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Abstract
Stochastic Gradient Descent-Ascent (SGDA) is one of the most prominent algorithms for solving
min-max optimization and variational inequalities problems (VIP) appearing in various machine
learning tasks. The success of the method led to several advanced extensions of the classical
SGDA, including variants with arbitrary sampling, variance reduction, coordinate randomization,
and distributed variants with compression, which were extensively studied in the literature, especially
during the last few years. In this paper, we propose a unified convergence analysis that covers a
large variety of stochastic gradient descent-ascent methods, which so far have required different
intuitions, have different applications and have been developed separately in various communities.
A key to our unified framework is a parametric assumption on the stochastic estimates. Via our
general theoretical framework, we either recover the sharpest known rates for the known special
cases or tighten them. Moreover, to illustrate the flexibility of our approach we develop several
new variants of SGDA such as a new variance-reduced method (L-SVRGDA), new distributed
methods with compression (QSGDA, DIANA-SGDA, VR-DIANA-SGDA), and a new method
with coordinate randomization (SEGA-SGDA). Although variants of the new methods are known
for solving minimization problems, they were never considered or analyzed for solving min-max
problems and VIPs. We also demonstrate the most important properties of the new methods through
extensive numerical experiments.

1. Introduction

Min-max optimization and, more generally, variational inequality problems (VIPs) appear in a wide
range of research areas including but not limited to statistics [5], online learning [15], game theory
[58], and machine learning [23]. Motivated by applications in these areas, in this paper, we focus on
solving the following regularized VIP: Find x∗ ∈ Rd such that

⟨F (x∗), x− x∗⟩+R(x)−R(x∗) ≥ 0 ∀x ∈ Rd, (1)

where F : Rd → Rd is some operator and R : Rd → R is a regularization term (a proper lower
semicontinuous convex function), which is assumed to have a simple structure. This problem is quite
general and covers a wide range of possible problem formulations. For example, when operator F (x)
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is the gradient of a convex function f , then problem (1) is equivalent to the composite minimization
problem [7], i.e., minimization of f(x) +R(x). Problem (1) is also a more abstract formulation of
the min-max problem

min
x1∈Q1

max
x2∈Q2

f(x1, x2), (2)

with convex-concave continuously differentiable f . In that case, first-order optimality conditions im-
ply that (2) is equivalent to (1) with x = (x⊤1 , x

⊤
2 )

⊤, F (x) = (∇x1f(x1, x2)
⊤,−∇x2f(x1, x2)

⊤)⊤,
and R(x) = δQ1(x1) + δQ2(x2), where δQ(·) is an indicator function of the set Q [1]. In addition to
formulate the constraints, regularization R allows us to enforce some properties to the solution x∗,
e.g., sparsity [7, 13].

More precisely, we are interested in the situations when operator F is accessible through the calls
of unbiased stochastic oracle. This is natural when F has an expectation form F (x) = Eξ∼D[Fξ(x)]
or a finite-sum form F (x) = 1

n

∑n
i=1 Fi(x). In the context of machine learning, D corresponds to

some unknown distribution on the data, n corresponds to the number of samples, and Fξ, Fi denote
vector fields corresponding to the samples ξ, and i, respectively [22, 52].

One of the most popular methods for solving (1) is Stochastic Gradient Descent-Ascent1 (SGDA)
[20, 59]. However, besides its rich history, SGDA only recently was analyzed without using strong
assumptions on the noise [52] such as uniformly bounded variance. In the last few years, several
powerful algorithmic techniques like variance reduction [62, 79] and coordinate-wise randomization
[69], were also combined with SGDA resulting in better algorithms. However these methods were
analyzed under different assumptions, using different analysis approaches, and required different
intuitions. Moreover, to the best of our knowledge, fruitful directions such as communication
compression for distributed versions of SGDA or linearly converging variants of coordinate-wise
methods for regularized VIPs were never considered in the literature before.

All of these facts motivate the importance and necessity of a novel general analysis of SGDA
unifying several special cases and providing the ability to design and analyze new SGDA-like
methods filling existing gaps in the theoretical understanding of the method.

In this work, we develop such unified analysis.

1.1. Technical Preliminaries

Throughout the paper, we assume that (1) has at least one solution and operator F is µ-quasi-strongly
monotone and ℓ-star-cocoercive: there exist constants µ ≥ 0 and ℓ > 0 such that for all x ∈ Rd

⟨F (x)− F (x∗), x− x∗⟩ ≥ µ∥x− x∗∥2, (3)

∥F (x)− F (x∗)∥2 ≤ ℓ⟨F (x)− F (x∗), x− x∗⟩, (4)

where x∗ = projX∗(x) := argminy∈X∗ ∥y − x∥ is the projection of x on the solution set X∗ of
(1). If µ = 0, inequality (3) is known as variational stability condition [37], which is weaker than
standard monotonicity: ⟨F (x) − F (y), x − y⟩ ≥ 0 for all x, y ∈ Rd. It is worth mentioning that
there exist examples of non-monotone operators satisfying (3) with µ > 0 [52]. Condition (4) is a
relaxation of standard cocoercivity ∥F (x) − F (y)∥2 ≤ ℓ⟨F (x) − F (y), x − y⟩. At this point let
us highlight that it is possible for an operator F to satisfy (4) and not be Lipschitz continuous [52].

1. This name is usually used in the min-max setup. Although we consider a more general problem formulation, we keep
the name SGDA to highlight the connection with min-max problems.
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This emphasizes the wider applicability of the ℓ-star-cocoercivity compared to ℓ-cocoercivity. We
emphasize that in our convergence analysis we do not assume ℓ-cocoercivity nor L-Lipschitzness of
F .

We consider SGDA for solving (1) in its general form:

xk+1 = proxγkR(x
k − γkg

k), (5)

where gk is an unbiased estimator of F (xk), γk > 0 is a stepsize at iteration k, and proxγR(x) :=
argminy∈Rd {R(y) + ∥y−x∥2/2γ} is a proximal operator defined for any γ > 0 and x ∈ Rd. While
gk gives an information about operator F at step k, proximal operator is needed to take into account
regularization term R. We assume that function R is such that proxγR(x) can be easily computed for
all x ∈ Rd. This is a standard assumption satisfied for many practically interesting regularizers [7].
By default we assume that γk ≡ γ > 0 for all k ≥ 0.

1.2. Our Contributions

⋄ Unified analysis of SGDA. We propose a general assumption on the stochastic estimates and the
problem (1) (Assumption 1) and show that several variants of SGDA (5) satisfy this assumption.
In particular, through our approach we cover SGDA with arbitrary sampling [52], variance
reduction, coordinate randomization, and compressed communications. Under Assumption 1
we derive general convergence results for quasi-strongly monotone (Theorem 1) and monotone
problems (Theorem 3).

⋄ Extensions of known methods and analysis. As a by-product of the generality of our theoretical
framework, we derive new results for the proximal extensions of several known methods such as
proximal SGDA-AS [52] and proximal SGDA with coordinate randomization [69]. Moreover,
we close some gaps on the convergence of known methods, e.g., we derive the first convergence
guarantees in the monotone case for SGDA-AS [52] and SAGA-SGDA [62] and we obtain the
first result on the convergence of SAGA-SGDA for (averaged star-)cocoercive operators.

⋄ Sharp rates for known special cases. For the known methods fitting our framework our general
theorems either recover the best rates known for these methods (SGDA-AS) or tighten them
(SGDA-SAGA, Coordinate SGDA).

⋄ New methods. The flexibility of our approach allows us to develop and analyze several new
variants of SGDA. Guided by algorithmic advances for solving minimization problems we pro-
pose a new variance-reduced method (L-SVRGDA), new distributed methods with compression
(QSGDA, DIANA-SGDA, VR-DIANA-SGDA), and a new method with coordinate randomiza-
tion (SEGA-SGDA). We show that the proposed new methods fit our theoretical framework
and, using our general theorems, we obtain tight convergence guarantees for them. Although the
analogs of these methods are known for solving minimization problems [3, 33–35, 43, 56], they
were never considered for solving min-max and variational inequality problems. Therefore, by
proposing and analyzing these new methods we close several gaps in the literature on SGDA. For
example, VR-DIANA-SGDA is the first SGDA-type linearly converging distributed stochastic
method with compression and SEGA-SGDA is the first linearly converging coordinate method
for solving regularized VIPs.

⋄ Numerical evaluation. In numerical experiments, we illustrate the most important properties of
the new methods. The numerical results corroborate our theoretical findings.
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Throughout the paper, we provide necessary comparison with closely related work. Additional
works relevant to our paper are discussed in Appendix A.

2. Unified Analysis of SGDA

Key assumption. We start by introducing the following parametric assumption, which is a central
part of our approach.

Assumption 1 We assume that for all k ≥ 0 the estimator gk from (5) is unbiased: Ek

[
gk
]
=

F (xk), where Ek[·] denotes the expectation w.r.t. the randomness at iteration k. Next, we assume
that there exist non-negative constants A,B,C,D1, D1 ≥ 0, ρ ∈ (0, 1] and a sequence of (possibly
random) non-negative variables {σk}k≥0 such that for all k ≥ 0

Ek

[
∥gk − g∗,k∥2

]
≤ 2A⟨F (xk)− g∗,k, xk − x∗,k⟩+Bσ2

k +D1, (6)

Ek

[
σ2
k+1

]
≤ 2C⟨F (xk)− g∗,k, xk − x∗,k⟩+ (1− ρ)σ2

k +D2, (7)

where x∗,k = projX∗(xk) and g∗,k = F (x∗,k).
While unbiasedness of gk is a standard assumption, inequalitites (6)-(7) are new and require clar-
ifications. For simplicity, assume that σ2

k ≡ 0, F (x∗) = 0 for all x∗ ∈ X∗, and focus on (6).
In this case, (6) gives an upper bound for the second moment of the stochastic estimate gk. For
example, such a bound follows from expected cocoercivity assumption [52], where A denotes some
expected/averaged (star-)cocoercivity constant and D1 stands for the variance at the solution (see
also Section 3). When F is not necessary zero on X∗, the shift g∗,k helps to take this fact into
account. Finally, the sequence {σ2

k}k≥0 is typically needed to capture the variance reduction process,
parameter B is typically some numerical constant, C is another constant related to (star-)cocoercivity,
and D2 is the remaining noise that is not handled by variance reduction process. As we show in the
next sections, inequalitites (6)-(7) hold for various SGDA-type methods.

We point out that Assumption 1 is inspired by similar assumptions appeared in Gorbunov
et al. [24, 26]. However, the difference between our assumption and the ones appeared in these
papers is significant: Gorbunov et al. [24] focuses only on solving minimization problems and as a
result, their assumption includes a much simpler quantity (function suboptimality), instead of the
⟨F (xk)− g∗,k, xk − x∗,k⟩, in the right-hand sides of (6)-(7). The assumption proposed in Gorbunov
et al. [26], is designed specifically for analyzing vanilla Stochastic EG, it does not have {σ2

k}k≥0

sequence (not able to capture variants of Stochastic EG with variance reduction, quantization, nor
coordinate-wise randomization) and works only for (1) with R(x) ≡ 0. For more detailed comparison
of our approach and this line of work, see Appendix A.

Quasi-strongly monotone case. Under Assumption 1 and quasi-strong monotonicity of F , we
derive the following general result.

Theorem 1 Let F be µ-quasi-strongly monotone (µ > 0) and let Ass. 1 hold. Assume that
0 < γ ≤ min {1/µ, 1/2(A+CM)} for some2 M > B/ρ. Then the iterates of SGDA (5), satisfy:

E[Vk] ≤
(
1−min

{
γµ, ρ− B

M

})k

V0 +
γ2(D1 +MD2)

min {γµ, ρ− B/M}
. (8)

where the Lyapunov function Vk is defined by Vk = ∥xk − x∗,k∥2 +Mγ2σ2
k for all k ≥ 0.

2. When B = 0, we suppose M = 0 and B/M := 0 in all following expressions.
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The above theorem states that SGDA (5) converges linearly to the neighborhood of the solution.
The size of the neighborhood is proportional to the noises D1 and D2. When D1 = D2 = 0, i.e.,
the method is variance reduced, it converges linearly to the exact solution in expectation. However,
in general, to achieve any predefined accuracy, one needs to reduce the size of the neighborhood
somehow. One possible way to that is use a proper stepsize schedule. We formalize this discussion
in the following result.

Corollary 2 Let the assumptions of Theorem 1 hold. Consider two possible cases.
Case 1. Let D1 = D2 = 0. Then, for any K ≥ 0, M = 2B/ρ, and γ = min {1/µ, 1/2(A+2BC/ρ)},

the iterates of SGDA, given by (5), satisfy: E[VK ] ≤ V0 exp
(
−min

{
µ

2(A+2BC/ρ) ,
ρ
2

}
K
)
.

Case 2. Let D1+MD2 > 0. For any K ≥ 0 and M = 2B/ρ one can choose {γk}k≥0 as follows:

γk =
1

h
if K ≤ h

µ
or
(
K >

h

µ
and k < k0

)
, and γk =

2

µ(κ+ k − k0)
if K >

h

µ
and k ≥ k0,

where h = max {2(A+ 2BC/ρ), 2µ/ρ}, κ = 2h/µ and k0 = ⌈K/2⌉. For this choice of γk, the iterates
of SGDA, given by (5), satisfy:

E[VK ] ≤ 32hV0

µ
exp

(
−µ

h
K
)
+

36(D1 + 2BD2/ρ)

µ2K
.

Monotone case. When µ = 0, we additionally assume that F is monotone. Similar to minimization,
in the case of µ = 0, the squared distance to the solution is not a valid measure of convergence. To
introduce an appropriate convergence measure, we make the following assumption.

Assumption 2 There exists a compact convex set C (with the diameter ΩC := maxx,y∈C ∥x− y∥)
such that X∗ ⊂ C.

In this settings, we focus on the following quantity called a restricted gap-function [60] defined
for any z ∈ Rd and any C ⊂ Rd satisfying Assumption 2:

GapC(z) := max
u∈C

[⟨F (u), z − u⟩+R(z)−R(u)] . (9)

Assumption 2 and function GapC(z) are standard for the convergence analysis of methods for
solving (1) with monotone F [1, 60]. Additional discussion is left to Appendix D.2.

Under these assumptions, Assumption 1, and star-cocoercivity we derive the following general
result.

Theorem 3 Let F be monotone, ℓ-star-cocoercive and let Assumptions 1, 2 hold. Assume that
0 < γ ≤ 1/2(A+BC/ρ). Then for all K ≥ 0 the iterates of SGDA, given by (5), satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+ 9γ max
x∗∈X∗

∥F (x∗)∥2

+
8γℓ2Ω2

C
K

+ (4A+ ℓ+ 8BC/ρ) · ∥x
0 − x∗,0∥2

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ2

0

ρK

+γ(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ). (10)
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The above result establishes O(1/K) rate of convergence to the accuracy proportional to the
stepsize γ multiplied by the noise term D1 + 2BD2/ρ and maxx∗∈X∗ ∥F (x∗)∥2. We notice that
if R ≡ 0 in (1), then F (x∗) = 0, meaning that in this case, the second term from (10) equals
zero. Otherwise, even in the deterministic case one needs to use small stepsizes to ensure the
convergence to any predefined accuracy (see Corollary 17 in Appendix D.2). The term proportional to
maxx∗∈X∗ ∥F (x∗)∥2 can be removed under the assumption that F is cocoercive (see Appendix D.3).

3. SGDA with Arbitrary Sampling

We start our consideration of special cases with a standard SGDA (5) with gk = Fξk(x
k), ξk ∼ D

under so-called expected cocoercivity assumption from Loizou et al. [52], which we properly adjust
to the setting of regularized VIPs.

Assumption 3 (Expected Cocoercivity) We assume that stochastic operator Fξ(x), ξ ∼ D is such
that for all x ∈ Rd, ED

[
∥Fξ(x)− Fξ(x

∗)∥2
]
≤ ℓD⟨F (x)−F (x∗), x−x∗⟩, where x∗ = projX∗(x).

When R(x) ≡ 0, this assumption recovers the original one from Loizou et al. [52]. We also
emphasize that for operator F Assumption 3 implies only star-cocoercivity.

Following Loizou et al. [52], we mainly focus on finite-sum case and its stochastic reformulation:
we consider a random sampling vector ξ = (ξ1, . . . , ξn)

⊤ ∈ Rn having a distribution D such that
ED[ξi] = 1 for all i ∈ [n]. Using this we can rewrite F (x) = 1

n

∑n
i=1 Fi(x) as

F (x) =
1

n

n∑
i=1

ED[ξiFi(x)] = ED [Fξ(x)] , (11)

where Fξ(x) =
1
n

∑n
i=1 ξiFi(x). Such a reformulation allows to handle a wide range of samplings:

the only assumption on D is ED[ξi] = 1 for all i ∈ [n]. Therefore, this setup is often referred
to as arbitrary sampling [29, 30, 32, 49, 50, 64, 65, 67]. We elaborate on several special cases in
Appendix E.5.

