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Abstract

Games with many players are difficult to solve or even specify
without adopting structural assumptions that enable represen-
tation in compact form. Such structure is generally not given
and will not hold exactly for particular games of interest. We
introduce an iterative structure-learning approach to search
for approximate solutions of many-player games, assuming
only black-box simulation access to noisy payoff samples.
Our first algorithm, K-Roles, exploits symmetry by learning
a role assignment for players of the game through unsuper-
vised learning (clustering) methods. Our second algorithm,
G3L, seeks sparsity by greedy search over local interactions to
learn a graphical game model. Both algorithms use supervised
learning (regression) to fit payoff values to the learned struc-
tures, in compact representations that facilitate equilibrium
calculation. We experimentally demonstrate the efficacy of
both methods in reaching quality solutions and uncovering hid-
den structure, on both perfectly and approximately structured
game instances.

1 Introduction

Many of the real-world multiagent systems we would like
to understand strategically involve an enormous number of
interacting (or potentially interacting) agents. For example,
domains of multiagent research interest—such as ad auc-
tions (Guo et al. 2019), financial markets (Nevmyvaka, Feng,
and Kearns 2006), traffic routing (Bazzan 2009), and ru-
mor spreading over social media (Yang et al. 2018)—all
encompass (depending on the scope being considered) thou-
sands or millions of participating agents. Straightforward
game-theoretic representations of these systems do not scale
well: A direct normal-form representation of an N-agent,
M-action game is O(N M™), which is obviously not feasi-
ble to construct or reason about directly for even moderately
large-scale multiagent systems. In response, Al researchers
and others have identified various kinds of regularity that
may be exhibited in such systems, particularly invoking some
form of homogeneity (symmetry) or locality of interaction
(sparsity) that can be exploited to develop a more compact
game representation (Jiang, Leyton-Brown, and Bhat 2011;
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Kearns, Littman, and Singh 2001). However, it may not be
apparent or easy to specify the exact structure that applies
in a given multiagent scenario, and indeed it may be that
no pre-identified structural simplification holds exactly for a
problem of interest. We therefore investigate in this work the
possibility of learning such structure, and moreover doing so
in an iterative manner interleaved with game-theoretic rea-
soning about structured game models as they are developed.

We develop our methods in the framework of empirical
game-theoretic analysis (EGTA) (Wellman 2016; Tuyls et
al. 2018). EGTA assumes as input a representation of the
game in terms of a payoff oracle (e.g., a simulator). The
game analyst may sample this simulation-based game by
querying the oracle to obtain data from which to estimate
or induce a game model, called the empirical game. This
framework makes sense for the problem at hand, because
specifying simulation models does not suffer from the curse
of dimensionality that inhibits scaling explicit game models
to large numbers of agents. The challenge is to make effective
use of the simulator to gain game-theoretic insights on such
large multiagent systems.

Our hypothesis is that the game-learning process can be
enhanced by a focus on the structure of agent populations
and interactions. For population structure, we appeal to the
partition of agents into distinct roles. Many applications have
obvious role dichotomies: investors and traders in financial
markets, commuters and vacationers in road traffic, brand and
sales marketers in advertising. More generally, we expect that
many multiagent systems will at least roughly support classi-
fication into broad roles. For interaction structure, we appeal
to locality. For example, on a social network, one is directly
influenced (by rumors, innovations, etc.) primarily through
one’s connections on the network. Both kinds of structure—
role-organized symmetry and locality of influence—have
been formalized in terms that support compact game repre-
sentations. Whereas the formal requirements for compact
representation may not strictly hold for games of interest, we
expect that they will often hold approximately to a useful de-
gree. If so, it is worth trying to identify that useful structure in
payoff samples, thereby enabling induction of more compact
and sample-efficient game representations, and accordingly
supporting simpler and more reliable game-theoretic reason-
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Figure 1: Iterative game model learning and solving. The
dashed box encompasses the model learning components.

ing.

