
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUASAR: QUANTUM ASSEMBLY CODE GENERATION
USING TOOL-AUGMENTED LLMS VIA AGENTIC RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing and optimizing task-specific quantum circuits are crucial to leverage
the advantage of quantum computing. Recent large language model (LLM)-based
quantum circuit generation has emerged as a promising automatic solution. How-
ever, the fundamental challenges remain unaddressed: (i) parameterized quantum
gates require precise numerical values for optimal performance, which also de-
pend on multiple aspects, including the number of quantum gates, their parame-
ters, and the layout/depth of the circuits. (ii) LLMs often generate low-quality or
incorrect quantum circuits due to the lack of quantum domain-specific knowledge.
We propose QUASAR, an agentic reinforcement learning (RL) framework for
quantum circuits generation and optimization based on tool-augmented LLMs. To
align the LLM with quantum-specific knowledge and improve the generated quan-
tum circuits, QUASAR designs (i) a quantum circuit verification approach with
external quantum simulators and (ii) a sophisticated hierarchical reward mecha-
nism in RL training. Extensive evaluation shows improvements in both syntax
and semantic performance of the generated quantum circuits. When augmenting
a 4B LLM, QUASAR has achieved the validity of 99.31% in Pass@1 and 100% in
Pass@10, outperforming industrial LLMs of GPT-4o, GPT-5 and DeepSeek-V3
and several supervised-fine-tuning (SFT)-only and RL-only baselines.

1 INTRODUCTION

Quantum hardware has improved remarkably in recent years (AI & Collaborators, 2025; Bravyi
et al., 2024; Bluvstein et al., 2024) and this rapid hardware development creates demand for im-
proved quantum software and algorithms. Quantum software and algorithms can be categorized
into classical platforms that support quantum computers themselves, including quantum error miti-
gation software and quantum compilers. The second category comprises domain-specific quantum
algorithms, including examples like Shor’s algorithm and Grover’s algorithm. At the core of quan-
tum software and algorithms is the quantum circuit model (Nielsen & Chuang, 2010), which is
an assembly-level abstraction for operating gate-based quantum computers. Most of the quantum
algorithms can be expressed as quantum circuits (Jordan, 2025).

The desigin of quantum circuits is the foundation in quantum compilers and quantum algorithm
development. In this paper, we consider quantum assembly code, i.e., Open Quantum Assembly
Language (OpenQASM) (Cross et al., 2022), to represent and model quantum circuits due to its
generality and machine-independence – the generated circuits can be deployed on any quantum
machines without binding to specific vendors. Unlike Python-based quantum programming lan-
guages (e.g., Qiskit (Javadi-Abhari et al., 2024a) and Cirq (Developers, 2025)), OpenQASM is a
low-level language and closer to the QPU hardware (similar to classical assembly languages in
CPUs). The value of OpenQASM lies in platform-agnostic quantum software stacks, including
quantum software-hardware co-design, performance characterization, and cross-platform bench-
marking. Leading quantum hardware vendors offer OpenQASM as an interface to their QPUs,
alongside their own development kits (e.g., Braket SDK (Amazon Web Services), Cirq and Qiskit).

Despite their central role in quantum computing, quantum circuits present two major difficulties in
practice. First, they form a complex abstraction to define quantum algorithms compared to classical
methods, making them difficult even for expert practitioners (Haferkamp et al., 2022). Second, such

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

difficulties are further amplified in OpenQASM code, which is particularly error-prone to write for
complex quantum algorithms Cross et al. (2022) due to its unique low-level grammar and syntax.

We identify three key challenges in quantum circuit generation: (1) QASM code includes numerous
numerical parameters in parametrized gates, which are difficult for LLMs to handle accurately; (2)
unlike classical code generation, QASM evaluation is nontrivial, as its correctness depends not only
on syntactic validity but also on the underlying quantum semantics, which are inherently probabilis-
tic and nondeterministic; and (3) LLM-generated QASM can fail in various ways (see Figure 1),
including compilation error, producing incorrect qubit counts and low-quality parameters.

Hamiltonian Path Problem (QAOA Optimization) :
Design a QASM 3.0 quantum circuit with 1 qubits and 3 layers to solve the hamiltonian_path
starting from node 0 and ending at node 2. given the graph: {"directed": false, "multigraph": false,
"graph": {}, "nodes": [{"id": 0}, {"id": 1}, {"id": 2}], "edges": [{"weight": 7, "source": 0, "target": 1},
{"weight": 14, "source": 0, "target": 2}, {"weight": 7, "source": 1, "target": 2}]}.
Provide valid QASM 3.0 code with optimal parameters.

OPENQASM 3.0;
include "stdgates.inc";
bit[1] c;
qubit[1] q;
h q[0];
rz(-0.0924) q[0];
h q[0];
rz(-0.0644) q[0];
h q[0];
rz(-0.1062) q[0];
h q[0];
rz(-0.0886) q[0];
h q[0];
rz(-0.0668) q[0];
h q[0];
rz(-0.0676) q[0];
h q[0];
c[0] = measure q[0];

OPENQASM 3.0;
include "stdgates.inc";
bit[1] c;
qubit[2] q;
h q[0];
rz(-0.0924) q[0];
h q[0];
rz(-0.0644) q[0];
h q[0];
rz(-0.1062) q[0];
h q[0];
rz(-0.0886) q[0];
h q[0];
rz(-0.0668) q[0];
h q[0];
rz(-0.0676) q[0];
h q[0];
c[0] = measure q[0];

OPENQASM 3.0;
include "stdgates.inc";
bit[1] c;
qubit[1] q;
h q[0];
rz(-0.3324) q[0];
h q[0];
rz(-0.9456) q[0];
h q[0];
rz(-0.7194) q[0];
h q[0];
rz(-0.2783) q[0];
h q[0];
rz(-0.3762) q[0];
h q[0];
rz(-0.8357) q[0];
h q[0];
c[0] = measure q[0];

OPENQASM 3.0;
include "stdgates.inc";
bit[1] c;
qubit[1] q;
h q[0];
rz(-0.0924) q[0];
h q[0];
rz(-0.0644) q[0];
h q[0];
rz(-0.1062) q[0];
h q[0];
rz(-0.0886) q[0];
h q[0];
rz(-0.0668) q[0];
h q[0];
rz(-0.0676);
h q[0];
c[0] = measure q[0];

a b c d

Fig. 1: Illustration of four possible outcomes for generated OpenQASM code: (a) fails to com-
pile; (b) compiles but uses an incorrect number of qubits; (c) compiles with the correct num-
ber of qubits but suboptimal parameters; (d) the desired case — compiles successfully, uses
the correct number of qubits, and achieves near-optimal parameters.

we present QUASAR, an agentic RL post-training framework for LLMs to generate quantum circuits
in OpenQASM 3.0 QUASAR achieves this through two key innovations. First, to equip the model
with a quantitative understanding of parameterized gates, we develop an agentic RL pipeline with
a carefully designed external quantum verification tool, in a LLM interacts directly with quantum
simulators. Second, we design a hierarchical four-level reward mechanism that enforces correctness
as a prerequisite and, conditioned on correctness, promotes stronger task alignment in the generated
circuits. While LLMs are not considered native optimizers for quantum circuit parameters, QUASAR
shows that they can learn beneficial ansatz patterns and initial parameter configurations for quantum
optimization problems, as illustrated in Figure 2.

q0 : H RY (−1.445) RY (−0.1259) RY (−0.0005)

q1 : H RY (1.442) • • RY (0.121) • •
q2 : H RY (−1.571)

q3 : H RY (1.442) • • • • RY (0.1183)

q4 : H • RY (0.7003) RY (0.4962) RY (0.2489) RY (−0.0227)

q5 : H RY (−1.034) RY (−0.4549) RY (−0.3788) RY (−0.1488) •

Fig. 2: Example of an LLM-generated ansatz with initial parameters.

More precisely, the hierarchical reward mechanism consists of four stages. (1) The syntax reward
considers whether the LLM-generated OpenQASM code can be parsed. If this fails, the other re-
wards cannot be computed, and thus, this reward is set relatively high. (2) The system computes
Jensen–Shannon entropy between the LLM-generated and ground truth distributions in computa-
tional basis states, which creates a so-called distributional alignment term for the model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(3) The third reward is computed by considering the expectation value discrepancies between LLM-
generated and ground-truth circuits to capture task-specific alignment. This becomes task-specific,
since computing expectation values requires the usage of the problem-specific cost Hamiltonian. (4)
The fourth part of the reward function considers the usability of the LLM-generated circuit in a real-
istic setup where the circuit optimization continues. This reward counts the number of optimization
steps and computes the final optimized expectation value. The final reward for the fourth part is a
weighted sum of these two elements.

In this paper, we make the following contributions.

• We design an end-to-end processing pipeline to combine supervised fine-tuning and RL-
based post-training, which efficiently interacts with an external quantum verification tool.

• We design a 4-level hierarchical reward mechanism for RL that jointly optimizes syntactic
validity, distributional similarity, expectation value differences, and the number of required
optimization steps to generate quantum circuits tailored for specific optimization problems.