In this setting, SGDA with Arbitrary Sampling (SGDA-AS)3 fits our framework.

Proposition 4 Let Assumption 3 hold. Then, SGDA-AS satisfies Assumption 1 with A = ℓD,
D1 = 2σ2

∗ := 2maxx∗∈X∗ ED
[
∥Fξ(x

∗)− F (x∗)∥2
]
, B = 0, σ2

k ≡ 0, C = 0, ρ = 1, D2 = 0.

Plugging these parameters to Theorem 1 we recover the result4 from Loizou et al. [52] when
R(x) ≡ 0 and generalize it to the case of R(x) ̸≡ 0 without sacrificing the rate. Applying Corollary 2,
we establish the rate of convergence to the exact solution.

Corollary 5 Let F be µ-quasi-strongly monotone and Assumption 3 hold. Then for all K > 0 there
exists a choice of γ (see (48)) for which the iterates of SGDA-AS, satisfy:

E[∥xK − x∗,K∥2] = O
(
ℓDΩ

2
0

µ
exp

(
− µ

ℓD
K

)
+

σ2
∗

µ2K

)
,

where Ω2
0 = ∥x0 − x∗,0∥2.

3. For the pseudo-code of SGDA-AS see Algorithm 1 in Appendix E.
4. In the main part of the paper, we focus on µ-quasi strongly monotone case with µ > 0. For simplicity, we provide

here the rates of convergence to the exact solution. Further details, including the rates in monotone case, are left to the
Appendix.

6



STOCHASTIC GRADIENT DESCENT-ASCENT: UNIFIED THEORY AND NEW EFFICIENT METHODS

For the different stepsize schedule, Loizou et al. [52] derive the convergence rate O(1/K + 1/K2)
which is inferior to our rate, especially when σ2

∗ is small. In addition, Loizou et al. [52] consider
explicitly only uniform minibatch sampling without replacement as a special case of arbitrary
sampling. In Appendix E.5, we discuss another prominent sampling strategy called importance
sampling. In Section 6, we provide numerical experiments verifying our theoretical findings and
showing the benefits of importance sampling over uniform sampling for SGDA.

4. SGDA with Variance Reduction

In this section, we focus on variance reduced variants of SGDA for solving finite-sum problems
F (x) = 1

n

∑n
i=1 Fi(x). We start with the Loopless Stochastic Variance Reduced Gradient Descent-

Ascent (L-SVRGDA), which is a generalization of the L-SVRG algorithm proposed in Hofmann
et al. [34], Kovalev et al. [43]. L-SVRGDA (see Alg. 2) follows the update rule (5) with

gk = Fjk(x
k)− Fjk(w

k) + F (wk), wk+1 =

{
xk, with prob. p,
wk, with prob. 1− p,

(12)

where in kth iteration jk is sampled uniformly at random from [n]. Here full operator F is computed
once wk is updated, which happens with probability p. Typically, p is chosen as p ∼ 1/n ensuring
that the expected cost of 1 iteration equals O(1) oracle calls, i.e., computations of Fi(x) for some
i ∈ [n].

We introduce the following assumption about operators Fi.

Assumption 4 (Averaged Star-Cocoercivity) We assume that there exists a constant ℓ̂ > 0 such
that for all x ∈ Rd

1

n

n∑
i=1

∥Fi(x)− Fi(x
∗)∥2 ≤ ℓ̂⟨F (x)− F (x∗), x− x∗⟩, (13)

where x∗ = projX∗(x).

For example, if Fi is ℓi-cocoercive for i ∈ [n], then (13) holds with ℓ̂ ≤ maxi∈[n] ℓi. Next, if
Fi is Li-Lipschitz for all i ∈ [n] and F is µ-quasi strongly monotone, then (13) is satisfied for
ℓ̂ ∈ [L, L

2
/µ], where L

2
= 1

n

∑n
i=1 L

2
i .

Moreover, for the analysis of variance reduced variants of SGDA we also use uniqueness of the
solution.

Assumption 5 (Unique Solution) We assume that the solution set X∗ of problem (1) is a singleton:
X∗ = {x∗}.

These assumptions are sufficient to derive validity of Assumption 1 for L-SVRGDA estimator.

Proposition 6 Let Assumptions 4 and 5 hold. Then, L-SVRGDA satisfies Assumption 1 with A = ℓ̂,
B = 2, σ2

k = 1
n

∑n
i=1 ∥Fi(w

k)− Fi(x
∗)∥2, C = pℓ̂/2, ρ = p, D1 = D2 = 0.

Plugging these parameters in our general results on the convergence of SGDA-type algorithms
we derive the convergence results for L-SVRGDA, see Table 1 and Appendix F.1 for the details.
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Table 1: Summary of the complexity results for variance reduced methods for solving (1). By complexity we
mean the number of oracle calls required for the method to find x such that E[∥x−x∗∥2] ≤ ε. Dependencies on
numerical and logarithmic factors are hidden. By default, operator F is assumed to be µ-strongly monotone
and, as the result, the solution is unique. Our results rely on µ-quasi strong monotonicity of F (3), but
we also assume uniqueness of the solution. Methods supporting R(x) ̸≡ 0 are highlighted with ∗. Our
results are highlighted in green. Notation: ℓ, L = averaged cocoercivity/Lipschitz constants depending on the
sampling strategy, e.g., for uniform sampling ℓ

2
= 1

n

∑n
i=1 ℓ

2
i , L

2
= 1

n

∑n
i=1 L

2
i and for importance sampling

ℓ = 1
n

∑n
i=1 ℓi, L = 1

n

∑n
i=1 Li; ℓ̂ = averaged star-cocoercivity constant from Assumption 4.

Method Citation Assumptions Complexity

SVRE (1) [16] Fi is ℓi-cocoer. n+ ℓ
µ

EG-VR ∗(1) [1] Fi is Li-Lip. n+
√
nL

µ

SVRGDA ∗ [62] Fi is Li-Lip. n+ L
2

µ2

SAGA-SGDA ∗ [62] Fi is Li-Lip. n+ L
2

µ2

VR-AGDA [79] Fi is Lmax-Lip.(2) min

{
n+

L9
max
µ9 , n2/3 L3

max
µ3

}
L-SVRGDA ∗ This paper As. 4 n+ ℓ̂

µ

SAGA-SGDA ∗ This paper As. 4 n+ ℓ̂
µ

(1) The method is based on Extragradient update rule.
(2) Yang et al. [79] consider saddle point problems satisfying so-called two-sided PL condition,
which is weaker than strong-convexity-strong-concavity of the objective function.

Moreover, in Appendix F.2, we show that SAGA-SGDA [62] fits our framework and using our
general analysis we tighten the convergence rates for this method.

We compare our convergence guarantees with known results in Table 1. We note that by
neglecting importance sampling scenario, in the worst case, our convergence results match the
best-known results for SGDA-type methods, i.e., ones derived in Palaniappan and Bach [62]. Indeed,
this follows from ℓ̂ ∈ [L, L

2
/µ]. Next, when the difference between ℓ and ℓ̂ is not significant, our

complexity results match the one derived in Chavdarova et al. [16] for SVRE, which is EG-type
method. Although in general, ℓ might be smaller than ℓ̂, our analysis does not require cocoercivity of
each Fi and it works for R(x) ̸≡ 0. Finally, Alacaoglu and Malitsky [1] derive a better rate (when
n = O(L

2
/µ2)), but their method is based on EG. Therefore, our results match the best-known ones

in the literature on SGDA-type methods.

5. Distributed SGDA with Compression

In this section, we consider the distributed version of (1), i.e., we assume that F (x) = 1
n

∑n
i=1 Fi(x),

where {Fi}ni=1 are distributed across n devices connected with parameter-server in a centralized
fashion. Each device i has an access to the computation of the unbiased estimate of Fi at the given
point. Typically, in these settings, the communication is a bottleneck, especially when n and d are
huge. This means that in the naive distributed implementations of SGDA, communication rounds take
much more time than local computations on the clients. Various approaches are used to circumvent
this issue.

One of them is based on the usage of compressed communications. We focus on the unbiased
compression operators.

8
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Definition 7 Operator Q : Rd → Rd (possibly randomized) is called unbiased compressor/quantization
if there exists a constant ω ≥ 1 such that for all x ∈ Rd

E[Q(x)] = x, E[∥Q(x)− x∥2] ≤ ω∥x∥2. (14)

In this paper, we consider compressed communications in the direction from clients to the server.
The simplest method with compression – QSGDA (Alg. 4) – can be described as SGDA (5) with
gk = 1

n

∑n
i=1Q(gki ). Here gki are stochastic estimators satisfying the following assumption5.

Assumption 6 (Bounded variance) All stochastic realizations gki are unbiased and have bounded
variance, i.e., for all i ∈ [n] and k ≥ 0 the following holds:

E[gki ] = Fi(x
k), E[∥gki − Fi(x

k)∥2] ≤ σ2
i . (15)

Despite its simplicity, QSGDA was never considered in the literature on solving min-max
problems and VIPs. It turns out that under such assumptions QSGDA satisfies our Assumption 1.

Proposition 8 Let F be ℓ-star-cocoercive and Assumptions 4, 6 hold. Then, QSGDA satisfies
Assumption 1 with A = 3ℓ

2 + 9ωℓ̂
2n , B = 0, σ2

k ≡ 0, D1 = 3(1+3ω)σ2+9ωζ2∗
n , C = 0, ρ = 1, D2 = 0,

where σ2 = 1
n

∑n
i=1 σ

2
i , ζ

2
∗ := 1

n maxx∗∈X∗
∑n

i=1 ∥Fi(x
∗)∥2.

As for the other special cases, we derive the convergence results for QSGDA using our general
theorems (see Table 2 and Appendix G.1 for the details). The proposed method is simple, but have a
significant drawback: even in the deterministic case (σ = 0), QSGDA does not converge linearly
unless ζ2∗ = 0. However, when the data on clients is arbitrary heterogeneous the dissimilarity measure
ζ2∗ is strictly positive and can be large (even when R(x) ≡ 0).

To resolve this issue, we propose a more advanced scheme based on DIANA update [35, 56] –
DIANA-SGDA (Alg. 5). In a nutshell, DIANA-SGDA is SGDA (5) with gk defined as follows:

∆k
i = gki − hki , hk+1

i = hki + αQ(∆k
i ), (16)

gk = hk +
1

n

n∑
i=1

Q(∆k
i ), hk+1 =

1

n

n∑
i=1

hk+1
i = hk + α

1

n

n∑
i=1

Q(∆k
i ), (17)

where the first two lines correspond to the local computations on the clients and the last two lines –
to the server-side computations. Taking into account the update rule for hk+1, one can notice that
DIANA-SGDA requires workers to send only vectors Q(∆k

i ) to the server at step k, i.e., the method
uses only compressed workers-server communications.

As we show next, DIANA-SGDA fits our framework.

Proposition 9 Let Assumptions 4, 5, 6 hold. Suppose that α ≤ 1/(1+ω). Then, DIANA-SGDA with
quantization (14) satisfies Assumption 1 with σ2

k = 1
n

∑n
i=1 ∥hki − Fi(x

∗)∥2 and A =
(
1
2 + ω

n

)
ℓ̂,

B = 2ω
n , D1 =

(1+ω)σ2

n , C = αℓ̂
2 , ρ = α, D2 = ασ2, , where σ2 = 1

n

∑n
i=1 σ

2
i .

5. We use this assumption for illustrating the flexibility of the framework. It is possible to consider Arbitrary Sampling
setup as well.
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DIANA-SGDA can be considered as a variance-reduced method, since it reduces the term
proportional to ωζ2∗ that the bound for QSGDA contains (see Table 2 and Appendix G.2 for the
details). As the result, when σ = 0, i.e., workers compute Fi(x) at each step, DIANA-SGDA enjoys
linear convergence to the exact solution.

Next, when local operators Fi have a finite-sum form Fi(x) =
1
m

∑m
j=1 Fij(x), one can combine

L-SVRGDA and DIANA-SGDA as follows: consider the scheme from (16)-(17) with

gki = Fijk(x
k)− Fijk(w

k) + F (wk
i ), wk+1

i =

{
xk, with prob. p,
wk
i , with prob. 1− p,

(18)

where jk is sampled uniformly at random from [n]. We call the resulting method VR-DIANA-SGDA
(Alg. 6) and we note that its analog for solving minimization problems (VR-DIANA) was proposed
and analyzed in Horváth et al. [35].

To cast VR-DIANA-SGDA as special case of our general framework, we need to make the
following assumption.

Assumption 7 We assume that there exists a constant ℓ̃ > 0 such that for all x ∈ Rd

1

nm

n∑
i=1

m∑
j=1

∥Fij(x)− Fij(x
∗)∥2 ≤ ℓ̃⟨F (x)− F (x∗), x− x∗⟩, (19)

where x∗ = projX∗(x).

Using Assumption 7 and previously introduced conditions, we get the following result.

Proposition 10 Let F be ℓ-star-cocoercive and Assumptions 4, 5, 7 hold. Suppose that α ≤
min

{
p
3 ,

1
1+ω

}
. Then, VR-DIANA-SGDA satisfies Assumption 1 with A = ℓ

2 + ℓ̃
n + ω(ℓ̂+ℓ̃)

n , B =

2(ω+1)
n , σ2

k = 1
n

∑n
i=1 ∥hki −Fi(x

∗)∥2+ 1
nm

∑n
i=1

∑m
j=1 ∥Fij(w

k
i )−Fij(x

∗)∥2, C = pl̃
2 +α(ℓ̃+ ℓ̂),

ρ = α, D1 = D2 = 0.

Since D1 = D2 = 0, our general results imply linear convergence of VR-DIANA-SGDA when
µ > 0 (see the details in Appendix G.3). That is, VR-DIANA-SGDA is the first linearly converging
distributed SGDA-type method with compression. We compare it with MASHA1 [12] in Table 2.
Firstly, let us note that MASHA1 is a method based on EG, and its convergence guarantees depend
on the Lipschitz constants. In addition, we note that the complexity of MASHA1 could be better
than the one of VR-DIANA-SGDA when cocoercivity constants are large compared to Lipschitz
ones. However, our compleixty bound has better dependency on quantization parameter ω, number
of clients n, and the size of the local dataset m. These parameters can be large meaning that the
improvement is noticeable.

6. Numerical Experiments
To illustrate our theoretical results, we conduct several numerical experiments on quadratic games,
which are defined through the affine operator: F (x) = 1

n

∑n
i=1Aix + bi, where each matrix

Ai ∈ Rd×d is non-symmetric with all eigenvalues having strictly positive real part. Enforcing all
the eigenvalues to have strictly positive real part ensures that the operator is strongly monotone and
cocoercive. We consider two different settings: (i) problem without constraints, and (ii) problem

10
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Table 2: Summary of the complexity results for distributed methods with unbiased compression for solving
distributed (1) with F = 1

n

∑n
i=1 Fi(x). By complexity we mean the number of communication rounds

required for the method to find x such that E[∥x− x∗∥2] ≤ ε. Dependencies on numerical and logarithmic
factors are hidden. E stands for the setup, when Fi(x) = Eξi [Fξi(x)]; Σ denotes the case, when Fi(x) =
1
m

∑m
j=1 Fij(x). Our results rely on µ-quasi strong monotonicity of F (3), but we also assume uniqueness

of the solution. Methods supporting R(x) ̸≡ 0 are highlighted with ∗. Our results are highlighted in green.
Notation: σ2 = 1

n

∑n
i=1 σ

2
i – averaged upper bound for the variance (see Ass. 6 for the definition of σ2

i );
ω = quantization parameter (see Def. 7); ζ2∗ = 1

n maxx∗∈X∗
∑n

i=1 ∥Fi(x
∗)∥2; Lmax = maxi∈[n] Li; ℓ̃ =

averaged star-cocoercivity constant from Ass. 7.

