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ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) is essential for training large Vision
Transformers (ViTs), yet existing methods are fundamentally constrained by a
static allocation paradigm, where trainable parameters are fixed before training.
We argue this static approach overlooks the evolving optimization priorities of a
model during learning, thereby limiting its final performance under a constrained
parameter budget. Inspired by the sparse dynamic activation mechanism of neu-
rons in the brain, we introduce a novel dynamic reconfiguration paradigm for
PEFT and propose a framework named Dynamic Adaptive Fine-tuning (DAF).
The core of DAF lies in its ability to periodically evaluate, select, and reshape
its trainable structure during training. It employs our proposed context-aware de-
coupled sensitivity analysis method to purely assess the backbone network’s po-
tential while preserving the full learning context. Subsequently, it executes the
proposed Rebuild-and-Refocus update strategy. This strategy uniquely preserves
learned knowledge by freezing outdated fine-tuning modules while decisively re-
allocating the entire parameter budget to newly identified critical regions. Ex-
tensive experiments on several highly challenging vision benchmarks show that
the DAF framework not only significantly outperforms mainstream static PEFT
methods but also achieves SOTA performance. Our work fundamentally chal-
lenges the static nature of the PEFT field and opens a new avenue for adapting
large pretrained models more intelligently and efficiently. The code is available at
https://anonymous.4open.science/r/DAF-9372.

1 INTRODUCTION

Large-scale pretrained vision models, particularly ViT (Dosovitskiy et al.,|2021)), have demonstrated
remarkable generalization capabilities in many downstream visual tasks. The standard paradigm for
adapting these powerful models to specific tasks is full fine-tuning. However, this approach requires
storing a complete copy of the model for each task, and with the dramatic growth in the scale of
the model (Zhai et al., [2022)), the associated high storage and computational costs have become
prohibitive. PEFT has emerged (Hu et al., |2022; Jia et al., [2022)) to address this challenge, which
tunes only a small fraction of the model’s parameters, achieving performance comparable or even
superior to that of full fine-tuning while significantly reducing resource consumption.

Existing PEFT methods largely follow a static allocation paradigm. One class of methods, such
as Adapter (Houlsby et al.| [2019), LoRA (Hu et al.| [2022), and Visual Prompt Tuning (VPT) (Jia
et al.| [2022), typically relies on human prior knowledge to insert trainable modules at task-agnostic,
fixed locations. Another class of methods attempts to adaptively select fine-tuning parameters for
specific tasks (He et al.l 2023)). However, whether based on heuristic rules or a one-shot sensitivity
analysis, these methods share a fundamental limitation: the locations and structures of all trainable
parameters are determined once before training and remain unchanged throughout the entire fine-
tuning process. Recently, although methods like VQT (Tu et al.l |2023)) and SynQT (Zhang et al.,
2024a)) have made new progress in how to utilize intermediate representations, the tuning structures
they introduce are also fixed after training begins. This static assumption overlooks a critical fact: as
the model progressively learns and adapts to the downstream task, its internal knowledge bottlenecks
and optimization priorities dynamically evolve. A module that is crucial in the early stages of
training may no longer be key to performance improvement later on; conversely, new bottlenecks
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Figure 1: Inspired by the brain’s sparse and Figure 2: Performance comparison on the VTAB-
dynamic activation(Chen et al. [2024), the 1k benchmark. The DAF achieves SOTA per-
DAF framework periodically reconfigures its formance against various static PEFT methods
trainable structure. This contrasts with static ~ with remarkable parameter efficiency (tuning only
PEFT methods that use fixed modules. 0.22% of parameters).

will emerge. Therefore, any static allocation strategy cannot optimally utilize the limited parameter
budget to adapt to the dynamic changes in the model’s own learning state.

This fundamental limitation of the static assumption becomes particularly prominent when con-
trasted with the operational mechanism of nature’s most efficient learning system—the biological
brain. Learning in the nervous system is not a fixed, predetermined process. Instead, it is a highly
dynamic process of remodeling. When faced with new knowledge or tasks, the brain does not
uniformly activate all neurons. Rather, it employs a mechanism of sparse activation to selectively
engage the specific neural circuits most relevant to the current stimulus (Poo et al, 2023). More
importantly, through synaptic plasticity, the connection strengths between neurons are dynamically
strengthened or weakened based on experience. This continuous structural adaptation is the key to
achieving efficient, lifelong learning in biological intelligence.

Inspired by this biological mechanism (Payeur et al.| [2023)), we argue that a more ideal fine-tuning
framework should be able to dynamically perceive and adapt to the model’s evolution, as shown
in Figure [T} To this end, we are the first to propose a novel dynamic reconfiguration paradigm
for PEFT and design a framework named DAF to implement it. The core of DAF is a periodic
perceive-decide-execute cycle. In each dynamic cycle, DAF initiates a three-stage process. First, it
perceives the model’s state by employing our proposed context-aware decoupled sensitivity analysis
method, which accurately evaluates the potential of the underlying backbone within the context of
all previously learned knowledge. Subsequently, it decides on the most critical components for the
current learning stage using a focused Top-K elite selection mechanism. Finally, DAF executes a
decisive reconfiguration by adopting our proposed Rebuild-and-Refocus strategy. This strategy thor-
oughly reorganizes the model’s fine-tuning structure by freezing outdated modules while activating
new ones, thereby concentrating all training resources on newly identified critical regions. This
mechanism enables the model to shed the burden of training less relevant modules and adapt to new
learning bottlenecks as quickly as possible. We conduct extensive experiments on multiple challeng-
ing public benchmarks. As illustrated in Figure 2] the compelling experimental results demonstrate
that the DAF framework not only significantly outperforms mainstream static PEFT methods but
also achieves SOTA level performance, validating the superiority of the dynamic paradigm. The
main contributions consist of the following three aspects:

* We propose the first Dynamic Reconfiguration paradigm for PEFT, which fundamentally
challenges the static nature of the immutable fine-tuning structures in existing methods.

* We design and implement a complete framework named DAF, the core of which is a sophis-
ticated Rebuild-and-Refocus strategy. This strategy uniquely preserves learned knowledge
in previously important modules by freezing them, while decisively reallocating the train-
ing budget to new bottlenecks.

* We design a context-aware decoupled sensitivity analysis method to solve the signal noise
problem in dynamic decision-making. This method temporarily freezes existing fine-tuning
modules on the complete model, enabling a pure assessment of the backbone network’s
potential while preserving the full learning context.
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2 RELATED WORK

Parameter-Efficient Fine-Tuning. Existing PEFT methods can be broadly categorized into three
types based on how they introduce trainable parameters. Addition-based Tuning adapts pretrained
models by injecting new modules or prompts. Among these, Adapter (Houlsby et al., 2019)) serially
inserts small bottleneck layers, whereas AdaptFormer (Chen et al., 2022) places them in parallel
with the FEN. This line of work has seen continued refinement, with Adapter+ (Steitz & Roth,
2024) optimizing the static adapter configuration, and methods like Mona (Yin et al.l 2024) and
LoRand (Yin et al.,|2023b) proposing new adapter architectures for complex dense prediction tasks.
Another popular branch is VPT (Jia et al.,[2022)), which adds learnable prompt tokens. Specification-
based Tuning selectively fine-tunes a small subset of the model’s intrinsic parameters. For example,
BitFit (Zaken et al., [2022a) tunes only the bias terms, and SSF (Lian et al., [2022)) learns to scale
and shift parameters. Reparameterization-based tuning methods, notably LoRA (Hu et al.| [2022),
approximate weight updates using trainable low-rank matrices, which can be merged at inference.
This approach has also been recently enhanced by methods like DoRA (Liu et al., |2024a), which
decomposes weights into magnitude and direction. Despite the success of these methods, their
decisions on ‘where to fine-tune’ largely rely on task-agnostic heuristics. To address this, some
works explore adaptive parameter selection. For instance, GPS (Zhang et al., |2024b)) and SPT (He
et al.,|2023)) proposed identifying the most important parameters for a task via a one-time sensitivity
analysis before fine-tuning begins. However, a common thread among all these methods (includ-
ing heuristic-based, architecture-based, and selection-based) is their adherence to a static allocation
paradigm. Our work fundamentally challenges this static assumption, arguing that the fine-tuning
structure itself should evolve with the training process.

