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ABSTRACT

We propose TT-Seg, an unsupervised image segmentation framework that em-
ploys Tensor Train (TT) decomposition and probabilistic tensor sampling to op-
timize Quadratic Unconstrained Binary Optimization (QUBO) problems. TT-Seg
achieves segmentation performance comparable to classical solvers while offer-
ing enhanced scalability. Experimental results indicate that the TT-based ap-
proach performs effectively on small-scale problems, although for larger QUBO
instances, leading solvers such as Gurobi and the D-Wave hybrid solver remain
superior.

1 INTRODUCTION

Image segmentation, a core problem in computer vision, can be formulated as an NP-hard minimum
cut problem via QUBO Heidari et al. (2024); Benkner et al. (2021); Choong et al. (2023). Although
quantum annealing methods like Q-Seg Venkatesh et al. (2024) leverage D-Wave hardware to tackle
these problems, practical limitations restrict their widespread use Salloum et al. (2024; 2025); Sal-
loum et al.. In contrast, TT-Seg utilizes Tensor Train decomposition Oseledets (2011) to efficiently
represent the solution space and employs probabilistic sampling to search for optimal segmentations
without relying on specialized quantum hardware. This approach offers competitive performance in
small-scale settings and highlights the potential of tensor networks—exemplified by methods such
as PROTES—in addressing high-dimensional combinatorial optimization challenges Batsheva et al.
(2023); Ryzhakov et al. (2024).

2 METHODS

2.1 GRAPH REPRESENTATION AND PROBLEM FORMULATION

Similar to Q-Seg, TT-Seg represents an image as a graph, where pixels correspond to nodes and
edges encode similarity between adjacent pixels. The segmentation task is formulated as a minimum
cut problem, which is then expressed in QUBO form:

min
x∈0,1n

xTQx, (1)

where Q encodes pixel similarity weights.

2.2 TENSOR-TRAIN PROBABILISTIC OPTIMIZATION

TT-Seg replaces quantum annealing for QUBO problems with a tensor-based probabilistic method
inspired by the PROTES algorithm Batsheva et al. (2023). Here, the n×n QUBO matrix is reshaped
into a d-dimensional tensor Q ∈ Rm1×···×md (with d ≪ n) to capture hierarchical interactions. We
employ TT decomposition to approximate the probability distribution:

P (x) ≈
d∏

k=1

Gk(xk), Gk ∈ Rrk−1×mk×rk , (2)
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thereby reducing the parameter complexity from O(md) to O(dmr2) and enabling efficient sequen-
tial sampling via conditional distributions.

The optimization process alternates between:

1. Exploration: Drawing samples through matrix product state traversal to identify high-
probability regions.

2. Exploitation: Evaluating QUBO energies and updating TT cores via gradient ascent on
the log-likelihood of the best samples.

This approach effectively balances global exploration and local refinement, offering enhanced scal-
ability over both simulated and quantum annealing. The TT format’s linear memory scaling permits
high-resolution problem handling on standard GPUs, with efficient parallel tensor contractions.

3 EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate TT-Seg on synthetic datasets and real-world remote sensing images the same in the
work Venkatesh et al. (2024), comparing its performance against classical solvers such as Gurobi.
Key metrics include segmentation accuracy, runtime, and scalability. The results in Table 1 clearly
demonstrate that Gurobi and Q-Seg outperform TT-Seg, particularly as the problem size increases.
TT-Seg failed in large-scale instances. However, in small-scale instances, TT-Seg produced better
solutions than the D-Wave solver and achieved results close to the optimal QUBO values.

Nodes TT-Seg Gurobi Q-Seg

Time (s) Value Time (s) Value Time (s) Value

5 2.56 -0.79 0.06 −0.78 4.29 −0.78
25 2.07 -9.26 0.07 -9.26 4.84 −9.18

100 2.57 −35.87 0.51 -38.65 4.68 -38.65
256 3.89 -75.64 3.30 −103.16 11.01 −101.54
361 5.65 −87.87 7.07 -139.78 7.95 −137.01
576 10.07 −103.93 25.54 -228.82 19.02 −221.02
841 23.31 −106.17 40.22 -310.00 23.96 −292.05

1089 43.90 −132.21 53.64 -413.56 37.50 −395.93
1521 54.71 −158.77 108.22 -580.49 132.82 −555.68
1681 69.45 −178.46 127.42 -645.82 37.66 −608.11
1936 125.44 −186.59 184.27 -748.45 39.28 −715.93

Table 1: Performance comparison between TT-Seg, Gurobi, and Annealer solver. TT-Seg maintains
consistent solve times while Gurobi and Annealer behave similarly on larger instances. All times in
seconds.

4 CONCLUSION

We introduced TT-Seg, an unsupervised image segmentation application that employs a probabilis-
tic tensor-based sampling method to eliminate the reliance on quantum annealing. Although TT-Seg
requires further improvements for scalability, our results indicate that while Gurobi and Q-Seg out-
perform TT-Seg in large-scale instances, TT-Seg achieves competitive performance in small-scale
scenarios by surpassing the D-Wave solver and approaching optimal QUBO values.
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