Setup Method Citation Assumptions Complexity

E
QSGDA ∗ This paper As. 4, 6 ℓ

µ
+ ωℓ̂

nµ
+

(1+ω)σ2+ωζ2∗
nµ2ε

DIANA-SGDA ∗ This paper As. 4, 6 ω + ℓ
µ
+ ωℓ̂

nµ
+

(1+ω)σ2

nµ2ε

Σ

MASHA1 ∗(1) [12] Fi is Li-Avg. Lip.(2)
m+ ω +

Lmax

√
(m+ω)(1+ω

n )
µ

VR-DIANA-SGDA ∗ This paper As. 4, 7
m+ ω + ℓ

µ
+

(1+ω)(ℓ̂+ℓ̃)
nµ

+
(1+ω)max{m,ω}ℓ̃

nmµ

(1) The method is based on Extragradient update rule.
(2) This means that for all x, y ∈ Rd and i ∈ [n] the following inequality holds: 1

m

∑m
j=1 ∥Fij(x)− Fij(y)∥2 ≤

L2
i ∥x− y∥2.
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Figure 1: The first two plots correspond to the comparison of Uniform Sampling (US) vs Importance Sampling
(IS): the first plot shows the result for the problem without constraints, the second one – with constraints. As
expected by theory IS converges faster and to a smaller neighborhood than US. The last two plots provide a
comparison of variance reduced methods: the third plot shows the result for the problem without constraints,
the fourth one – with constraints. Note that L-SVRGDA is very competitive, and outperforms all the other
methods.

that has ℓ1 regularization and constraints forcing the solution to lie in the ℓ∞-ball of radius r. In
all experiments, we use a constant step-size for all methods which was selected manually using a
grid-search and picking the best performing step-size for each methods. For further details about the
experiments and additional experiments for distributed methods see Appendix B.
Uniform sampling (US) vs Important sampling (IS). We note that Loizou et al. [52] which
studies SGDA-AS does not consider IS explicitly. Although we show the theoretical benefits of
IS in comparison to US in Appendix E.5, here we provide a numerical comparison to illustrate the
superiority of IS (on both constrained and unconstrained quadratic games). We choose the matrices
Ai such that ℓmax = maxi ℓi ≫ ℓ̄. In this case, our theory predicts that IS should perform better than
US. We provide the results in Fig. 1. We observe that indeed SGDA with IS converges faster and to
a smaller neighborhood than SGDA with US. This observation perfectly corroborates our theory.
Comparison of variance reduced methods. In this experiment, we test the performance of our
proposed L-SVRGDA (Alg. 2) and compare it to other variance reduced methods on quadratic games,
see Fig. 1. In particular, we compare it to SVRG [62], SVRE [16], EG-VR [1] and VR-AGDA [79].
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In the constrained setting, we only compare L-SVRGDA to SVRG and EG-VR, since they are the
only methods from this list that handle constrained settings. For loopless variants we choose p = 1

n
and for the non-loopless variants we pick the number of inner-loop iteration to be n. We observe
that all methods converge linearly and that L-SVRGDA is competitive with the other considered
variance-reduced methods, converging slightly faster than all of them.
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[76] Bang Công Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive
operators. Advances in Computational Mathematics, 38(3):667–681, 2013.

17



STOCHASTIC GRADIENT DESCENT-ASCENT: UNIFIED THEORY AND NEW EFFICIENT METHODS

[77] Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian Ma, and Meisam Razaviyayn.
Zeroth-order algorithms for nonconvex minimax problems with improved complexities. arXiv
preprint arXiv:2001.07819, 2020.

[78] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
ternary gradients to reduce communication in distributed deep learning. In Proceedings of the
31st International Conference on Neural Information Processing Systems, pages 1508–1518,
2017.

[79] Junchi Yang, Negar Kiyavash, and Niao He. Global convergence and variance reduction
for a class of nonconvex-nonconcave minimax problems. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 1153–1165. Curran Associates, Inc., 2020.

[80] TaeHo Yoon and Ernest K Ryu. Accelerated algorithms for smooth convex-concave minimax
problems with O(1/k2) rate on squared gradient norm. In International Conference on Machine
Learning, pages 12098–12109. PMLR, 2021.

[81] Deming Yuan, Qian Ma, and Zhen Wang. Dual averaging method for solving multi-agent
saddle-point problems with quantized information. Transactions of the Institute of Measurement
and Control, 36(1):38–46, 2014.

[82] Dao Li Zhu and Patrice Marcotte. Co-coercivity and its role in the convergence of iterative
schemes for solving variational inequalities. SIAM Journal on Optimization, 6(3):714–726,
1996.

18



STOCHASTIC GRADIENT DESCENT-ASCENT: UNIFIED THEORY AND NEW EFFICIENT METHODS

Supplementary Material
Stochastic Gradient Descent-Ascent: Unified
Theory and New Efficient Methods
Contents

1 Introduction 1
1.1 Technical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Unified Analysis of SGDA 4

3 SGDA with Arbitrary Sampling 6

4 SGDA with Variance Reduction 7

5 Distributed SGDA with Compression 8

6 Numerical Experiments 10

A Further Related Work 21

B Missing Details on Numerical Experiments 24
B.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.2 Additional remarks about Fig. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.3 Numerical Experiments with Distributed Methods . . . . . . . . . . . . . . . . . . . . . . . 25

C Auxiliary Results and Technical Lemmas 27

D Proof of The Main Results 29
D.1 Quasi-Strongly Monotone Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
D.2 Monotone Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
D.3 Cocoercive Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

E SGDA with Arbitrary Sampling: Missing Proofs and Details 48
E.1 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
E.2 Analysis of SGDA-AS in the Quasi-Strongly Monotone Case . . . . . . . . . . . . . . . . 48
E.3 Analysis of SGDA-AS in the Monotone Case . . . . . . . . . . . . . . . . . . . . . . . . . 49
E.4 Analysis of SGDA-AS in the Cocoercive Case . . . . . . . . . . . . . . . . . . . . . . . . 50
E.5 Missing Details on Arbitrary Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

F SGDA with Variance Reduction: Missing Proofs and Details 54
F.1 L-SVRGDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

F.1.1 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
F.1.2 Analysis of L-SVRGDA in the Quasi-Strongly Monotone Case . . . . . . . . . . . 55
F.1.3 Analysis of L-SVRGDA in the Monotone Case . . . . . . . . . . . . . . . . . . . . 56
F.1.4 Analysis of L-SVRGDA in the Cocoercive Case . . . . . . . . . . . . . . . . . . . 56

F.2 SAGA-SGDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F.2.1 SAGA-SGDA Fits Assumption 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F.2.2 Analysis of SAGA-SGDA in the Quasi-Strongly Monotone Case . . . . . . . . . . 59

19



STOCHASTIC GRADIENT DESCENT-ASCENT: UNIFIED THEORY AND NEW EFFICIENT METHODS

F.2.3 Analysis of SAGA-SGDA in the Monotone Case . . . . . . . . . . . . . . . . . . . 59
F.2.4 Analysis of SAGA-SGDA in the Cocoercive Case . . . . . . . . . . . . . . . . . . 60

F.3 Discussion of the Results in the Monotone and Cocoercive Cases . . . . . . . . . . . . . . . 60

G Distributed SGDA with Compression: Missing Proofs and Details 61
G.1 QSGDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

G.1.1 Proof of Proposition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
G.1.2 Analysis of QSGDA in the Quasi-Strongly Monotone Case . . . . . . . . . . . . . 63
G.1.3 Analysis of QSGDA in the Monotone Case . . . . . . . . . . . . . . . . . . . . . . 64
G.1.4 Analysis of QSGDA in the Cocoercive Case . . . . . . . . . . . . . . . . . . . . . 64

G.2 DIANA-SGDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
G.2.1 Proof of Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
G.2.2 Analysis of DIANA-SGDA in the Quasi-Strongly Monotone Case . . . . . . . . . . 66
G.2.3 Analysis of DIANA-SGDA in the Monotone Case . . . . . . . . . . . . . . . . . . 66
G.2.4 Analysis of DIANA-SGDA in the Cocoercive Case . . . . . . . . . . . . . . . . . . 67

G.3 VR-DIANA-SGDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
G.3.1 Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
G.3.2 Analysis of VR-DIANA-SGDA in the Quasi-Strongly Monotone Case . . . . . . . . 73
G.3.3 Analysis of VR-DIANA-SGDA in the Monotone Case . . . . . . . . . . . . . . . . 74
G.3.4 Analysis of VR-DIANA-SGDA in the Cocoercive Case . . . . . . . . . . . . . . . . 75

G.4 Discussion of the Results in the Monotone and Cocoercive Cases . . . . . . . . . . . . . . . 76

H Coordinate SGDA 77
H.1 CSGDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

H.1.1 CSGDA Fits Assumption 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
H.1.2 Analysis of CSGDA in the Quasi-Strongly Monotone Case . . . . . . . . . . . . . 78
H.1.3 Analysis of CSGDA in the Monotone Case . . . . . . . . . . . . . . . . . . . . . . 78
H.1.4 Analysis of CSGDA in the Cocoercive Case . . . . . . . . . . . . . . . . . . . . . 79

H.2 SEGA-SGDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
H.2.1 SEGA-SGDA Fits Assumption 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
H.2.2 Analysis of SEGA-SGDA in the Quasi-Strongly Monotone Case . . . . . . . . . . 80
H.2.3 Analysis of SEGA-SGDA in the Monotone Case . . . . . . . . . . . . . . . . . . . 80
H.2.4 Analysis of SEGA-SGDA in the Cocoercive Case . . . . . . . . . . . . . . . . . . 81

H.3 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

20



STOCHASTIC GRADIENT DESCENT-ASCENT: UNIFIED THEORY AND NEW EFFICIENT METHODS

Appendix A. Further Related Work

The references necessary to motivate our work and connect it to the most relevant literature are
included in the appropriate sections of the main body of the paper. Here we present a broader view
of the literature, including some more references to papers of the area that are not directly related
with our work.

Variants of the key assumption in prior work & Detailed comparison to our results. Here we
would like to provide more details on the comparison with the closely related works [24, 26, 52].

As we mention in the main part of the paper, Gorbunov et al. [24] focus on solving the much
simpler minimization problems using SGD. In particular, their Assumption 4.1 requires a function
suboptimality (or Bregman divergence) for the upper bound, a concept that cannot be used in VI
problems (there are no functions). Thus, the difference of the two notions does not solely lie on the
norm bound, but begins at the deeper, conceptual level. In addition, we focus also on monotone VIs
(non-quasi-strongly monotone), while Gorbunov et al. [24] consider only the class of quasi-strongly
convex minimization problems.

Next, Gorbunov et al. [26] provide convergence guarantees for vanilla SEG under the arbitrary
sampling paradigm. Their analysis is not able to capture SEG with variance reduction, quantization,
and coordinate-wise randomization. In contrast, our approach covers variants of SGDA with variance
reduction, quantization and coordinate-wise randomization. We are able to capture these more
advanced variants by using sequence {σ2

k}k≥0 (see (7)) in our key assumption, and this is a major
difference between our approach and the approach of Gorbunov et al. [26]. In addition, our analysis
works for the case R(x) ̸≡ 0. Although the generalization of the analysis to the case of non-zero
R might be trivial in the quasi-strongly monotone case, for the monotone case this is definitely not
straightforward. Finally, for the monotone case, we do not require large batch-sizes to achieve any
predefined accuracy, while analysis of SEG in [26] does (see Appendix B in their work).

Finally, we highlight again that Loizou et al. [52] focus only on uniform minibatch SGDA
for solving quasi-strongly monotone problems. This is only a special case of our approach (see
Section 3). We note that even in this scenario, through our analysis we were able to provide faster
convergence by considering SGDA with importance sampling (see Appendix E.5 and Fig. 1).

Stochastic methods for solving VIPs. Although this paper is devoted to SGDA-type methods, we
briefly mention here the works studying other popular stochastic methods for solving VIPs based
on different algorithmic schemes such as Extragradient (EG) method [42] and Optimistic Gradient
(OG) method [63]. The first analysis of Stochastic EG for solving (quasi-strongly) monotone
VIPs was proposed in Juditsky et al. [39] and then was extended and generalized in various ways
[10, 26, 37, 44, 57]. Stochastic OG was studied in Azizian et al. [4], Gidel et al. [22], Hsieh et al. [36].
In addition, lightweight second-order methods like stochastic Hamiltonian methods and stochastic
consensus optimization were studied in [51], and [52], respectively.

Analysis of SGDA. SGDA is usually analyzed under uniformly bounded variance assumption.
That is, E[∥gk−F (xk)∥2 | xk] ≤ σ2 is typically assumed to get convergence guarantees [55, 59, 79].
This assumption rarely holds, especially for unconstrained VIPs: it is easy to construct an example
of (1) with F being a finite sum of linear operators such that the variance is unbounded. Lin et al.
[47] provide a convergence analysis of SGDA under a relative random noise assumption allowing
to handle some special cases not covered by uniformly bounded variance assumption. However,
relative noise is also a quite strong assumption and usually requires a special type of noise appearing
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in coordinate methods6 or in the training of overparameterized models [75]. In their recent work,
Loizou et al. [52] proposed a new weak condition called expected cocoercivity. This assumption fits
our theoretical framework (see Section 3) and does not imply strong conditions on the variance of
the stochastic estimator but it is stronger than star-cocoercivity of operator F .

Variance reduction for VIPs. The first variance-reduced variants of SGDA (SVRGDA and
SAGA-SGDA – analogs of SVRG [38] and SAGA [19]) for solving (1) with strongly monotone
operator F having a finite-sum form with Lipschitz summands were proposed in Palaniappan and
Bach [62]. For two-sided PL min-max problems without regularization Yang et al. [79] proposed a
variance-reduced version of SGDA with alternating updates. Since the considered class of problems
includes non-strongly-convex-non-strongly-concave min-max problems, the rates from Yang et al.
[79] are inferior to Palaniappan and Bach [62]. There are also several works studying variance-
reduced methods based on different methods rather than SGDA. Chavdarova et al. [16] proposed
a combination of SVRG and Extragradient (EG) [42] called SVRE and analyzed the method for
strongly monotone VIPs without regularization and with cocoercive summands Fi. The cocoercivity
assumption was relaxed to averaged Lipschitzness in Alacaoglu and Malitsky [1], where the authors
proposed another variance-reduced version of EG (EG-VR) based on Loopless variant of SVRG
[34, 43]. Loizou et al. [51] studied stochastic Hamiltonian gradient descent (SHGD), and propose
the first stochastic variance reduced Hamiltonian method, named L-SVRHG, for solving stochastic
bilinear games and and stochastic games satisfying a “sufficiently bilinear” condition. Moreover,
Loizou et al. [51] provided the first set of global non-asymptotic last-iterate convergence guarantees
for a stochastic game over a non-compact domain, in the absence of strong monotonicity assumptions.

We should highlight that the rates from Alacaoglu and Malitsky [1] match the lower bounds from
Han et al. [31]. Under additional assumptions similar results were achieved in Carmon et al. [14].
Alacaoglu et al. [2] developed variance-reduced method (FoRB-VR) based on Forward-Reflected-
Backward algorithm [54], but the derived rates are inferior to those from Alacaoglu and Malitsky
[1].

Using Catalyst acceleration framework of Lin et al. [46], Palaniappan and Bach [62], Tominin
et al. [74] achieve (neglecting extra logarithmic factors) similar rates as in Alacaoglu and Malitsky
[1] and Luo et al. [53] derive even tighter rates for min-max problems. However, as all Catalyst-based
approaches, these methods require solving an auxiliary problem at each iteration, which reduces their
practical efficiency.

Communication compression for VIPs. While distributed methods with compression were ex-
tensively studied for solving minimization problems both for unbiased compression operators
[3, 27, 35, 41, 45, 56, 78] and biased compression operators [8, 25, 40, 66, 68, 70, 73], much
less is known for min-max problems and VIPs. To the best of our knowledge, the first work on
distributed methods with compression for min-max problems is Yuan et al. [81], where the authors
proposed a distributed version of Dual Averaging [61] with rounding and showed a convergence
to the neighborhood of the solution that cannot be reduced via standard tricks like increasing the
batchsize or decreasing the stepsize. More recently, Beznosikov et al. [12] proposed new distributed
variants of EG with unbiased/biased compression for solving (1) with (strongly) monotone and
Lipschitz operator F . Beznosikov et al. [12] obtained the first linear convergence guarantees on
distributed VIPs with compressed communication.

6. For example, see inequality (66) from Appendix H in the case when there is no regularization term, i.e., when
R(x) ≡ 0 and, as a result, F (x∗) = 0 for all x∗ ∈ X∗.
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On quasi-strong monotonicity and star-cocoercivity. In this work we focus on quasi-strongly
monotone VI problems, a class of structured non-monotone operators for which we are able to
provide tight convergence guarantees and avoid the standard issues (cycling and divergence of the
methods) appearing in the more general non-monotone regime.

Since in general non-monotone problems, finding approximate first-order locally optimal so-
lutions is intractable [17, 21], it is reasonable to consider class of problems that satisfy special
structural assumptions on the objective function for which these intractability barriers can be by-
passed. Examples of problems belong in this category are the ones of our work which satisfy (3)
or, for example, the two-sided PL condition [79] or the error-bound condition [37]. It is worth
highlighting that quasi-strong monotone problems were considered in Gorbunov et al. [26], Loizou
et al. [52], Mertikopoulos and Zhou [55], Song et al. [71] as well.