Dynamic Model Adaptation. The concept of dynamics has been explored in other areas, but the
objectives differ fundamentally from our work. One line of research focuses on Inference-Stage
Dynamics to improve computational efficiency. For instance, DynamicViT (Rao et al., [2021) and
DVT (Wang et al.| 2021) dynamically prune tokens. More recently, Sparse-Tuning (Liu et al.|2024b)
and DyT (Zhao et al.,|2024) combine sparsification with PEFT to optimize inference. The core ob-
jective of these methods is to accelerate inference, whereas DAF focuses on making the trainable
structure dynamic during the training stage to improve final model performance. Another line of
work applies dynamic ideas to Continual Learning to mitigate catastrophic forgetting. For example,
some methods dynamically allocate new parameters for each new task (Wang et al.,2024). Recently,
SD-LoRA (Wu et al.| [2024) explored decoupling magnitude and direction for class-incremental
learning. The goal of these works is to balance stability and plasticity when learning a sequence
of discrete tasks, whereas DAF focuses on dynamic adaptation within a single task. A third cate-
gory focuses on static adaptation while improving training efficiency. Head2Toe (Evci et al., [2022)
and LST (Sung et al., [2022) train lightweight side-networks. Similarly, E3VA (Yin et al., [2023a))
proposes a parallel adapter highway to reduce training time and memory, but its focus is on com-
putational efficiency rather than adaptive learning. VQT (Tu et al.| |2023)) and SynQT (Zhang et al.|
2024a)) introduce learnable queries. While effective, their interaction mechanisms remain fixed. Ap-
plying the concept of dynamics to the fine-tuning process of a single downstream task itself remains
a largely unexplored direction. A notable exception is AdaLoRA (Zhang et al.,2023), which adap-
tively prunes the rank of LoRA modules during training based on an importance score. However,
this method focuses on pruning (reducing) a budget from a large initial rank. In contrast, DAF in-
troduces a new paradigm of dynamic reconfiguration: it periodically and adaptively re-allocates its
entire fixed-size PEFT structure by freezing outdated modules and activating new ones. The DAF
framework aims to fill this critical gap, positing that this intra-task training dynamism is key to
achieving a deeper and more efficient model adaptation.

3 METHOD

In the section, we introduce the preliminaries of ViT and LoRA, and then design on the overall
structure of the DAF framework, including its core techniques: Context-Aware Decoupled Sensitiv-
ity Analysis and the Dynamic Reconfiguration mechanism.
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Figure 3: Overall framework of DAF. DAF periodically reconfigures the trainable structure of a pre-
trained ViT during fine-tuning. At each dynamic analysis point, it executes a three-stage cycle: (1)
Perceive the model state via Context-Aware Decoupled Sensitivity Analysis, (2) Decide on the most
critical parameters (Matrix, Vector, and Special) using a budget-based elite selection, (3) Execute a
Rebuild-and-Refocus strategy to update the set of active modules for the next training interval.
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3.1 PRELIMINARIES

Vision Transformer. A standard ViT model consists of a patch embedding layer and L stacked
Transformer Blocks. Each Transformer Block | € {1,...,L} typically includes a Multi-Head
Self-Attention (MSA) module and a Feed-Forward Network (FFN). During fine-tuning, the vast
majority of the ViT’s parameters, denoted as 64, remain frozen. LoRA is an efficient structured
fine-tuning technique. For a pretrained weight matrix Wy € R?**, LoRA approximates its update,
AW, by introducing two trainable low-rank matrices, A € R?*" and B € R"** (where the rank
r < min(d, k)). During the forward pass, the output y of the layer is computed as follows:

y=Wyx+ AWz = Wyx + BAzx )

where only A and B are trainable.

3.2 THE DAF FRAMEWORK: A DYNAMIC RECONFIGURATION PARADIGM

The overall framework of DAF follows a periodic cycle of perceive-decide-execute, which we term
Dynamic Reconfiguration. Unlike static methods that determine all trainable parameters at once
before training, DAF repeatedly executes this cycle throughout the training process to achieve con-
tinuous optimization of the model’s fine-tuning structure. We illustrate the overall framework of
DAF in Figure[3] As shown in the figure, the main training flow involves a pre-trained ViT where
individual layers can be dynamically frozen or have their internal parameters activated. This activa-
tion state is not fixed at every dynamic analysis point (e.g., every Ejyerval €poch) and the Dynamic
Reconfiguration module is triggered. This module executes a three-stage process: it first perceives
the model’s state through dynamic sensitivity analysis, then decides on the new set of elite parame-
ters to train, and finally executes the structural update via the Rebuild-and-Refocus strategy, which
ensures that the limited training budget is allocated to the most critical parts.

Assuming the total number of training epochs is Fiy, and the dynamic analysis interval is
Einervar, DAF performs the following core operations at each dynamic analysis point ¢ €
{Eimervab 2E1imervalv e }:
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* Perceive: Accurately assess the potential of the underlying backbone network within the
complete learning context of the current model (see Section[3.3).

* Decide: Based on the assessment, employ a budget-based elite selection mechanism to
identify the most important set of parameters P, for the current stage (see Section [3.4).

* Execute: Adopt a Rebuild-and-Refocus strategy to reconstruct the model’s structure, en-
suring it only contains the tuning modules corresponding to the set P}, and perform weight
migration (see Section [3.4).

3.3 CONTEXT-AWARE DECOUPLED SENSITIVITY ANALYSIS

Providing a precise navigation signal for dynamic reconfiguration is key to DAF’s success. We
found that directly analyzing a model that includes active LoORA modules introduces signal noise,
as the training state such as high gradients of the LoORA modules themselves can dominate the anal-
ysis. To address this, we propose a context-aware decoupled dynamic analysis method. At each
dynamic analysis point ¢, we define the main model being trained as M, with parameters compris-
ing the backbone weights 9&? and all existing LoRA module parameters el((fr)a' The analysis begins
by temporarily freezing LoRA modules, we iterate through M, and set the parameters of all exist-
ing LoRA modules to a non-trainable state. Next, we perform an end-to-end gradient computation
on the complete model. Since the LoORA modules still participate in the forward pass, they provide
the correct, evolving learning context for the backbone’s gradient calculation. During the backward
pass, the gradient flow is influenced by all LoRA modules but ultimately accumulates only on the
backbone parameters, yielding a pure gradient information. For any backbone parameter w,, € Géz) ,
its sensitivity s;t) can be approximated by drawing inspiration from the model pruning method:

IL(D; M (B, 000))

ow,

sz(f) = wy, (2)

where L is the task loss function and D is a small batch of data used for analysis. Because the gradi-
ents of LORA parameters are disabled, this score reflects the purest potential signal of the backbone
network. This dynamic, context-aware approach fundamentally differs from static methods that
perform a one-shot analysis of the original unmodified backbone before any training begins.

3.4 DYNAMIC RECONFIGURATION: BUDGET-BASED ELITE SELECTION AND
REBUILD-AND-REFOCUS UPDATE

After obtaining the sensitivity scores for all backbone parameters, DAF employs a refined, budget-
based elite selection mechanism instead of a simple global Top-K selection.

Parameter Categorization. To prevent the selection from being dominated by superior matrix
parameters and ensure a functionally diverse set of tunable parameters is chosen, we first classify
all backbone parameters to be analyzed into three categories: Matrix Parameters (Pp,), which are
the primary candidates for LoRA tuning. Vector Parameters (Pyec), such as LayerNorm weights and
biases, and Special Parameters (Pgpec), like cls_token and pos_embed.

