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Figure 1: DiMeR takes the image or text inputs and generates detailed 3D meshes.
ABSTRACT

We propose DiMeR, a novel geometry-texture disentangled feed-forward model
with 3D supervision for sparse-view mesh reconstruction. Existing methods con-
front two persistent obstacles: (i) textures can conceal geometric errors, i.e., Vi-
sually plausible images can be rendered even with wrong geometry, producing
multiple ambiguous optimization objectives in geometry-texture mixed solution
space for similar objects; and (ii) prevailing mesh extraction methods are redun-
dant, unstable, and lack 3D supervision. To solve these challenges, we rethink the
inductive bias for mesh reconstruction. First, we disentangle the unified geometry-
texture solution space, where a single input admits multiple feasible solutions, into
geometry and texture spaces individually. Specifically, given that normal maps
are strictly consistent with geometry and accurately capture surface variations,
the normal maps serve as the only input for geometry prediction in DiMeR,
while the texture is estimated from RGB images. Second, we streamline the algo-
rithm of mesh extraction by eliminating modules with low performance/cost ratios
and redesigning regularization losses with 3D supervision. Notably, DiMeR still
accepts raw RGB images as input by leveraging foundation models for normal
prediction. Extensive experiments demonstrate that DiMeR generalises across
sparse-views-to-3D, single-image-to-3D, and text-to-3D tasks, consistently out-
performing baselines. On the GSO and OmniObject3D datasets, DiMeR signifi-
cantly reduces Chamfer Distance by more than 30%. Project Pagel

1 INTRODUCTION

The tasks of 3D reconstruction and generation have garnered significant attention, largely due to the
advancements made by NeRF (Mildenhall et all, [202T)) and 3DGS (KerblI et al., 2023). However,
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transforming them into the mesh poses a challenge. In this paper, we focus on mesh representation,
which is easy to adapt to downstream applications, such as the gaming industry, VR, robotics, efc.

Enhanced by the introduction of the exten- Texture Geometry Normal — Texture Geometry Normal
sive 3D dataset, Objaverse (Deitke et al., 2023} ' v ' N, @
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compositions of multiple wrong geometries and

textures, driving the network toward an unde- Figure 2: (a) exhibits difficulty in distinguishing
sirable averaged solution. Second, most of the geometry from RGB images. (b) shows the con-
existing mesh reconstruction methods employ flict input-GT pairs in datasets due to problem (a),
FlexiCubes (Shen et al. [2023)) to extract the hindering the training. (c) illustrates our idea: dis-
mesh and utilize differential rasterization for entangle the mixed solution space containing mul-
optimization. However, the Signed Distance tiple feasible solutions into two separate spaces
Field (SDF) grid defined in FlexiCubes only with unbiased input. Samples are from the Ob-
promises the meaning of positive and negative javers dataset (Deitke et al.,|2023).

signs for surface extraction, which makes it dif-

ficult to apply 3D supervision. Moreover, some of its components are redundant for this task, and
its regularization losses lead to serious instability in training.

To solve these two challenges, we propose DiMeR, a geometry-texture disentangled feed-forward
sparse-view mesh reconstruction model with 3D supervision. To address the first challenge, training
ambiguity, we exploit the inductive bias derived from the consistency between normal maps and
3D geometry. As shown in Fig.|2|(a) and (c), the normal maps consistently align with the surface
of the 3D model, offering a more reliable input format for geometry reconstruction. Building on
this inductive bias and the Principle of Occam’s Razor (Blumer et al) [1987)), we disentangle the
geometry-texture unified solution space, where multiple solutions correspond to one input, into two
individual spaces. To get the geometry, we exclusively utilize normal maps as the sole input, while
utilizing RGB images for obtaining the texture. Each of them is trained with task-specific supervi-
sion: the geometry branch is constrained by normal, depth, and silhouette-mask losses, whereas the
texture branch is guided by appearance-based objectives. Moreover, an accurate geometry should be
capable of rendering the light map correctly under arbitrary environmental conditions and various
materials. Therefore, we add the statistical expectation supervision signal by placing the predicted
untextured mesh model in multiple environments with randomly assigned materials. To address the
second challenge, limitations remaining in FlexiCubes, we replace the original regularization losses
with eikonal loss (Gropp et al., |2020) and incorporate 3D supervision via ground-truth mesh. Fur-
thermore, we simplify the modules with low performance/cost ratios. Our improved mesh extraction
algorithm allows us a higher extraction resolution, compared with other reconstruction models.

Leveraging recent foundation models for normal map prediction (Ye et al. [2024; He et al.| [2024),
we can generate highly accurate normal maps from RGB images with minimal error and latency
(only 200ms). To validate this point and choose the optimal model for DiMeR, we conduct a bench-
mark evaluation for object-level normal prediction. To further improve the robustness of DiMeR
in practical applications, we introduce noise to the input, normal maps, during training. Equipped
with these models, DiMeR also accepts RGB images as raw input, the same as other methods.
Our DiMeR model is capable of effectively handling various tasks, including sparse-view recon-
struction, single-image-to-3D, and text-to-3D. Extensive experiments demonstrate that DiMeR sig-



Published as a conference paper at ICLR 2026

nificantly outperforms previous methods. Specifically, on the GSO dataset, DiMeR reduces Chamfer
Distance by 22 %, with an upper bound improvement of 32% when using real normal map inputs.
In general, our contributions can be summarized as follows:

* Rethinking the inductive bias for mesh reconstruction, we propose DiMeR, a disentangled
framework to train and predict geometry from normal maps and texture from RGB images
separately, with decoupled supervision signals.