Cocoercivity is a classical assumption in the literature on VIPs [82] and operator splittings [18,
76]. It can be interpreted as an intermediate notion between monotonicity and strong monotonicity.
In general, it is stronger than monotonicity and Lipschitzness of the operator, e.g., simple bilinear
games are non-cocoercive. From Cauchy-Swartz’s inequality, one can show that a ℓ-co-coercive
operator is ℓ-Lipschitz. In single-objective minization, one can prove the converse statement by
using convex duality. Thus, a gradient of a function is L–co-coercive if and only if the function is
convex and L-smooth (i.e. L-Lipschitz gradients) [6]. However, in general, a L-Lipchitz operator is
not L–co-coercive. Star-cocoercivity is a new notion recently introduced in [52] and is weaker than
classical cocoercivity and can be achieved via a proper transformation of quasi-monotone Lipschitz
operator [28]. Moreover, any µ-quasi strongly monotone L-Lipschitz operator F is ℓ-star-cocoercive
with ℓ ∈ [L, L2/µ] and there exist examples of operators that are quasi-strongly monotone and
star-cocoercive but neither monotone nor Lipschitz [52].

Coordinate and zeroth-order methods for solving min-max problems and VIPs. Coordinate
methods for solving VIPs are rarely considered in the literature. The most relevant results are given
in the literature on zeroth-order methods for solving min-max problems. Although some of them
can be easily extended to the coordinate versions of methods for solving VIPs, these methods are
usually considered and analyzed for min-max problems. The closest work to our paper is Sadiev
et al. [69]: they propose and analyze several zeroth-order variants of SGDA and Stochastic EG with
two-point feedback oracle for solving strongly-convex-strongly-concave and convex-concave smooth
min-max problems with bounded domain. Moreover, Sadiev et al. [69] consider firmly smooth
convex-concave min-max problems which is an analog of cocoercivity for min-max problems. There
are also papers focusing on different problems like non-sonvex-strongly-concave smooth min-max
problems [48, 77], non-smooth strongly-convex-strongly-concave and convex-concave min-max
problems [9] and on different methods like ones that use one-point feedback oracle [11]. These
works are less relevant to our paper than Sadiev et al. [69]. Moreover, the results derived in these
papers are inferior to the ones from Sadiev et al. [69].
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Appendix B. Missing Details on Numerical Experiments

The code for the experiments is available here: https://anonymous.4open.science/r/
sgda-8572/README.md

B.1. Setup

We consider the special case of (1) with F and R defined as follows:

F (x) =
1

n

n∑
i=1

Fi(x), Fi(x) = Aix+ bi, (20)

R(x) = λ∥x∥1 + δBr(0)(x) = λ∥x∥1 +

{
0, if ∥x∥∞ ≤ r,

+∞, if ∥x∥∞ > r,
(21)

where each matrix Ai ∈ Rd×d is non-symmetric with all eigenvalues with strictly positive real part,
bi ∈ Rd, r > 0 is the radius of ℓ∞-ball, and λ ≥ 0 is regularization parameter. One can show (see
Example 6.22 from Beck [7]) that for the given R(x) prox operator has an explicit formula:

proxγR(x) = sign (x)min {max {|x| − γλ, 0} , r} , (22)

where sign(·) and | · | are component-wise operators. The considered problem generalizes the
following quadratic game:

min
∥x1∥∞≤r

max
∥x2∥∞≤r

1

n

n∑
i=1

1

2
x⊤1 A1,ix1+x⊤1 A2,ix2−

1

2
x⊤2 A3,ix2+b⊤1,ix1−b⊤2,ix2+λ∥x1∥1−λ∥x2∥1

with µiI ≼ A1,i ≼ LiI and µiI ≼ A3,i ≼ LiI. Indeed, the above problem is a special case of
(1)+(21) with

x =

(
x1
x2

)
, Ai =

(
A1,i A2,i

−A2,i A3,i

)
, bi =

(
b1,i
b2,i

)
,

R(x) = λ∥x1∥1 + λ∥x2∥1 + δBr(0)(x1) + δBr(0)(x2).

In our experiments, to generate the non-symmetric matrices Ai ∈ Rd×d defined in (21), we first
sample real random matrices Bi where the elements of the matrices are sampled from a normal
distribution. We then compute the eigendecomposition of the matrices Bi = QiDiQ

−1
i , where the

Di are diagonal matrices with complex numbers on the diagonal. Next, we construct the matrices
Ai = ℜ(QiD

+
i Q

−1
i ) where ℜ(M)i,j = ℜ(Mi,j) and D+

i is obtained by transforming all the
elements of Di to have positive real part. This process ensures that the eigenvalues of Ai all have
positive real part, and thus that F (x) is strongly monotone and cocoercive. The bi ∈ Rd are sampled
from a normal distribution with variance 100/d. For all the experiments we choose n = 1000 and
d = 100. For the distributed experiments we simulate m = 10 nodes on a single machine with 2
CPUs.

B.2. Additional remarks about Fig. 1

In all figures of the paper, we plot the distance to optimality as a function of the number of oracle
calls. When using variance reduced methods we sometimes have to compute the full-batch gradient,
and thus have to make n oracle calls. This is why we observe “steps” for variance reduced methods
in Fig. 1, we observe a “step” every-time the full batch gradient is computed.
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B.3. Numerical Experiments with Distributed Methods

In our last experiment, we consider a distributed version of the quadratic game, in which we
assume that F (x) = 1

n

∑n
i=1 Fi(x) with each {Fi}ni=1 having similar form to (20). The information

about operator Fi is stored on node i only. We compare the distributed methods proposed in the
paper: QSGDA, DIANA-SGDA, and VR-DIANA-SGDA. For the quantization we use the RandK
sparsification [8] with K = 5. We show our findings in Fig. 2 and 3, where the performance
is measured both in terms of number of oracle calls and the number of bits communicated from
workers to the server. In both figures, we can clearly see the advantage of using quantization in
terms of reducing the communication cost compared to the baseline SGDA. We also observe that
VR-DIANA-SGDA achieves linear convergence to the solution. However, DIANA-SGDA performs
similarly to QSGDA since the noise σ2 is larger than the dissimilarity constant ζ2∗ .
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Figure 2: Comparison of algorithms in distributed setting Left: Number of oracle calls. Right: Number of
bits communicated.
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Figure 3: Results on distributed quadratic games with constraints. Letf: Number of oracle calls.
Right: Number of bits communicated between nodes.

To illustrate further the difference between DIANA-SGDA and QSGDA, we conduct an addi-
tional experiment with full-batched methods (σ = 0), see Fig. 4. We consider the full-batch version
of QSGDA and DIANA-SGDA. This enables us to separate the noise coming from the quantization
from the noise coming from the stochasticity. We observe that when using full-batch DIANA-SGDA
converges linearly to the solution while QSGDA only converges to a neighborhood of the solution.
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An interesting observation is that although the convergence is linear, the distance to optimality is not
monotonically decreasing, this does not contradicts the theory.
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Figure 4: QSGDA vs DIANA-SGDA: DIANA-SGDA converges linearly to the solution while
QSGDA only converges to a neighborhood of the solution.
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Appendix C. Auxiliary Results and Technical Lemmas

Useful inequalities. In our proofs, we often apply the following inequalities that hold for any
a, b ∈ Rd and α > 0:

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, (23)

⟨a, b⟩ ≤ 1

2α
∥a∥2 + α

2
∥b∥2. (24)

Useful lemmas. The following lemma from Stich [72] allows us to derive the rates of convergence
to the exact solution.

Lemma 11 (Simplified version of Lemma 3 from [72]) Let the non-negative sequence {rk}k≥0

satisfy the relation
rk+1 ≤ (1− aγk)rk + cγ2k

for all k ≥ 0, parameters a > 0, c ≥ 0, and any non-negative sequence {γk}k≥0 such that γk ≤ 1/h
for some h ≥ a, h > 0. Then, for any K ≥ 0 one can choose {γk}k≥0 as follows:

if K ≤ h

a
, γk =

1

h
,

if K >
h

a
and k < k0, γk =

1

h
,

if K >
h

a
and k ≥ k0, γk =

2

a(κ+ k − k0)
,

where κ = 2h/a and k0 = ⌈K/2⌉. For this choice of γk the following inequality holds:

rK ≤ 32hr0
a

exp

(
−aK

2h

)
+

36c

a2K
.

In the analysis of monotone case, we rely on the classical result from proximal operators theory.

Lemma 12 (Theorem 6.39 (iii) from Beck [7]) Let R be a proper lower semicontinuous convex
function and x+ = proxγR(x). Then for all z ∈ Rd the following inequality holds:

⟨x+ − x, z − x+⟩ ≥ γ
(
R(x+)−R(z)

)
.

Finally, we rely on the following technical lemma for handling the sums arising in the proofs for
the monotone case.

Lemma 13 Let K > 0 be a positive integer and η1, η2, . . . , ηK be random vectors such that
Ek[ηk] := E[ηk | η1, . . . , ηk−1] = 0 for k = 2, . . . ,K. Then

E

∥∥∥∥∥
K∑
k=1

ηk

∥∥∥∥∥
2
 =

K∑
k=1

E[∥ηk∥2]. (25)
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Proof We start with the following derivation:

E

∥∥∥∥∥
K∑
k=1

ηk

∥∥∥∥∥
2
 = E[∥ηK∥2] + 2E

[〈
ηK ,

K−1∑
k=1

ηk

〉]
+ E

∥∥∥∥∥
K−1∑
k=1

ηk

∥∥∥∥∥
2


= E[∥ηK∥2] + 2E

[
EK

[〈
ηK ,

K−1∑
k=1

ηk

〉]]
+ E

∥∥∥∥∥
K−1∑
k=1

ηk

∥∥∥∥∥
2


= E[∥ηK∥2] + 2E

[〈
EK [ηK ],

K−1∑
k=1

ηk

〉]
+ E

∥∥∥∥∥
K−1∑
k=1

ηk

∥∥∥∥∥
2


= E[∥ηK∥2] + E

∥∥∥∥∥
K−1∑
k=1

ηk

∥∥∥∥∥
2
 .

Applying similar steps to E
[∥∥∥∑K−1

k=1 ηk

∥∥∥2] ,E [∥∥∥∑K−2
k=1 ηk

∥∥∥2] , . . . ,E [∥∥∥∑2
k=1 ηk

∥∥∥2], we get the

result.

28



STOCHASTIC GRADIENT DESCENT-ASCENT: UNIFIED THEORY AND NEW EFFICIENT METHODS

Appendix D. Proof of The Main Results

In this section, we provide complete proofs of our main results.

D.1. Quasi-Strongly Monotone Case

We start with the case when F satisfies (3) with µ > 0. For readers convenience, we restate the
theorems below.

Theorem 14 (Theorem 1) Let F be µ-quasi-strongly monotone with µ > 0 and Assumption 1 hold.
Assume that

0 < γ ≤ min

{
1

µ
,

1

2(A+ CM)

}
(26)

for some M > B/ρ. Then for the Lyapunov function Vk = ∥xk − x∗,k∥2 +Mγ2σ2
k, and for all k ≥ 0

we have

E[Vk] ≤
(
1−min

{
γµ, ρ− B

M

})k

E[V0] +
γ2(D1 +MD2)

min {γµ, ρ− B/M}
. (27)

Proof First of all, we recall a well-known fact about proximal operators: for any solution x∗ of (1)
we have

x∗ = proxγR(x
∗ − γF (x∗)). (28)

Using this and non-expansiveness of proximal operator, we derive

∥xk+1 − x∗,k+1∥2 ≤ ∥xk+1 − x∗,k∥2

=
∥∥∥proxγR(x

k − γgk)− proxγR(x
∗,k − γF (x∗,k))

∥∥∥2
≤

∥∥∥xk − γgk − x∗,k − γF (x∗,k)
∥∥∥2

= ∥xk − x∗,k∥2 − 2γ
〈
xk − x∗,k, gk − F (x∗,k)

〉
+ γ2∥gk − F (x∗,k)∥2.

Next, we take an expectation Ek[·] w.r.t. the randomness at iteration k and get

Ek

[
∥xk+1 − x∗,k+1∥2

]
= ∥xk − x∗,k∥2 − 2γ

〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+γ2Ek

[∥∥∥gk − F (x∗,k)
∥∥∥2]

(6)
≤ ∥xk − x∗,k∥2 − 2γ

〈
xk − x∗, F (xk)− F (x∗,k)

〉
+γ2

(
2A
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+Bσ2

k +D1

)
.
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Summing up this inequality with (7) multiplied by Mγ2, we obtain

Ek

[
∥xk+1 − x∗,k+1∥2

]
+Mγ2Ek[σ

2
k+1]

≤ ∥xk − x∗,k∥2 − 2γ
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+ γ2

(
2A
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+Bσ2

k +D1

)
+Mγ2

(
2C
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+ (1− ρ)σ2

k +D2

)
= ∥xk − x∗,k∥2 +Mγ2

(
1− ρ+

B

M

)
σ2
k + γ2(D1 +MD2)

− 2γ (1− γ(A+ CM))
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
. (29)

Since γ ≤ 1
2(A+CM) the factor −2γ (1− γ(A+ CM)) is non-positive. Therefore, applying strong

quasi-monotonicity of F , we derive

Ek

[
∥xk+1 − x∗,k+1∥2 +Mγ2σ2

k+1

]
≤ (1− 2γµ (1− γ(A+ CM))) ∥xk − x∗,k∥2

+Mγ2
(
1− ρ+

B

M

)
σ2
k + γ2(D1 +MD2).

Using γ ≤ 1
2(A+CM) and the definition Vk = ∥xk − x∗,k∥2 +Mγ2σ2

k, we get

Ek [Vk+1] ≤ (1− γµ) ∥xk − x∗,k∥2 +Mγ2
(
1− ρ+

B

M

)
σ2
k + γ2(D1 +MD2)

≤
(
1−min

{
γµ, ρ− B

M

})
Vk + γ2(D1 +MD2).

Next, we take the full expectation from the above inequality and establish the following recurrence:

E [Vk+1] ≤
(
1−min

{
γµ, ρ− B

M

})
E[Vk] + γ2(D1 +MD2). (30)

Unrolling the recurrence, we derive

E [Vk] ≤
(
1−min

{
γµ, ρ− B

M

})k

E[V0] + γ2(D1 +MD2)

k−1∑
t=0

(
1−min

{
γµ, ρ− B

M

})t

≤
(
1−min

{
γµ, ρ− B

M

})k

E[V0] + γ2(D1 +MD2)

∞∑
t=0

(
1−min

{
γµ, ρ− B

M

})t

=

(
1−min

{
γµ, ρ− B

M

})k

E[V0] +
γ2(D1 +MD2)

min {γµ, ρ− B/M}
,

which finishes the proof.

Using this and Lemma 11, we derive the following result about the convergence to the exact
solution.
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Corollary 15 (Corollary 2) Let the assumptions of Theorem 1 hold. Consider two possible cases.

1. Let D1 = D2 = 0. Then, for any K ≥ 0, M = 2B/ρ, and

γ = min

{
1

µ
,

1

2(A+ 2BC/ρ)

}
(31)

we have

E[VK ] ≤ E[V0] exp

(
−min

{
µ

2(A+ 2BC/ρ)
,
ρ

2

}
K

)
. (32)

2. Let D1+MD2 > 0. Then, for any K ≥ 0 and M = 2B/ρ one can choose {γk}k≥0 as follows:

if K ≤ h

µ
, γk =

1

h
,

if K >
h

µ
and k < k0, γk =

1

h
, (33)

if K >
h

µ
and k ≥ k0, γk =

2

µ(κ+ k − k0)
,

where h = max {2(A+ 2BC/ρ), 2µ/ρ}, κ = 2h/µ and k0 = ⌈K/2⌉. For this choice of γk the
following inequality holds:

E[VK ] ≤ 32max

{
2(A+ 2BC/ρ)

µ
,
2

ρ

}
E[V0] exp

(
−min

{
µ

2(A+ 2BC/ρ)
,
ρ

4

}
K

)
+
36(D1 + 2BD2/ρ)

µ2K
. (34)

Proof The first part of the corollary follows from Theorem 1 due to(
1−min

{
γµ, ρ− B

M

})K

=
(
1−min

{
γµ,

ρ

2

})K
≤ exp

(
−min

{
γµ,

ρ

2

}
K
)
.