Budget-Based Elite Selection. We first define an overall parameter budget, denoted by a ratio 7
(e.g., 7 = 0.2), which represents the target fraction of total possible PEFT parameters to be acti-
vated. To determine the specific parameter count budget for each category, this overall ratio 7 is
combined with fixed allocation ratios for Matrix Parameters (Pna), Vector Parameters (Pye.) and
Special Parameters (Pgyec). This partitioned budget strategy is crucial as it ensures a balanced se-
lection of diverse parameter types, preventing the sensitivity scores of large-scale matrix parameters
from dominating and overshadowing smaller, yet functionally critical, vector or special parameters.
Within each category’s specifically allocated budget, we then rank parameters by their sensitivity

scores sz(,t) and select the top-ranking ones to form the active sets Af;fgt, \(,2 and A§f,£c. The final

set of parameters to be fine-tuned in the current cycle is the union P; = Aﬁfﬁt U A\(,Q U Aﬁﬁic. We
add a constraint that only parameters with non-zero gradients are considered.

Rebuild-and-Refocus Update. This mechanism ensures both learning continuity and adaptive re-
source allocation through a two-step process. First, for model reconstruction, we create a new, clean
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model instance, M, 1. This new model instantiates LoRA structures for all modules m in the union

of the previous and current active sets, AS‘; Yy A,(Izt. Second, we perform a meticulous weight
migration to transfer knowledge from the old model M;. For any parameter w;, in the new model
Mt+12

wy, if p is a backbone parameter

wy, = § wp if p is in a LoRA module for m € A" (3)

Re-initialized if p is in a LoRA module for m € A,Efgt \ Al(nta: 2

where wy, is the corresponding parameter from the old model M. Crucially, after weight migration,
the Refocus step redefines the entire set of trainable parameters for the next training interval. For the

matrix parameters, only the LoORA modules corresponding to the new active set .A,mlt are enabled for

training. Any LoRA module from the previous step that is no longer selected (m & A,(]fa: 2 \A(t)l) is
immediately frozen, preserving its acquired knowledge while freeing up resources. In parallel, this
update logic extends to the intrinsic backbone parameters: those selected for the new elite vector and

special sets, A vee and Aspec, are marked as trainable, while any previously trained vector or special
parameters that are no longer part of the elite sets are frozen.

This comprehensive process ensures that knowledge from the backbone and all previously learned
modules is inherited, while training resources are decisively refocused on the newly identified criti-
cal regions across all parameter types. Through this cycle, DAF ensures that its fine-tuning structure
is tailored to the current learning state at each stage, thereby achieving maximal adaptability.

Zero-Overhead Inference. Upon the completion of training, DAF employs a re-parameterization
technique. All learned LoRA parameters (matrices A and B), regardless of the training stage in
which they were activated, are mathematically merged into the backbone weights via Wy = Wy +
BA. Consequently, the final model is architecturally identical to the original ViT, requiring no extra
storage for historical parameters and incurring zero additional computational cost during inference.

The complete process of the DAF algorithm is detailed in Algorithm|[I]

Algorithm 1 DAF: Dynamic Adaptive Fine-tuning

Require: Pretrained ViT model M, Total epochs Eiy,;, Dynamic interval Ejyeva, Budget 7.
1: Initialize model M «+ M.
(0)

2: Perform initial sensitivity analysis on M to get initial active sets Amat, Avec , Aspec.

3: Rebuild model M with LoRA modules for Amal and enable gradients for other active parame-
ters.

4: Initialize Optimizer O for all trainable parameters in M.

5: for epoch t = 1 to Eiy, do

6: Train model M for one epoch using Optimizer O.

7 ift (mod Eierva) = 0 then

8 > Perceive: Context-Aware Decoupled Sensitivity Analysis

9: Temporarily freeze all existing LoORA modules in M (requires_grad=False).
10: Compute backbone sensitivity scores s ) on M using Eq. equatlon
11: Unfreeze LoRA modules.
12: > Decide & Execute: Rebuild-and-Refocus
13: Save current active sets as .,élmtat 1), VZC b A§;§ec1).
14: Determine new active sets AI(TQU Asic, AbpeL based on top 7 sensitive parameters.
15: Create new model M., with LoORA modules for all m € A,(Jat > Aﬁfﬁt.
16: Perform weight migration from M to M., using Eq. equation
17: Set only parameters corresponding to A,ﬁf,ﬁt, &2, A§;§2C as trainable in M ey .
18: M — Myew.-
19: Re-initialize Optimizer O for the new trainable parameters in M.
20: end if
21: end for

22: return Trained model M.
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4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the proposed DAF framework. First,
we compare DAF against the mainstream and latest PEFT methods across diverse benchmarks, then
conduct comprehensive ablation studies on its core components, and finally analyze how the key
hyperparameters influence its performance.

4.1 EXPERIMENTAL SETUP

Datasets. To ensure a comprehensive evaluation, we conduct experiments across a diverse range of
visual tasks. For classification, we utilize the standard Fine-Grained Visual Classification (FGVC)
benchmark and the large-scale Visual Task Adaptation Benchmark (VTAB-1k) (Zhai et al., [2019).
To further demonstrate the versatility of DAF on complex dense prediction tasks, we extend our
evaluation to Object Detection on MS COCO (Lin et al) [2014) and Semantic Segmentation on
ADE20K (Zhou et al.} 2017). Further details are provided in Appendix

Implementation Details. Our primary experiments utilize a ViT-B/16 backbone pre-trained on
ImageNet-21k. To verify architectural generalization, we also employ Hierarchical Transform-
ers (Swin-B/L) and CNN-based architectures (ConvNeXt-B). We use the AdamW optimizer on
NVIDIA RTX 4090 GPUs. Detailed hyperparameters are listed in Appendix [A.2]

Baselines. We compare DAF against a comprehensive suite of PEFT methods, ranging from clas-
sic approaches to the latest SOTA. These baselines cover three primary paradigms: (1) Addition-
based methods, such as Adapter (Houlsby et al., [2019), AdaptFormer (Chen et al. [2022); (2)
Reparameterization-based methods, such as LoRA (Hu et al.,2022); and (3) Prompt-based methods,
such as VPT (Jia et al., 2022), NOAH (Zhang et al.,|2022). Crucially, we include strong competitors
from 2023-2024, such as SPT (He et al.| 2023), VQT (Tu et al.l 2023), Res-Tuning (Jiang et al.,
2023), LoRand (Yin et al., [2023b) Bi-LoRA (Jie et al., [2023), PYRA (Xiong et al.,|[2024), DyT
(Zhao et al. 2024), Adapter+ (Steitz & Roth, [2024)), GPS (Zhang et al., |2024b), SynQT (Zhang
et al.| [2024a), and Mona (Yin et al.| [2024), to ensure a rigorous comparison against the current re-
search frontier. A “Static DAF” baseline is also introduced to isolate the benefits of our dynamic
mechanism.

4.2 MAIN RESULTS ON STANDARD BENCHMARKS

We first compare DAF with baseline methods under the standard setting using a supervised pre-
trained ViT-B/16 backbone. The average accuracy on FGVC and VTAB-1k is presented in Table

As delineated in Table[I] the proposed DAF framework achieves SOTA performance, outperforming
all static PEFT baselines, including recent strong competitors like GPS (Zhang et al., 2024b) and
SPT-LoRA (He et al.l [2023) on both benchmarks. This highlights the significant advantage of dy-
namically reallocating parametric resources during training over a fixed, pre-determined fine-tuning
strategy. Furthermore, the performance gap between DAF and our Static DAF baseline directly val-
idates that the observed gains are attributable to the dynamic reconfiguration mechanism. To further
substantiate the stability and convergence superiority of this dynamic process, we provide a visual
analysis of training loss trajectories in Appendix For a more granular analysis, we present
the detailed per-task results on both benchmarks in Appendix [A.4] and provide the corresponding
dynamic behavior visualizations for each task in Appendix[A.3] In addition to model performance,
we also evaluate the computational efficiency of our method. As detailed in Appendix and
Appendix DAF demonstrates a highly competitive efficiency profile, achieving its superior
performance with a minimal parameter budget and no additional inference overhead.