• We evaluate QUASAR to augment an example LLM, a 4B-Qwen3 model, which outper-
forms several leading industrial LLMs. The results demonstrate that LLMs can generate
practical ansatz patterns and parameter initializations for Quantum Approximate Optimiza-
tion Algorithm (QAOA) and Variational Quantum Eigensolver (VQE) quantum circuits,
highlighting QUASAR’s potential in scalable quantum circuits and algorithm design.

2 RELATED WORKS

In recent years, there has been increasing interest in applying GPT- and LLM-based tools to address
challenges in designing and constructing circuits for various quantum computational challenges.
In one of the first works, IBM Quantum (2025) fine-tuned large language models to serve as a
Qiskit Code Assistant, which was evaluated with (Vishwakarma et al., 2024). This work was fur-
ther improved with post-training reinforcement learning (Dupuis et al., 2025a). Campbell et al.
(2025) leveraged Chain-of-Thought (CoT) reasoning and Retrieval-Augmented Generation (RAG)
in a multi-agent setting to facilitate the synthesis of quantum circuits. These efforts are closely tied to
the Qiskit framework, whereas our approach targets OpenQASM 3.0 Cross et al. (2022), a platform-
independent standard now supported by Qiskit, PennyLane, and Cirq. Large language models have
also been used for optimizing ansatz design (Liang et al., 2023; Ueda & Matsuo, 2025), and Arlt
et al. (2024) used language models to design quantum experiments. Gujju et al. (2025) utilized
LLMs for guided ansatz design in financial modeling.

Compared to LLM-based methods, standard transformers and GPT-based systems have received
more attention. Fitzek et al. (2024) trained the standard GPT model to predict measurement out-
comes from a neutral atom quantum computer. The findings revealed limitations in the standard
GPT model’s ability to predict measurement outcomes, which could prove valuable in expanding
our knowledge of the boundaries of present-day LLMs. Using the standard transformer-based ap-
proach, Nvidia has designed an optimization pipeline that produces quantum circuits, which are
aimed at identifying ground states in electronic structure Hamiltonians (Nakaji et al., 2024). Since
the trainable parameters are in the transformer model, the method tries to circumvent some of the
problems in current variational methods, like barren plateaus. Apak et al. (2024) developed Ket-
GPT, which uses a GPT-based model to generate realistic quantum circuits. The model is trained
in QASMBench circuits (Li et al., 2023). The circuits are restricted to the OpenQASM 2.0 format,
without supporting parameters. Finally, Tyagin et al. (2025) developed QAOA-GPT, which is capa-
ble of generating QAOA-type circuits that solve the MaxCut problem. Dupuis et al. (2025b) is the
first to use a quantum-verifiable reward to post-training LLMs to generate Qiskit code.

3 PRELIMINARIES

3.1 QUANTUM COMPUTING AND QUANTUM OPTIMIZATION

Quantum computing exploits the principles of quantum mechanics to perform computations using
quantum bits (qubits) instead of classical bits. A qubit is a unit vector in a two-dimensional Hilbert

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

space and can exist in a superposition α|0⟩ + β|1⟩ with α, β ∈ C and |α|2 + |β|2 = 1 (Nielsen &
Chuang, 2010). Multi-qubit states arise via tensor products, and computation proceeds by applying
unitary gates. Rotation gates Rx(θ), Ry(θ), Rz(θ) are unitary for all θ, and together with entan-
gling operations (e.g., CNOT) and standard gates (e.g., Hadamard, CZ), they form a universal gate
set (Yang et al., 2023). By combining these gates into parameterized circuits U(θ), one obtains a
flexible framework for variational quantum algorithms.

One of the most promising applications is quantum optimization (Abbas et al., 2024). Classical prob-
lems such as QUBO and HUBO (Lucas, 2014; Boros & Hammer, 2002) can be rewritten in terms of
spin variables and mapped to Pauli-Z operators, turning them into Hamiltonian minimization tasks.
The goal is to prepare a parameterized state U(θ)|0⟩ whose expectation value ⟨0|U†(θ)HU(θ)|0⟩
approximates the ground state of H . Hybrid quantum-classical methods iteratively optimize θ:
QAOA uses a cost Hamiltonian and a mixer ansatz (Farhi et al., 2014), VQE employs expressive or
hardware-efficient ansatzes (Peruzzo et al., 2014), and adaptive VQE constructs circuits gate by gate
from a predefined pool (Grimsley et al., 2019).

3.2 OPENQASM LANGUAGE

OpenQASM (Open Quantum Assembly Language) (Cross et al., 2022) is a low-level program-
ming language designed for expressing quantum circuits and operations, which is similar to tradi-
tional Hardware Description Language (HDL) like Verilog and VHDL. It serves as an intermediate
representation (IR) for quantum algorithms, allowing them to be executed on various quantum hard-
ware platforms. OpenQASM provides a standardized way to describe quantum gates, measurements,
and other operations, making it easier for developers to write and share quantum programs.

OpenQASM is widely used in the quantum computing community, since many popular quantum
computing software frameworks, such as IBM’s Qiskit (Javadi-Abhari et al., 2024b), Google’s
Cirq (Developers, 2025), Microsoft’s QDK (Microsoft), and Rigetti’s Forest(Smith et al., 2017),
support OpenQASM as a means of serializing quantum circuits in a standard way. This allows de-
velopers to write quantum algorithms in a high-level language and then compile them down to Open-
QASM for distribution between different quantum hardware backends. OpenQASM has become the
conjunction between quantum software and hardware, being critical for both platform-agnostic and
platform-specific optimization, mapping, scheduling, evaluation, profiling, and simulation.

3.3 AGENTIC REINFORCEMENT LEARNING WITH TOOL USE

Agentic Reinforcement Learning with Tool use (ARLT) can efficiently enhance domain-specific
performance in the LLM post-training stage, allowing LLMs to use tools to interact with the en-
vironment and learn from verified feedback. Specifically, the policy LLM πθ aims to predict the
next token τt based on the context τ<t. The entire response τ will be evaluated by the verified re-
ward function R. GRPO (Shao et al., 2024) is the commonly used RL algorithm in recent ARLT
works (Jiang et al., 2025; Qian et al., 2025), and has been proven successful since DeepSeek-AI
et al. (2025). Specifically, given a group of rollout trajectories {R(τi)}Gi=1, the objective of GRPO
is defined as follows:

J (θ) =
1

G

G∑
i=1

1

|τ i|

|τ i|∑
t=1

min
[
rit(θ) · Âi

t, clip
(
rit(θ), 1− ϵ, 1 + ϵ

)
· Âi

t

]
, (1)

where rit(θ) =
πθ(τ

i
t |τ

i
<t)

πold(τ i
t |τ i

<t)
is the token-level importance ratio and Âi

t =
R(τ i)−mean({R(τj)}G

j=1))

std({R(τj)}G
j=1)

is
the normalized advantage.

4 QUASAR DESIGN

4.1 RL POST-TRAINING PIPELINE

Online Interaction with a Quantum Agent. Building on Jiang et al. (2025), our quantum agent
consolidates the environment and reward computation into a single tool module (see Figure 3). At
each RL step: (A) the language model proposes an OpenQASM circuit and calls the external tool

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

GRPO Workflow

Quantum Tool Server
Load Environment

Save Environment
Quantum
Simulation

Hierarchical Execution

Reward
Calculation

A

B

LLM
Actor

actionstate observation

Generation actionstate

lossUpdate Policy

Reward

Execution Error

Trajectory Done (T / F)

Valid Action (T / F)

Observation

C
QASM

D

(a) Agentic RL-Quantum Framework

Compile
Successfully?

No

Yes

Optimization Reward
(§ 4.2.4)

Entropy Reward (§ 4.2.2)
Jensen-Shannon

Distance
Qubit number

mismatch penalty

Problem Hamiltonian

Largest/Smallest Eigenvalues

Offline Collected Data

Pass
Threshold?

Hierarchical Reward

Yes

No

Pass
Threshold?

Yes

No, but ...

Ground-truth
QASM ...

Generated QASM

Expectation Value Reward
(§ 4.2.3)

Compiler (§ 4.2.1)

(b) Hierarchical Reward Workflow
Fig. 3: QUASAR design: (a) agentic RL-quantum framework, and (b) hierarchical reward.

– Quantum Tool Server, via HTTP; (B) the agentic tool executes certain quantum simulation and
computes a verifiable reward; (C) it returns structured feedback, which includes the scalar reward,
execution errors, validity flags, and a trajectory trace; and (D) the training loop ingests this feedback
and updates the policy via GRPO. To bootstrap syntactic competence, we first perform supervised
fine-tuning without intermediate reasoning traces (non-CoT SFT) using the dataset of Jern et al.
(2025). We then apply ARLT to further improve both syntactic and semantic correctness, using
simulation-derived signals to shape the policy through policy-gradient updates.

Quantum Verification. LLMs can generate code in languages such as Python, C++, and x86-64
based on (Wei et al., 2025), but generating low-level quantum circuits is particularly challenging (Fu
et al., 2025). OpenQASM is a domain-specific language with limited exposure during pretraining,
making it difficult for models to produce syntactically correct and semantically meaningful circuits.
In addition, designing quantum circuits requires a deep understanding of the target optimization
problem and underlying quantum computing principles. To address these challenges, we integrate an
agentic quantum verification module into our RL framework. This module simulates the generated
OpenQASM code and evaluates its performance on carefully designed quantum tasks. The resulting
metrics are transformed into reward signals that guide the training.