Our approach draws on a broad variety of machine learning
techniques. Inspired by the model-based reinforcement learn-
ing framework (Sutton and Barto 2018, Sec. 8.2), we build
our iterative learning-and-solving architecture diagrammed
in Figure 1. The underlying game is represented by a simula-
tor, O, providing black-box oracle access. The only explicit
game descriptors are the sets of agents and actions. Starting
with an arbitrary guess solution o*, on each iteration, the
method first queries O in the region of o*, obtaining by this
online sampling process a new dataset D,,;, which is added
to the data buffer D. Through offline interaction with D, we
then learn and solve a game model to reach the next o*. The
learning process encompasses two steps: It first discovers
the approximate hidden structure from payoff data, and then
enables payoff regression by feeding both data and learned
structure to function approximators. The sampling process
across iterations is designed to concentrate the data buffer D
around candidate solution candidates, thus prioritizing the
quality of generalization on the most relevant regions. The
method employs offline computation and storage with the aim
of limiting online sample complexity, in service of effective
reasoning about large-scale simulation-based games.

We propose two algorithms instantiating our framework:
K -Roles for learning role-symmetry, and Greedy Graphical
Game Learning (G3L) for learning graphical structure in a
game model. We begin by introducing necessary background
information in Section 2, followed by Section 3 reviewing
related work on game model learning and solving. Algorith-
mic details of K-Roles and G3L are covered respectively
in Sections 4 and 5. Section 6 presents our evaluation on
both perfectly and approximately structured game instances.
Conclusion and insights on methods developed are drawn in
Section 7.

2 Preliminaries
2.1 Normal Form Games

In an N-player normal form game ¢, player (or agent)
n € A = {1,...,N} chooses its action a,, € 4,, and
receives payoff u,, (a) as a function of the agents’ joint ac-
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tion or action profile a.' We assume agents share a uni-
versal finite action set: Vn. o, = o = {l,...,M}.
Thus, a € <7V, and for convenience, we write payoff
functions in a form u, (a,,a_,,) that separates the subject
agent’s action and the vector of other-agent actions in dis-
tinct arguments. A mixed strategy o is a probability dis-
tribution induced over .o/ The payoff for n under a joint
mixed strategy o is u,(0) £ Egquo[tn(an,a_,)]. The
deviation payoffs vector for n under o is V, u,(o)
(8un(0') O, (o)

Oop,1 77777 Qop,m

T Quy (o)
) , where the m™ element 522 =

U (M, o_p) £ Ea_ o, [un(m,a_,)], that s, the payoff
of n choosing m while others act according to o.

2.2 Approximate Nash Equilibrium

Define the regret of agent n at o as REGRET, (o)
max,, Un(an, 0_pn) — u,(0o). The overall regret of the
game at o is REGRET(o) = max, REGRET, (o), and if
REGRET(0) < ¢, we call o an e-Nash equilibrium. We typ-
ically seek solutions to minimize REGRET, or alternately
NASHCONV (o), defined as the aggregate regret over agents:
>, REGRET, (o) (Lanctot et al. 2017; Srinivasan et al.
2018).

2.3 Succinct Games

Without further structural assumptions, the representation
complexity of an N-agent, M-action game is O(NM?Y),
which is generally intractable both for storing a game descrip-
tion and computing its solution. Therefore, extensive work
has been directed at identifying succinct game representa-
tions (Daskalakis, Goldberg, and Papadimitriou 2009).