Plugging (31) in the above inequality, we derive (32). Next, we consider the case when D1+MD2 >
0. First, we notice that (30) holds for non-constant stepsizes γk such that

0 < γk ≤ min

{
1

µ
,

1

2(A+ CM)

}
.

Therefore, for any k ≥ 0 we have

E [Vk+1] ≤
(
1−min

{
γkµ, ρ−

B

M

})
E[Vk] + γ2k(D1 +MD2)

M=2B/ρ
= (1−min {γkµ, ρ/2})E[Vk] + γ2k(D1 + 2BD2/ρ).

Secondly, we assume that for all k ≥ 0

0 < γk ≤ min

{
ρ

2µ
,

1

2(A+ CM)

}
.
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Applying this to the recurrence for E[Vk], we obtain

E [Vk+1] ≤ (1− γkµ)E[Vk] + γ2k(D1 + 2BD2/ρ).

It remains to apply Lemma 11 with rk = E[Vk], a = µ, c = D1 + 2BD2/ρ, and
h = max {2(A+ 2BC/ρ), 2µ/ρ} to the above recurrence.

D.2. Monotone Case

Next, we consider the case when µ = 0. Before deriving the proof, we provide additional discussion
of the setup.

We emphasize that the maximum in (9) is taken over the compact set C containing the solution
set X∗. Therefore, the quantity GapC(z) is a valid measure of convergence [60]. We point out that
the iterates xk do not have to lie in C. Our analysis works for the problems with unbounded and
bounded domains (see Alacaoglu and Malitsky [1], Nesterov [60] for similar setups).

Another popular convergence measure for the case when R(x) ≡ 0 in (1) is ∥F (xk)∥2. Although
the squared norm of the operator is a weaker guarantee, it is easier to compute in practice and
better suited for non-monotone problems [80]. Nevertheless, ∥F (xk)∥2 is not a valid measure of
convergence for (1) with R(x) ̸≡ 0. Therefore, we focus on GapC(z) in the monotone case.7

Theorem 16 (Theorem 3) Let F be monotone, ℓ-star-cocoercive and Assumptions 1, 2 hold. As-
sume that

0 < γ ≤ 1

2(A+ BC/ρ)
. (35)

Then for the function GapC(z) from (9) and for all K ≥ 0 we have

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ (4A+ ℓ+ 8BC/ρ) · ∥x
0 − x∗,0∥2

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ2

0

ρK

+γ(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ)

+9γ max
x∗∈X∗

∥F (x∗)∥2. (36)

Proof First, we apply the classical result about proximal operators (Lemma 12) with x+ = xk+1,
x = xk − γgk, and z = u for arbitrary point u ∈ Rd:

⟨xk+1 − xk + γgk, u− xk+1⟩ ≥ γ
(
R(xk+1)−R(u)

)
.

Multiplying by the factor of 2 and making small rearrangement, we get

2γ⟨gk, u− xk⟩+ 2⟨xk+1 − xk, u− xk⟩+ 2⟨xk+1 − xk + γgk, xk − xk+1⟩ ≥ 2γ
(
R(xk+1)−R(u)

)
7. When R(x) ≡ 0, our analysis can be modified to get the guarantees on the squared norm of the operator.
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implying

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ 2⟨xk+1 − xk, u− xk⟩+ 2γ⟨F (xk)− gk, xk − u⟩

+2⟨xk+1 − xk, xk − xk+1⟩+ 2γ⟨gk, xk − xk+1⟩.

Next, we use a squared norm decomposition ∥a+ b∥2 = ∥a∥2 + ∥b∥2 + 2⟨a, b⟩, and obtain

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk+1 − xk∥2 + ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−2∥xk+1 − xk∥2 + 2γ⟨gk, xk − xk+1⟩.(37)

Then, due to 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 we have

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk+1 − xk∥2 + ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−2∥xk+1 − xk∥2 + γ2∥gk∥2 + ∥xk − xk+1∥2

= ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩+ γ2∥gk∥2.

Monotonicity of F implies ⟨F (u), xk−u⟩ ≤ ⟨F (xk), xk−u⟩, allowing us to continue our derivation
as follows:

2γ
(
⟨F (u), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩+ γ2∥gk∥2

= ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
+γ2∥gk − g∗,k + g∗,k∥2

(23)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
+2γ2∥gk − g∗,k∥2 + 2γ2∥g∗,k∥2.
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Summing up the above inequality for k = 0, 1, . . . ,K − 1, we get

2γ

K−1∑
k=0

(
⟨F (u), xk − u⟩+R(xk+1)−R(u)

)
≤

K−1∑
k=0

∥xk − u∥2 −
K−1∑
k=0

∥xk+1 − u∥2

+2γ2
K−1∑
k=0

∥g∗,k∥2

+2γ

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+2γ2
K−1∑
k=0

∥gk − g∗,k∥2

= ∥x0 − u∥2 − ∥xK − u∥2 + 2γ2
K−1∑
k=0

∥g∗,k∥2

+2γ

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+2γ2
K−1∑
k=0

∥gk − g∗,k∥2.

Next, we divide both sides by 2γK

1

K

K−1∑
k=0

(
⟨F (u), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

γ

K

K−1∑
k=0

∥g∗,k∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+
γ

K

K−1∑
k=0

∥gk − g∗,k∥2

and, after small rearrangement, we obtain

1

K

K−1∑
k=0

(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

⟨F (u), xK − x0⟩
K

+
γ

K

K−1∑
k=0

∥g∗,k∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+
γ

K

K−1∑
k=0

∥gk − g∗,k∥2.
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Applying Jensen’s inequality for convex function R, we get R
(

1
K

∑K−1
k=0 xk+1

)
≤ 1

K

∑K−1
k=0 R(xk+1).

Plugging this in the previous inequality, we derive for u∗ being a projection of u on X∗〈
F (u),

(
1

K

K−1∑
k=0

xk+1

)
− u

〉
+R

(
1

K

K−1∑
k=0

xk+1

)
−R(u)

≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

⟨F (u), xK − x0⟩
K

+
γ

K

K−1∑
k=0

∥g∗,k∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩+ γ

K

K−1∑
k=0

∥gk − g∗,k∥2

(24)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

∥xK − x0∥2

4γK
+

4γ

K
∥F (u)− F (u∗) + F (u∗)∥2

+
γ

K

K−1∑
k=0

∥g∗,k∥2 + 1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩+ γ

K

K−1∑
k=0

∥gk − g∗,k∥2

(23)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

∥x0 − u∥2 + ∥xK − u∥2

2γK
+

8γ

K
∥F (u)− F (u∗)∥2

+
γ

K

K−1∑
k=0

∥g∗,k∥2 + 8γ∥F (u∗)∥2 + 1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+
γ

K

K−1∑
k=0

∥gk − g∗,k∥2

(4)
≤ ∥x0 − u∥2

γK
+

8γℓ2∥u− u∗∥2

K
+ 9γ max

x∗∈X∗
∥F (x∗)∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩+ γ

K

K−1∑
k=0

∥gk − g∗,k∥2.
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Next, we take maximum from the both sides in u ∈ C, which gives GapC
(

1
K

∑K
k=1 x

k
)

in the
left-hand side by definition (9), and take the expectation of the result:

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

E
[
maxu∈C ∥x0 − u∥2

]
γK

+
8γℓ2E

[
maxu∈C ∥u− u∗∥2

]
K

+9γ max
x∗∈X∗

∥F (x∗)∥2

+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]
+

γ

K

K−1∑
k=0

E
[
∥gk − g∗,k∥2

]
≤

E
[
maxu∈C ∥x0 − u∥2

]
γK

+
8γℓ2Ω2

C
K

+ 9γ max
x∗∈X∗

∥F (x∗)∥2

+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]

+
γ

K

K−1∑
k=0

E
[
∥gk − g∗,k∥2

]
. (38)

In the last step, we also use that X∗ ⊂ C and ΩC := maxx,y∈C ∥x− y∥ (Assumption 2).
It remains to upper bound the terms from the last two lines of (38). We start with the first one.

Since

E

[
K−1∑
k=0

⟨F (xk)− gk, xk⟩

]
= E

[
K−1∑
k=0

⟨E[F (xk)− gk | xk], xk⟩

]
= 0,

E

[
K−1∑
k=0

⟨F (xk)− gk, x0⟩

]
=

K−1∑
k=0

〈
E[F (xk)− gk], x0

〉
= 0,
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we have

1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]
=

1

K
E

[
K−1∑
k=0

⟨F (xk)− gk, xk⟩

]

+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk,−u⟩

]

=
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk,−u⟩

]

=
1

K
E

[
K−1∑
k=0

⟨F (xk)− gk, x0⟩

]

+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk,−u⟩

]

= E

[
max
u∈C

〈
1

K

K−1∑
k=0

(F (xk)− gk), x0 − u

〉]
(24)
≤ E

max
u∈C

γK

2

∥∥∥∥∥ 1

K

K−1∑
k=0

(F (xk)− gk)

∥∥∥∥∥
2

+
1

2γK
∥x0 − u∥2




=
γ

2K
E

∥∥∥∥∥
K−1∑
k=0

(F (xk)− gk)

∥∥∥∥∥
2
+

1

2γK
max
u∈C

∥x0 − u∥2.

We notice that E[F (xk)− gk | F (x0)− g0, . . . , F (xk−1)− gk−1] = 0 for all k ≥ 1, i.e., conditions
of Lemma 13 are satisfied. Therefore, applying Lemma 13, we get

1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]
≤ γ

2K

K−1∑
k=0

E[∥F (xk)− gk∥2]

+
1

2γK
max
u∈C

∥x0 − u∥2. (39)
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Combining (38) and (39), we derive

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ

2K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
+

γ

K

K−1∑
k=0

E
[
∥gk − g∗,k∥2

]
(40)

(23)
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ

K

K−1∑
k=0

E
[
∥F (xk)− g∗,k∥2

]
+

2γ

K

K−1∑
k=0

E
[
∥gk − g∗,k∥2

]
.

Using ℓ-star-cocoercivity of F together with the first part of Assumption 1, we continue our derivation
as follows:

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 2γD1 + 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ(4A+ ℓ)

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+

2γB

K

K−1∑
k=0

E
[
σ2
k

]
=

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 2γD1 + 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ(4A+ ℓ)

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+
2γB

K

(
1 +

1

ρ

)K−1∑
k=0

E
[
σ2
k

]
− 2γB

ρK

K−1∑
k=0

E
[
σ2
k

]
.
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Next, we use the second part of Assumption 1 and get

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 2γD1 + 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ(4A+ ℓ)

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+
2γB

K

(
1 +

1

ρ

)K−1∑
k=1

E
[
2C⟨F (xk−1)− g∗,k−1, xk−1 − x∗,k−1⟩

]
+
2γB

K

(
1 +

1

ρ

)K−1∑
k=1

E
[
(1− ρ)σ2

k−1 +D2

]
+
2γB

K

(
1 +

1

ρ

)
σ2
0 −

2γB

ρK

K−1∑
k=0

E
[
σ2
k

]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
2γB(1 + 1/ρ)

K
σ2
0

+2γ (D1 +B(1 + 1/ρ)D2)

+9γ max
x∗∈X∗

∥F (x∗)∥2 + γ(4A+ ℓ)

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+
2γB

K

(
1 +

1

ρ

)K−2∑
k=0

E
[
2C⟨F (xk)− g∗,k, xk − x∗,k⟩+ (1− ρ)σ2

k

]
−2γB

ρK

K−1∑
k=0

E
[
σ2
k

]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
2γB(1 + 1/ρ)

K
σ2
0

+2γ (D1 +B(1 + 1/ρ)D2) + 9γ max
x∗∈X∗

∥F (x∗)∥2

+(4A+ ℓ+ 4BC(1 + 1/ρ))
γ

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+
2γB

K
(1− ρ)

(
1 +

1

ρ

)K−2∑
k=0

E
[
σ2
k

]
− 2γB

ρK

K−1∑
k=0

E
[
σ2
k

]
.
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Since (1− ρ) (1 + 1/ρ) = −ρ+ 1/ρ ≤ 1/ρ, the last row is non-positive and we have

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
2γB(1 + 1/ρ)

K
σ2
0

+2γ (D1 +B(1 + 1/ρ)D2) + 9γ max
x∗∈X∗

∥F (x∗)∥2 (41)

+
γ (4A+ ℓ+ 4BC(1 + 1/ρ))

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
.

Note that inequality (29) from the proof of Theorem 1 is derived using Assumption 1 only. With
M = B/ρ it gives

E
[
∥xk+1 − x∗,k+1∥2

]
+

γ2B

ρ
E[σ2

k+1] ≤ E
[
∥xk − x∗,k∥2

]
+

γ2B

ρ
E
[
σ2
k

]
+ γ2(D1 + BD2/ρ)

−2γ (1− γ(A+ BC/ρ))E
[〈

xk − x∗,k, F (xk)− g∗,k
〉]

.

Since γ ≤ 1/2(A+BC/ρ) we obtain

γE
[〈

xk − x∗,k, F (xk)− g∗,k
〉]

≤ E
[
∥xk − x∗,k∥2

]
+

γ2B

ρ
E
[
σ2
k

]
− E

[
∥xk+1 − x∗,k+1∥2

]
−γ2B

ρ
E[σ2

k+1] + γ2(D1 + BD2/ρ).

Plugging this inequality in (41), we derive

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
2γB(1 + 1/ρ)

K
σ2
0

+2γ (D1 +B(1 + 1/ρ)D2) + 9γ max
x∗∈X∗

∥F (x∗)∥2

+(4A+ ℓ+ 4BC(1 + 1/ρ)) · 1

K

K−1∑
k=0

E
[
∥xk − x∗,k∥2

]
− (4A+ ℓ+ 4BC(1 + 1/ρ)) · 1

K

K−1∑
k=0

E
[
∥xk+1 − x∗,k+1∥2

]
+(4A+ ℓ+ 4BC(1 + 1/ρ)) · γ

2B

ρK

K−1∑
k=0

E
[
σ2
k − σ2

k+1

]
+γ2 (4A+ ℓ+ 4BC(1 + 1/ρ)) · (D1 + BD2/ρ)

≤
3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ (4A+ ℓ+ 8BC/ρ) · ∥x
0 − x∗,0∥2

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ2

0

ρK
(42)

+γ

(
(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ) + 9 max

x∗∈X∗
∥F (x∗)∥2

)
,

40



STOCHASTIC GRADIENT DESCENT-ASCENT: UNIFIED THEORY AND NEW EFFICIENT METHODS

where in the last inequality we use 1 + 1/ρ ≤ 2/ρ.

Corollary 17 Let the assumptions of Theorem 3 hold. Then, for all K one can choose γ as

γ = min

{
1

4A+ ℓ+ 8BC/ρ
,
Ω0,C

√
ρ

σ̂0
√
B

,
Ω0,C√

K(D1 + 2BD2/ρ)
,

Ω0,C

G∗
√
K

}
, (43)

where Ω0 := ∥x0 − x∗,0∥2 and Ω0,C , σ̂0, and G∗ are some upper bounds for maxu∈C ∥x0 − u∥, σ0,

and maxx∗∈X∗ ∥F (x∗)∥ respectively. This choice of γ implies E
[
GapC

(
1
K

∑K
k=1 x

k
)]

equals

O

(
(A+ ℓ+ BC/ρ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,Cσ̂0

√
B

√
ρK

+
Ω0,C(

√
D1 + BD2/ρ +G∗)√

K

)
.

Proof First of all, the choice of γ from (43) implies (35) since

1

4A+ ℓ+ 8BC/ρ
≤ 1

2 (A+ BC/ρ)
.

Using (10), the definitions of Ω0,C , σ̂0, G∗, and γ ≤ 1/(4A+ℓ+8BC/ρ), we get

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ (4A+ ℓ+ 8BC/ρ) · ∥x
0 − x∗,0∥2

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ2

0

ρK

+γ

(
(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ) + 9 max

x∗∈X∗
∥F (x∗)∥2

)
≤

3Ω2
0,C

2γK
+

8γℓ2Ω2
C

K
+

(4A+ ℓ+ 8BC/ρ)Ω2
0

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ̂2

0

ρK

+γ
(
(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ) + 9G2

∗
)

≤
3Ω2

0,C
2γK

+
8γℓ2Ω2

C
K

+
(4A+ ℓ+ 8BC/ρ)Ω2

0

K
+

5γBσ̂2
0

ρK

+3γ

(
D1 +

2BD2

ρ
+ 3G2

∗

)
.
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Finally, we apply (43):

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3Ω2
0,C

2min

{
1

4A+ℓ+8BC/ρ ,
Ω0,C

√
ρ

σ̂0

√
B
,

Ω0,C√
K(D1+2BD2/ρ)

,
Ω0,C

G∗
√
K

}
K

+
1

ℓ
·
8ℓ2Ω2

C
K

+
(4A+ ℓ+ 8BC/ρ)Ω2

0

K
+

Ω0,C
√
ρ

σ̂0
√
B

· γBσ̂2
0

ρK

+
Ω0,C√

K(D1 + 2BD2/ρ)
· 3
(
D1 +

2BD2

ρ

)
+

Ω0,C

G∗
√
K

· 9G2
∗

= O

(
(A+ ℓ+ BC/ρ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,Cσ̂0

√
B

√
ρK

+
Ω0,C(

√
D1 + BD2/ρ +G∗)√

K

)
.
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D.3. Cocoercive Case

The upper bound from Theorem 3 contains the term proportional to maxx∗∈X∗ ∥F (x∗)∥2, which
is non-zero in general. Therefore, even when there is no noise the method with constant stepsize
converges only to some error proportional to maxx∗∈X∗ ∥F (x∗)∥2. To resolve this issue we assume
ℓ-cocoercivity of F , i.e., we assume that

∥F (x)− F (y)∥2 ≤ ℓ⟨F (x)− F (y), x− y⟩ ∀x, y ∈ Rd.