4.3  VERSATILITY IN SELF-SUPERVISED PRE-TRAINING PARADIGMS

To rigorously test the versatility and robustness of DAF, we evaluated DAF on ViT-B/16 models pre-
trained with two distinct self-supervised paradigms: Masked Autoencoders (MAE) and Momentum
Contrast v3 (MoCo v3). Theoretically, the specialized features learned through these paradigms
can result in highly varied parameter sensitivities across different downstream tasks. This charac-
teristic poses a significant challenge for static PEFT methods, as their fixed allocation of trainable
parameters may struggle to adapt to such shifting optimization requirements.
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Table 1: Overall performance comparison on FGVC and VTAB-1k benchmarks (ViT-B/16,
ImageNet-21k pre-trained). Accuracy is Top-1 Avg. (%). ‘Tuned/Total’ denotes the fraction of
trainable parameters. We highlight the best and the second-best results. Recent SOTA methods
(2023-2024) are included as per reviewer feedback.

FGVC VTAB-1k
Method Tuned/Total (%) Mean Acc. (%) Tuned/Total (%) Natural Specialized Structured Mean Acc. (%)
Full Fine-tuning 100 88.5 100 75.9 83.4 47.6 69.0
Static PEFT Baselines
Adapter-8 (Houlsby et al.|[2019) 0.39 85.5 0.23 79.0 84.1 58.5 73.9
Adapter-32 (Houlsby et al.|[2019) 0.95 85.6 0.71 79.6 84.0 583 74.0
LoRA-8 (Hu et al.[[2022} 0.55 86.0 0.23 79.5 84.6 60.5 74.9
LoRA-16 (Hu et al.[[2022) 0.90 84.8 0.69 79.8 84.9 60.2 75.0
VPT-Deep (Jia et al.|[|2022) 0.35 83.8 0.32 78.5 824 55.0 72.0
AdaptFormer (Chen et al.|[2022} 0.23 86.1 0.20 80.5 849 58.8 74.7
NOAH (Zhang et al.|[2022} 0.50 89.2 0.52 80.2 849 61.3 755
Recent Static SOTA Baselines
VQT (Tu et al.[[2023) 0.30 825 0.24 76.0 80.2 46.3 68.3
SPT-Adapter (He et al.|[2023} 0.41 89.5 0.30 81.3 853 60.8 75.8
SPT-LoRA (He et al.|[2023) 0.41 89.3 0.31 81.5 85.6 60.7 75.9
Res-Tuning (Jiang et al.[[2023) 0.79 90.1 0.64 82.3 85.4 61.2 74.1
Bi-LoRA (Jie et al.[[2023] 0.24 89.3 0.28 81.1 84.4 60.5 75.4
SynQT (Zhang et al.[[2024a) 0.30 84.7 0.26 78.0 84.4 56.2 72.9
PYRA (Xiong et al.[[2024) 0.34 86.2 0.30 79.1 844 60.6 74.7
GPS (Zhang et al.[[2024b) 0.77 90.0 0.50 83.7 80.2 61.9 75.2
Adapter+(r=T) (Steitz & Roth/[2024} 0.22 90.1 0.23 832 85.5 60.1 76.3
DyT (r=0.5) (Zhao et al.|[2024) 0.23 90.0 0.23 80.8 85.6 60.7 75.7
Our Methods (Dynamic)
Static DAF (Ours) 0.21 89.5 0.22 81.5 852 60.8 75.8
DAF (Ours) 0.21 90.2 .22 82.0 85.9 61.4 76.4

This is precisely the scenario where DAF’s dynamic reconfiguration paradigm is designed to excel.
By periodically re-evaluating and re-allocating trainable parameters, DAF can fluidly adapt to a
model’s evolving optimization priorities. The results in Table [2] provide strong evidence for this
approach. DAF consistently outperforms the static baselines on both self-supervised backbones,
suggesting its dynamic mechanism is uniquely suited to unlocking their full potential by effectively
navigating their complex optimization landscapes.

Table 2: Performance comparison on the VTAB-1k benchmark across different ViT-B/16 self-
supervised backbones.

Backbone Method Natural Specialized Structured Mean Acc. (%)
Full Fine-tuning 59.3 79.7 53.8 64.3
LoRA-16 (Hu et al.;|2022) 57.3 77.1 59.9 64.8
Adapter-32 (Houlsby et al.; 2019) 55.3 78.8 53.3 62.5
SPT-Adapter (He et al.|[2023) 64.8 82.4 604 69.2
SPT-LoRA (He et al.|[2023) 63.8 81.6 60.0 68.5

MAE BIAS (Zaken et al.||[2022a) 54.6 7571 47.7 59.3
VPT-Deep (Jia et al.|[2022) 50.8 76.4 37.3 54.8
VQT (Tu et al.}[2023) 56.6 78.6 434 59.5
SynQT (Zhang et al.| 2024a) 66.0 82.6 58.2 68.9
DAF (Ours) 65.7 82.7 61.4 69.9
Full Fine-tuning 72.0 84.7 42.0 69.6
LoRA-16 (Hu et al.,|2022) 16.0 64.0 48.7 429
Adapter-32 (Houlsby et al.; 2019) 74.2 82.7 47.7 68.2

MoCo v3 SPT-Adapter (He et al.[[2023) 76.1 84.9 60.1 73.7
SPT-LoRA (He et al.}[2023) 76.5 854 63.0 75.0
BIAS (Zaken et al.||[2022a) 72.9 81.1 534 69.2
DAF (Ours) 76.7 85.9 63.7 754

4.4 PERFORMANCE ON COMPLEX VISUAL TASKS

Object Detection on MS COCO. We utilized the MS COCO 2017 dataset (Lin et al.}[2014) and em-
ployed Mask R-CNN (He et al.,[2017) as the object detection framework. Following standard prac-
tices for prediction tasks, we adopted a Swin-B backbone initialized from ImageNet-21k weights.
As reported in Table 3[ (Left), DAF achieves a remarkable 53.5 AP** and 46.1 AP™?**_ Notably,
DAF surpasses the static LORA baseline by a substantial margin of 3.1 AP®*® and 2.2 AP™25
while using only 2.1M trainable parameters. This shows that our dynamic budget allocation effec-
tively captures the multi-scale object-centric features essential for precise localization.

Semantic Segmentation on ADE20K. We further extended our evaluation to the ADE20K
dataset (Zhou et al., 2017) using the UperNet (Xiao et al.,[2018)) framework with a stronger Swin-L
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backbone.As shown in Table [3] (Right), DAF attains a best mIoU of 52.0%. This performance sig-
nificantly outperforms the LoRA baseline (50.3%) by 1.7% and surpasses the previous best method
LoRand++ with fewer parameters.

Table 3: Results on complex visual tasks. Left: Object Detection and Instance Segmentation on
COCO val2017. Right: Semantic Segmentation on ADE20K. We include recent SOTA methods on
Swin backbones.

Object Detection (COCO) Semantic Segmentation (ADE20K)

Method Backbone Params APY* APTask ‘ Method Backbone Params mloU
Full Fine-tuning Swin-B 8OM 52.4 45.1 \ Full Fine-tuning  Swin-L 198M 51.1
Recent SOTA baseslines

BitFit (Zaken et al.|[2022b) Swin-B 0.2M 50.1 43.6 BitFit Swin-L 0.3M 48.3
NormTuning (Giannou et al.|[2023)  Swin-B 0.1M 50.1 435 NormTuning Swin-L 0.1IM 47.9
Partial-1 (Yosinski et al.|[2014) Swin-B 13.0M 50.6 43.7 Partial-1 Swin-L 28.8M 47.4
Adapter (Houlsby et al.||2019) Swin-B 3.2M 52.1 45.0 Adapter Swin-L 4.6M 50.8
LoRA (Hu et al.[[2022) Swin-B 3.1M 50.4 43.9 LoRA Swin-L 4.6M 50.3
AdaptFormer (Chen et al.|2022) Swin-B 1.6M 51.7 44.6 AdaptFormer Swin-L 2.3M 50.8
LoRand (Yin et al.[|2023b) Swin-B 2.4M 51.1 44.1 LoRand Swin-L 3.6M 50.7
LoRand++ (Yin et al./|2023b) Swin-B 9.3M 51.5 44 4 LoRand++ Swin-L 14.2M 519
Mona (Yin et al.|[2024) Swin-B 4.2M 53.4 46.0 Mona Swin-L 5.1M 51.4
DAF (Ours) Swin-B 2.1M 53.5 46.1 | DAF (Ours) Swin-L 3. M 52.0

These results align with observations in Mona (Yin et al., |2024) and LoRand (Yin et al. 2023b)
that standard static PEFT methods often struggle with the complex spatial dependencies required in
these tasks. By introducing the dynamic reconfiguration paradigm, DAF effectively bridges this gap.
Additionally, we provide a comprehensive analysis of DAF’s generalization capabilities on diverse
backbones (e.g., ConvNeXt) for classification tasks in Appendix enabling flexible adaptation
to diverse visual structures while maintaining superior parameter efficiency compared to both full
fine-tuning and existing PEFT counterparts.