In an anonymous game (Daskalakis and Papadimitriou
2015), agent n’s payoff depends only on its action and
how many (or equivalently, what fraction of) agents choose
each action: u, (G, a_p) = uy(an, f1,--., fa), with fi,
counting the frequency of agents choosing m. If further-
more Vn. u,, = u, the game is symmetric. A role-symmetric
game generalizes this concept by introducing asymmetry:
Agents are partitioned into different roles, where agents
within the same roles are interchangeable from the view of
others. Let R(n) € {1,..., K} denote the role for agent
n. Then the payoft for agent n depends on its action and
the action distribution within each role: w,(an, a_y)
ul(an, fi1, - fins - fi,m), where fi,, is the ac-
tion frequency of m within role k. For a role-symmetric
game, we are typically interested in role-symmetric profiles:
Vn,n'. R(n) = R(n') = o, = o), For finite role-
symmetric games, equilibria are guaranteed to exist in role-
symmetric profiles (Nash 1951).

A second category of succinct representations, graphical
games (Kearns, Littman, and Singh 2001), capture sparsity in
multiagent interaction. By assuming agent n’s payoff depends
only on the joint action profile over its neighborhood A (n)
on an interaction graph, u,, (an, @_yn) = Un(an, ar(y)), the
representation complexity is reduced to O(N M"), where x
is the maximum size of a neighborhood.

! Actions here may correspond to complex strategies; we refer to
action and strategy profiles interchangeably.



2.4 Empirical Game Models

The methodology of empirical game-theoretic analysis
(EGTA) employs simulation or sampling to induce a game
model. This approach is called for when it is not feasible
to express a game model in analytic form, either due to rep-
resentation complexity or difficulty of manual specification.
Formally, in EGTA the multiagent environment is represented
by a game oracle O (e.g., a simulator), which can be queried
to generate a dataset D of action-payoff tuples (a, u), where
w is either an exact or noisy sample of the payoff vector
associated with action profile a. A normal-form game model
induced from D is called an empirical game.

In most EGTA studies, the dominant cost is that of simu-
lating action profiles (i.e., querying the oracle). Accordingly,
several prior works have addressed the problem of controlling
the sampling process to maximize analysis value while mini-
mizing query costs (Jordan, Vorobeychik, and Wellman 2008;
Walsh, Parkes, and Das 2003), and have obtained theoretical
bounds in some cases (Viqueira et al. 2019; Goldberg and
Turchetta 2017). Our work can be viewed in this line, distin-
guished by its focus on identifying structure both to improve
generalization and facilitate reasoning.

2.5 Game Model Learning

Game model learning in our setting aims to induce a represen-
tation of a game, within a specified hypothesis game space,
from limited payoff data using standard machine learning
methods. The hypothesis spaces of interest correspond to suc-
cinct game formats where practical structure-exploiting Nash
solvers exist. For example, one can apply replicator dynam-
ics (Sandholm 2010, Section 4.3.1) or function minimization
(McKelvey and McLennan 1996) to solve a role-symmetric
game, and homotopy method (Blum, Shelton, and Koller
2006) or hybrid refinement algorithm (Vickrey and Koller
2002) to a graphical game. Given a hypothesis space #, one
preprocesses data point (@, u) to construct the features on
the raw a according to H. For a role-symmetric game it is to
aggregate the action frequency over different roles, thus it can
be viewed as feature extraction; while for a graphical game
it is to eliminate agent dependency, thus it can be interpreted
as feature selection. One therefore builds an empirical game
by learning a mapping from the set of features to the set of
payofts.

3 Related Work

Computational Game Theory The idea of using iter-
ated game approximation to find equilibrium dates back
to the homotopy method (Govindan and Wilson 2003;
Herings and Peeters 2010) in classic computational game
theory. Homotopy method typically starts from a perturbation
of the original game model with a trivial solution. By keeping
track of the perturbation vector and equilibrium along a ho-
motopy path, it is guaranteed to reach the equilibrium of the
origin game. One elegant instantiation is the iterated polyma-
trix approximation algorithm (Govindan and Wilson 2004,
Blum, Shelton, and Koller 2006), which approximates the
original game as a sequence of polymatrix games and
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solves them by some efficient subroutine such as the Lemke-
Howson algorithm.