Theorem 18 Let F be ℓ-cocoercive and Assumptions 1, 2 hold. Assume that

0 < γ ≤ min

{
1

ℓ
,

1

2(A+ BC/ρ)

}
. (44)

Then for the function GapC(z) from (9) and for all K ≥ 0 we have

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+ (6A+ 3ℓ+ 12BC/ρ) · ∥x

0 − x∗,0∥2

K

+(6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ2

0

ρK
(45)

+γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ).

Proof We start the proof from (37).

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk+1 − xk∥2 + ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−2∥xk+1 − xk∥2 + 2γ⟨gk, xk − xk+1⟩

= ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−∥xk+1 − xk∥2 + 2γ⟨F (u), xk − xk+1⟩
+2γ⟨gk − F (u), xk − xk+1⟩.

Then, due to 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 we have

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−∥xk+1 − xk∥2 + 2γ⟨F (u), xk − xk+1⟩
+γ2∥gk − F (u)∥2 + ∥xk − xk+1∥2

= ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
+2γ⟨F (u), xk − xk+1⟩+ γ2∥gk − F (u)∥2.
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Next, we add 2γ
(
⟨F (u), xk+1 − u⟩ − ⟨F (xk), xk − u⟩

)
to both sides of the previous inequality.

2γ
(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (u)− gk, xk − u⟩+ γ2∥gk − F (u)∥2

≤ ∥xk − u∥2 − ∥xk+1 − u∥2

−2γ⟨F (xk)− F (u), xk − u⟩
−2γ⟨gk − F (xk), xk − u⟩
+2γ2∥gk − F (xk)∥2 + 2γ2∥F (xk)− F (u)∥2.

Using that F is ℓ-co-cocoercive, we get

2γ
(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

−2γ

ℓ
∥F (xk)− F (u)∥2

−2γ⟨gk − F (xk), xk − u⟩
+2γ2∥gk − F (xk)∥2 + 2γ2∥F (xk)− F (u)∥2

= ∥xk − u∥2 − ∥xk+1 − u∥2

−2γ

ℓ
(1− γℓ) ∥F (xk)− F (u)∥2

−2γ⟨gk − F (xk), xk − u⟩
+2γ2∥gk − F (xk)∥2.

With γ ≤ 1
ℓ , we have

2γ
(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

−2γ⟨gk − F (xk), xk − u⟩
+2γ2∥gk − F (xk)∥2.

Summing up the above inequality for k = 0, 1, . . . ,K − 1, we get

2γ
K−1∑
k=0

(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤

K−1∑
k=0

∥xk − u∥2 −
K−1∑
k=0

∥xk+1 − u∥2

+2γ2
K−1∑
k=0

∥gk − F (xk)∥2

+2γ
K−1∑
k=0

⟨F (xk)− gk, xk − u⟩.
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Next, we divide both sides by 2γK

1

K

K−1∑
k=0

(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK

+
γ

K

K−1∑
k=0

∥gk − F (xk)∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩.

Applying Jensen’s inequality for convex function R, we get R
(

1
K

∑K−1
k=0 xk+1

)
≤ 1

K

∑K−1
k=0 R(xk+1).

〈
F (u),

(
1

K

K−1∑
k=0

xk+1

)
− u

〉
+R

(
1

K

K−1∑
k=0

xk+1

)
−R(u)

≤∥x0 − u∥2 − ∥xK − u∥2

2γK

+
γ

K

K−1∑
k=0

∥gk − F (xk)∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩.

Next, we take maximum from the both sides in u ∈ C, which gives GapC
(

1
K

∑K
k=1 x

k
)

in the
left-hand side by definition (9), and take the expectation of the result:

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

E
[
maxu∈C ∥x0 − u∥2

]
γK

+
γ

K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
+

1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]
.

Using the estimate (39), we get

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ maxu∈C ∥x0 − u∥2

γK
+

γ

K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
+

γ

2K

K−1∑
k=0

E[∥F (xk)− gk∥2] + 1

2γK
max
u∈C

∥x0 − u∥2

≤ 3maxu∈C ∥x0 − u∥2

2γK
+

3γ

2K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
.
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It remains to estimate 1
K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
. This was done in the previous proof (see from

(40) to (42)). Then, we finally have

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+ (6A+ 3ℓ+ 12BC/ρ) · ∥x

0 − x∗,0∥2

K

+(6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ2

0

ρK

+γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ).

Corollary 19 Let the assumptions of Theorem 18 hold. Then, for all K one can choose γ as

γ = min

{
1

6A+ 3ℓ+ 12BC/ρ
,
Ω0,C

√
ρ

σ̂0
√
B

,
Ω0,C√

K(D1 + 2BD2/ρ)

}
, (46)

where Ω0 := ∥x0 − x∗,0∥2 and Ω0,C , and σ̂0 are some upper bounds for maxu∈C ∥x0 − u∥, and σ0

respectively. This choice of γ implies E
[
GapC

(
1
K

∑K
k=1 x

k
)]

equals

O

(
(A+ ℓ+ BC/ρ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ̂0
√
B

√
ρK

+
Ω0,C

√
D1 + BD2/ρ√
K

)
.

Proof First of all, the choice of γ from (46) implies (35) since

1

6A+ 3ℓ+ 12BC/ρ
≤ 1

2 (A+ BC/ρ)
.

Using (45), the definitions of Ω0,C , σ̂0, and γ ≤ 1/(6A+3ℓ+12BC/ρ), we get

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+ (6A+ 3ℓ+ 12BC/ρ) · ∥x

0 − x∗,0∥2

K

+(6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ2

0

ρK

+γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ)

≤
3Ω2

0,C
2γK

+
(6A+ 3ℓ+ 12BC/ρ)Ω2

0

K

+(6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ̂2

0

ρK

+γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ)

≤
3Ω2

0,C
2γK

+
(6A+ 3ℓ+ 12BC/ρ)Ω2

0

K
+

7γBσ̂2
0

ρK
+ 4γ

(
D1 +

2BD2

ρ

)
.
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Finally, we apply (43):

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3Ω2
0,C

2min

{
1

6A+3ℓ+12BC/ρ ,
Ω0,C

√
ρ

σ̂0

√
B
,

Ω0,C√
K(D1+2BD2/ρ)

}
K

+
(6A+ 3ℓ+ 12BC/ρ)Ω2

0

K
+

Ω0,C
√
ρ

σ̂0
√
B

· γBσ̂2
0

ρK

+
Ω0,C√

K(D1 + 2BD2/ρ)
· 4
(
D1 +

2BD2

ρ

)
= O

(
(A+ ℓ+ BC/ρ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ̂0
√
B

√
ρK

+
Ω0,C

√
D1 + BD2/ρ√
K

)
.
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Appendix E. SGDA with Arbitrary Sampling: Missing Proofs and Details

Algorithm 1 SGDA-AS: Stochastic Gradient Descent-Ascent with Arvitrary Sampling

1: Input: starting point x0 ∈ Rd, distribution D, stepsize γ > 0, number of steps K
2: for k = 0 to K − 1 do
3: Sample ξk ∼ D independently from previous iterations and compute gk = Fξk(x

k)

4: xk+1 = proxγR(x
k − γgk)

5:

6: end for

E.1. Proof of Proposition 4

Proposition 20 (Proposition 4) Let Assumption 3 hold. Then, SGDA satisfies Assumption 1 with

A = ℓD, B = 0, σ2
k ≡ 0, D1 = 2σ2

∗ := 2 max
x∗∈X∗

ED
[
∥Fξ(x

∗)− F (x∗)∥2
]
,

C = 0, ρ = 1, D2 = 0.

Proof To prove the result, it is sufficient to derive an upper bound for Ek

[
∥gk − F (x∗,k)∥2

]
:

Ek

[
∥gk − F (x∗,k)∥2

]
= ED

[
∥Fξk(x

k)− F (x∗,k)∥2
]

≤ 2ED

[
∥Fξk(x

k)− Fξk(x
∗,k)∥2

]
+ 2ED

[
∥Fξk(x

∗,k)− F (x∗,k)∥2
]

Ass.(3)
≤ 2ℓD⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

∗,

where σ2
∗ := maxx∗∈X∗ ED

[
∥Fξ(x

∗)− F (x∗)∥2
]
. The above inequality implies that Assumption 1

holds with

A = ℓD, B = 0, σ2
k ≡ 0, D1 = 2σ2

∗ := 2 max
x∗∈X∗

ED
[
∥Fξ(x

∗)− F (x∗)∥2
]
,

C = 0, ρ = 1, D2 = 0.

E.2. Analysis of SGDA-AS in the Quasi-Strongly Monotone Case

Plugging the parameters from the above proposition in Theorem 1 and Corollary 2 we get the
following results.

Theorem 21 Let F be µ-quasi strongly monotone, Assumption 3 hold, and 0 < γ ≤ 1/2ℓD. Then,
for all k ≥ 0 the iterates produced by SGDA-AS satisfy

E
[
∥xk − x∗,k∥2

]
≤ (1− γµ)k∥x0 − x0,∗∥2 + 2γσ2

∗
µ

. (47)
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Corollary 22 (Corollary 5) Let the assumptions of Theorem 21 hold. Then, for any K ≥ 0 one
can choose {γk}k≥0 as follows:

if K ≤ 2ℓD
µ

, γk =
1

2ℓD
,

if K >
2ℓD
µ

and k < k0, γk =
1

2ℓD
, (48)

if K >
2ℓD
µ

and k ≥ k0, γk =
2

4ℓD + µ(k − k0)
,

where k0 = ⌈K/2⌉. For this choice of γk the following inequality holds for SGDA-AS:

E[∥xK − x∗,K∥2] ≤ 64ℓD
µ

∥x0 − x∗,0∥2 exp
(
− µ

2ℓD
K

)
+

72σ2
∗

µ2K
.

E.3. Analysis of SGDA-AS in the Monotone Case

In the monotone case, using Theorem 3, we establish the new result for SGDA-AS.

Theorem 23 Let F be monotone ℓ-star-cocoercive and Assumptions 1, 2, 3 hold. Assume that
γ ≤ 1/2ℓD. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by SGDA-AS satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

8γℓ2Ω2
C

K
+

(4ℓD + ℓ) ∥x0 − x∗,0∥2

K

+2γ(2 + γ (4ℓD + ℓ))σ2
∗ + 9γ max

x∗∈X∗
∥F (x∗)∥2.

Next, we apply Corollary 17 and get the following rate of convergence to the exact solution.

Corollary 24 Let the assumptions of Theorem 23 hold. Then ∀K > 0 and

γ = min

{
1

4ℓD + ℓ
,

Ω0,C√
2Kσ∗

,
Ω0,C

G∗
√
K

}
(49)

the iterates produced by SGDA-AS satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(ℓD + ℓ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,C(σ∗ +G∗)√

K

)
.

As we already mentioned before, the above result is new for SGDA-AS: the only known work
on SGDA-AS [52] focuses on the µ-quasi-strongly monotone case only with µ > 0. Moreover, ne-
glecting the dependence on problem/noise parameters, the derived convergence rate O (1/K + 1/

√
K)

is standard for the analysis of stochastic methods for solving monotone VIPs [39].
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E.4. Analysis of SGDA-AS in the Cocoercive Case

In the cocoercive case, using Theorem 18, we establish the new result for SGDA-AS.

Theorem 25 Let F be ℓ-cocoercive and Assumptions 1, 2, 3 hold. Assume that γ ≤ 1/2ℓD. Then for
GapC(z) from (9) and for all K ≥ 0 the iterates produced by SGDA-AS satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

(6ℓD + 3ℓ) ∥x0 − x∗,0∥2

K

+2γ(3 + γ (6ℓD + 3ℓ))σ2
∗.

Next, we apply Corollary 19 and get the following rate of convergence to the exact solution.

Corollary 26 Let the assumptions of Theorem 25 hold. Then ∀K > 0 and

γ = min

{
1

6ℓD + 3ℓ
,

Ω0,C√
2Kσ∗

}
(50)

the iterates produced by SGDA-AS satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(ℓD + ℓ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ∗√
K

)
.

E.5. Missing Details on Arbitrary Sampling

In the main part of the paper, we discuss the Arbitrary Sampling paradigm and, in particular, using
our general theoretical framework, we obtain convergence guarantees for SGDA under Expected
Cocoercivity assumption (Assumption 3). In this section, we give the particular examples of arbitrary
sampling fitting this setup. In all the examples below, we focus on a special case of stochastic
reformulation from (11) and assume that for all i ∈ [n] operator Fi is (ℓi, X∗)-cocoercive, i.e., for
all i ∈ [n] and x ∈ Rd we have

∥Fi(x)− Fi(x
∗)∥2 ≤ ℓi⟨Fi(x)− Fi(x

∗), x− x∗⟩, (51)

where x∗ is the projection of x on X∗. Note that (51) holds whenever Fi are cocoercive.

Uniform Sampling. We start with the classical uniform sampling: let P {ξ = nei} = 1/n for all
i ∈ [n], where ei ∈ Rn is the i-th coordinate vector from the standard basis in Rn. Then, E[ξi] = 1
for all i ∈ [n] and Assumption 3 holds with ℓD = maxi∈[n] ℓi:

ED
[
∥Fξ(x)− Fξ(x

∗)∥2
]

=
1

n

n∑
i=1

∥Fi(x)− Fi(x
∗)∥2

(51)
≤ 1

n

∑
(ℓi⟨Fi(x)− Fi(x

∗), x− x∗⟩)

≤ max
i∈[n]

ℓi⟨F (x)− F (x∗), x− x∗⟩
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In this case, Corollaries 22 and 24 imply the following rate for SGDA in µ-quasi strongly monotone,
monotone and cocoercive cases respectively:

E[∥xK − x∗,K∥2] ≤
64maxi∈[n] ℓi

µ
∥x0 − x∗,0∥2 exp

(
− µ

2maxi∈[n] ℓi
K

)
+

72σ2
∗,US

µ2K
,

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(maxi∈[n] ℓi + ℓ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,C(σ∗,US +G∗)√

K

)
,

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(maxi∈[n] ℓi + ℓ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ∗,US√
K

)
, (52)

where σ2
∗,US := maxx∗∈X∗ 1

n

∑n
i=1 ∥Fi(x

∗)− F (x∗)∥2.

Importance Sampling. Next, we consider a non-uniform sampling strategy – importance sampling:
let P

{
ξ = einℓ/ℓi

}
= ℓi/nℓ for all i ∈ [n], where ℓ = 1

n

∑n
i=1 ℓi. Then, E[ξi] = 1 for all i ∈ [n] and

Assumption 3 holds with ℓD = ℓ:

ED
[
∥Fξ(x)− Fξ(x

∗)∥2
]

=

n∑
i=1

ℓi

nℓ

∥∥∥∥ ℓℓi (Fi(x)− Fi(x
∗))

∥∥∥∥2
=

n∑
i=1

ℓ

nℓi
∥Fi(x)− Fi(x

∗)∥2

(51)
≤ ℓ

n

∑
⟨Fi(x)− Fi(x

∗), x− x∗⟩

≤ ℓ⟨F (x)− F (x∗), x− x∗⟩

In this case, Corollaries 22 and 24 imply the following rate for SGDA in µ-quasi strongly monotone,
monotone and cocoercive cases respectively:

E[∥xK − x∗,K∥2] ≤ 64ℓ

µ
∥x0 − x∗,0∥2 exp

(
− µ

2ℓ
K

)
+

72σ2
∗,IS

µ2K
,

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(ℓ+ ℓ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,C(σ∗,IS +G∗)√

K

)
,

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(ℓ+ ℓ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ∗,IS√
K

)
(53)

where σ2
∗,IS := maxx∗∈X∗ 1

n

∑n
i=1

ℓi
ℓ

∥∥∥ ℓ
ℓi
Fi(x

∗)− F (x∗)
∥∥∥2. We emphasize that ℓ ≤ maxi∈[n] ℓi

and, in fact, ℓ might be much smaller than maxi∈[n] ℓi. Therefore, compared to SGDA with uniform
sampling, SGDA with importance sampling has better exponentially decaying term in the quasi-
strongly monotone case and converges faster to the neighborhood, if executed with constant stepsize.
Moreover, σ2

∗,IS ≤ σ2
∗,US, when maxx∗∈X∗ ∥Fi(x

∗)∥ ∼ ℓi. In this case, SGDA with importance
sampling has better O(1/K) term than SGDA with uniform sampling as well.
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Minibatch Sampling With Replacement. Let ξ = 1
b

∑b
i=1 ξ

i, where ξi are i.i.d. samples from
some distribution D satisfying (11) and Assumption 3. Then, the distribution of ξ satisfies (11)
and Assumption 3 as well with the same constant ℓD. Therefore, minibatched versions of uniform

sampling and importance sampling fit the framework as well with ℓD = maxi∈[n] ℓi, σ
2
∗ =

σ2
∗,US
b and

ℓD = ℓ, σ2
∗ =

σ2
∗,IS
b .