4.2 REWARD DESIGN

Hierarchical reward mechanism. We introduce a hierarchical reward that covers four key as-
pects of the generated OpenQASM code: (i) syntactic correctness, (ii) distributional alignment (an
entropy-based term), (iii) an expectation-value term, and (iv) an optimization-progress term. The
computation is hierarchical: we first verify the syntactic correctness of the generated OpenQASM;
if it is valid, we then measure the distributional discrepancy between the generated and ground-truth
circuits (e.g., via the Jensen–Shannon distance DJS(pgen, pgt)) to quantify overall mismatch. No-
tably, generated circuits often realize unitaries Û that deviate substantially from the ground truth
U⋆, leading to markedly different measurement distributions in the computational basis. Yet for a
given quantum optimization task, performance can still be comparable because evaluation is with
respect to the problem Hamiltonian H , via E(ψ) = ⟨ψ|H|ψ⟩. To capture this task-specific behav-
ior, we augment the objective with two problem-aware terms: (a) an expectation-value reward that
calculates the distance between the eigenvalues of the generated circuit and the ground truth circuit,
and (b) an optimization-progress reward that credits the improvement achieved by a local optimizer.
The reward is based on the optimization steps from the generated circuit to the optimal, and the gap
between the final converged circuit and the ground truth one.

In addition to the above rewards, we introduce a qubit-mismatch penalty in stage (ii) to discourage
the generation or disappearance of qubits. This penalty addresses a common issue in our training
loop, where LLMs often generate circuits with a qubit count inconsistent with the ground-truth
circuit, leading to reward calculation errors. For example, a prompt requesting a 9-qubit circuit may
result in the LLM producing qubit[7] q;.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We adopt a hierarchical procedure to compute rewards, as illustrated in Figure 3b. Specifically, if
the distributional divergence between the generated and ground-truth circuits exceeds a predefined
threshold, we additionally evaluate a Hamiltonian-based expectation-value reward. If either the
(normalized) expectation-value reward surpasses its threshold or the distributional divergence falls
below its threshold, we proceed to run a local optimizer and assign an optimization-progress reward.
This hierarchical design ensures the objective is robust to circuits that differ in distribution but are
equally fit for the given task. The intuition is that a high entropy-based reward already indicates
strong distributional alignment, making expensive eigenvalue comparisons unnecessary. Conversely,
if the entropy-based reward is low, we assess problem-specific similarity via eigenvalues. Only
when either the distributional or expectation-value scores are sufficiently high do we perform local
optimization; otherwise, the circuits are deemed too low-quality to justify further evaluation. In the
following, we introduce each of the four reward components in detail.

4.2.1 SYNTACTIC REWARD

Syntactic reward refers to the syntactic correctness of the circuits. A circuit is considered syntacti-
cally correct if the Qiskit QASM 3.0 parser can parse it. This implies that it follows the grammatical
rules of the OpenQASM standard (Cross et al., 2022). If the generated QASM fails to compile, the
reward calculation process ends and returns −1.

4.2.2 ENTROPY REWARD

Previous work Jern et al. (2025) evaluated the quality of circuits with respect to relative entropy, i.e.,
Kullback-Leibler divergence. In this work, we design the reward as the Jensen–Shannon distance,
which can be understood as a normalized relative entropy to the interval [0, 1] for the stability of RL
training. The Jensen-Shannon distance is implemented as

dJS = (p, q) =

√
JS(p ∥ q)
log 2

, (2)

where
JS(p ∥ q) = 1

2DKL(p ∥m) + 1
2DKL(q ∥m),

for probability distributions p and q and DKL is the standard KL-divergence. The distribution m =
1
2 (p+q). The reward is 1−dJS(p, q) ∈ [0, 1], so that a reward of 1.0 is returned for those distributions
that are identically the same, and 0 for those that are very different.

As mentioned earlier, the generated QASM may have a different number of qubits than the ground-
truth QASM, which makes the entropy-based reward inapplicable due to the resulting dimension
mismatch. Let ngen and ngt be the qubit counts of generated and ground-truth QASM and k =
min(ngen, ngt). We define a qubit-mismatch penalty

Rqm = clip[−0.2,0]

(
α+ β∆n+ γ aextra + η ecross

)
, ∆n = |ngen − ngt|,

where aextra counts active extra qubits beyond the first k (idle or reset-only ancillas incur little or no
penalty) and ecross counts multi-qubit gates that entangle extras with core wires. To ensure fairness,
the distribution termDJS is computed on the first k qubits (marginalization), and its weight is down-
scaled by the mismatch severity.

Note that for the expectation-value term and the optimization-progress term below, we pad the prob-
lem Hamiltonian with identities to ensure that its width matches the circuit, thereby preserving
comparability while preventing reward hacking via ancillary qubits.

4.2.3 EXPECTATION-VALUE REWARD

The training dataset consists of optimization problems expressed as eigenvalue minimization prob-
lems. Measuring from an ideal circuit would return the optimal eigenvalue with probability 1. This
means that the expectation value from this circuit would coincide with the eigenvalue. In the realistic
cases, the measured expectation values over the weighted eigenvalues from the circuits are always
larger than the optimal result. The expectation value from the LLM-generated circuit and the ground
truth optimal eigenvalue enable us to construct the third reward function as follows.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For a syntactically correct LLM-generated quantum circuit, we simulate the circuit and compute
the expectation value of the problem-specific cost Hamiltonian. Let his value be Egen. To estab-
lish a reference for comparison, we also compute the minimum (optimal solution) and maximum
eigenvalues for the problem-specific cost Hamiltonian. Let these values be Emin and Emax.

Because 0 ≤ Emin < Egen < Emax, we calculate the min-max normalized value as

fmin
max(Egen) :=

Egen − Emin

Emax − Emin
, (3)

which is again a value in the interval [0, 1].

4.2.4 OPTIMIZATION REWARD

It is unlikely that LLMs generate parameterized quantum circuits that are immediately solutions to
the given optimization problems. Thus, the realistic pipeline includes a phase where the user contin-
ues optimizing the parameters in the LLM-generated circuit. Given the complexity of the parameter
optimization problem, the most realistic measure of the usefulness of the LLM-generated circuit is
the number of optimization steps required to achieve an optimized circuit, where a sufficiently low
expectation value can be measured. Hence, the system implements a module that allows for ongoing
optimization. In this case, the reward is defined as 1/(1+n), where n is the number of optimization
steps required for the LLM-generated circuit to reach an optimized quantum circuit for the given
optimization problem. Additionally, the system should favor those generated quantum circuits with
which the lower expectation value can be obtained. Let Eopt be the expectation value after the opti-
mization loop has been applied to the LLM-generated quantum circuit. Let Emin again be the ideal
ground truth, i.e., the optimal eigenvalue. Then, we include

1

1 + n
+ fmin

max(Eopt), (4)

where fmin
max was defined in Equation 3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Training Setup. We utilize the training data from (Jern et al., 2025), which is one of the most
extensive available datasets of quantum circuits in QASM format covering 12 central optimization
problem primitives on graphs (Karp, 1972), and many of their abstract descriptions appeared in (Lu-
cas, 2014). Since Jern et al. (2025) does not describe these problems in detail, we include a more
detailed description for each problem in the Appendix D.2. The key characteristics in this dataset are
the parametrized circuits with optimal parameters, the problem Hamiltonians, and the smallest and
largest eigenvalues for the Hamiltonians. The full dataset is constructed so that for each optimization
problem, the system generates a random graph, where the problem is solved using QAOA, VQE,
and adaptive VQE. If the quantum optimization problem is simulable and optimization converges,
the problem, graph, circuits in QASM format, and Hamiltonian, along with other data, are included
in the training dataset. The complete details of the problem are provided in the Appendix D.2.

We fine-tune a 4B SFT model with GRPO on 16×H100-64GB GPUs using FSDP (Zhao et al.,
2023). Each prompt samples n=16 rollouts via vLLM (Kwon et al., 2023) (temperature 0.7, top-
p = 0.8). The average training time is 48 hours. More details can be found in Appendix B.

Evaluation Metrics. We evaluate the fine-tuned model across four complementary metrics de-
signed to assess both syntactic fidelity and optimization quality. First, we measure syntactical cor-
rectness ratio (SCR), defined as the percentage of generated outputs that can be parsed as valid
OpenQASM 3.0 circuits using Qiskit’s QASM parser. This metric captures whether the model has
internalized the grammar of the domain-specific language. Second, we perform successful rate of
expectation value (SREV), where each syntactically correct circuit is simulated and the expectation
value for the problem-specific cost Hamiltonian H is computed. We compute the expectation value
of generated circuit C as E(C) = ⟨ψC |H|ψC⟩. Let E⋆ denote the ground-truth QASM’s expectation.
The circuit is counted as successful if |E(C)−E⋆| ≤ 0.2, and SREV is the percentage of successful

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

QASMs. Third, we evaluate the relative entropy (RE) of probability distributions by computing the
KL divergence DKL(Psol ∥Pgen) between the outcome distribution of the generated circuit and that
of the optimized reference. Finally, we compute the High-Quality Circuit Ratio (HQCR), defined
as the proportion of generated circuits whose relative entropy against the ground-truth distributions
is within a threshold 0.1. This metric provides a more interpretable measure of how often the model
produces reasonable solutions. Each metric is measured in Pass@1 and Pass@10, where Pass@1
evaluates whether a single sampled QASM per prompt meets the criterion, and Pass@10 evaluates
whether at least one out of ten sampled QASMs meets the criterion. Results are shown in Table 1,
where up/down arrows by column names indicate whether higher or lower values are better.