Multiagent Simulation for Game Model Learning In
simulation-based game model learning, the analyst samples
a variety of strategy profiles and receives data in the form
of (profile,payoff-vector) for model learning (Vorobeychik,
Wellman, and Singh 2007).

The only prior work we are aware of that expressly exploits
clustering for learning a normal form game model is by Ficici,
Parkes, and Pfeffer (2008). Their approach starts by cluster-
ing agents via k-means (k = 2) according to the average
payoff vector in the dataset. They then use linear regression
to estimate mixed-strategy payoffs for the clusters. These re-
gressors are in turn used to construct the pure-strategy payoft
table of a reduced two-player approximation of the game.
They compute a Nash equilibrium of this game, and ascribe
the resulting mixed strategies to agents in the respective clus-
ters. Our method for learning role-symmetry structure can
be viewed as a variation of theirs that: (1) reduces dimen-
sionality by clustering payoftf deviation functions rather than
payoff functions, (2) allows for more clusters, and (3) solves
the role-symmetric game rather than a reduced game.

There also has been prior work on regression for role-
symmetric games, for given role assignments (Wiedenbeck,
Yang, and Wellman 2018; Sokota, Ho, and Wiedenbeck 2019).
Duong et al. (2009) and Fearnley et al. (2015) studied algo-
rithms for inducing structure of graphical games.

These works typically assume that training data collection
through simulation is fully controlled by the analyst. This
makes the setting akin to active learning (Settles 2009). Thus,
the simulation-based approach could also be regarded as a
semi-supervised style of game model learning.

Game Model Learning from Behavioral Data Another
line of work employs behavioral data for game model learn-
ing. Here the data are typically assumed to be generated
from approximate equilibria repeatedly played by bounded
rational agents. In contrast to the simulation-based approach
described above, the observational data here takes the form
of actions rather than payoffs.> Thus, we classify this style
of game model learning as unsupervised, and note that it can
also be viewed as a multiagent form of inverse reinforcement
learning (Ng and Russell 2000).

The focus of prior work in this area has been to recover
underlying game structure. For example, Honorio and Or-
tiz (2015) adopt a specific generative model, and optimize
the fit of key parameters to the available data. Other works
also employ diverse optimization techniques to uncover the
payoff matrix under a best-response constraint (Kuleshov
and Schrijvers 2015; Waugh, Ziebart, and Bagnell 2011;
Ling, Fang, and Kolter 2018; 2019). Models learned with
such techniques have been shown to fit well to some real-
world scenarios (Garg and Jaakkola 2016; 2017).

2Gao and Pfeffer (2010) study game learning based both on
payoff data and assumed rationality of action choice.



4 K-Roles: Learning Role Symmetry

We now describe a specific algorithm that employs structure
learning, under the hypothesis that the game approximately
exhibits role symmetry structure. The K-Roles algorithm
follows the basic template of Figure 1, with structure defined
by a mapping of players to roles, players within each role
treated symmetrically. The method combines unsupervised
methods (clustering) for structure learning, with supervised
techniques (regression) for payoff estimation. Though the
target game is in general not perfectly role-symmetric for
K < N, we may still expect it to exhibit approximate role
structure for some reasonable number of roles.

4.1 Overview

As shown in Algorithm 1, our approach employs a hy-

perparameter, K, denoting the number of roles in the
game model. In each iteration the algorithm first augments
the payoff dataset by sampling near the current candi-
date solution. It then estimates deviation payoff vectors for
each player (DEVEST in Algorithm 1), and assigns play-
ers to roles through an unsupervised clustering method
(DETCLUSTER). A new payoff function is then learned by
regression (FITREGRESSOR), taking the derived role assign-
ment as a constraint. With role symmetry, the regression es-
sentially entails training payoffs for K separate “role agents”,
each representing its respective role as determined from the
clustering operation. Finally, we compute a role-symmetric
mixed Nash equilibrium (NASHSOLVER) for the game model
at the current iteration.