* We enhance the mesh extraction algorithm for this task, introduce the 3D GT supervision,
and Physics-based Rendering Expectation losses.

* Numerous experiments demonstrate the superiority and robustness of our DiMeR on re-
construction, single-image-to-3D, and text-to-3D tasks. We also conduct a benchmark for
the foundation models of normal map prediction in object-level tasks.

2 RELATED WORKS

2.1 3D GENERATIVE MODELS

Building upon advancements in 2D diffusion models, DreamFusion (Poole et al.l [2022) introduced
score distillation sampling (SDS) to train 3D representation models like NeRF (Mildenhall et al.,
2021) and 3DGS (Kerbl et al., 2023) based on text input. Subsequently, numerous methods have
been developed to enhance this approach (Wang et al., 2023b; [Liang et al., [2023; |Chen et al., |2023};
Shi et al.,|2023b; (Wang et al.|[2023a; Metzer et al.| 2023 Bai et al.||2023; Jiang et al., 2024} Li et al.,
2025; Tang et al., 2023). However, a significant limitation of these methods is the need to train a
separate 3D model for each text input, which can take tens of minutes or even hours per text. Some
approaches attempt to address this by employing SDS to train a feed-forward network (Lorraine
et al.l 2023} Jiang & Wang, 2024; L1 et al., 2023bj (Qian et al., |2024), but these are limited to
a few specific text subjects, reducing the diversity of the outputs. Recently, the introduction of
large-scale 3D datasets, such as Objaverse (Deitke et al. 2023} 2024), has enabled models like
LRMs (Hong et al., 2023} Tochilkin et al.,[2024) to explore feed-forward reconstruction from a single
image. Following this, several methods have been developed to create sparse-view reconstruction
models (Tang et al.,[2025; Xu et al., [2024b}; [Zhang et al., 20244} |Li et al., |2023a)) based on NeRF or
3DGS. To support real-world applications, leveraging differential marching cube algorithms (Wei
et al.} 2023 |Shen et al., 2023), some methods focus on direct mesh generation (Xu et al., |[2024a;
Wei et al., [2024; Wang et al.| 2025} [Liu et al, [2024; |Ge et al., |2024). Additionally, several 3D
diffusion models (Zhang et al., [2023} |Li et al.l 2024b; Zhang et al., 2024b; |[Ren et al., 2024; Zhang
& Wonka, 2024; Xiang et al., 2024} Hua et al.l [2025; Jia et al.| 2025) emerge, but they are limited
to the generation task and lack strict correspondence with input images. Moreover, their inference
latency ranges from tens of seconds to several minutes. Inspired by auto-regressive models (Tian
et al.||2024; Zhou et al., 2024), some researchers have shifted focus to mesh AR generation (Siddiqui
et al.| [2024; |Chen et al., 2024bja; Tang et al., 2024)). However, these methods typically require the
number of mesh faces to be fewer than 6,000. Concurrently, similar to us, Hi3DGen (Ye et al.,
2025)) also found that exclusive utilization of normal maps can enhance the quality of geometry and
implemented a diffusion model based on this.

In this paper, we focus on feed-forward sparse-view mesh reconstruction. Differently, we disentan-
gle the framework into dual branches that predict geometry solely from normal and predict texture
from RGB. To ensure that each branch performs its intended role, we assign branch-specific, unam-
biguous supervision signals.

2.2  MULTI-VIEW DIFFUSION MODEL

Multi-view diffusion models are designed to generate multi-view images or normal maps from a
single image or text prompts, instead of directly producing corresponding 3D models. This approach
is gaining popularity due to the relative simplicity of its task definition, where multi-view images
are synthesized first, followed by the use of sparse-view reconstruction models to complete the 3D
model generation process. Zerol23 (Liu et al., [2023) introduces explicit control by embedding
camera parameters into the conditions of 2D diffusion models. Following, many methods have
achieved significant success to synthesis multi-view images and normal maps (Shi et al.l [2023a}b;
Li et al., [2023a} [Melas-Kyriazi et al., [2024; Wang & Shil [2023; [Voleti et al.l 2024; (Wu et al.| 2024;
Li et al., [2024a}; |Long et al.l [2024; [Lu et al., 2024} [Lin et al., [2025). We employ the image-input
2.5D model, such as zerol23++ (Shi et al.| 2023a) and Era3D (Li et al., [2024a)), to perform the
single-image-to-3D task, while we use the text-input 2.5D diffusion model, such as Kiss3DGen,
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Figure 3: The framework of our DiMeR. The upper part is the geometry branch, and exclusively
uses normal maps as input. The lower part is the texture branch.

RGB Images GT Image o Pixel Feature

to accomplish the text-to-3D task. With the continuing progress of such models, DiMeR has the
potential to further enhance generation quality.

2.3 NORMAL PREDICTION FOUNDATION MODELS

Surface normals precisely describe local surface variation and orientation, making them crucial for
3D reconstruction. The robustness and accuracy of recent normal prediction foundation models have
reached practical levels. Marigold (Ke et al.| 2024) first integrates diffusion models into depth and
normal estimation, by preserving the prior that the visual generative models learned. Subsequent
works (Fu et al.l [2024; |Bae & Davison, 2024; |Ye et al., [2024; He et al., |2024) have further boosted
performance while markedly reducing inference latency. Collectively, these advances provide the
possibility for high-quality 3D reconstruction exclusively from predicted normal maps, enabling
DiMeR with the RGB image as input.