4.5 ABLATION STUDIES

To deeply understand and validate the contribution of each design choice within the DAF framework,
we conducted a series of detailed ablation studies on the VTAB-1k benchmark.

Impact of Core Components. We first analyze the effectiveness of the core dynamic paradigm and
its essential components, with results summarized in Table[d] (1) The comparison between the DAF
framework and its static counterpart, Static DAF, directly validates the core hypothesis of this paper.
Static DAF performs the context-aware decoupled analysis and rebuild-and-refocus but only once
before training. By moving from this strong static baseline to a periodic reconfiguration strategy,
DAF achieves a significant performance gain (76.4% vs 75.8%). To rigorously rule out the influence
of hyperparameters, we further verify DAF against a wide spectrum of Static DAF configurations
in Appendix This demonstrates that adapting to the model’s evolving optimization priorities
throughout the training process is crucial for unlocking higher performance under a constrained pa-
rameter budget. Having established the value of the dynamic paradigm, we further investigate the
necessity of DAF’s two key design choices. (2) We designed a variant, DAF-Naive, where the sen-
sitivity analysis is always performed on a pristine, unchanged copy of the original ViT backbone,
isolated from the model’s evolving state. Its inferior performance highlights the criticality of the
context-aware decoupled analysis. Making decisions based on the true, evolving state of the model
provides a more accurate navigation signal, which is essential for effective dynamic adaptation.
(3) We designed another variant, DAF-Accumulate, which adopts a pure knowledge accumulation
approach where all historically activated LoRA modules are retained and remain trainable. This
contrasts with the rebuild-and-refocus strategy, which freezes outdated modules. The superior per-
formance of our main method shows that continuously training too many outdated modules wastes
training resources and constrains the model’s flexibility. The rebuild-and-refocus approach grants
the model maximum agility by decisively reallocating its training budget to the most critical, evolv-
ing bottlenecks. In summary, these ablations compellingly demonstrate that DAF’s success stems
from a synergistic combination: the dynamic reconfiguration provides the opportunity for contin-
uous improvement, while context-aware decoupled sensitivity analysis and the rebuild-and-refocus
strategy provide the precise guidance and efficient execution necessary to realize that opportunity.
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Table 4: Ablation study on the core components of DAF on the VTAB-1k benchmark.

Method \ Dynamic Reconfiguration  Context-Aware Analysis  Rebuild-and-Refocus \ Mean Acc. (%)
Static DAF | v v | 75.8
DAF-Naive v v 74.6
DAF-Accumulate v v 75.3
DAF (Ours) v v v 76.4

Impact of Dynamic Update Frequency and Budget. We study the effect of the reconfiguration
interval Eiperva and the parameter budget ratio 7. As shown in Table [5] (left), updates that are too
frequent (e.g., every 5 epochs) can lead to training instability, while updates that are too sparse
(e.g., every 50 epochs) fail to capture the evolving training dynamics effectively. An interval of 10
epochs appears to offer the best trade-off. For the parameter budget 7, shown in Table [3] (right), we
observe that performance peaks at 7 = 0.2 and then slightly degrades as the budget continues to
increase. This phenomenon can be explained by the nature of the sensitivity analysis. A relatively
small subset of backbone parameters exhibits high sensitivity (i.e., large gradients), while the vast
majority have very low sensitivity scores. A budget larger than optimal (e.g., 7 = 0.3 or 0.4)
forces the elite selection mechanism to include parameters with minimal sensitivity. Allocating
training resources to these non-critical parameters is counterproductive; it can introduce noise into
the optimization process and diverts the training budget away from the components that are most
crucial for adaptation, leading to a marginal decline in performance. Therefore, 7 = 0.2 strikes an
excellent balance, capturing a sufficient set of critical parameters for effective adaptation without
wasting resources on less relevant ones.

Table 5: Impact of dynamic update frequency Fiyerval (left) and parameter budget 7 (right) on VTAB-
1k average accuracy.

(a) Update frequency Finterval (b) Parameter budget 7
FEinterval (epochs) 5 10 25 50 T 0.1 0.2 0.3 0.4
Mean Acc. (%) 76.0 76.4 76.1 75.9 Mean Acc. (%) 75.7 76.4 76.2 76.1

Robustness to Sensitivity Batch Num. We further investigated DAF’s Robustness to sampling
noise by varying the Sensitivity Batch Num M (the number of batches used to estimate sz(,t)).
We swept M across {8,12,16,20,28,32}, with M = 16 being the default. As detailed in Ap-
pendix [A.8] our results demonstrate high robustness: the Mean Accuracy on VTAB-1k fluctuates
negligibly (within = 0.3%) across this wide range. Furthermore, loss curves on CIFAR-100 confirm
that training convergence remains smooth and consistent, validating that our context-aware analysis
captures stable macro-level trends even with varying sample sizes.

5 CONCLUSION

In this paper, we propose a novel dynamic reconfiguration paradigm for PEFT and design a gen-
eral framework named DAF to address the limitations of the static allocation paradigm prevalent in
existing PEFT methods. Through a periodic perceive-decide-execute loop, DAF can continuously
and adaptively reshape its fine-tuning structure based on the model’s own learning state. The core
contributions are threefold. First, the proposed dynamic reconfiguration paradigm challenges the
static nature of existing methods. Second, we design a complete DAF framework, centered around a
sophisticated Rebuild-and-Refocus update strategy. This strategy uniquely preserves learned knowl-
edge in outdated modules by freezing them, while decisively refocusing the limited parameter budget
on newly identified bottlenecks, thus maximizing adaptivity without catastrophic forgetting. Lastly,
to provide precise guidance for dynamic decision-making, we pioneer a context-aware decoupled
sensitivity analysis method. By temporarily freezing existing fine-tuning modules on the full model,
this method elegantly resolves the signal noise problem in dynamic analysis. Extensive experiments
on several challenging vision benchmarks compellingly show that our method not only significantly
outperforms mainstream static PEFT baselines but also achieves SOTA performance.

Despite the encouraging results achieved by DAF, future work will explore combining the DAF ap-
proach with other PEFT techniques and extending it to broader domains such as multimodal learn-
ing, which opens a new path toward more intelligent adaptation of large-scale pretrained models.

10
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A APPENDIX

A.1 DATASET DETAILS

The experiments are conducted on two diverse and challenging benchmarks: the Fine-Grained Vi-
sual Classification (FGVC) suite and the Visual Task Adaptation Benchmark (VTAB-1k) (Zhai et al.,
2019).