Algorithm 1: K-Roles

Input: Hyperparameter K, Oracle O.
1 Initial solution o*, Data buffer D = {};
2 repeat
3 Dyai < QUERY (O, 0™);
Vg+t <= DEVEST(Dya1);
% < DETCLUSTER (Vg 1i, D, Dyar);
D < DUDyas;
{Va%k}ke[k] + FITREGRESSOR(%, D);

N S A

8 o* <~ NASHSOLVER ({Vae%’k}ke[f(])?

9 until o* sufficiently close to equilibrium;

By imposing role symmetry and a regression model, we
transform the problem from a combinatorial optimization
of dimension O(NM?) to a continuous optimization of

dimension O(M?K?).

4.2 Structure Learning

We propose two heuristic agent clustering methods based
on well-known partitional clustering algorithms: k-means
and hierarchical clustering. We represent each agent by its
individual point deviation payoffs based on the current model
and the validation data set D,,,;, where the deviation payoff
estimator V 5+, ,, is calculated by taking the average of the
payoffs when agent n chooses action m in D,,;. If no data

2122

is available for action m, we simply take it as n’s average
payoff across all actions. The task here is to cluster these
agents by similarity of strategic view into K roles.

The first method is similar to the one adopted by Ficici,
Parkes, and Pfeffer (2008): We directly apply k-means (k =
K) on the vector embeddings to obtain a cluster assignment.
Per the k-means procedure, on each iteration we calculate
the centroids of each cluster based on the current assignment,
then update the clustering by assigning each agent to the
cluster to which it is closest based on these centroids.

In the second method we define distance measures be-
tween any pair of agents (¢, j) and then perform hierarchical
clustering. Here we use a weighted L”-norm between devia-
tion payoffs as the distance metric. Specifically we compute
i — o 25

1/p

S 0iai0ha, luilai,0-i) = ujlaz, o) :
a; aj
at the latest equilibrium point o = o™ with p > 1. We use
Vol q, to estimate u;(a;, o™ ;). We adopt the version of
agglomerative average linkage clustering: Starting from N
singletons, in each iteration for any pair of current clusters
we calculate the average inter-cluster distance, and merge the
pair that minimizes that until we reach K clusters.

In the experiments described below, we employ both clus-
tering methods for K -Roles. First we try hierarchical agent
clustering with p = 2. If any returned cluster is of size be-
low 20, we discard the result and apply k-means clustering
instead.

4.3 Payoff Function Regression

Given a cluster assignment ¢’ derived from the preceding step,
we perform regression (FITREGRESSOR in Algorithm 1) to
estimate deviation payoffs for each action of each role agent.
Define Vo %y, = (VoZia,---» Va%k,M)T as the vector of
deviation payoffs to learn for role k, where the m™ element is
the payoff for an individual of role k£ playing m while others
act according to the role-symmetric strategy o. We compute
that by aggregating the payoft information according to €.

Specifically, given partition ¢ = {R1,..., Ry}, we or-
ganize the data for each role as follows. For a raw data point
(a,u) € D, we first calculate the action counts (empirical
distribution) from a for each role and concatenate them as
the feature vector f, and then for each agent n of role k£ we
store (f, (u),) as a data point for training V5%, (q),, - This
corresponds to the point method proposed by Wiedenbeck,
Yang, and Wellman (2018) for mixed payoff estimation.

We tried a variety of regression methods; Figure 2 plots
their performance for a random role-symmetric game with
N =300, M = 3, K = 3, trained according to the ground-
truth role partition. We sample 500 role-symmetric mixed
strategies from a Dirichlet distribution as the test set, and
define the test error to be the L2 loss between the regressor
predictions and the true deviation payoffs, averaging across
all roles and all actions. For each profile we estimate these
target deviation payoffs via 1000 samples from the oracle.
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Figure 2: Performance of deviation payoff estimations for lin-
ear regression (LR), multilayer perceptron (MLP), k-nearest-
neighbor (KNN) with & = 5, random forest (RF), and gradi-
ent boosting (GB). Training data are corrupted with Gaussian
noise width 0.22.