Baselines. The baselines can be categorized into three groups. (i) Prompting-Based State-of-the-
art LLMs: We evaluate DeepSeek-V3 (Liu et al., 2024) and OpenAI’s GPT-4o (Hurst et al., 2024)
and GPT-5 (OpenAI, 2025) via their official API, with GPT-5 being OpenAI’s latest flagship. All
models are evaluated using few-shot prompting with four demonstration examples. (ii) SFT-only:
We train Qwen-3-4B using SFT only. (iii) RL-only: We evaluate a cold-start model trained using
the GRPO algorithm (Shao et al., 2024).

5.2 RESULTS

Tab. 1: QUASAR’s Pass@K and comparison with existing techniques.

Methods Pass@1 Pass@10
SCR ↑ SREV ↑ RE ↓ HQCR ↑ SCR ↑ SREV ↑ RE ↓ HQCR ↑

Few-Shot Prompting

DeepSeek-V3 94.83% 12.24% 19.20 10.00% 98.97% 26.38% 16.39 16.38%
GPT-5 87.07% 10.00% 19.94 6.90% 90.52% 27.07% 11.57 16.55%
GPT-4o 87.93% 9.83% 19.42 6.38% 88.79% 18.62% 14.08 12.07%

Post-Training (Qwen3-4B)

SFT 97.41% 18.97% 12.74 15.17% 99.65% 31.55% 10.81 23.62%
Cold Start GRPO 84.48% 19.84% 14.32 12.41% 95.17% 27.59% 11.38 18.96%
QUASAR (ours) 99.31% 22.41% 11.61 17.24% 100% 33.10% 8.48 27.24%

Performance Analysis. We report the performance of QUASAR in Table 1. QUASAR achieves
strong results against all baselines, with a pass@1 of 99.31% SCR. Compared to the best competing
methods, it yields a +12.95% improvement in SREV (22.41 vs. 19.41 for Cold Start (GRPO)), an
+8.87% reduction in RE (11.61 vs. 12.74 for SFT), and a +13.64% gain in HQCR over SFT. For
pass@10, we even achieve 100% syntactical correctness and even better semantic improvement.

Meanwhile, as noted earlier, HQCR was measured with a fixed threshold of 0.1. In Figure 4, we
vary this threshold from 0.1 to 0.9 and report The fraction of valid QASMs that qualify as high-
quality. At best, QUASAR achieves a +13.65% improvement over SFT, +72.4% over DeepSeek-V3,
and up to 1.65× and 1.50× improvements over GPT-4o and GPT-5, respectively. Furthermore, to
quantify the semantic closeness of the generated QASMs to the ground truth, we also measure ∆E =
|E(C) − E⋆| defined before; note that smaller values indicate higher-quality QASMs. Figure 5
illustrates the distribution of ∆E for each model, QUASAR achieves substantial improvements over
all baselines, including a 4.9% reduction in the median ∆E and a 9.7% reduction in the upper
quartile compared to the second-best SFT.

In addition, we compare QUASAR-generated QASMs with a random parameter initialization base-
line, a common practice in hybrid quantum-classical algorithms. For each QUASAR circuit, we eval-
uated JS-divergence and expectation value relative to the Hamiltonian and ground truth, alongside
100 randomized variants with parameters sampled from (−π, π]. The results show that QUASAR
consistently outperforms random initialization, achieving lower JS-divergence (0.79 vs. 0.95) and
expectation values closer to the optimum (0.16 vs. 0.36). Further details are provided in Appendix E.

5.3 ABLATION STUDY OF THE HIERARCHICAL REWARD

We quantify the contribution of each reward term by independently removing each component of
the hierarchy reward in section 4. For each variant, we disable exactly one component while keeping

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the remainder unchanged; we also report a Validity-only sanity baseline, which only returns reward
based on whether the generated QASM is valid(1) or not(−1). All runs are initialized from the same
SFT checkpoint and trained with matched compute (identical optimizer, schedule, batch size, steps,
and decoding settings). The evaluation metrics are the same as presented in section 4, and the results
are summarized in Table 2.

Distributional alignment (RE) is the primary driver of all metrics. Removing RE causes the
largest drop across semantic metrics and, unexpectedly, even harms syntactic correctness. This
highlights that coarse-grained alignment of measurement distributions is essential for effective re-
ward shaping. Expectation value (EV) safeguards hard cases. Disabling EV reduces SREV as
expected and slightly degrades other semantic metrics. When distributional divergence is high, EV
provides a task-specific signal that rescues otherwise borderline QASMs. Optimization progress
(Opt) provides incremental gains. Removing Opt leads to a notable drop in HQCR, with a larger
gap at Pass@10 than at Pass@1. This suggests that rewarding fewer optimization steps can also
benefit the training. Qubit mismatch penalty (QMP) ensures stability. Without QMP, qubit-count
inconsistencies increase and reward noise emerges (e.g., evaluation failures or padded comparisons),
lowering all metrics. Validity-only rewards are insufficient. A reward that enforces only basic va-
lidity achieves reasonable SCR but lags considerably on SREV, RE, and HQCR, even performing
slightly worse than SFT. This underscores the necessity of semantically informed reward signals.

0.1 0.3 0.5 0.7 0.9
Threshold

6%

9%

12%

15%

18%

21%

H
Q

CR
 (

%
)

QUASAR
SFT

DeepSeek-V3
GPT-4o

GPT-5

Fig. 4: HQCR with varying threshold.

QUASAR SFT DeepSeek-V3 GPT-4o GPT-5
Model

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
|

E|

Fig. 5: ∆E for valid QASMs.

Tab. 2: Reward ablation for QUASAR: contribution of each component.

Variant Components Pass@1 Pass@10
SCR ↑ SREV ↑ RE ↓ HQCR ↑ SCR ↑ SREV ↑ RE ↓ HQCR ↑

Full (QUASAR) Val + RE + EV + Opt + QMP 99.31% 22.41% 11.61 17.24% 100% 33.10% 8.48 27.24%

w/o EV term Val + RE + Opt + QMP 98.62% 20.69% 11.82 16.38% 100% 31.03% 9.12 26.72%
w/o RE term Val + EV + Opt + QMP 66.38% 5.17% 24.67 5.69% 79.82% 15.52% 18.26 16.90%
w/o Opt term Val + RE + EV + QMP 98.79% 21.90% 11.98 16.90% 100% 32.76% 9.01 26.55%
w/o QMP Val + RE + EV + Opt 98.79% 21.72% 12.02 16.21% 100% 31.55% 9.48 27.06%

Validity only Val 99.13% 18.79% 12.89 14.66% 100% 30.86% 11.27 23.27%

6 CONCLUSION

We presented QUASAR, an agentic reinforcement learning framework for post-training large lan-
guage models to generate OpenQASM 3.0 circuits with high syntactic validity and semantic fidelity.
By integrating an external verification tool with quantum-aware RL and a hierarchical reward that
enforces syntax, aligns distributions, reduces expectation-value errors, and promotes optimization
efficiency, QUASAR consistently outperforms leading industrial LLMs and SFT-only and RL-only
baselines across quantum optimization benchmarks. Our results highlight that distributional align-
ment is the key driver of quality, while expectation-value and optimization-progress terms provide
complementary gains, demonstrating that tool-augmented RL can effectively bridge general-purpose
LLMs and domain-specific quantum code generation, paving the way for broader applications in au-
tomated quantum algorithm design. Appendix F discusses the limitations and future directions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm that all authors have read and adhere to the ICLR Code of Ethics. This work does not
involve human or animal subjects, sensitive personal data, or privacy risks. The use of LLMs was
limited to providing writing support and refining language. LLMs were not used in the design of
algorithms, the development of theoretical results, or the execution of experiments, ensuring that all
core scientific contributions are entirely the work of the authors.

REPRODUCIBILITY STATEMENT

We provide the implementation details for reproducing our experimental results in Appendix B.

Once the paper is published, we will open source the training and evaluation code on GitHub, and
model weights on Hugging Face to public. They can also be uploaded to the anonymous GitHub
during the public discussion period when requested.

REFERENCES

Amira Abbas, Andris Ambainis, Brandon Augustino, Andreas Bärtschi, Harry Buhrman, Car-
leton Coffrin, Giorgio Cortiana, et al. Challenges and opportunities in quantum opti-
mization. Nature Reviews Physics, 6(12):718–735, December 2024. ISSN 2522-5820.
doi: 10.1038/s42254-024-00770-9. URL https://www.nature.com/articles/
s42254-024-00770-9. Publisher: Nature Publishing Group.