The VTAB-1k benchmark consists of 19 distinct tasks as shown in Table [6 which are grouped
into three categories. The Natural category includes common image classification datasets such
as CIFAR-100 (Krizhevsky & Hinton, [2009), Caltech101 (Fei-Fei et al., 2004), DTD (Cimpoi
et al., 2014)), Oxford-Flowers102 (Nilsback & Zisserman, 2008), Oxford-Pets (Parkhi et al., 2012),
SVHN (Netzer et al., 2011), and Sun397 (Xiao et al.,|2010). The Specialized category is composed
of tasks from specific domains, including medical imaging (Patch Camelyon (Veeling et al.,|2018),
Retinopathy (Kaggle and EyePacs|,[2015))) and satellite imagery (EuroSAT (Helber et al.| [2019), Re-
sisc45 (Cheng et al.,2017)). The Structured category evaluates the model’s understanding of scenes
and semantics, with tasks like Clevr (Johnson et al., 2017)), DMLab (Beattie et al.l 2016), KITTI-
Dist (Geiger et al.||2013)), dSprites (Higgins et al., 2017)), and SmalINORB (LeCun et al., 2004). For
all VTAB-1k tasks, we follow the standard setup of using 800 training and 200 validation samples.

The FGVC benchmark focuses on tasks that require distinguishing between subtle visual differ-
ences. We evaluate on five datasets from this benchmark: CUB-200-2011 (Wah et al.l 2011)),
NABirds (Van Horn et al.l 2015), Oxford-Flowers102 (Nilsback & Zisserman, [2008)), Stanford
Cars (Krause et al [2013)), and Stanford Dogs (Khosla et al., [2011). For these datasets, we use
the official training, validation, and test splits provided by the dataset creators.

Table 6: Statistics of the datasets used in the experiments. For VTAB-1k, all tasks use 800 training
and 200 validation samples. For FGVC, we list the official split sizes.

Benchmark Dataset # Classes  Train Val Test
VTAB-1k
CIFAR100 100 800 200 10,000
Caltech101 102 800 200 6,084
DTD 47 800 200 1,880
Natural Oxford-Flowers102 102 800 200 6,149
Oxford-Pets 37 800 200 3,669
SVHN 10 800 200 26,032
Sun397 397 800 200 21,750
Patch Camelyon 2 800 200 32,768
Specialized EurgSAT 10 800 200 5,400
Resisc45 45 800 200 6,300
Retinopathy 5 800 200 42,670
Clevr/count 8 800 200 15,000
Clevr/distance 6 800 200 15,000
DMLab 6 800 200 22,735
Structured KIT"l_"I-Dist _ 4 800 200 711
dSprites/location 16 800 200 73,728
dSprites/orientation 16 800 200 73,728
SmalINORB/azimuth 18 800 200 12,150
SmallINORB/elevation 18 800 200 12,150
FGVC
CUB-200-2011 200 5,994 - 5,794
NABirds 555 23,929 - 24,633
FGvVC Oxford-Flowers102 102 1,020 1,020 6,149
Stanford Cars 196 8,144 - 8,041
Stanford Dogs 120 12,000 - 8,580
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A.2 MORE IMPLEMENTATION DETAILS

We provide a comprehensive list of hyperparameters used for training the DAF framework and all
baselines in Table[7] These settings are kept consistent across all datasets to ensure a fair comparison,
unless otherwise specified in the original papers of the baseline methods. All experiments were
conducted using the PyTorch framework.

Table 7: General hyperparameters used for all experiments.

Hyperparameter Value
Optimizer

Optimizer AdamW
Betas (0.9, 0.999)
Epsilon 1x1078
Training Schedule

Base Learning Rate 3x 1074
Weight Decay 1x1074
Learning Rate Schedule Cosine Decay
Warmup Epochs 10

Batch Size 64

Total Epochs 200
Regularization

Label Smoothing 0.1

Drop Path Rate 0.1

DAF Specific

LoRA Rank (r) 8
Dynamic Update Interval (Figerva) 10
Parameter Budget (7) 0.2
Sensitivity Analysis Batches 8
Senssitivity Batch Num 16
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A.3 VISUAL ANALYSIS OF TRAINING STABILITY

To empirically address the concern regarding training stability due to optimizer state re-initialization,
we visualized the training loss trajectories over 200 epochs on four representative datasets: CIFAR-
100, Caltech-101, DTD, and Flower102.

As shown in Figure 4] we observe the following key behaviors:

Fast Convergence. Across all datasets, DAF (Red line) demonstrates the fastest convergence rate,
typically stabilizing around epoch 100-125. This indicates that the dynamic allocation of resources
allows the model to fit the data more efficiently than static baselines.

Realistic Dynamics. The loss curves exhibit natural fluctuations (jitter), particularly for DAF. This
behavior reflects the periodic ‘“Perceive-Decide-Execute” process. Rather than being a sign of in-
stability, these minor fluctuations represent the model actively escaping local minima and exploring
better optimization paths, a mechanism akin to simulated annealing.

Superior Final Loss. Crucially, after converging (post-150 epochs), DAF consistently settles at a
lower loss level than both Static DAF and LoRA. For instance, on CIFAR-100, the gap between
DAF and LoRA is significant, aligning with the large accuracy gap (74.1% vs 68.1%).

CIFAR-100 Caltech-101 DTD Flower102

LoRA
—— Static DAF
—— DAF (Ours)

ning Loss (Log Scale)

Trais

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epochs Epochs Epochs Epochs

Figure 4: Training Loss. Comparison of DAF (Ours), Static DAF, and LoRA. DAF consistently
achieves the fastest convergence and the lowest final loss. The slight jitter in the DAF curve reflects
its dynamic nature, effectively preventing stagnation in sub-optimal local minima.

A.4 DETAILED PER-TASK RESULTS

Here we provide a more granular analysis with detailed per-task results on both the FGVC and
VTAB-1k benchmarks, presented in Table 8] and Table [J] respectively. In the fine-grained tasks of
FGVC (Table [8)), where identifying subtle visual cues is paramount, DAF’s ability to shift its focus
during training allows it to capture a wider range of discriminative features. On the diverse tasks
of VTAB-1k (Table[9), DAF shows notable strength, particularly on the Structured category. These
tasks (e.g., DMLab, KITTI-Dist) exhibit a large domain shift from the pre-training data, a scenario
where static methods often falter. DAF’s adaptability allows it to better navigate these challenging
domain gaps, leading to superior robustness.
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Table 8: Detailed per-task Top-1 accuracy (%) on the FGVC benchmark with ViT-B/16 (ImageNet-
21k pre-trained).

Method CUB-200-2011 NABirds OxfordFlowers StanfordDogs StanfordCars Mean Acc. (%)
Full Fine-tuning 87.3 82.7 98.8 89.4 84.5 88.5
Static PEFT Baselines

Adapter-8 87.3 84.3 98.4 88.8 68.4 85.5
Adapter-32 87.2 84.3 98.5 89.6 68.4 85.6
LoRA-8 84.9 79.0 98.1 88.1 79.8 86.0
LoRA-16 85.6 79.8 98.9 87.6 72.0 84.8
VPT-Deep 84.5 78.5 98.5 86.5 71.0 83.8
AdaptFormer 87.0 83.2 98.8 89.0 72.5 86.1
NOAH 88.6 83.3 99.3 90.8 84.0 89.2
Recent Static SOTA Baselines

vQT 83.0 77.0 97.5 85.0 70.0 82.5
SPT-LoRA 88.6 82.8 994 914 84.5 89.3
SPT-Adapter 89.1 83.3 99.2 90.5 85.6 89.5
Res-Tuning 88.7 83.8 99.3 914 87.3 90.1
Bi-LoRA 87.8 83.5 99.0 90.2 86.0 89.3
SynQT 85.5 79.5 98.7 87.8 72.0 84.7
PYRA 86.8 82.5 98.8 89.1 73.8 86.2
GPS 88.6 83.6 99.3 91.3 87.2 90.0
Adapter+(r=1) 88.6 839 99.3 914 87.3 90.1
DyT(r=0.5) 88.5 83.8 99.3 91.3 87.1 90.0
Our Methods

Static DAF (Ours) 88.2 82.5 99.0 91.0 86.8 89.5
DAF (Ours) 88.7 839 994 91.5 874 90.2

Table 9: Detailed per-task Top-1 accuracy (%) on the VTAB-1k benchmark with ViT-B/16
(ImageNet-21k pre-trained). Note the performance across Natural, Specialized, and Structured task
categories.