We find that generally gradient boosting and multilayer per-
ceptron regression methods outperform the others in terms
of accuracy and robustness against noise, while the latter
generalize better with sufficient amount of training data.

4.4 NASHSOLVER

After we have trained the role agents {Z1,..., %z}, they
naturally define a role-symmetric game, where the action
space for each role is an M -dimensional simplex consisting
of all possible action distributions within that population. We
resort to function minimization (McKelvey and McLennan
1996) to attain a role-symmetric equilibrium.

Remark 1 The regressed model supports O(1) access to
the deviation payoffs of role-symmetric mixed strategies
needed for NASHSOLVER as defined here. This avoids the
infeasible multiplication and summation over payoff matrices
for deviation calculation employed in classical Nash algo-
rithms.

Remark 2 The learned role-symmetric game model repre-
sented by differentiable function approximators is a special
case of differentiable game (Balduzzi et al. 2018). Optimiza-
tion techniques designed for that class could therefore also
be applied in an alternative NASHSOLVER.

5 G3L: Learning Graphical Structure
5.1 Overview

Our second algorithm operates under the hypothesis that the
game approximately exhibits graphical dependence structure.
G3L (Algorithm 2) employs a refinement of the greedy loss
minimization approach of Duong et al. (2009) for structure
learning. The procedure also resembles score-based struc-
ture learning in probabilistic graphical models (Heckerman,
Geiger, and Chickering 1995), and greedy forward feature
selection in representation learning (Friedman, Hastie, and
Tibshirani 2001, Sec. 3.3.2).
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Algorithm 2: Greedy Graphical Game Learning

Input: Hyperparameter #, Oracle O.
1 Initial solution o*, Data buffer D = {};
2 repeat
3 Dyar + QUERY(O, 0*);
4 D < DUD,yu;
5 for n € 4/ do
6 N(n) ={n};
7 repeat
8 N(n) «
arg min ﬁ >
S:[SAN (n)|<1 (a,u)eD
|S|<#

9 (Au)n),
10 until V' (n) converged,
11

L(tn, (S, a),

end

12 o* < NASHSOLVER ({ﬁn(ﬁ(n)} /V>;
ne.

until o* sufficiently close to equilibrium,

5.2 Structure Learning

For each iteration we maintain an estimated neighborhood
set NV (n) for each agent n. All such A/ (n) would define a
directed graph for a graphical game. Initialized as {n}, we
perform a sequence of local searches on N (n) until conver-
gence: Each time we either add a new neighbor or delete an
old one from A (n), such that the training loss (described
next subsection) would decrease the most. Furthermore to
control model complexity for efficient deviation computation
during equilibrium calculation, we employ a regularizer < to
constrain the maximum neighborhood size.

5.3 Payoff Function Regression

For a given profile a N (n) of the learned graphical game,

we set 1, to the average of all (u),, such that (a,u) € D
and a N(n) is contained in a. If a N(n) does not appear in
any profile of D, we just set 4, to the average payoff of
n choosing a,, in D. The training loss for a given /(f(n) is
defined as the average of L2 loss between payoff prediction
G, (N'(n), @) and target payoff (u),, for all (a,u) € D.

We plot in Figure 3 the performance of greedy forward
learning on a random graphical game, for different regular-
izer <. We sample 500 pure strategy profiles according to
uniform mixed strategy as the test set, and define the test error
as the L2 loss between the regressor predictions and these
ground truth pure strategy payoffs. We find that in general the
hyperparameter & trade-offs prediction accuracy for sample
complexity: A bigger & represents a richer model class while
requires more data to make good estimations.