3 METHOD

As shown in Fig.[3] the objective of our DiMeR is to reconstruct the 3D mesh geometry from normal
maps and derive texture from RGB images. We introduce Geometry Branch in Sec. [3.1] Texture
Branch in Sec.[3.2] and applications in Sec.

3.1 GEOMETRY BRANCH

As illustrated in Fig. [2] a single RGB image admits many equally plausible solutions in the geome-
try—texture joint solution space, encouraging the network to learn over-smoothed averages. Normal
maps, in contrast, are uniquely determined by the underlying surface and faithfully encode fine ge-
ometric variation. Guided by Occam’s razor (Blumer et al., |1987), we therefore feed only normal
maps to the geometry branch, eliminating appearance-induced ambiguities and simplifying the cor-
respondence between input and output. This design establishes a clearer relationship between the
network’s inputs and outputs, ultimately reducing the training complexity. Supervision is likewise
restricted to geometry-specific losses, discarding ambiguous RGB rendering terms. We further reg-
ularize geometry by rendering the untextured mesh with physically based rendering (PBR) under
diverse illuminations and materials, matching the resulting lighting maps to statistical expectations.
Finally, we improve the mesh extraction algorithm for greater efficiency and robustness and incor-
porate direct 3-D supervision.

Network Structure. As shown in Fig. 3| the geometry branch of our DiMeR model initiates with
normal maps N € REXHXWX3 of K randomly selected views, alongside their associated camera
embeddings ¢ € RE*16 We opt for a random sampling of input views to improve the model’s capa-
bility to interpret camera embeddings from arbitrary directions and add slight noise to them, thereby
enhancing robustness and reducing dependency on specific input configurations. Furthermore, this
also reduces the requirements for the user input, allowing users to provide inputs from unfixed view
directions. The normal maps N and their associated camera embeddings ¢ are encoded into patch-
wise representations P, € REXDXC ysing a ViT-based Normal Encoder, where D is the number
of patches of each view and C is the dimension of the feature. Similar to the approach taken by
LRM (Wei et al.| [2024)), we utilize a Triplane Decoder to gather information from the Patch Embed-
ding P, using several transformer layers (Vaswani et al.,|2017) to synthesize triplane (Chan et al.,

2022) features F, € R3*H'xW'xCs Subsequently, we extract an SDF grid from the triplane fea-
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tures F, to apply the differential isosurface construction algorithm, FlexiCubes (Shen et al.,[2023),
to obtain the vertices and faces for the mesh. Finally, we can rasterize the mesh to get the normal
maps, masks, and depth maps for arbitrary views. By providing the environment map and assigning
different materials (metallic and roughness) to the mesh, we can render the light map (including
specular and diffuse) using PBR, for enhancing the supervision from different lighting conditions,
which will be introduced in the following part.

Mesh Extraction Algorithm. Original FlexiCubes requires two MLP networks to output different
weights (each edge and vertex in the grid) and the deformation of the grid. However, this incurs ex-
cessive computational and GPU memory overhead. Specifically, for a N3 grid, it needs to compute
the deformation of N2 vertices and the weight of 12 x N3 edges and 8 x N3 vertices. Though it is
powerful for the tasks of Flexicubes itself, extensive experiments prove that these components con-
tribute disproportionately high computational overhead with minimal performance gains. As shown
in Tab. 5] we found that removing these networks from the pre-trained model does not adversely
affect performance. Therefore, to enable higher efficient training and higher spatial resolutions, we
prune these components to improve computational efficiency and improve the spatial resolution.
Optimization. Given the inherent ambiguity introduced by the RGB texture shown in Fig. [2] we ex-
clude RGB loss to enhance training stability. Consequently, we now exclusively employ geometry-
related losses to supervise the geometry branch of our model.

In its original implementation, FlexiCubes incorporates three regularization losses to regularize the
SDF grid values generated by the network. However, extensive experimentation reveals that this
approach yielded low stability (Xu et al. [2024a} |Ge et al., [2024). Furthermore, the design does
not produce true SDF representations. To address these issues, we employ the eikonal loss (Gropp
et al.| 2020) to regularize the whole space as the SDF field, specifically by ensuring the norm of the
gradient with respect to the coordinates is normalized to 1. Nevertheless, computing the derivative
for a N2 grid poses significant challenges in terms of computational and GPU memory costs and
potential overfitting at specific grid positions. To mitigate this, we propose randomly sampling po-
sitions within the space to compute the eikonal expectation loss, effectively reducing computational
demands while maintaining the integrity of the regularization, i.e.,

Leir = Ez(||VxSDF(x)||2 — 1)%,2 € R® ~ Uniform(—1,1), (D

where we sample 200K x in each iteration to calculate the expectation. Moreover, we use the GT
SDF value to supervise the SDF value of grid vertices v € RY °*3 in FlexiCubes,

Lqis = ||SDF(v) — SDEgr(v))]|2”. )