| Natural Specialized Structured
- £ S
> £ <
= - « £ g - 2 Bl 2 o
s = S e = 5| 8 2 2 g ¢ < = g
3 3 . 5|2 % £ 2|9 2 8 2 5 S g 8/|¢%
£ £ 8 2 g E T E ¢ f El: 2 2 E E B S oF
Method o &) a = & 1) 7] =] ¥ & &) o @) | [~ < Z Z =
Full Fine-tuning | 689 87.7 643 972 869 874 388|957 842 739 797|563 586 417 655 57.5 467 257 29.1 | 69.0
Static PEFT Baselines
Adapter-32 68.7 922 69.8 989 903 842 530|954 832 743 832|819 639 487 80.6 762 47.6 308 364 | 740
LoRA-16 68.1 914 69.8 99.0 90.5 864 53.1|958 847 742 851|830 669 504 814 802 466 322 41.1 | 750
VPT-Deep 78.8 90.8 658 98.0 883 78.1 49.6|96.1 834 684 818|685 600 465 728 736 479 329 378 | 720
AdaptFormer 708 708 705 99.1 909 86.6 548|958 844 763 830|819 643 493 803 763 457 317 41.1 | 748
NOAH 69.6 927 702 99.1 904 86.1 537|954 839 758 844|828 689 499 817 81.8 483 328 442 | 755
Recent Static SOTA Baselines
VQT 663 899 678 979 847 799 455|952 809 747 79.0 | 467 616 451 63.6 629 321 300 288 | 683
SPT-Adapter 729 932 725 993 914 846 552|960 843 755 853|822 680 493 80.0 824 519 317 412 | 758
SPT-LoRA 723 93.0 725 993 915 862 555|962 851 759 850|837 664 525 802 80.1 51.I 301 413 | 759
Res-Tuning 752 927 719 993 919 867 585|956 850 746 867|802 636 506 802 854 557 319 42.0 | 7410
Bi-LoRA 726 904 718 99.0 913 87.0 56.0 | 941 821 754 86.1 |81.0 642 505 79.7 830 53.7 297 429 | 754
SynQT 709 89.7 68.8 985 89.6 778 50.6|96.7 835 752 823|718 627 485 754 741 490 317 36.1 | 729
PYRA 67.5 903 693 989 90.0 846 53.1|957 833 752 833|826 689 508 80.0 81.8 458 322 428 | 747
GPS 81.1 942 758 994 917 91.6 524|962 865 765 879|799 62.6 550 824 840 554 29.7 461 | 752
Adapter(r=1) 854 924 73.1 99.1 913 831 581|966 853 726 872|807 606 509 799 833 556 27.1 43.0 | 763
DyT(r=0.5) 704 942 711 99.1 917 880 515|953 842 758 87.1|792 618 510 824 797 523 353 445 | 757
Our Methods
Static DAF (Ours) | 73.4 924 728 99.1 91.0 867 550|958 844 752 853|839 673 51.8 820 804 50.1 30.1 409 | 758
DAF (Ours) 741 929 730 994 917 875 555|961 856 758 860|845 678 525 821 812 509 301 414 | 764
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A.5 DYNAMIC BEHAVIOR VISUALIZATION ON VTAB-1K

To provide a comprehensive and intuitive understanding of DAF’s working mechanism across di-
verse tasks, we visualize the evolution of activated LoRA modules during training for all 19 datasets
in the VTAB-1k benchmark. As depicted in Figure [5] while the general pattern of shifting focus is
consistent, the specific layers and the timing of these shifts vary significantly from task to task.

For instance, on semantically simple tasks like EuroSAT, the model quickly identifies and focuses on
a stable set of features. In contrast, on complex, structured tasks like DMLab, the activated regions
exhibit a much more volatile and continuous redistribution throughout the entire training process.
This adaptive behavior, which no static PEFT method can replicate, visually demonstrates how DAF
intelligently and uniquely allocates its limited parametric resources for each specific task, adapting
to where they are most needed as the model’s learning state evolves.
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Figure 5: The dynamic evolution of activated modules by DAF across all 19 tasks in the VTAB-
1k benchmark. The x-axis represents training epochs (up to 200), and the y-axis represents the 12
blocks of ViT. The color intensity indicates the activation level of LoORA modules. Note the diversity
in activation patterns, demonstrating DAF’s task-specific adaptability.
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A.6 COMPUTATIONAL OVERHEAD ANALYSIS

In this subsection, we provide a comparative analysis of the computational overhead of the DAF
framework against other representative PEFT methods. We focus on three key efficiency metrics: the
percentage of trainable parameters, the training memory footprint, and the inference computational
cost (GFLOPs). A comprehensive comparison is presented in Table

Parameter and Memory Efficiency. As shown in Table DAF is highly parameter-efficient,
requiring only 0.17M trainable parameters, which is the lowest among the compared methods.
Furthermore, its training memory footprint of 8.64 GB is also highly efficient. While SynQT
achieves the lowest memory usage due to its unique disentangled architecture that avoids back-
propagation through the backbone, DAF’s 8.64 GB represents a leading performance among meth-
ods that directly fine-tune the backbone weights, significantly outperforming standard LoRA-based
approaches. This high efficiency is achieved because the periodic sensitivity analysis only momen-
tarily increases memory usage, while the minimal set of active parameters keeps the optimizer state
small throughout training. This contrasts with methods that require storing extensive intermediate
features, which can lead to higher memory demands.

Inference Efficiency. A key advantage of DAF is its exceptional inference efficiency. Similar
to LoRA and SPT-LoRA, the learned LoRA modules in DAF can be merged into the backbone
weights before deployment. This re-parameterization means that DAF introduces zero additional
inference latency or computational cost (GFLOPs) compared to the original, unmodified ViT back-
bone. This provides a distinct advantage over methods like VPT and SynQT. Although these meth-
ods are memory-efficient during training, they require separate modules during inference that cannot
be merged. This results in increased computational cost for VPT (18.32 GFLOPs) and higher infer-
ence memory for SynQT (2.90 GB), making DAF a more streamlined solution for deployment.

In summary, DAF achieves a superior balance of parameter efficiency and deployment cost. The
modest overhead introduced during the training phase by the dynamic reconfiguration mechanism is
a strategic trade-off that unlocks significant performance gains (as shown in the main paper) without
compromising the critical real-world deployment efficiency of the final model.

Table 10: Computational cost comparison on a ViT-B/16 backbone. Data for baseline methods are
sourced from their respective publications on the VTAB-1k or similar benchmarks. DAF achieves a
leading parameter efficiency while maintaining zero inference overhead.

Method Params (M) Training Memory (GB) Inference Memory (GB) GFLOPs
Full Fine-tuning 85.8 17.90 2.57 17.58
Adapter 1.19 13.74 2.61 17.81
LoRA 2.16 14.07 2.79 17.58
AdaptFormer 1.19 13.26 2.61 17.81
VPT 0.18 14.60 2.80 18.32
SPT-Adapter 0.35 13.50 2.61 17.81
SPT-LoRA 0.35 9.80 1.30 17.58
PYRA 0.29 13.30 2.61 17.81
SynQT 2.73 3.40 2.90 17.20
NOAH 0.45 13.50 2.61 17.81
DAF (Ours) 0.17 8.64 243 17.41
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A.7 THE TRAINING AND INFERENCE TIMES FOR EACH MODULE OF DAF

In this section, we provide a quantitative breakdown of the computational time associated with the
DAF framework, specifically focusing on the overhead introduced by the dynamic reconfiguration
mechanism.

Inference Efficiency: Zero Latency Increase. A key design principle of DAF is to ensure efficient
deployment. Although the model structure evolves during training, the final learned parameters
(matrices A and B) are mathematically merged into the backbone weights before inference:

Wiina = Wo + BA )

This re-parameterization ensures that the deployed model is architecturally identical to the original
ViT. Consequently, the inference time of DAF is exactly equal to that of the original pre-trained ViT
model, introducing zero additional GFLOPs or latency.