Google Quantum AI and Collaborators. Quantum error correction below the surface code
threshold. Nature, 638(8052):920–926, February 2025. ISSN 1476-4687. doi: 10.1038/
s41586-024-08449-y.

Amazon Web Services. Amazon Braket. URL https://aws.amazon.com/braket/.

Prashanti Priya Angara, Emily Martins, Ulrike Stege, and Hausi Müller. SCOOP: A Quantum-
Computing Framework for Constrained Combinatorial Optimization. In 2025 IEEE International
Conference on Quantum Computing and Engineering, 2025.

Boran Apak, Medina Bandic, Aritra Sarkar, and Sebastian Feld. KetGPT – Dataset Augmentation of
Quantum Circuits Using Transformers. In Leonardo Franco, Clélia de Mulatier, Maciej Paszynski,
Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter M. A. Sloot (eds.), Computational
Science – ICCS 2024, pp. 235–251, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-
63778-0.

Sören Arlt, Haonan Duan, Felix Li, Sang Michael Xie, Yuhuai Wu, and Mario Krenn. Meta-
Designing Quantum Experiments with Language Models. arXiv preprint arXiv:2406.02470,
2024.

Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li, Hengyun Zhou, et al. Logical
quantum processor based on reconfigurable atom arrays. Nature, 626(7997):58–65, February
2024. ISSN 1476-4687. doi: 10.1038/s41586-023-06927-3.

Endre Boros and Peter L. Hammer. Pseudo-Boolean optimization. Discrete Ap-
plied Mathematics, 123(1):155–225, 2002. ISSN 0166-218X. doi: https://doi.org/10.
1016/S0166-218X(01)00341-9. URL https://www.sciencedirect.com/science/
article/pii/S0166218X01003419.

Sergey Bravyi, Andrew W. Cross, Jay M. Gambetta, Dmitri Maslov, Patrick Rall, and Theodore J.
Yoder. High-threshold and low-overhead fault-tolerant quantum memory. Nature, 627(8005):
778–782, March 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07107-7.

Kamil Brádler, Shmuel Friedland, Josh Izaac, Nathan Killoran, and Daiqin Su. Graph isomor-
phism and Gaussian boson sampling. Special Matrices, 9(1):166–196, 2021. doi: 10.1515/
spma-2020-0132. URL https://doi.org/10.1515/spma-2020-0132.

10

https://www.nature.com/articles/s42254-024-00770-9
https://www.nature.com/articles/s42254-024-00770-9
https://aws.amazon.com/braket/
https://www.sciencedirect.com/science/article/pii/S0166218X01003419
https://www.sciencedirect.com/science/article/pii/S0166218X01003419
https://doi.org/10.1515/spma-2020-0132

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Charlie Campbell, Hao Mark Chen, Wayne Luk, and Hongxiang Fan. Enhancing LLM-based Quan-
tum Code Generation with Multi-Agent Optimization and Quantum Error Correction. arXiv
preprint arXiv:2504.14557, 2025.

Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community structure in very
large networks. Physical Review E, 70(6):066111, December 2004. doi: 10.1103/PhysRevE.70.
066111.

Qiskit Community. WarmStartQAOAOptimizer — Qiskit Optimization 0.7.0. https:
//qiskit-community.github.io/qiskit-optimization/stubs/qiskit_
optimization.algorithms.WarmStartQAOAOptimizer.html, 2025. Accessed:
2025-09-16.

Jeremy Cook, Stephan Eidenbenz, and Andreas Bärtschi. The Quantum Alternating Operator Ansatz
on Maximum k-Vertex Cover. In 2020 IEEE International Conference on Quantum Computing
and Engineering, 10 2019. doi: 10.1109/QCE49297.2020.00021.

William Cook and André Rohe. Computing Minimum-Weight Perfect Matchings. INFORMS Jour-
nal on Computing, 11(2):138–148, May 1999. ISSN 1091-9856, 1526-5528. doi: 10.1287/ijoc.
11.2.138.

Andrew W. Cross, Ali Javadi-Abhari, Thomas Alexander, Niel de Beaudrap, Lev S. Bishop,
et al. OpenQASM 3: A broader and deeper quantum assembly language. ACM Transac-
tions on Quantum Computing, 3(3):1–50, September 2022. ISSN 2643-6809, 2643-6817. doi:
10.1145/3505636. arXiv:2104.14722 [quant-ph].

DeepSeek-AI, Daya Guo, and et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning. arXiv preprint arXiv:2501.12948, 2025. doi: 10.48550/arXiv.2501.
12948.

Cirq Developers. Cirq. Zenodo, August 2025. doi: 10.5281/ZENODO.4062499. URL https:
//zenodo.org/doi/10.5281/zenodo.4062499.

Nicolas Dupuis, Adarsh Tiwari, Youssef Mroueh, David Kremer, Ismael Faro, and Juan
Cruz-Benito. Quantum Verifiable Rewards for Post-Training Qiskit Code Assistant.
(arXiv:2508.20907), August 2025a. doi: 10.48550/arXiv.2508.20907. arXiv:2508.20907 [quant-
ph].

Nicolas Dupuis, Adarsh Tiwari, Youssef Mroueh, David Kremer, Ismael Faro, and Juan Cruz-
Benito. Quantum Verifiable Rewards for Post-Training Qiskit Code Assistant. arXiv preprint
arXiv:2508.20907, 2025b.

Jack Edmonds. Paths, Trees, and Flowers. Canadian Journal of Mathematics, 17:449–467, January
1965a. ISSN 0008-414X, 1496-4279. doi: 10.4153/CJM-1965-045-4.

Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of the
National Bureau of Standards Section B Mathematics and Mathematical Physics, 69B(1 and 2):
125, January 1965b. ISSN 0022-4340. doi: 10.6028/jres.069B.013.

Daniel J. Egger, Jakub Mareček, and Stefan Woerner. Warm-starting quantum optimization. Quan-
tum, 5:479, June 2021. ISSN 2521-327X. doi: 10.22331/q-2021-06-17-479. URL http:
//dx.doi.org/10.22331/q-2021-06-17-479.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum Computation by
Adiabatic Evolution, January 2000. arXiv:quant-ph/0001106.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algo-
rithm. arXiv preprint arXiv:1411.4028, 2014. doi: 10.48550/arXiv.1411.4028.

David Fitzek, Yi Hong Teoh, Hin Pok Fung, Gebremedhin A. Dagnew, Ejaaz Merali,
M. Schuyler Moss, Benjamin MacLellan, and Roger G. Melko. RydbergGPT. arXiv preprint
arXiv:2405.21052, may 2024. doi: 10.48550/arXiv.2405.21052.

11

https://qiskit-community.github.io/qiskit-optimization/stubs/qiskit_optimization.algorithms.WarmStartQAOAOptimizer.html
https://qiskit-community.github.io/qiskit-optimization/stubs/qiskit_optimization.algorithms.WarmStartQAOAOptimizer.html
https://qiskit-community.github.io/qiskit-optimization/stubs/qiskit_optimization.algorithms.WarmStartQAOAOptimizer.html
https://zenodo.org/doi/10.5281/zenodo.4062499
https://zenodo.org/doi/10.5281/zenodo.4062499
http://dx.doi.org/10.22331/q-2021-06-17-479
http://dx.doi.org/10.22331/q-2021-06-17-479

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics
Reports, 659:1–44, November 2016. ISSN 03701573. doi: 10.1016/j.physrep.2016.09.002.
arXiv:1608.00163 [physics].

Zhenxiao Fu, Fan Chen, and Lei Jiang. QAgent: An LLM-based Multi-Agent System for Au-
tonomous OpenQASM programming. arXiv preprint arXiv:2508.20134, 2025.

Frank Gaitan and Lane Clark. Graph isomorphism and adiabatic quantum computing. Phys. Rev. A,
89:022342, Feb 2014. doi: 10.1103/PhysRevA.89.022342. URL https://link.aps.org/
doi/10.1103/PhysRevA.89.022342.

Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. An adaptive
variational algorithm for exact molecular simulations on a quantum computer. Nature Communi-
cations, 10(1):3007, July 2019. ISSN 2041-1723. doi: 10.1038/s41467-019-10988-2.

Yaswitha Gujju, Romain Harang, and Tetsuo Shibuya. LLM-Guided Ansätze Design for Quantum
Circuit Born Machines in Financial Generative Modeling, 2025.

Jonas Haferkamp, Philippe Faist, Naga B. T. Kothakonda, Jens Eisert, and Nicole Yunger Halpern.
Linear growth of quantum circuit complexity. Nature Physics, 18(5):528–532, March 2022. ISSN
1745-2481. doi: 10.1038/s41567-022-01539-6.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-4o System Card. arXiv preprint
arXiv:2410.21276, 2024.

IBM Quantum. Qiskit Code Assistant, 2025. URL https://quantum.cloud.ibm.com/
docs/en/guides/qiskit-code-assistant. Accessed: 2025-07-11.

Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien
Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and
Jay M. Gambetta. Quantum Computing with Qiskit. arXiv preprint arXiv:2405.08810, 2024a.
doi: 10.48550/arXiv.2405.08810.

Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien
Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and
Jay M. Gambetta. Quantum computing with Qiskit, 2024b.