To reduce computational overhead, we cache these SDF values for each object in the training set.
Drawing inspiration from Photometric Stereo (Woodham), [1980), we introduce the PBR (Kajiya,
1986) losses. The premise is that if the specular and diffuse light maps of a 3D mesh under different
environmental lighting conditions and various materials can be accurately rendered in PBR, then the
geometry of the predicted mesh model can be deemed correct. Therefore, we introduce the statistical
expectation loss of PBR to supervise the geometry branch,

. 2
Lspec = Ee m.r (Spec(@,e,m,r) Spec(O, e,m,r )
)

+ LPIPS (Spec(O e,m,r),Spec(O, e,m,r 3)
~ 2
Laits = Eemr (Diff((’),e,m,r) — Diff(O, e, m, r))
+ LPIPS (Diff(@, e,m,r), Diff(O, e, m, r)) , (4)

where O and O are the predicted and ground truth mesh separately, e, m, r are the randomly sam-
pled environment, metallic, and roughness, Spec(-) and Diff(-) are rendering functions of specular
and diffuse light map, LPIPS(-) is the perception loss (Zhang et al.| [2018). Notably, during the
training, we sample different environment, metallic, and roughness to render the light maps for a
single object.

We also employ the commonly used normal, depth, and mask losses to supervise the geometry
branch. Specifically,

Enor :MGT®(1 _N'NGT)a (5)
Liep = Mar ® |D — Dar, (6)
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Emask = (M - MGT)27 (7)
where ® denotes element-wise production, Mgr and M are the rendered mask from ground truth

mesh model and predicted mesh model, similarly, V" and D represent normal map and depth map.
In general, the overall loss function is

Eg = Eeik + L:sdf + Espec + Acdiff + ﬁnor + ﬁdep + ﬁmask~ (8)
3.2 TEXTURE BRANCH

Network Structure. As demonstrated in Fig. [3] the texture branch starts from RGB images 7 &
REXHXWX3 with the camera embeddings ¢. Similar as the geometry branch, we use a ViT-based
Image Encoder to get the Patch Embedding P, € RX*PXC and utilize a Triplane Decoder to
assemble the information from P, to get the triplane features F, € R3*H *W'xCe for the texture
field representation (Oechsle et al.,|2019). Given the predicted shape from the geometry branch, we
rasterize the vertex coordinates v into image space,

Coordz = Rast(v, Camera), 9)

where the pixel value of Coordr € R¥>*W>3 s the global coordinate. Next, we query the texture
feature Fr € RE*WXC on triplane F,. for each pixel,

F7 = Sample(Coordz, F.). (10)
Finally, we decode the color feature to predict the image
7 = RGB_Decoder(Fz). (11)
Optimization. In this branch, we only use RGB loss to supervise the network. Specifically,
L; = (I — Zgr)? + LPIPS(Z, Zor). (12)

3.3 APPLICATIONS

Besides the sparse-view reconstruc-  (a) Sparse-views-to-3D Task
tion task, DiMeR is also capable of

performing image/text-to-3D tasks. l E '
Single-image-to-3D. Given the in- -
put image, we first employ Zero-1-2- g l l

3++ (Shi et al., 2023a) or Era3D (L1  _ 0 __
et al., |2024a) to generate six images  (b) Single-Image-to-3D Task

from different viewpoints. Specif- N
ically, the output from zerol23++ : h d b M‘

< o
o [
ists of six views, including th 2 = g \
consists of six views, including the M = — |
U S B EUNKE 5 o)
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Normal Pred
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combinations of azimuth and eleva-
tion, (30,20), (90,-10), (150,20),
(210,-10), (270,20), and (330,-10). (g 7ext-t0-30 Task T
Next, we apply the SoTA normal pre- '
diction model Lotus (He et al., [2024) “a shiny N g
¥

silver robot =
cat”

or StableNormal (Ye et al., [2024) to
predict the normal maps for these six
views. Since the predicted normal
maps are initially in the local camera
coordinate system, we subsequently
transform them into the global coor-
dinate system using the transformation matrices corresponding to the six view directions. Finally,
we feed the six transformed normal maps and the RGB images into our DiMeR model to generate
the textured mesh.

Text-to-3D. This task is approached through two distinct pipelines: (I) The first pipeline involves
using a text-to-image model to generate an RGB image from the input text. Subsequently, we
apply the single-image-to-3D pipeline to complete the reconstruction. (II) With the advancement of
diffusion models, Kiss3DGen (Lin et al., 2025) fine-tunes the SoTA text-to-image generative model,
FLUX (BlackForestLabs|, 2024), to simultaneously output RGB images along with corresponding
normal maps, ensuring high multi-view consistency. Since our DiMeR supports a dynamic number
of input views, we can directly feed the four views from Kiss3DGen into DiMeR for 3D model
reconstruction. The generated high-quality models are presented in Fig. [I] and the supplementary
materials.

Text-to-MV

e -
¥
DiMeR
\
4
N

Figure 4: Pipelines for sparse-views, single-image-, and
text-to-3D.
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Table 1: Quantitative results for reconstruction task. CD means Chamfer Distance. DiMeR (Lotus)
and DiMeR (SN) are the reconstruction results from the normal map predicted by Lotus (He et al.,
2024) and StableNormal (Ye et al., 2024) separately. DiMeR (GT) is from the ground truth normal.

value means first-best, value means second-best, value means third-best.