Minibatch Sampling Without Replacement. For given batchsize b ∈ [n] we consider the follow-
ing sampling strategy: for each subset S ⊆ [n] such that |S| = b we have P

{
ξ = n

b

∑
i∈S ei

}
=

b!(n−b)!
n! , i.e., S is chosen uniformly at random from all b-element subsets of [n]. In the special case,

when R(x) ≡ 0, Loizou et al. [52] show that this sampling strategy satisfies (11) and Assumption 3
with

ℓD =
n(b− 1)

b(n− 1)
ℓ+

n− b

b(n− 1)
max
i∈[n]

ℓi, σ2
∗ =

n− b

b(n− 1)
σ2
∗,US. (54)

Clearly, both parameters are smaller than corresponding parameters for minibatched version of
uniform sampling with replacement, which indicates the theoretical benefits of sampling without
replacement. Plugging the parameters from (54) in Corollaries 22 and 24, we get the rate of
convergence for this sampling strategy. Moreover, in the quasi-strongly monotone case, to guarantee
E[∥xK − x∗,K∥2] ≤ ε for some ε > 0, the method requires

Kb = O

(
max

{(
b
ℓ

µ
+

(n− b)

n

maxi∈[n] ℓi

µ

)
log

ℓD∥x0 − x∗,0∥2

µε
,
(n− b)σ2

∗,US

nµ2ε

})

= Õ

(
max

{
b
(
ℓ− 1

n maxi∈[n] ℓi
)
+maxi∈[n] ℓi

µ
,
(n− b)σ2

∗,US

nµ2ε

})
oracle calls,(55)

where Õ(·) hides numerical and logarithmic factors. One can notice that the first term in the
maximum linearly increases in b (since ℓ cannot be smaller than 1

n maxi∈[n] ℓi), while the second

term linearly decreases in b. The first term in the maximum is lower bounded by (n−b)
n

maxi∈[n] ℓi
µ .

Therefore, if maxi∈[n] ℓi ≥
σ2
∗,US
µε , the the first term in the maximum is always larger than the second

one, meaning that the optimal batchsize, i.e., the batchsize that minimizes oracle complexity (55)

neglecting the logarithmic terms, equals b∗ = 1. Next, if maxi∈[n] ℓi <
σ2
∗,US
µε , then there exists a

positive value of b such that the first term in the maximum equals the second term. This value equals

n
(
σ2
∗,US − µεmaxi∈[n] ℓi

)
σ2
∗ + µε

(
nℓ−maxi∈[n] ℓi

) .
One can easily verify that it is always smaller than n, but it can be non integer and it can be smaller
than 1 as well. Therefore, the optimal batchsize is

b∗ =


1, if maxi∈[n] ℓi ≥

σ2
∗,US
µε ,

max

{
1,

⌊
n(σ2

∗,US−µεmaxi∈[n] ℓi)
σ2
∗+µε(nℓ−maxi∈[n] ℓi)

⌋}
, otherwise.
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We notice that Loizou et al. [52] derive the following formula for the optimal batchsize (ignoring
numerical constants):

b̃∗ =


1, if maxi∈[n] ℓi − ℓ ≥ σ2

∗,US
µε ,

max

{
1,

⌊
n(σ2

∗,US−µε(maxi∈[n] ℓi−ℓ))
σ2
∗+µε(nℓ−maxi∈[n] ℓi)

⌋}
, otherwise.

However, in terms of Õ(·) both formulas give the same complexity result.
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Appendix F. SGDA with Variance Reduction: Missing Proofs and Details

In this section, we provide missing proofs and details for Section 4.

F.1. L-SVRGDA

Algorithm 2 L-SVRGDA: Loopless Stochastic Variance Reduced Gradient Descent-Ascent

1: Input: starting point x0 ∈ Rd, probability p ∈ (0, 1], stepsize γ > 0, number of steps K
2: Set w0 = x0 and compute F (w0)
3: for k = 0 to K − 1 do
4: Draw a fresh sample jk from the uniform distribution on [n] and compute gk = Fjk(x

k)−
Fjk(w

k) + F (wk)

5: wk+1 =

{
xk, with probability p,

wk, with probability 1− p,

6: xk+1 = proxγR(x
k − γgk)

7: end for

F.1.1. PROOF OF PROPOSITION 6

Lemma 27 Let Assumption 4 hold. Then for all k ≥ 0 L-SVRGDA satisfies

Ek

[
∥gk − F (x∗,k)∥2

]
≤ 2ℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

k, (56)

where σ2
k := 1

n

∑n
i=1 ∥Fi(w

k)− Fi(x
∗,k)∥2.

Proof Since gk = Fjk(x
k)− Fjk(w

k) + F (wk), we have

Ek

[
∥gk − F (x∗,k)∥2

]
= Ek

[
∥Fjk(x

k)− Fjk(w
k) + F (wk)− F (x∗,k)∥2

]
=

1

n

n∑
i=1

∥Fi(x
k)− Fi(w

k) + F (wk)− F (x∗,k)∥2

≤ 2

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2

+
2

n

n∑
i=1

∥Fi(w
k)− Fi(x

∗,k)− (F (wk)− F (x∗,k))∥2

≤ 2

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2 + 2

n

n∑
i=1

∥Fi(w
k)− Fi(x

∗,k)∥2

(13)
≤ 2ℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

k.
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Lemma 28 Let Assumptions 4 and 5 hold. Then for all k ≥ 0 L-SVRGDA satisfies

Ek

[
σ2
k+1

]
≤ pℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ (1− p)σ2

k, (57)

where σ2
k := 1

n

∑n
i=1 ∥Fi(w

k)− Fi(x
∗,k)∥2.

Proof Using the definitions of σ2
k+1 and wk+1 (see (12)), we derive

Ek

[
σ2
k+1

]
=

1

n

n∑
i=1

Ek

[
∥Fi(w

k+1)− Fi(x
∗,k+1)∥2

]
As. 5
=

1

n

n∑
i=1

Ek

[
∥Fi(w

k+1)− Fi(x
∗,k)∥2

]
=

p

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2 + 1− p

n

n∑
i=1

∥Fi(w
k)− Fi(x

∗,k)∥2

(13)
≤ pℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ (1− p)σ2

k.

The above two lemmas imply that Assumption 1 is satisfied with certain parameters.

Proposition 29 (Proposition 6) Let Assumptions 4 and 5 hold. Then, L-SVRGDA satisfies As-
sumption 1 with

A = ℓ̂, B = 2, σ2
k =

1

n

n∑
i=1

∥Fi(w
k)− Fi(x

∗)∥2, C =
pℓ̂

2
, ρ = p, D1 = D2 = 0.

F.1.2. ANALYSIS OF L-SVRGDA IN THE QUASI-STRONGLY MONOTONE CASE

Plugging the parameters from the above proposition in Theorem 1 and Corollary 2 with M = 4
p we

get the following results.

Theorem 30 Let F be µ-quasi strongly monotone, Assumptions 4, 5 hold, and 0 < γ ≤ 1/6ℓ̂. Then
for all k ≥ 0 the iterates produced by L-SVRGDA satisfy

E
[
∥xk − x∗∥2

]
≤ (1−min {γµ, p/2})k V0, (58)

where V0 = ∥x0 − x∗∥2 + 4γ2σ2
0/p.

Corollary 31 Let the assumptions of Theorem 30 hold. Then, for p = n, γ = 1/6ℓ̂ and any K ≥ 0
we have

E[∥xk − x∗∥2] ≤ V0 exp

(
−min

{
µ

6ℓ̂
,
1

2n

}
K

)
.
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F.1.3. ANALYSIS OF L-SVRGDA IN THE MONOTONE CASE

Next, using Theorem 3, we establish the convergence of L-SVRGDA in the monotone case.

Theorem 32 Let F be monotone, ℓ-star-cocoercive and Assumptions 1, 2, 4, 5 hold. Assume that
γ ≤ 1/6ℓ̂. Then for GapC(z) from (9) and for all K ≥ 0 the iterates of L-SVRGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

8γℓ2Ω2
C

K
+

(
12ℓ̂+ ℓ

)
∥x0 − x∗,0∥2

K

+
(
4 +

(
12ℓ̂+ ℓ

)
γ
) 2γσ2

0

pK
+ 9γ max

x∗∈X∗
∥F (x∗)∥2.

Applying Corollary 17, we get the rate of convergence to the exact solution.

Corollary 33 Let the assumptions of Theorem 32 hold and p = 1/n. Then ∀K > 0 one can choose
γ as

γ = min

{
1

12ℓ̂+ ℓ
,

1√
2nℓ̂ℓ

,
Ω0,C

G∗
√
K

}
. (59)

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(ℓ̂+ ℓ)(Ω2
0,C +Ω2

0) +
√

nℓ̂ℓΩ2
0,C + ℓΩ2

C
K

+
Ω0,CG∗√

K

 .

Proof First of all, (13), (4), and Cauchy-Schwarz inequality imply

σ2
0 =

1

n

n∑
i=1

∥Fi(x
0)− Fi(x

∗)∥2

(13)
≤ ℓ̂⟨F (x0)− F (x∗), x0 − x∗⟩
≤ ℓ̂∥F (x0)− F (x∗)∥ · ∥x0 − x∗∥
≤ ℓ̂ℓ∥x0 − x∗∥2 ≤ ℓ̂ℓmax

u∈C
∥x0 − u∥2 ≤ ℓ̂ℓΩ2

0,C .

Next, applying Corollary 17 with σ̂0 :=
√

ℓ̂ℓΩ0,C , we get the result.

F.1.4. ANALYSIS OF L-SVRGDA IN THE COCOERCIVE CASE

Next, using Theorem 18, we establish the convergence of L-SVRGDA in the cocoercive case.

Theorem 34 Let F be ℓ-cocoercive and Assumptions 1, 2, 4, 5 hold. Assume that γ ≤ 1/6ℓ̂. Then
for GapC(z) from (9) and for all K ≥ 0 the iterates of L-SVRGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

(
18ℓ̂+ 3ℓ

)
∥x0 − x∗,0∥2

K

+
(
6 +

(
18ℓ̂+ 3ℓ

)
γ
) 2γσ2

0

pK
.
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Applying Corollary 19, we get the rate of convergence to the exact solution.

Corollary 35 Let the assumptions of Theorem 34 hold and p = 1/n. Then ∀K > 0 one can choose
γ as

γ = min

{
1

18ℓ̂+ 3ℓ
,

1√
2nℓ̂ℓ

}
. (60)

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(ℓ̂+ ℓ)(Ω2
0,C +Ω2

0) +
√
nℓ̂ℓΩ2

0,C
K

 .

F.2. SAGA-SGDA

In this section, we show that SAGA-SGDA [62] fits our theoretical framework and derive new results
for this method under averaged star-cocoercivity.

Algorithm 3 SAGA-SGDA [62]

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, number of steps K
2: Set w0

i = x0 and compute Fi(w
0
i ) for all i ∈ [n]

3: for k = 0 to K − 1 do
4: Draw a fresh sample jk from the uniform distribution on [n] and compute gk = Fjk(x

k)−
Fjk(w

k
jk
) + 1

n

∑n
i=1 Fi(w

k
i )

5: Set wk+1
jk

= xk and wk+1
i = wk

i for i ̸= jk
6: xk+1 = proxγR(x

k − γgk)
7: end for

F.2.1. SAGA-SGDA FITS ASSUMPTION 1

Lemma 36 Let Assumption 4 hold. Then for all k ≥ 0 SAGA-SGDA satisfies

Ek

[
∥gk − F (x∗,k)∥2

]
≤ 2ℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

k, (61)

where σ2
k := 1

n

∑n
i=1 ∥Fi(w

k
i )− Fi(x

∗,k)∥2.
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Proof For brevity, we introduce a new notation: Sk = 1
n

∑n
i=1 Fi(w

k
i ). Since gk = Fjk(x

k) −
Fjk(w

k
jk
) + Sk, we have

Ek

[
∥gk − F (x∗,k)∥2

]
= Ek

[
∥Fjk(x

k)− Fjk(w
k
jk
) + Sk − F (x∗,k)∥2

]
=

1

n

n∑
i=1

∥Fi(x
k)− Fi(w

k
i ) + Sk − F (x∗,k)∥2

≤ 2

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2

+
2

n

n∑
i=1

∥Fi(w
k
i )− Fi(x

∗,k)− (Sk − F (x∗,k))∥2

≤ 2

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2 + 2

n

n∑
i=1

∥Fi(w
k
i )− Fi(x

∗,k)∥2

(13)
≤ 2ℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

k.

Lemma 37 Let Assumptions 4 and 5 hold. Then for all k ≥ 0 SAGA-SGDA satisfies

Ek

[
σ2
k+1

]
≤ ℓ̂

n
⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ (1− 1/n)σ2

k, (62)

where σ2
k := 1

n

∑n
i=1 ∥Fi(w

k
i )− Fi(x

∗,k)∥2.

Proof Using the definitions of σ2
k+1 and wk+1

i , we derive

Ek

[
σ2
k+1

]
=

1

n

n∑
i=1

Ek

[
∥Fi(w

k+1
i )− Fi(x

∗,k+1)∥2
]

As. 5
=

1

n

n∑
i=1

Ek

[
∥Fi(w

k+1
i )− Fi(x

∗,k)∥2
]

=
1

n2

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2 + 1− 1/n

n

n∑
i=1

∥Fi(w
k
i )− Fi(x

∗,k)∥2

(13)
≤ ℓ̂

n
⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ (1− 1/n)σ2

k.

The above two lemmas imply that Assumption 1 is satisfied with certain parameters.

Proposition 38 Let Assumptions 4 and 5 hold. Then, SAGA-SGDA satisfies Assumption 1 with

A = ℓ̂, B = 2, σ2
k =

1

n

n∑
i=1

∥Fi(w
k
i )− Fi(x

∗)∥2, C =
ℓ̂

2n
, ρ =

1

n
, D1 = D2 = 0.
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F.2.2. ANALYSIS OF SAGA-SGDA IN THE QUASI-STRONGLY MONOTONE CASE

Applying Theorem 1 and Corollary 2 with M = 4n, we get the following results.

Theorem 39 Let F be µ-quasi strongly monotone, Assumptions 4, 5 hold, and 0 < γ ≤ 1/6ℓ̂. Then
for all k ≥ 0 the iterates produced by SAGA-SGDA satisfy

E
[
∥xk − x∗∥2

]
≤ (1−min {γµ, 1/2n})k V0, (63)

where V0 = ∥x0 − x∗∥2 + 4nγ2σ2
0 .

Corollary 40 Let the assumptions of Theorem 39 hold. Then, for γ = 1/6ℓ̂ and any K ≥ 0 we have

E[∥xK − x∗∥2] ≤ V0 exp

(
−min

{
µ

6ℓ̂
,
1

2n

}
K

)
.

F.2.3. ANALYSIS OF SAGA-SGDA IN THE MONOTONE CASE

Next, using Theorem 3, we establish the convergence of SAGA-SGDA in the monotone case.

Theorem 41 Let F be monotone, ℓ-star-cocoercive and Assumptions 1, 2, 4, 5 hold. Assume that
γ ≤ 1/6ℓ̂. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by SAGA-SGDA
satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

8γℓ2Ω2
C

K
+

(
12ℓ̂+ ℓ

)
∥x0 − x∗,0∥2

K

+
(
4 +

(
12ℓ̂+ ℓ

)
γ
) 2γσ2

0

pK
+ 9γ max

x∗∈X∗
∥F (x∗)∥2.