5.4 NASHSOLVER

We implement an optimized version of the Govindan-Wilson
algorithm (Blum, Shelton, and Koller 2006) to solve for ex-
act mixed NE of the learned graphical game. The graphical
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Figure 3: Performance of greedy forward learning for pure-
strategy payoff estimation under different 4. Training data
are corrupted with Gaussian noise width 0.22.

structure is exploited through the efficient computation of
deviation payoffs.

Remark With many players, the main computational bot-
tleneck of the Govindan-Wilson algorithm is calculating the
adjugate matrix for the payoff Jacobian. Here we resort to
the method proposed by Stewart (1998), which utilizes per-
turbated decomposition to compute the adjugate as well as to
handle the case when it is singular. We adopt the “wobble”
trick and adaptive step size described by Blum, Shelton, and
Koller (2006) to speed up convergence. Other parameters
are the same as the implementations in GameTracer (Blum,
Koller, and Shelton 2002).

6 Experiments

In this section, we evaluate our methods on both perfectly and
approximately structured games. For games with perfect role
structure, we generate the cluster assignment from a uniform
distribution. For games with an underlying graphical model,
we generate a directed random graph with expected number
of neighbors 5. All payoff samples are added with Gaussian
noise of width 0.22 when returned by the oracle.

For a game with a perfect role structure, we validate the
model accuracy by the normalized Rand Statistics (Rand
1971) within range [0,1], between the clusters output by the
algorithm and the ground-truth. The higher the score the more
similar two partitions are.

For a game with an underlying graph {\(n)},, we define
the graph score for the learned graph {N'(n)}, as GS =

% Yon W € [0, 1], measuring how well the learned

graph resembles the original.

6.1 Random Role-Symmetric Games

We first test on a 300-agent 3-action, 3-role random role-
symmetric game. We evaluate K-Roles choosing K =3
against the method of (Ficici, Parkes, and Pfeffer 2008)
trained with 100 and 1000 data points, denoted as FPP-100
and FPP-1000 respectively. We maintain a data buffer of size
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1000, and query 100 data points as D,,; in each iteration.
For regression of deviation function approximators, we use a
neural network with two hidden layers of sizes 32 and 16.
As shown in Figures 4a and 4b, K -Roles is able to find
better solutions than FPP within a few iterations. Figure 4c
shows that the procedure also succeeds in recovering the
ground-truth role partition quickly, starting from a random
initial assignment. The progress in finding better solutions
with iteration can be attributed to both improved cluster rep-
resentation and accumulation of data for payoff training.

6.2 Biased Voting Game

The biased voting game (Kearns et al. 2009) is a graphical
game model designed to capture a tradeoff between maximiz-
ing one’s own preferences and coordinating with neighbors.
In an M -party biased voting game, agent n has a preference
score s, for each party m. And if f, ,, fraction of n’s
neighbor votes for party m, the payoff of n voting party m is
Sn,m fn,m-

We first test on three games with different degrees of solv-
ing difficulty. In each experiment we query 1000 data points
for one shot. We adopt Iterated Best Response (IBR) as our
benchmark with the same number of data points queried. In
each round of IBR a player is randomly selected to make a
best response to the current state. IBR is guaranteed to reach
pure-strategy Nash equilibrium (PSNE) for network games
with strategic complements (Jackson 2010, Section 9.3.3),
however in general for network games and the biased voting
game in particular, PSNE may not even exist.

Weset k = 6if M = 2 and kK = 4 when M = 3. The
results are shown in Table 1. We observe that choosing a
large & typically results in a fairly accurate graphical model,
but since the size of payoff table for the learned game grows
exponentially with &, we need to sacrifice model accuracy for
efficient equilibrium computation when facing moderate M.
Nevertheless the solutions returned by G3L exhibited better
quality than IBR in all instances tested.

We then perform an iterated version of the experiment
N = 100, M = 2, where buffer size is 1000 and 100 data
points are queried in each iteration. As shown in Figures
5, G3L beats the baseline even at the first iteration, and its
capability of finding a good solution as well as recovering
the graph structure evidently improves over iterations.