Dataset | GSO | OmniObject3D

Metric | CD () FI(1) PSNR() SSIM (1) LPIPS (1)| CD (}) FI (1) PSNR (1) SSIM (1) LPIPS (])
InstantMesh 0.045 0.964 18.51 0.846 0.150 0.039  0.983 18.44 0.842 0.153
PRM 0.041 0977  21.68 0.869 0.126 0.034  0.991 21.65 0.865 0.135

DiMeR (GT) 0.028 0.992  23.40 0.883 0.095 0.024 099  23.04 0.871 0.112
A 31.7% | +0.015 +1.72 +0.014  24.6% | |29.4% | +0.005 +1.39 +0.006 17.0% |

DiMeR (Lotus)| 0.033  0.988  22.57 0.874 0.103 0.034 0989  21.88 0.866 0.126
DiMeR (SN) 0.032 0.988  22.89 0.875 0.103 0.030 0993 22.15 0.865 0.121

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We train DiMeR with the filtered Objaverse (Deitke et al.,|2023)) according to the mesh quality, in a
total of 98, 526 objects. For test datasets, we choose the widely used GSO (Downs et al.,|[2022) and
OmniObject3D (Wu et al.l [2023). We use all 1, 029 objects in GSO and randomly select 5 objects
for each class in OmniObject3D. More details can be found in appendix.

4.2 QUANTITATIVE COMPARISON

Reconstruction Task. As shown in Tab.[I| we compare our DiMeR on the sparse-view reconstruc-
tion task using the same 6 randomly sampled input views. Since some sparse-view reconstruction
methods, like CRM (Wang et al.| 2025)), are limited to only support specific views (six orthogo-
nal views), we compare them in single-image-to-3D tasks. Additionally, because MeshFormer (Liu
et al.,|2024) is not open-source work, we are unable to perform an accurate quantitative comparison.
Therefore, we only provide qualitative visual comparisons. For the comparison, we select state-of-
the-art (SoTA) methods that are accessible, including InstantMesh (Xu et al., 2024a) and PRM (Ge
et al.| 2024). Experiments show that our method can surpass the SOTA methods by a large mar-
gin, whatever using GT (31.7% gain) or predicted normal maps (22.0% gain) from StableNormal-
Turbo (Ye et al.|[2024). Notably, when equipped with normal map prediction models, the input
to DiMeR remains the same as the baselines, relying solely on RGB images. Furthermore, fol-
lowing the improvement of normal prediction models, there is still room for continued improvement
in the performance of DiMeR.

Sinle-Image-to-3D Task. As demonstrated Table 2: Single-image-to-3D task. All the meth-
in Tab. we compare our DiMeR with ods use the same single image input. Our DiMeR
CRM (Wang et al 2025), MeshLRM (Wel is equipped with Stable-Zerol123++ (Shi et al),
et al., 2024), InstantMesh (Xu et al., [2024a), [20234) and StableNormal (Ye et al.,[2024).

and PRM (Ge et al.| 2024), using same sin-

gle image input. Our pipeline for this task is Dataset ‘ GSO | OmniObjec3D
shown in Fig. Elkb), .where we use Lotus (He Metric | cbU) FI(D) | DA FL (D
et al., 2024) to predict normal maps from the

output of zero123++ (Shi et al., 2023a). Since g/llzxLRM 8(1;713 8;2; 83);2 83?‘5‘
the single-image-to-3D problem is inherently InstantMesh | 0.066 0950  0.074  0.937
ill-posed, the unseen portions of the data can- PRM 0.059  0.961 0.064  0.957
not be accurately inferred from a single image  DiMeR 0.052 0981 0060  0.964
alone. Consequently, we select 500 relatively

clear data points for meaningful and valuable evaluation. In contrast, the reconstruction models,
such as our DiMeR, PRM, and InstantMesh, have the advantages for the accurate alignment with
input image based on the prediction of zero123++.

4.3 QUALITATIVE COMPARISON

Sparse-view-to-3D. As demonstrated in Fig.[5] we present a visual qualitative comparison of var-
ious methods. A comparison between the rows labeled ”Ours” and ”Ours (Lotus)” shows similar
performance, highlighting that normal prediction models effectively support DiMeR. This suggests
that DiMeR, when combined with such models, is capable of surpassing previous methods in real-
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Figure 5: The qualitative comparison for sparse view reconstruction.

Table 3: The ablation studies of different input Table 4: The ablation studies of 3D regu-
and output formats. larization and PBR expectation.
Input & Output | CD{) FI1(D) Input & Output | CD{) F1(D)
RGB + Normal — Geometry + Texture | 0.043  0.976 w/o 3D Regularization (Eq.1-2) | 0.037  0.975
RGB + Normal — Geometry 0.041 0981 w/o PBR Expectation (Eq.3-4) 0.039 0.973
Only Normal — Geometry (Ours) 0.028  0.992 Our Full Design 0.028  0.992

istic applications. Furthermore, DiMeR outperforms previous mesh reconstruction models, such as
InstantMesh and PRM, in terms of reconstructing finer details.
Single-image-to-3D. As shown in Fig. [6], we compare our method with SoTA methods including

Trellis (Xiang et al.|[2024), PRM (Ge et al|[2024), MeshFormer (Liu et al.,[2024), InstantMesh
2024a) and CRM (Wang et al.l 2025). Notably, since the 3D results for MeshFormer are

only available from their project page and the corresponding input images are not provided, we are
unable to conduct a direct comparison using the same input. In contrast, the other methods use the
same input images for comparison. Due to the inherent nature of the generative in diffusion models,
Trellis often generates 3D mesh models that exhibit inconsistencies with the input images, although
it maintains high quality. Specifically, the cup’s holes in the second column and the number of
pillars in the third column are mismatched. Moreover, the other methods encounter difficulties in
generating holes and rings accurately. In summary, DiMeR achieves the best quality.