Training Efficiency: Stepwise Analysis. To quantify the impact of the dynamic mechanism on
training time, we profiled the DAF framework on the CIFAR-100 dataset using an NVIDIA RTX
4090 GPU. The training process alternates between a standard fine-tuning phase (lasting E;y,tervai =
10 epochs) and a dynamic update phase. The time consumption for a single update cycle (10 epochs
+ 1 dynamic update) is detailed in Table[IT]

Table 11: Time consumption breakdown for one DAF training cycle (10 epochs) on CIFAR-100.

~ 6.67s

Phase \ Component | Time Cost
Standard Training Fine-tuning (10 epochs) 8'i2§1><2i0
| Context-Aware Analysis (Perceive) | ~ 3.12s
Dynamic Update | Elite Selection (Decide) ~ 0.21s
|

Rebuild-and-Refocus (Execute) \ ~ 3.34s
Total Dynamic Overhead \

As illustrated in Table [IT] the standard fine-tuning for 10 epochs consumes approximately 81.2
seconds. In contrast, the total overhead introduced by the dynamic operations sums to approximately
6.67 seconds. This represents a relative overhead of roughly 8.2% compared to the standard training
time.

It is worth noting the efficiency difference between the dynamic stages. The Elite Selection (De-
cide) phase is extremely fast (= 0.21s) because it primarily involves sorting scalar sensitivity scores
to identify the Top-7 parameters, which has very low computational complexity. Conversely, the
Context-Aware Analysis (Perceive) takes longer (= 3.12s) as it necessitates a backward pass on
the full model to compute accurate gradients. Overall, this minimal time cost validates that DAF
achieves dynamic adaptability without imposing a heavy burden on training throughput. Further-
more, regarding inference, since the learned LoRA parameters are merged into the backbone weights
via re-parameterization, DAF incurs zero additional computational costs during deployment, main-
taining the exact same inference latency as the original ViT model
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A.8 ROBUSTNESS ANALYSIS OF SENSITIVITY ESTIMATION

To empirically validate the robustness of our sensitivity estimation against sampling noise, we con-
ducted a comprehensive ablation study on the Sensitivity Batch Num M. We evaluated the DAF
framework by varying M from 8 to 32 on the VTAB-1k benchmark.

Performance Stability. As presented in Table the final Mean Accuracy remains extremely
stable across the entire range of M € {8,12,16, 20, 28, 32}. The performance variance is minimal,
indicating that the DAF framework is not sensitive to the exact number of batches used for sensitivity
analysis, provided that a representative window is covered.

Table 12: Impact of Sensitivity Batch Num M on VTAB-1k Mean Accuracy.

Sensitivity Batch Num M \ 8 12 16 (Default) 20 28 32
Mean Acc. (%) \76.3 76.4 76.4 76.5 764 76.2

Training Convergence on CIFAR-100. Furthermore, to visually assess the stability of the opti-
mization process, we plotted the training loss curves for the CIFAR-100 task under different M
settings. As illustrated in Figure [6] the loss convergence remains smooth and consistent across all
tested values (M = 8 to M = 32). We observed no signs of particular training instability or diver-
gence, confirming that our multi-batch averaging strategy effectively mitigates the potential noise
introduced by small-batch sampling.
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Figure 6: Training loss convergence curves on the CIFAR-100 dataset with varying Sensitivity Batch
Num M ({8,12, 16, 20, 28, 32}). The overlapping curves exhibit consistent convergence behavior,
demonstrating the stability of the dynamic reconfiguration process.
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A.9 ROBUSTNESS ANALYSIS OF COMPARISON WITH STATIC DAF METHOD

To rigorously verify that the performance gain of DAF stems from its dynamic reconfiguration mech-
anism rather than suboptimal hyperparameter settings (e.g., learning rate or parameter budget) in the
static baseline, we conducted a comprehensive spectrum analysis on the Static DAF.

Experimental Setup. We evaluated Static DAF across a broad grid of configurations, traversing
different parameter budgets 7 € {0.1,0.2,0.3} and learning rates Ir € {le-4,3e-4,5e-4}. This
covers the potential optimal range for static fine-tuning.

Results and Analysis. The comparative results are visualized in Figure[7] We observe the following
key findings:

* Superiority of Dynamic Paradigm: Regardless of the combination of learning rate and
parameter budget, the performance ceiling of Static DAF consistently fails to surpass that of
DAF. Even with the best-performing static configuration, a distinct gap remains compared
to our dynamic method.

» Optimization Interference in Static Allocation: Simply increasing the parameter budget
(e.g., from 7 = 0.2 to 0.3) in the static setting does not yield continuous improvements
and, in some cases, leads to performance degradation. This corroborates our hypothesis
that activating non-critical parameters throughout the entire training process introduces
optimization interference (gradient noise), which hinders the model’s convergence.

These empirical results strongly demonstrate that the limitation of the baseline lies in its static
assumption—the presumption that the elite parameters identified at initialization remain optimal
throughout the training lifecycle. DAF breaks this assumption by dynamically shifting the bud-
get to capture the temporal evolution of feature importance, thereby achieving superior adaptation
efficiency that cannot be replicated by merely tuning static hyperparameters.

Comparision with Static DAF Spectrum (VTAB-1k)
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Figure 7: Performance comparison between DAF and Static DAF Spectrum on VTAB-1k. We
compare DAF against Static DAF configured with various parameter budgets (7) and learning rates
(Ir). The red dashed line (or specific bar) represents DAF, which consistently outperforms all static
configurations, validating the effectiveness of the dynamic reconfiguration paradigm.
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A.10 GENERALIZATION ON DIFFERENT ARCHITECTURES (SWIN & CONVNEXT)

To demonstrate the model-agnostic advantage of DAF, as recommended by the reviewers, we ex-
tended our evaluation to diverse architectures beyond standard ViTs. Specifically, we tested DAF on
Swin-B (a hierarchical Transformer) and ConvNeXt-B (a modern CNN).

We conducted experiments on the FGVC benchmark (averaged accuracy over 5 fine-grained tasks:
CUB-200, NABirds, Oxford Flowers, Stanford Dogs, and Stanford Cars). The pre-trained back-
bones were initialized from ImageNet-21k. For ConvNeXt, we adapted DAF by applying the dy-
namic selection mechanism to the pointwise convolutions (1 x 1 convs, treating them as linear layers)
and normalization layers.

The comparison with Full Fine-tuning, Linear Probing, SSF (Lian et al., [2022)), and GPS (Zhang
et al.,[2024b) is presented in Table @

Table 13: Performance comparisons on the FGVC benchmark (Average accuracy over 5 tasks) with
different model architectures. DAF achieves the best performance with the highest parameter effi-
ciency on both Hierarchical Transformer and CNN backbones.

Architecture \ Swin-B \ ConvNeXt-B

| Ave. Acc. Params.(%) | Ave. Acc. Params.(%)
Full 92.42 100.00 93.04 100.00
Linear 87.90 0.28 88.00 0.28
SSF 91.54 0.56 92.48 0.56
GPS 92.56 0.95 93.32 0.90
DAF (Ours) | 92.81 0.32 | 93.58 0.35

Analysis of the Swin-B. DAF outperforms GPS by +0.25% while using only 1/3 of the trainable
parameters (0.32% vs. 0.95%). This confirms that DAF’s dynamic reconfiguration is highly effective
for hierarchical Transformer structures.

Analysis of the ConvNeXt-B. On the CNN-based architecture, DAF achieves a remarkable 93.58%
average accuracy, surpassing both Full Fine-tuning and GPS. This indicates that our method suc-
cessfully generalizes to CNNs, leveraging the dynamic sensitivity analysis to identify critical con-
volutional channels.
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A.11 THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, a Large Language Model (LLM) is used as a writing
assistant. Its role is strictly limited to improving grammar, phrasing, and overall readability. All
scientific contributions, including the methodology and analysis of results, are solely performed by
the authors.
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