Linus Jern, Valter Uotila, Cong Yu, and Bo Zhao. Agent-Q: Fine-Tuning Large Language Models
for Quantum Circuit Generation and Optimization. In 2025 IEEE International Conference on
Quantum Computing and Engineering (QCE). IEEE, 2025.

Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai
Zou, Chao Du, et al. VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use.
arXiv preprint arXiv:2509.01055, 2025.

Stephen P. Jordan. Quantum Algorithm Zoo. https://quantumalgorithmzoo.org, 2025.

Richard M. Karp. Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston,
MA, 1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2\ 9. URL https:
//doi.org/10.1007/978-1-4684-2001-2_9.

Thomas Krauss, Joey McCollum, Chapman Pendery, Sierra Litwin, and Alan J. Michaels. Solving
the Max-Flow Problem on a Quantum Annealing Computer. IEEE Transactions on Quantum
Engineering, 1:1–10, 2020. doi: 10.1109/TQE.2020.3031085.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language
Model Serving with PagedAttention. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, pp. 611–626, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https:
//doi.org/10.1145/3600006.3613165.

12

https://link.aps.org/doi/10.1103/PhysRevA.89.022342
https://link.aps.org/doi/10.1103/PhysRevA.89.022342
https://quantum.cloud.ibm.com/docs/en/guides/qiskit-code-assistant
https://quantum.cloud.ibm.com/docs/en/guides/qiskit-code-assistant
https://quantumalgorithmzoo.org
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. QASMBench: A Low-Level Quan-
tum Benchmark Suite for NISQ Evaluation and Simulation. ACM Transactions on Quantum Com-
puting, 4(2), February 2023. doi: 10.1145/3550488. URL https://doi.org/10.1145/
3550488.

Zhiding Liang, Jinglei Cheng, Rui Yang, Hang Ren, Zhixin Song, Di Wu, Xuehai Qian, Tongyang
Li, and Yiyu Shi. Unleashing the Potential of LLMs for Quantum Computing: A Study in Quan-
tum Architecture Design. (arXiv:2307.08191), July 2023. doi: 10.48550/arXiv.2307.08191.
arXiv:2307.08191 [quant-ph].

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 Technical Report. arXiv preprint
arXiv:2412.19437, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. arXiv preprint
arXiv:1711.05101, 2017.

Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2, February 2014.
ISSN 2296-424X. doi: 10.3389/fphy.2014.00005. URL https://www.frontiersin.
org/journals/physics/articles/10.3389/fphy.2014.00005/full.

Microsoft. Azure Quantum Development Kit. URL https://github.com/microsoft/
qsharp.

Kouhei Nakaji, Lasse Bjørn Kristensen, Jorge A. Campos-Gonzalez-Angulo, Mohammad Ghazi
Vakili, Haozhe Huang, Mohsen Bagherimehrab, Christoph Gorgulla, FuTe Wong, Alex Mc-
Caskey, Jin-Sung Kim, Thien Nguyen, Pooja Rao, and Alan Aspuru-Guzik. The genera-
tive quantum eigensolver (GQE) and its application for ground state search. arXiv preprint
arXiv:2401.09253, jan 2024. doi: 10.48550/arXiv.2401.09253.

Christian F. A. Negre, Hayato Ushijima-Mwesigwa, and Susan M. Mniszewski. Detecting multi-
ple communities using quantum annealing on the D-Wave system. PLOS ONE, 15(2):1–14, 02
2020. doi: 10.1371/journal.pone.0227538. URL https://doi.org/10.1371/journal.
pone.0227538.

Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cam-
bridge University Press, Cambridge ; New York, 10th anniversary ed edition, 2010. ISBN 978-1-
107-00217-3.

OpenAI. Introducing GPT-5, August 2025. URL https://openai.com/index/
introducing-gpt-5/. Accessed: 2025-09-21.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love,
Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a photonic
quantum processor. Nature Communications, 5:4213, July 2014. ISSN 2041-1723. doi:
10.1038/ncomms5213.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. ToolRL: Reward is All Tool Learning Needs, 2025.

Atanu Rajak, Sei Suzuki, Amit Dutta, and Bikas K. Chakrabarti. Quantum annealing: an overview.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 381(2241):20210417, December 2022. doi: 10.1098/rsta.2021.0417.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Robert S. Smith, Michael J. Curtis, and William J. Zeng. A Practical Quantum Instruction Set
Architecture, 2017.

13

https://doi.org/10.1145/3550488
https://doi.org/10.1145/3550488
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2014.00005/full
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2014.00005/full
https://github.com/microsoft/qsharp
https://github.com/microsoft/qsharp
https://doi.org/10.1371/journal.pone.0227538
https://doi.org/10.1371/journal.pone.0227538
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ilya Tyagin, Marwa H. Farag, Kyle Sherbert, Karunya Shirali, Yuri Alexeev, and Ilya Safro.
QAOA-GPT: Efficient Generation of Adaptive and Regular Quantum Approximate Optimiza-
tion Algorithm Circuits. (arXiv:2504.16350), April 2025. doi: 10.48550/arXiv.2504.16350.
arXiv:2504.16350 [quant-ph].

Kento Ueda and Atsushi Matsuo. Optimizing Ansatz Design in Quantum Generative Adversarial
Networks Using Large Language Models. (arXiv:2503.12884), March 2025. doi: 10.48550/
arXiv.2503.12884. arXiv:2503.12884 [quant-ph].

Sanjay Vishwakarma, Francis Harkins, Siddharth Golecha, Vishal Sharathchandra Bajpe, Nicolas
Dupuis, Luca Buratti, David Kremer, Ismael Faro, Ruchir Puri, and Juan Cruz-Benito. Qiskit
HumanEval: An Evaluation Benchmark For Quantum Code Generative Models. In 2024 IEEE
International Conference on Quantum Computing and Engineering (QCE), volume 1, pp. 1169–
1176. IEEE, 2024.

Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yuan Liu,
Thiago SFX Teixeira, Diyi Yang, Ke Wang, et al. EquiBench: Benchmarking Large Lan-
guage Models’ Understanding of Program Semantics via Equivalence Checking. arXiv preprint
arXiv:2502.12466, 2025.

Zebo Yang, Maede Zolanvari, and Raj Jain. A Survey of Important Issues in Quantum Computing
and Communications. IEEE Communications Surveys & Tutorials, 25(2):1059–1094, 2023. doi:
10.1109/COMST.2023.3254481.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, et al. PyTorch
FSDP: Experiences on Scaling Fully Sharded Data Parallel, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In this work, the use of large language models (LLMs) was restricted to writing support and language
refinement. Specifically, LLMs assisted in enhancing the clarity and coherence of the manuscript.
LLMs were not used in the design of algorithms, the development of theoretical results, or the
execution of experiments. All core scientific contributions are entirely the work of the authors.

B IMPLEMENTATION DETAILS

Our QUASAR is built on Verl-Tool (Jiang et al., 2025), and we mainly adopted the hyperparameter
settings from Verl-Tool. The base model for SFT is Qwen3-4B-Instruct-2507, and we perform SFT
adopting the same setting from Jern et al. (2025). Training runs on 16 NVIDIA H100-64GB GPUs
(4 nodes × 4 GPUs). The training hour is 48. The specific hyparameters setting is detailed in Table 3

Tab. 3: Training settings for agentic RL with a 4B SFT model.

Component Configuration
Base model Qwen3-4B-Instruct-2507
SFT setup Quantum Datasets (Jern et al., 2025)
SFT learning rate 2× 10−5

Rollout Num 16
Temperature 0.7
top p 0.8
top k -1
Token limits 1024 (Prompt), 9216 (Response), 2048 (Observation), 8192 (Action)
Optimizer AdamW (Loshchilov & Hutter, 2017)
Learning rate 1× 10−6

Epochs 10
Batch size 128

C QUANTUM COMPUTING AND QUANTUM OPTIMIZATION

Quantum computing is an emerging computing paradigm that relies on the principles of quantum
mechanics (Nielsen & Chuang, 2010). Some types of quantum computing hardware include su-
perconducting circuits, photonic systems, trapped ions, spin qubits, and neutral atoms (Yang et al.,
2023). While hardware often differs at a fundamental level, the most common abstraction to design
quantum computing algorithms is the quantum circuit model, whose fundamental unit is a quantum
bit. Whereas classical computing is based on discrete bits 0 and 1, quantum computing is based on
quantum bits (qubits), which can be in superposition. A single qubit is defined as

|φ⟩ = α|0⟩+ β|φ⟩,

where |0⟩ = [1 0]
⊤ and |0⟩ = [0 1]

⊤ are column vectors and α, β ∈ C so that |α|2 + |β|2 = 1.
A qubit is an element of a Hilbert space. Multi-qubit systems can be constructed using the tensor
product of Hilbert spaces. Quantum computing is performed by applying quantum logic gates to
the system of qubits. These gates are defined by unitary matrices U . Matrix U is unitary if UU† =
U†U = 1, where U† is the conjugate transpose of U .

Considering the unitaries in this work, a special set of unitaries is the parametrized rotation gates,
can be defined as

Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]
, Rx(θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
, Ry(θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
.