4.4 ABLATION STUDIES

Input & Output Disentanglement. As shown in Tab.[T3] we compare the different compositions of
input and output for the geometry branch training. The comparison between the first two columns,
“RGB + Normal — Geometry + Texture” and “RGB + Normal — Geometry”, proves that the
disentanglement for geometry and texture achieves a higher reconstruction accuracy for geometry.
The comparison between the second and third columns, “RGB + Normal — Geometry” and “Only
Normal — Geometry”, demonstrates the huge gain for discarding the RGB input and supervision.

Loss Design. As demonstrated in Tab. [d] we show that Eq. [T] and Eq. ] can replace the original
loss functions used in FlexiCubes, performing improved performance. With the regularization loss
employed in FlexiCubes, the training process becomes unstable and struggles to proceed beyond
10,000 iterations, resulting in unsatisfactory network convergence. By introducing the eikonal loss
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Input Ours Trellis PRM MeshFormer* InstantMesh CRM

Figure 6: The qualitative comparison for single-image-to-3D. Please note that the results of Mesh-
Former are obtained from their project page and do not use the same input as other methods.

and incorporating 3D ground truth, we stabilize the training process, achieving significantly better
performance. We also validate the effectiveness of the PBR expectation loss (Eq. [B]and Eq. ). If
the lighting map can be accurately computed under varying environmental lighting conditions and
across different materials, we can conclude that the predicted mesh aligns well with the ground truth
mesh. To achieve this, we assign different materials to the single predicted mesh and place it in
various environments. The introduction of PBR losses leads to significant improvements.
Deformation and Weight MLP in FlexiCubes. As ) . .

shown in Tab. [5] we demonstrate that the improvements Table 5: The ablation studies of the ef-
gained from the deformation and weight MLP are not fectiveness of Deforma.m.on and Weight
worthy enough compared with their computational cost. MLP. GPU Mem is training occupancy.
The experiments are conducted using the official pre-
trained weights of InstantMesh, and similar experiments Vo4 | €O Fl | GPUMem Infer
based on PRM are provided in the supplementary mate- W/ 0.045 0964 |  73GB 0.5

. . . . w/o 0.045 0963 | 48GB 0.2s
rial. Upon removing the deformation network and weight
network from FlexiCubes, we observe minimal impact on
inference performance, almost no decrease. However, these two networks significantly increase
computational workload (about 2.5x computation overhead) and GPU memory consumption (about
1.5x GPU memory occupancy in training). Consequently, we opt to exclude them from DiMeR in
order to improve the spatial resolution.
Grid resolution. As shown in Tab. [} to validate the improvement, we add a comparison experi-
ment at a 128 grid resolution. The experiment proves the improvement of our network architecture
simplification. Furthermore, after reducing the resolution, our accuracy only decreased slightly and
still remains higher than previous methods, InstantMesh and PRM.

4.5 MORE DISCUSSIONS.

Reconstruction model vs Generative model. As shown in Tab.[7 and Tab. [8] we compare trellis
in three settings based on its original single-view version and official multi-view version. Even the
multi-view version of the Trellis is still not a reconstruction model. Trellis is primarily designed
as a generative model. Specifically, Trellis’s multi-view input strategy involves randomly sampling
viewpoints during different denoising steps. Only one randomly selected view is received at each
denoising step. This cannot aggregate all views simultaneously, which may limit its ability to fully
exploit multi-view consistency in our reconstruction setting. Moreover, Trellis can’t generate 3D
meshes that perfectly match the input images. These points explain its lower reconstruction accuracy
under our evaluation protocol.
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Table 6: Experiments Table 7: Comparison with Table 8: Comparison with Trellis on

about grid resolutions. Trellis on multi-view. single-view.
Resolution ‘ cD Fl Method ‘ CD() FI(T) Method ‘ CD() FI1(D)
128 0032 0987 TrelliscMV) | 0.136  0.835 Trellis original 0.119 0.859
192 07028 0'992 DiMeR(GT) | 0.028 0.992 Trellis+zero123plus | 0.155 0.783
’ ; DiMeR(SN) | 0.032 0.988 DiMeR 0.052  0.981

Table 9: Quantitative results for reconstruction task with different normal predictors. CD means
Chamfer Distance. Error is the angle between predicted normal vectors and gt normal vectors.

Dataset \ GSO \ OmniObject3D

Metric | CD() F1 (1) Error () | CD () F1 (1) Error ()
GeoWizard+DiMeR 0.039 0.982 17.673 0.037 0.987 23.129
MariGold+DiMeR 0.037 0.986 17.400 0.038 0.984 22.934
DSINE+DiMeR 0.040 0.978 17.953 0.046 0.974 23.010
Lotus-G+DiMeR 0.033 0.988 17.151 0.036 0.988 21.523
Lotus-D+DiMeR 0.035 0.987 16.606 0.034 0.989 21.065

StableNormal+DiMeR 0.032 0.988 16.818 0.030 0.993 21.205

Table 11: Robustness to Gaussian noise in nor-

Table 10: Different normal sources for single- ~mal maps.
image-to-3D task with Zero123plus. Noise std | cp() FI(h
Method cb()  FIh 0.0 0.028 0.992
DiMeR + Zero123plus joint Normal | 0.061  0.960 8'?5 8'825 8'33}
DiMeR + Zero123plus SN Normal 0.052 0.981 0:3 0:036 0:987
0.5 0.042 0.982

Robustness on different normal prediction models. As shown in Tab.[9] we conduct the experi-
ments based on different normal foundation models as DiMeR’s input. DiMeR empirically shows
strong robustness across different normal prediction models. Furthermore, we can observe that the
CD value exhibits a decreasing trend as the normal prediction error decreases.