6.3 Criminal Network Game

In the peer-effect criminal network game studied by
Bramoullé, Kranton, and D’ Amours (2014), each agent n
is embedded in a graph G and has to choose a criminal
level a,, € [0,1]. The payoff for agent n is defined as
Uy = Yn — C - Tp. The symmetric game term y,, is a function
of the total criminal levels of this network, capturing the com-
peting effects and satisfying conditions Oyn > (), Jvn <

day, Y da,,r —
0,vn’ # n. The graphical game term x,, measures peer-
effects and satisfies gz: >0, g{f“} <0,Yn' € N(n).

For our purposes, the most intenresting feature of the crimi-
nal network game is that by varying the structure parameter
¢ > 0 for fixed y,,, x,, we obtain a spectrum of games be-

tween perfect symmetry and perfect sparsity: With greater
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Table 1: Performance of G3L versus IBR on biased voting
game instances. The entry format in the second and third
columns is REGRET(NASHCONV). The last column gives
the graph scores for the graphs learned by G3L. All results
are averaged over 20 runs.

Game Instance G3L IBR | G3LGS
N =100, M =2 | 0.165 (0.337) 0.315(0.797) 0.907
N =100,M =3 | 0.298 (1.447) 0.513 (1.601) 0.698
N =200, M =2 | 0.075(0.207) 0.661 (5.178) | 0.915

¢ > 0 the game is closer to a graphical game as opposed to a
symmetric game, and vice versa.

We let M = 3 by constraining the criminal level a,, €
{0,0.5,1}. We fix linear-quadratic functions for both y,, and
x,, and vary (. The results of K-Roles and G3L are based on
a single iteration of game learning with 1000 query samples.
The solution qualities of the methods for game points of
different structures are plotted in Figure 6. We find that K-
Roles and G3L, respectively, outperform the others when
the game is closer to the symmetry or the sparsity extreme.
Interestingly, when the game approaches a graphical game,
K-Roles is able to discover an approximate role structure
when the sparsity increases, with solutions nearly as good
as those found by G3L. This suggests that symmetry can
arise from sparsity in a game, and validates the efficacy of
K-Roles in revealing such structure.
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7 Conclusion

Scaling game modeling to large numbers of players perhaps
inevitably requires some structural regularity in the situation
and interactions of the agent population. We proposed an
approach to reasoning about many-player games based on
iterative structure learning, given black-box access to noisy
payoff samples for a target game. Starting from a basic struc-
tural hypothesis, our method learns a candidate structure
and associated game model, then gathers additional training
data based on this candidate to learn a refined model. We
instantiated this approach for two very different forms of
structural hypothesis: role symmetry, and locality of interac-
tion. Our K'-Roles algorithm, inspired by k-means clustering,
combines supervised and unsupervised techniques to learn
a role-symmetric game model. Our G3L iteratively learns a
graphical game model.

We performed computational experiments on three rele-
vant albeit stylized games, on instances with at least 100
agents. One game exhibits strict role structure, the second
strict graph structure, and a third has structure but neither
strictly. We found that both methods achieved good perfor-
mance for structure learning in the models with clear struc-
ture, and both also demonstrated advantages of the iterative
structure-learning approach to equilibrium seeking.

It is important to note that the identification of symmetry
by K-roles assumes that we already have a common set
of actions for the agents. In other situations we may have
different action sets, which would just impose a constraint
on the clustering process. In a more general version of the
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problem, identification of correspondences between actions
of different agents would itself be something that would have
to be learned; as yet we have not considered how to extend
K-roles in that direction.

For graphical game learning, action correspondence is not
a concern. A possible focus for improvement of G3L would
be more explicit management of the tradeoffs in maximum
neighborhood size &, considering simultaneously its affect
on learning (i.e., use as a regularizer) and on game-theoretic
computation with the resulting model.

Future work could encompass these issues as well as many
other extensions to cover broader classes of games and addi-
tional forms of game structure.
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