These gates are unitary for every θ ∈ [0, 2π]. Using these gates and other standard gates such as
Hadamard, CNOT, and CZ gates, we can construct a vast class of parametrized quantum circuits
whose elements we denote as U(θ), where θ = (θ1, . . . , θm) is a parameter vector. These types of
parametrized gates serve as the basis for quantum optimization routines, which form the core set of
circuits used as training data in this work. Next, we discuss quantum optimization.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Quantum optimization (Abbas et al., 2024) is one of the most promising applications in quantum
computing. While quantum optimization can be performed with specialized devices, such as quan-
tum annealers (Rajak et al., 2022), which are particular instances of adiabatic quantum comput-
ers (Farhi et al., 2000), multiple promising algorithms enable us to optimize a specific class of
functions on universal quantum computers using the quantum circuit model. The key idea is to
express a given optimization problem in a binary optimization format, which can be a quadratic
unconstrained binary optimization (QUBO) problem (Lucas, 2014) or a higher-order unconstrained
binary optimization (HUBO) problem (Boros & Hammer, 2002). Let n be a positive integer and
[n] := {1, . . . , n} be an indexing set. Formally, QUBO problems are then defined as the following
minimization problem

argmin
x∈{0,1}n

∑
i∈[n]

αixi +
∑
i<j

αi,jxixj , (5)

and HUBO problems are defined as

argmin
x∈{0,1}n

∑
S⊂[n]

αS

∏
i∈S

xi, (6)

where coefficients αi ∈ R for i ∈ [n]. The QUBO problem is a special case of the HUBO problem
where the variable interactions are limited to two. By performing a variable rewriting process

xi 7→
1

2
(1 + zi),

where zi ∈ {−1, 1} is a spin variable, we obtain the equivalent optimization formulations in terms
of spin variables. By noting that the eigenvalues for the Pauli-Z operator

σz =

[
1 0
0 −1

]
are 1 and −1, we can further map the spin variable formulation to the Hamiltonian∑

S⊂[n]

αS

∏
i∈S

σz
i ,

where σz
i is the Pauli-Z operator acting on qubit i. This rewriting process essentially translates the

original binary optimization problem into an eigenvalue minimization problem for the Hamiltonian
matrices that are the result of the unconstrained problems. The standard form of quantum optimiza-
tion is based on the idea that we can prepare a state that enables us to measure a sufficiently low
expectation value for a Hamiltonian, which depends on the QUBO or HUBO problem. The prepa-
ration of this state is done with a parametrized unitary U(θ). The goal is to estimate the gradient for
the following function

f(θ) := ⟨0|U(θ)HU†(θ)|0⟩, (7)
which maps parameter vectors θ to expectation values of Hamiltonian H . For a fixed parameter
vector θ, f(θ) can be estimated with a quantum computer. By minimizing f(θ) with a suitable
classical optimization algorithm, we are likely to prepare a state such that when we measure ⟨0|U(θ)
in the computational basis, the bitstring with the highest probability is a solution to the optimization
problem.

The standard methods for solving quantum optimization problems on universal quantum computers
include the Quantum Approximate Optimization Algorithm (QAOA) (Farhi et al., 2014), Variational
Quantum Eigensolver (VQE) (Peruzzo et al., 2014), and adaptive VQE (Grimsley et al., 2019).
Considering QAOA, the method requires preparing a special parameterized ansatz that consists of a
circuit built based on the cost Hamiltonian that describes the optimization problem. The second part
of the parametrized circuit is a mixer Hamiltonian, which is often a simple layer of parametrized
Rx rotation gates that act on every qubit in the system. Then, the expectation value for the cost
Hamiltonian H is measured as in Equation 7. By tuning the parameters with classical optimization
methods, the goal is to minimize the expectation value. The VQE algorithm is similar except that the
ansatz structure does not depend on the cost Hamiltonian, which enables the usage of either more
expressive ansatzes or ansatzes that are hardware efficient. Otherwise, VQE is similarly a hybrid
quantum-classical algorithm. Finally, adaptive VQE employs a method where the user defines a
parametrized gate pool, where the algorithm picks gates and positions them in the circuit. Then, it
evaluates the gradient and chooses the gate that performs the best. This leads to circuit structures
that are problem-specific but highly adapted.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D TRAINING DATASET

D.1 OFFLINE DATA COLLECTION

Effective verification requires access to accurate ground-truth metadata for each quantum optimiza-
tion problem. Before training, we collect this metadata offline using the algorithms described in (Jern
et al., 2025). For each optimization problem, we obtain (i) the cost Hamiltonian of each specific op-
timization problem, (ii) the parameterized solution (ground-truth) circuits, and (iii) the largest/small-
est eigenvalues Emax and Emin for the ground-truth circuits with respect to the cost Hamiltonian. We
feed this metadata into the quantum agent, which uses it to evaluate the OpenQASM code proposed
by the language model.

D.2 QUANTUM OPTIMIZATION PROBLEMS

D.2.1 CONNECTED COMPONENT FOR A NODE

The problem of finding a connected component for a fixed node means finding a subgraph Gs of
graph G such that vfix ∈ Gs and Gs is a connected graph. A graph is connected if a path connects
every two nodes in the graph. This formulation is based on two constraints. Let V be the set of
nodes in graph G and let xv be the binary variable for each v ∈ V indicating if the node belongs to
the connected component or not. The first constraint is a so-called adjacency constraint term:

∑
v∈V

|N(v)| · xv −
∑

u∈N(v)

xu

2

,

where N(v) is the set of adjacent nodes to node v and |N(v)| is the size of this set. This constraint
encodes the fact that if xv is activated, then we have to activate every variable linked to its neighbors,
making the graph connected. Additionally, we include a regulation term∑

v∈V

xv,

which encodes the fact that we should not activate unnecessary variables, especially we should not
activate every variable in the graph if they are not in the same connected component. Before solving
the problem, we set xvfix = 1. This problem is not NP-hard, but it can be easily encoded as a QUBO
and is a common graph optimization primitive. Thus, it provides a good example to be included in
the training data.

D.2.2 COMMUNITY DETECTION

The community detection problem seeks a partition P of a graph G so that the density of the edges
within the partitions in P is higher than the density of edges between them. The quality of the parti-
tioning, i.e., communities, is often measured with modularity Clauset et al. (2004). The modularity-
based community detection has a straightforward formulation in terms of QUBO optimization prob-
lems (Negre et al., 2020) if we consider dividing the graph into two communities.

Assume a weighted graph G = (V,E) given as an adjacency matrix A, where Aij is either 0 if there
is no edge between nodes i ∈ V and j ∈ V , or wij , which is the weight for edge ij ∈ E. Define
a node degree di =

∑
j Aij and collect the degree sequence to a vector d = (d1, . . . , dn), where

n = |V |. Following (Negre et al., 2020), the modularity measure is defined as

B = A− dd⊤

2m
,

where m =
∑

ij Aij . Then, we fix K as the number of communities and define a set of binary
variables xv,k for each node v ∈ V and 1 ≤ k ≤ K indicating to which partition the node belongs.
The QUBO objective that aims to maximize modularity is the following constraint

− 1

2m

∑
i,j∈V

K∑
k=1

(
Aij −

didj
2m

)
xi,kxj,k.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Note that the product xi,kxj,k works as an indicator function: i and j are in the same community k if
and only if xi,kxj,k = 1. Moreover, we ensure that every node belongs to only a single community,
which can be achieved with the following one-hot encoding

P
∑
i∈V

(
1−

K∑
k=1

xi,k

)2

,

where the penalty factor P should be sufficiently large. The problem is proved to be NP-hard
Fortunato & Hric (2016).

D.2.3 K-SIZED CLIQUE

Lucas (2014) presented the QUBO formulation for finding k-sized clique. The problem is to return
a complete subgraph of size k from a given graph G. The decision problem is NP-complete (Karp,
1972). The QUBO formulation for this problem is as follows. The first constraint encodes that we
choose k vertices

A

(
k −

∑
v∈V

xv

)2

and the second constraint encodes that we have to have k(k − 1)/2 edges between the vertices

B

k(k − 1)

2
−
∑
ij∈E

xixj

2

.

The number of k(k − 1)/2 edges characterizes a complete graph. Then, A,B > 0 are chosen so
that A > kB.

D.2.4 GRAPH ISOMORPHISM

Graph isomorphism between graphs G1 and G2 seeks a bijective mapping f : V1 → V2 between
the vertex sets of graphs G1 and G2 such that whenever (v1, v2) ∈ E1 is an edge in graph G1,
then (f(v1), f(v2)) ∈ E2 is an edge in graph E2. Lucas (2014) describes the standard QUBO
formulation for finding graph isomorphism with QUBO formulation, but formulations also exist for
adiabatic quantum computers (Gaitan & Clark, 2014) and boson samplers (Brádler et al., 2021).
Assuming that u, v ∈ V1 and i, j ∈ V2 are nodes, the first constraint is expressed as

A
∑
v∈V1

(
1−

∑
i∈V2

xv,i

)2

+A
∑
i∈V2

(
1−

∑
v∈V1

xv,i

)2

,

which encodes the fact that there has to be a bijective mapping between the vertices. The second
constraint encodes the fact that the bijective mapping has to respect edges

B
∑

ij /∈E1

∑
vu∈E2

xv,ixu,j +B
∑

ij∈E1

∑
vu/∈E2

xv,ixu,j .