Besides different normal prediction models, we also conduct experiments on the joint normal maps
output from zero123plus|[Shi et al.| (2023a). As shown in Tab[I0} these results indicate the robustness
of our DiMeR can adapt to any normal source.

Finally, as shown in Fig.[TT] we conduct the experiments on giving some noise to the objects’” normal
maps.

5 CONCLUSION

In this paper, we propose DiMeR, a disentangled dual-stream framework with 3D supervision for
feed-forward sparse-view mesh reconstruction. By driving the geometry branch exclusively with
normal maps and leaving RGB information to a separate texture branch, DiMeR clearly separates
conflicting objectives and grounds training on unambiguous supervision signals. To enhance the
training effectiveness and spatial resolution, DiMeR improves the mesh extraction algorithm by
redesigning the regularization losses, introducing 3D ground-truth supervision, and removing re-
dundant modules. Extensive experiments confirm that DiMeR surpasses state-of-the-art baselines
across multiple tasks, such as sparse-view-to-3D, image-to-3D, and text-to-3D, highlighting both its
effectiveness and robustness. As normal-prediction models continue to improve, DiMeR’s perfor-
mance is likely to advance further.

Limitations. 1) Since we train DiMeR on the object-wise normal maps with a white background,
we can not accept the scene-level sparse views as input. 2) On the single-image-to-3D task, the
enhancement of the 2.5D diffusion model, including resolution and accuracy, would help DiMeR
achieve better quality.
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A IMPLEMENTATION DETAILS

Evaluation Protocol. For 3D metrics, we sample 32,000 points on the surface to compute com-
monly used Chamfer Distance (CD) and F1-Score@0.1 to evaluate the quality of geometry. For 2D
metrics, we compute the PSNR, SSIM, and LPIPS to evaluate the rendering quality over 8 rendered
views. We rescale and align the generated meshes and ground truth meshes for fair comparison.
Training. We set the total batch size to 64, with learning rate of 4 x 10~ for geometry branch and
4 x 1075 for texture branch. The resolution of the triplane is 3 x 64 x 64, and the SDF grid is 1923,
which is higher than baselines benefiting from our enhancement of mesh extraction methods. The
resolutions of input and supervision are 512 x 512. For PBR statistical expectation loss, we place the
predicted meshes in 10 different lighting environments and apply 10 different materials, rendering
from different 10 views during training. We train the geometry branch for two days and the texture
branch for one day on 8 H100 GPUs.

B BENCHMARK FOR NORMAL PREDICTION MODELS

To determine whether recent normal-prediction foundation models meet the quality requirements of
our pipeline, we evaluate Lotus (He et al} [2024), StableNormal (Ye et al, [2024), DSINE (Bae &
Davison| 2024), Marigold (Ke et al.| [2024), and GeoWizard (Fu et al., on the GSO (Downs
et al.,[2022) and OmniObject3D (Wu et al. benchmarks. For each object, six randomly sam-
pled views are rendered, producing paired RGB images, masks, and ground-truth normal maps.
Using the RGB inputs, we measure mean and median angular error, the proportion of pixels with
error below 11.25°, 22.5°, and 30°, and inference time. When computing these metrics, we only
use the foreground pixels. As summarised in Tab.[T2] StableNormal and Lotus offer the best balance
of accuracy and speed, adding only negligible latency. Correspondingly, as demonstrated in Tab.|[T]
even with errors, our DiMeR still outperforms previous methods by a large margin, accepting
the same RGB input. Among the reported metrics, the mean error and the fraction of pixels with
error below the threshold 30° are most indicative of prediction stability. Large errors markedly im-
pact reconstruction quality. Ongoing advances in normal-prediction models are therefore expected
to further improve DiMeR’s performance. We also provide the qualitative comparison in Fig.[7]
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Figure 7: The qualitative comparison for normal prediction foundation models.

Table 12: Benchmark for normal map prediction of foundation models on object scenario. The
latency is evaluated on a single A800 GPU.

