-100 network was used for the MNIST classification experiments with a batch size of 50.
SGD optimizer with a fixed learning rate of 0.01, a momentum of 0.9, and an L2 regularization coefficient of
10−5. ReLU non-linearities were used for all models and batch normalization. Models trained for 50 epochs.

Table 2: List of datasets used in the paper, with the train/test splits.

Dataset Source Size (Train, Test) Input Size #Classes
MNIST LeCun (1998) 60K , 10K 28×28 10
Fashion-MNIST Xiao et al. (2017) 60K, 10K 28×28 10
CIFAR10 Krizhevsky et al. (2009) 50K, 10K 32×32 10
CIFAR10-C Hendrycks & Dietterich (2019) 10K 32×32 10
SVHN Netzer et al. (2011) 732K, 260K 32×32 10
CityScapes Cordts et al. (2016) 4500, 500 256×512 20
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H.3 CIFAR-10/SVHN

H.3.1 Small ResNet

A small ResNet with 4 ResBlock was used for initial experiments, containing features of [16, 32, 64]. Each
ResBlock contains 2 convolutional layers, one with kernel size 3, the first with a stride of 2 and the second
convolutional layer with a stride of 1. The input convolution is of kernel size 3 and a stride of 2, followed by a
Maxpool layer of (2,2). Similarly, as above, a batch size of 50, an SGD optimizer with a fixed learning rate of
0.01, momentum of 0.9, and L2 regularization coefficient of 10−5. Models were trained for 50 epochs. Both
CIFAR10 and SVHN datasets were trained with rbayes = [0.1%, 0.5%, 1%, 5%, 10%, 20%, 40%, 60%, 80%, 95%.

H.3.2 Standard ResNet18-V1

Our second CIFAR10 model used a standard ResNet18-V1 He et al. (2016) with ReLU activations. The max
pool layer was removed, and the initial convolution of 7x7 of stride 2 was changed to 7x7 with a stride of
1 to avoid significant downsampling of the smaller CIFAR10 images. The model was trained with a batch
size of 200 for 50 epochs using an SGD optimizer with a momentum of 0.9 and a learning rate schedule
that includes a linear warm-up for up to 5 epochs to a maximum learning rate of 1.6. Then, the learning
rate is reduced by 10 at epoch 30. L2 regularization coefficient of 10−4 was used. For the Bayesian and
Partial Bayesian approaches, the models were trained for 100 epochs. A dropout rate of 0.2 was used to
avoid overfitting; dropout layers were added after the FC layer and after the first convolutional layer in each
convblock.

H.4 CityScapes

We use a standard UNet Ronneberger et al. (2015) with standard encoder-decoder architecture, convolutional
blocks with feature output sizes of [64, 128, 256, 512, 1024]. The upward paths between each block in the
decoders are bilinear interpolations due to a limitation in the Pytorch backward pass customization for
TransposeConvolutional layers. The deterministic models were trained with SGD optimizer, a momentum
of 0.9, and an initial learning rate of 0.1, which is reduced by 0.5 on plateauing validation performance.
The models were trained for 150 epochs. The data was resized to 256×512. A weighted cross-entropy loss
was used to train the dataset to balance the minority classes, such as persons, riders, trailers, motorcycles,
caravans, trains, etc. We follow the recommended data labeling setup by the dataset initial release Cordts
et al. (2016).

H.5 Ensembles

Five member ensembles were used in our experiments, where each member was trained independently with
a different random seed [0,1,2,3,4] to ensure reproducibility.

H.6 Variationa Inference

For all Partial Bayesian training or full VI training -ELBO loss is minimized, where L = L(fΘd
(xi), yi) + β ·

KL(Nprior,Npost), the first term is the MLE term (for regression it’s MSE for classification it’s cross-entropy
loss), β is the weight of the KL divergence term. The KL weight term, β, is annealed during training epochs,
transitioning smoothly from an initial value [0.2] to a desired target value [0.01] as a function of epochs
βi = βtarget − (βtarget − βinit) × (epochi/epochtotal). We experimented with fixed vs. different annealing
schedules and found this schedule optimal to minimize the KL divergence in the first few epochs and then
optimize the task-specific loss. 5 posterior samples were drawn during training and inference.
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