It suffices to assume that A,B > 0.

D.2.5 GRAPH COLORING

Assuming that n colors and a graph G are given, the graph coloring problem seeks a solution to the
problem if the n colors can be assigned to the vertices of G so that no edge connects two vertices of
the same color. The problem is known to be NP-complete Karp (1972). Lucas (2014) again presents
the following formulation. Let xv,i be the binary variable indicating if the node v should be colored
with color i. The first constraint is the standard one-hot encoding, which states that every node
should have one color ∑

v∈V

(
1−

n∑
i=1

xv,i

)2

.

The second constraint penalizes those cases when an edge connects two vertices with the same color∑
uv∈E

n∑
i=1

xu,ixv,i.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D.2.6 TRAVELING SALESMAN

The traveling salesman problem is one of the most studied optimization problems on a graph, where
starting from a given node, the goal is to find a path in the weighted graph that visits every node in
the graph exactly once. Lucas (2014) presents the following formulation with first constraint as

HA = A

n∑
v=1

(1−
N∑
j=1

xv,j) +A

n∑
j=1

(1−
N∑

v=1

xv,j)
2 +

∑
(uv)/∈E

N∑
j=1

xu,jxv,j+1

and the second constraint as

HB = B
∑

(uv)∈E

wuv

N∑
j=1

xu,jxv,j+1

The decision problem is NP-complete (Karp, 1972). The penalizing terms can be chosen as 0 <
Bmaxwuv < A (Lucas, 2014).

D.2.7 WEIGHTED MINIMUM MAXIMAL MATCHING

A matching in a graph G is a subset of its edges such that no two edges share the same vertex.
Finding a matching is not generally NP-hard (Edmonds, 1965a;b) without additional constraints
requiring minimality over the selected edges (Lucas, 2014). One of such formulations is to find a
maximal matching on a weighted graph with the minimum cost Cook & Rohe (1999). A maximal
matching is a solution where, if any edge not yet in the matching is included, the resulting subset
of edges would no longer form a matching. Jern et al. (2025) considered this problem as a special
instance of the exact set cover, where the edges are identified with two-element sets. This way,
the exact set cover formula in (Lucas, 2014) can be used, simplifying the formulation. The first
constraint enforces that for every node, exactly one edge is activated:

A
∑
v∈V

1−
∑

e∈N(v)

xe

2

where A = |V |+ 1. The second constraint encodes the fact that we want to minimize the weight of
this matching ∑

e∈E

we.

D.2.8 VERTEX AND EDGE COVERS

The vertex/edge cover problem seeks the smallest set of vertices/edges in a graph G such that every
edge/vertex has at least one vertex/edge in this set. The QUBO formulation (Lucas, 2014) for the
vertex cover problem consists of two constraints

A
∑
uv∈E

(1− xu)(1− xv)

and
B
∑
v∈V

xv,

where we choose B < A. The first constraint encodes the fact that every edge is connected to at
least one vertex that is part of the cover. The second constraint aims to minimize the number of
vertices in the cover. The decision problem is NP-complete (Karp, 1972). QAOA was previously
benchmarked on a special version of this problem (Cook et al., 2019).

The edge cover admits a simple higher-order unconstrained binary optimization formulation as fol-
lows (Jern et al., 2025; Angara et al., 2025). The first constraint encodes that every vertex should be
connected to at least one edge that is part of the cover:

A
∑
v∈V

∏
e∈N(v)

(1− xe).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The previous constraint is a higher-order polynomial, which can be alternatively written as a
quadratic polynomial using slack variables. The second constraint aims to minimize the size of
the cover:

B
∑
e∈E

xe.

Again, we choose B < A.

D.2.9 MAXFLOW AND MINCUT

A flow network is a directed graph with designated source and sink nodes, where each edge is
assigned a non-negative capacity. The network contains no self-loops. A flow is given by a function
f : E → R that assigns a real value f(u, v) for each edge (u, v) ∈ E representing the amount of
flow. A maximum flow problem is to find a viable flow from the source to the sink through the flow
network, obtaining the maximum flow rate. Krauss et al. (2020) developed the QUBO formulation
for the MaxFlow problem. In the same work, the authors also developed a QUBO formulation for
the MinCut problem.

MaxFlow can first be presented as a quadratic unconstrained integer optimization problem. The first
constraint encodes that for each edge, the input and output flow are equal:

∑
v∈V

 ∑
e∈N−(v)

ze −
∑

e∈N+(v)

ze

2

,

where N−(v) is the set of edges leaving node v, N+(v) is the set of edges coming to node v, and ze
is the capacity of the edge, represented as an integer variable. Simultaneously, we want to maximize
the flow, meaning we want to minimize

−A
∑

e∈N+(v)

ze,

where A > 0 is a positive constant. Next, the encoding can employ the standard mechanism
from (Lucas, 2014) to encode the integer variables as binary variables.

Due to the MaxFlow MinCut theorem, we automatically obtain a formulation for the MinCut prob-
lem as well. MinCut can be presented as

A(−xs + xsxt) +
∑
ij∈E

αi,j(xi − xixj),

where xs is the variable for the source node, xt is the variable for the target node, and αi,j is the
capacity or the weight. The part xi−xixj evaluates 1 if xi = 1 and xj = 0, indicating that the edge
is in the cut. We choose that A >

∑
ij∈E αij .

E COMPARISON WITH RANDOM BASELINE.

One of the most common parameter initialization methods for hybrid quantum-classical algorithms
is still to use random parameters. Thus, it is crucial to understand if initial parameters in the
QUASAR-generated QASMs outperform the randomized baseline. We evaluate this regarding two
metrics: JS-divergence and expectation values. For every QUASAR-generated QASM, we computed
the expectation value and JS-divergence with respect to the Hamiltonian and the ground truth. We
parametrized the QUASAR-generated QASM and initialized 100 QASMs with uniformly randomly
sampled parameters from the interval (−π, π]. For these QASMs, we computed the JS-diverge and
expectation values. By comparing these metrics, we can see that both the distributions and expecta-
tion values from the QUASAR-generated QASMs are closer to the optimal than random parameter
initializations on average. The results are collected in Table 4.

F LIMITATIONS

We performed an experimental comparison between WarmStartQAOAOptimizer (Community,
2025) introduced in (Egger et al., 2021) to understand if QUASAR would work as a warm-start

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Tab. 4: Comparison of QUASAR and random baseline metrics. Both JS-divergence and min-
max-scaled expectation values are in [0, 1], so that lower is better.

Metric Value
QUASAR JS-divergence 0.79
Random JS-divergence 0.95
QUASAR Expectation Value 0.16
Random Expectation Value 0.36

method for quantum optimization. The WarmStartQAOAOptimizer utilizes a presolver, which
solves a relaxed continuous variable version of the QUBO problem and then initializes the QAOA
initial state and mixer accordingly. In our implementation, we utilized Gurobi, a high-performance
industry-level solver. For the 564 syntactically correct QASMs in the test dataset (580 test cases
in total), the average fmin

max value for the WarmStartQAOAOptimizer is 0.007, which necessarily in-
dicates that the presolver was capable of solving the problems optimally on average and preparing
a state and mixer that encoded the correct solution. The corresponding value for QUASAR was
0.1600, which was also presented in Table 4. This result indicates that QUASAR is still limited as a
warm-start method compared to the state-of-the-art rule-based WarmStartQAOAOptimizer.

On the other hand, WarmStartQAOAOptimizer works best with QUBO problems. Thus, QUASAR
might be a viable method to warm-start more complex problems, such as HUBO problems, where
WarmStartQAOAOptimizer’s performance seemed to decrease. The method can be efficiently
adapted to HUBO problems by simply optimizing the problem, which excludes the higher-order
terms. By computing the values for those 60 HUBO problems in the test data set, which com-
piled correctly (62 HUBO test cases in total), the corresponding values are 0.0656 for Warm-
StartQAOAOptimizer and 0.2356 for QUASAR. While WarmStartQAOAOptimizer performance
was an order of magnitude worse on these problems, it still outperformed QUASAR. To address
these limitations, the training dataset could be extended with QASMs that the WarmStartQAOAOp-
timizer prepares for the QASMs in the training dataset.

21

	Introduction
	Related Works
	Preliminaries
	Quantum Computing and Quantum Optimization
	OpenQASM language
	Agentic Reinforcement Learning with Tool Use

	Quasar Design
	RL Post-Training Pipeline
	Reward design
	Syntactic reward
	Entropy reward
	Expectation-value reward
	Optimization reward

	Experiments
	Experimental Setup
	Results
	Ablation study of the Hierarchical Reward

	Conclusion
	LLM Usage Statement
	Implementation Details
	Quantum Computing and Quantum Optimization
	Training Dataset
	Offline Data Collection
	Quantum Optimization Problems
	Connected component for a node
	Community detection
	k-sized clique
	Graph isomorphism
	Graph coloring
	Traveling salesman
	Weighted minimum maximal matching
	Vertex and edge covers
	MaxFlow and MinCut

	Comparison with random baseline.
	Limitations