Dataset | GSO ‘ OmniObject3D \
Metric \mean () median (}) 11.25° (1) 22.5° (1) 30° (T)\mean () median (}) 11.25° (1) 22.5° (1) 30° (T)\Latency (@)

GeoWizard| 17.673  14.307 = 48309 74908 83.097| 23.129  20.156  28.272 61.215 74.122| 2102 ms
Marigold | 17.400 14.305  47.303 76.058 84.197| 22.934  20.243 ~ 28.867 61.201 73.824| 260 ms
DSINE 17.953  14.857 45543 72951 82.535| 23.010 20.116  29.182 62.140 75.082| 59 ms

Lotus-G 17.151 13920 45343  76.831 85.277| 21.523  19.048  30.836 64.828 77.359| 130 ms
SN VIL.8.1| 16.818 14.743 39.860 74.524 86.424| 21.205 19.468  25.677 61917 77.916| 236 ms
Lotus-D 16.606 13377  47.218 78.076 86.166| 21.065 18.622  32.118 66.216 77.968| 130 ms
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C DISCUSSION ABOUT THE IMPORTANCE OF NORMAL-ONLY

A normal map is simply an image whose three channels no longer describe colour but the z,y and
z components of the unit normal vector at every pixel. In practice each component, which lies in
[-1, 1], is linearly re-encoded into the 0-255 range and written into the R-,G- and B-channels. When
this map is projected back onto the mesh under the same camera pose, every RGB triplet can be
decoded to recover the outward-facing surface normal at that point. Because it is a dense field of
orientations, the map tells us “how the surface tilts here” rather than “what colour it is here”. In other
words, it provides first-derivative information about shape—much like having a slope-at-every-point
description of a landscape.

Specifically, training on RGB images introduces substantial ambiguity. The network must infer
whether changes in colour are due to actual shape (e.g., surface relief) or merely superficial appear-
ance (e.g., paint or lighting). As illustrated in Figure 2 of the paper, visually identical features—such
as black dots on a die—may stem from entirely different causes: painted texture or recessed geom-
etry. This ambiguity forces the network to learn additional heuristics, increasing inductive bias and
complicating generalisation. Normal maps eliminate this burden. Because they encode only surface
orientation, no appearance disentanglement is needed. The network can instead learn a more direct
and well-conditioned mapping from normals to 3D shape. Empirically, this reduced-bias setting
yields clear benefits: substituting RGB supervision with normal maps improves Chamfer distance
from 0.041 to 0.028 and raises the F1 score from 0.971 to 0.992. These results confirm that normal-
based learning is not only simpler, but also more effective.

Table 13: The ablation studies of different input formats.

Input & Output \ CD() FI1(T)
RGB 0.041 0.971
RGB + Normal 0.041 0.981
Normal 0.028 0.992

D ABLATION STUDIES FOR DEFORMATION AND WEIGHT NETOWRKS

To validate the inefficiency of deformation and weight networks in FlexiCubes, we additionally
conduct the experiments based on the official pre-trained weights of PRM. As shown in Tab.
removing these two networks doesn’t damage the performance. Therefore, the experiments of Tab.[3]
and Tab. can prove our conclusion, the deformation network and weight network are redundant
for LRM series models. Cutting the cost of these two modules, we can improve the spatial resolution
from 1283 to 1923. Moreover, the latency of each iteration in training is also reduced.

Table 14: The ablation studies of the effectiveness of Deformation and Weight MLP based on PRM.
GPU Mem is training occupancy.

Method | CD F1
w/ 0.041 0.977
w/o 0.041 0.977

E DISCUSSION ABOUT THE INFLUENCE OF NORMAL PREDICTION
ACCURACY

In DiMeR’s training, we take the unstable prediction from normal prediction models into consider-
ation. Specifically, we add noise to the GT normal input to improve robustness in practical utiliza-
tion. Though the slight accuracy drop is inevitable, the overall accuracy is still much higher than
the baseline’s. As shown in Tab. [I] when replacing the GT normal map from the output of Lotus
or StableNormal, the geometry accuracy only reduces by 0.004 (from 0.028 to 0.032), which gains
22.0% compared with the previous SoTA model, PRM.

F DISCUSSION ABOUT L.OSS DESIGN

All of Eq.3-7 are texture-irrelevant. Normal, Depth, Masks, and PBR light map losses are 2.5D,
which can provide a higher spatial resolution supervision. Since the unaffordable computational
burden when increasing 3D spatial resolution, the 3D SDF loss mainly fuction on a regularization of
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the space (192%), such as the object’s internal. Therefore, the combination of high-resolution 2.5D
supervision with relatively low-resolution 3D regularization is more reasonable.

G MORE VISUAL RESULTS FOR SPARSE VIEW TO 3D
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Figure 8: More Visual Results for Sparse View to 3D. The left and right are input and output seper-
ately.
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H MORE VISUAL RESULTS FOR TEXT TO 3D
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Figure 9: A failure case.

I FAILURE CASE

Since we train DiMeR on the object-level normal maps with a white background, we can not accept
the image with a scene background as input. As shown in Fig.[9) DiMeR fail to synthesis the mesh
model for a scene-level input.

J PBR SETUP

We use a microfacet BRDF with a Lambertian diffuse term and a Cook—Torrance specular term, with
a Trowbridge—Reitz GGX normal distribution, Schlick Fresnel, and a GGX-based geometry term.
Materials are parameterized in the usual metalness—roughness form: per-pixel albedo, metallic, and
roughness. For lighting, we rely on image-based lighting with HDR environment maps. At training
time, each rendered view uses a randomly sampled environment map from a large collection of 679
indoor and outdoor HDRIs. We use the standard split-sum approximation: the diffuse term is com-
puted from a low-frequency irradiance map, while the specular term is obtained from a prefiltered
mipmapped environment map. The range of roughness and metallic parameters is [0,1].

K THE USE OF LARGE LANGUAGE MODELS (LLM)

We used OpenATI’s GPT-5 to assist with the refinement and proofreading of certain sentences in this
paper. The LLM was used exclusively to enhance the clarity and coherence of our writing. All
content contributions are made by the authors.
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