Applying Corollary 17, we get the rate of convergence to the exact solution.

Corollary 42 Let the assumptions of Theorem 41 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

12ℓ̂+ ℓ
,

1√
2nℓ̂ℓ

,
Ω0,C

G∗
√
K

}
, (64)

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(ℓ̂+ ℓ)(Ω2
0,C +Ω2

0) +
√

nℓ̂ℓΩ2
0,C + ℓΩ2

C
K

+
Ω0,CG∗√

K

 .

Proof Since σ0 for SAGA-SGDA and L-SVRGDA are the same, the proof of this corollary is
identical to the one for Corollary 33.
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F.2.4. ANALYSIS OF SAGA-SGDA IN THE COCOERCIVE CASE

Next, using Theorem 18, we establish the convergence of SAGA-SGDA in the cocoercive case.

Theorem 43 Let F be ℓ-cocoercive and Assumptions 1, 2, 4, 5 hold. Assume that γ ≤ 1/6ℓ̂. Then
for GapC(z) from (9) and for all K ≥ 0 the iterates produced by SAGA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

(
18ℓ̂+ 3ℓ

)
∥x0 − x∗,0∥2

K

+
(
6 +

(
18ℓ̂+ 3ℓ

)
γ
) 2γσ2

0

pK
.

Applying Corollary 19, we get the rate of convergence to the exact solution.

Corollary 44 Let the assumptions of Theorem 43 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

18ℓ̂+ 3ℓ
,

1√
2nℓ̂ℓ

}
, (65)

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(ℓ̂+ ℓ)(Ω2
0,C +Ω2

0) +
√
nℓ̂ℓΩ2

0,C
K

 .

F.3. Discussion of the Results in the Monotone and Cocoercive Cases

Among the papers mentioned in the related work on variance-reduced methods (see Section A),
only Alacaoglu and Malitsky [1], Alacaoglu et al. [2], Carmon et al. [14], Luo et al. [53], Tominin
et al. [74] consider monotone (convex-concave) and Lipschitz (smooth) VIPs (min-max problems)
without assuming strong monotonicity (strong-convexity-strong-concavity) of the problem. In this
case, Alacaoglu and Malitsky [1] derive O

(
n+

√
nL
K

)
convergence rate (neglecting the dependence

on the quantities like Ω2
0,C = maxu∈C ∥x0 − u∥2), which is optimal for the considered setting

[31]. Under additional assumptions a similar rate is derived in Carmon et al. [14]. Luo et al.
[53], Tominin et al. [74] also achieve this rate but using Catalyst. Finally, Alacaoglu et al. [2] derive
O
(
n+ nL

K

)
, which is worse than the one from Alacaoglu and Malitsky [1]. Our results for monotone

and star-cocoercive regularized VIPs give O
(√

nℓℓ̂+ℓ̂
K + G∗√

K

)
rate, which is typically worse than

O
(
n+

√
nL
K

)
rate from Alacaoglu and Malitsky [1] due to the relation between cocoercivity

constants and Lipschitz constants (even when R(x) ≡ 0, i.e., G∗ = 0). However, in general, it is
possible that star-cocoercivity holds, while Lipschitzness does not [52]. As for cocoercive case, we

obtain O
(√

nℓℓ̂+ℓ̂
K

)
, which matches the rate from Alacaoglu and Malitsky [1] up to the difference

between cocoercivity and Lipschitz constants. Moreover, we emphasize here that Alacaoglu and
Malitsky [1] and other works do not consider SGDA as the basis for their methods. To the best of
our knowledge, our results are the first ones for variance-reduced SGDA-type methods derived in the
monotone case without assuming (quasi-)strong monotonicity.
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Appendix G. Distributed SGDA with Compression: Missing Proofs and Details

In this section, we provide missing proofs and details for Section 5.

G.1. QSGDA

In this section (and in the one about DIANA-SGDA), we assume that each Fi has an expectation
form: Fi(x) = Eξi∼Di

[Fξi(x)].

Algorithm 4 QSGDA: Quantized Stochastic Gradient Descent-Ascent

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, number of steps K
2: for k = 0 to K − 1 do
3: Broadcast xk to all workers
4: for i = 1, . . . , n in parallel do
5: Compute gki and send Q(gki ) to the server
6: end for
7: gk = 1

n

∑n
i=1Q(gki )

8: xk+1 = proxγR
(
xk − γgk

)
9: end for

G.1.1. PROOF OF PROPOSITION 8

Proposition 45 (Proposition 8) Let F be ℓ-star-cocoercive and Assumptions 4, 6 hold. Then,
QSGDA with quantization (14) satisfies Assumption 1 with

A =

(
3ℓ

2
+

9ωℓ̂

2n

)
, D1 =

3(1 + 3ω)σ2 + 9ωζ2∗
n

, σ2
k = 0, B = 0,

C = 0, ρ = 1, D2 = 0,

where σ2 = 1
n

∑n
i=1 σ

2
i and ζ2∗ = 1

n maxx∗∈X∗

[∑n
i=1 ∥Fi(x

∗)∥2
]
.
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Proof Since gk = 1
n

n∑
i=1

Q
(
gki
)
, Q

(
gk1
)
, . . . ,Q

(
gkn
)

are independent for fixed gk1 , . . . , g
k
n, and

gk1 , . . . , g
k
n are independent for fixed xk, we have

Ek

[
∥gk − F (x∗,k)∥2

]
= Ek

∥∥∥∥∥ 1n
n∑

i=1

Q
(
gki

)
− F (x∗,k)

∥∥∥∥∥
2


= Ek

∥∥∥∥∥ 1n
n∑

i=1

[
Q
(
gki

)
− gki + gki − Fi(x

k)
]
+ F (xk)− F (x∗,k)

∥∥∥∥∥
2


≤ 3Ek

∥∥∥∥∥ 1n
n∑

i=1

[Q
(
gki

)
− gki ]

∥∥∥∥∥
2
+ 3Ek

∥∥∥∥∥ 1n
n∑

i=1

[gki − Fi(x
k)]

∥∥∥∥∥
2


+3
∥∥∥F (xk)− F (x∗,k)

∥∥∥2
=

3

n2

n∑
i=1

Ek

[∥∥∥Q(gki )− gki

∥∥∥2]+ 3

n2

n∑
i=1

Ek

[∥∥∥gki − Fi(x
k)
∥∥∥2]

+3
∥∥∥F (xk)− F (x∗,k)

∥∥∥2 .
Next, we use Assumption 6, σ2 = 1

n

∑n
i=1 σ

2
i , and the definition of quantization (14) and get

Ek

[
∥gk − F (x∗,k)∥2

]
≤ 3ω

n2

n∑
i=1

Ek

[∥∥∥gki ∥∥∥2]+ 3σ2

n
+ 3

∥∥∥F (xk)− F (x∗,k)
∥∥∥2

≤ 3ω

n2

n∑
i=1

Ek

[∥∥∥gki − Fi(x
k) + Fi(x

k)− Fi(x
∗,k) + Fi(x

∗,k)
∥∥∥2]

+
3σ2

n
+ 3

∥∥∥F (xk)− F (x∗,k)
∥∥∥2

≤ 9ω

n2

n∑
i=1

Ek

[∥∥∥gki − Fi(x
k)
∥∥∥2]+ 9ω

n2

n∑
i=1

Ek

[∥∥∥Fi(x
k)− Fi(x

∗,k)
∥∥∥2]

+
9ω

n2

n∑
i=1

Ek

[∥∥∥Fi(x
∗,k)
∥∥∥2]+ 3σ2

n
+ 3

∥∥∥F (xk)− F (x∗,k)
∥∥∥2

(15)
≤ 9ω

n2

n∑
i=1

Ek

[∥∥∥Fi(x
k)− Fi(x

∗,k)
∥∥∥2]+ 3

∥∥∥F (xk)− F (x∗,k)
∥∥∥2

+
9ω

n2

n∑
i=1

Ek

[∥∥∥Fi(x
∗,k)
∥∥∥2]+ 3(1 + 3ω)σ2

n
.
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Star-cocoercivity of F and Assumption 4 give

Ek

[
∥gk − F (x∗,k)∥2

]
≤

(
3ℓ+

9ω

n
ℓ̂

)
⟨F (xk)− F (x∗,k), xk − x∗,k⟩

+
9ω

n2

n∑
i=1

Ek

[∥∥∥Fi(x
∗,k)
∥∥∥2]+ 3(1 + 3ω)σ2

n

≤
(
3ℓ+

9ω

n
ℓ̂

)
⟨F (xk)− F (x∗,k), xk − x∗,k⟩

+
9ω

n2
max
x∗∈X∗

[
n∑

i=1

∥Fi(x
∗)∥2

]
+

3(1 + 3ω)σ2

n
.

G.1.2. ANALYSIS OF QSGDA IN THE QUASI-STRONGLY MONOTONE CASE

Applying Theorem 1 and Corollary 2, we get the following results.

Theorem 46 Let F be µ-quasi strongly monotone, ℓ-star-cocoercive, Assumptions 4, 6 hold, and

0 < γ ≤ 1

3ℓ+ 9ωℓ̂
n

.

Then, for all k ≥ 0 the iterates produced by QSGDA satisfy

E
[
∥xk − x∗∥2

]
≤ (1− γµ)k ∥x0 − x∗∥2 + γ

3(1 + 3ω)σ2 + 9ωζ2∗
nµ

.

Corollary 47 Let the assumptions of Theorem 46 hold. Then, for any K ≥ 0 one can choose
{γk}k≥0 as follows:

if K ≤ 1

µ
·

(
3ℓ+

9ωℓ̂

n

)
, γk =

(
3ℓ+

9ωℓ̂

n

)−1

,

if K >
1

µ
·

(
3ℓ+

9ωℓ̂

n

)
and k < k0, γk =

(
3ℓ+

9ωℓ̂

n

)−1

,

if K >
1

µ
·

(
3ℓ+

9ωℓ̂

n

)
and k ≥ k0, γk =

2

(6ℓ+ 18ωℓ̂/n + µ(k − k0))
,

where k0 = ⌈K/2⌉. For this choice of γk the following inequality holds:

E[∥xK − x∗,K∥2] ≤ 32(3ℓ+ 9ωℓ̂/n)

µ
∥x0 − x∗,0∥2 exp

(
− µ

(3ℓ+ 9ωℓ̂/n)
K

)
+

36

µ2K
· 3(1 + 3ω)σ2 + 9ωζ2∗

n
.
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G.1.3. ANALYSIS OF QSGDA IN THE MONOTONE CASE

Next, using Theorem 3, we establish the convergence of QSGDA in the monotone case.

Theorem 48 Let F be monotone, ℓ-star-cocoercive and Assumptions 1, 2, 4, 6 hold. Assume that

γ ≤
(
3ℓ+ 9ωℓ̂

n

)−1
. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by QSGDA

satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+

(
7ℓ+

18ωℓ̂

n

)
· ∥x

0 − x∗,0∥2

K

+γ

(
2 + γ

(
7ℓ+

18ωℓ̂

n

))
· 3(1 + 3ω)σ2 + 9ωζ2∗

n

+9γ max
x∗∈X∗

[
∥F (x∗)∥2

]
Applying Corollary 17, we get the rate of convergence to the exact solution.

Corollary 49 Let the assumptions of Theorem 48 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

7ℓ+ 18ωℓ̂
n

,
Ω0,C

√
n√

3K(1 + 3ω)σ2 + 9Kωζ2∗
,

Ω0,C

G∗
√
K

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

((
ℓ+ ωℓ̂/n

)
(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,C(σ

√
1 + ω +G∗

√
n+ ζ∗

√
ω)√

nK

)
.

G.1.4. ANALYSIS OF QSGDA IN THE COCOERCIVE CASE

Next, using Theorem 18, we establish the convergence of QSGDA in the cocoercive case.

Theorem 50 Let F be ℓ-cocoercive and Assumptions 1, 2, 4, 6 hold. Assume that γ ≤
(
3ℓ+ 9ωℓ̂

n

)−1
.

Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by QSGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+

(
10ℓ+

27ωℓ̂

n

)
· ∥x

0 − x∗,0∥2

K

+γ

(
3 + γ

(
10ℓ+

27ωℓ̂

n

))
· 3(1 + 3ω)σ2 + 9ωζ2∗

n
.

Applying Corollary 19, we get the rate of convergence to the exact solution.

Corollary 51 Let the assumptions of Theorem 50 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

10ℓ+ 27ωℓ̂
n

,
Ω0,C

√
n√

3K(1 + 3ω)σ2 + 9Kωζ2∗

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

((
ℓ+ ωℓ̂/n

)
(Ω2

0,C +Ω2
0)

K
+

Ω0,C(σ
√
1 + ω + ζ∗

√
ω)√

nK

)
.

64



STOCHASTIC GRADIENT DESCENT-ASCENT: UNIFIED THEORY AND NEW EFFICIENT METHODS

G.2. DIANA-SGDA

Algorithm 5 DIANA-SGDA: DIANA Stochastic Gradient Descent-Ascent [35, 56]

1: Input: starting points x0, h01, . . . , h
0
n ∈ Rd, h0 = 1

n

∑n
i=1 h

0
i , stepsizes γ, α > 0, number of

steps K
2: for k = 0 to K − 1 do
3: Broadcast xk to all workers
4: for i = 1, . . . , n in parallel do
5: Compute gki and ∆k

i = gki − hki
6: Send Q(∆k

i ) to the server
7: hk+1

i = hki + αQ(∆k
i )

8: end for
9: gk = hk + 1

n

n∑
i=1

Q(∆k
i ) =

1
n

n∑
i=1

(hki +Q(∆k
i ))

10: xk+1 = proxγR
(
xk − γgk

)
11: hk+1 = hk + α 1

n

n∑
i=1

Q(∆k
i ) =

1
n

n∑
i=1

hki

12: end for

G.2.1. PROOF OF PROPOSITION 9

The following result follows from Lemmas 1 and 2 from [35]. It holds in our settings as well, since it
does not rely on the exact form of Fi(x

k).

Lemma 52 (Lemmas 1 and 2 from [35]) Let Assumptions 5, 6 hold. Suppose that α ≤ 1/(1+ω).
Then, for all k ≥ 0 DIANA-SGDA satisfies

Ek

[
gk
]

= F (xk),

Ek

[
∥gk − F (x∗)∥2

]
≤

(
1 +

2ω

n

)
1

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗)∥2 +
2ωσ2

k

n
+

(1 + ω)σ2

n
,

Ek

[
σ2
k+1

]
≤ (1− α)σ2

k +
α

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗)∥2 + ασ2,

where σ2
k = 1

n

n∑
i=1

∥hki − Fi(x
∗)∥2 and σ2 = 1

n

∑n
i=1 σ

2
i .

The lemma above implies that Assumption 1 is satisfied with certain parameters.

Proposition 53 (Proposition 9) Let Assumptions 4, 5, 6 hold. Suppose that α ≤ 1
1+ω . Then,

DIANA-SGDA with quantization (14) satisfies Assumption 1 with σ2
k = 1

n

∑n
i=1 ∥hki − Fi(x

∗)∥2
and

A =

(
1

2
+

ω

n

)
ℓ̂, B =

2ω

n
, D1 =

(1 + ω)σ2

n
, C =

αℓ̂

2
, ρ = α, D2 = ασ2.
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Proof To get the result, one needs to apply Assumption 4 to estimate 1
n

∑n
i=1 ∥Fi(x

k)− Fi(x
∗)∥2

from Lemma 52.

G.2.2. ANALYSIS OF DIANA-SGDA IN THE QUASI-STRONGLY MONOTONE CASE

Applying Theorem 1 and Corollary 2 with M = 4ω
αn , we get the following results.

Theorem 54 Let F be µ-quasi strongly monotone, Assumptions 4, 5, 6 hold, α ≤ 1/(1+ω), and

0 < γ ≤ 1(
1 + 6ω

n

)
ℓ̂
.

Then, for all k ≥ 0 the iterates produced by DIANA-SGDA satisfy

E
[
∥xk − x∗∥2

]
≤
(
1−min

{
γµ,

α

2

})k
E[V0] +

γ2σ2(1 + 5ω)

n ·min {γµ, α/2}
,

where V0 = ∥x0 − x∗∥2 + 4ωγ2σ2
0/αn.

Corollary 55 Let the assumptions of Theorem 9 hold. Then, for any K ≥ 0 one can choose
α = 1/(1+ω) and {γk}k≥0 as follows:

if K ≤ h

µ
, γk =

1

h
,

if K >
h

µ
and k < k0, γk =

1

h
,

if K >
h

µ
and k ≥ k0, γk =

2

2h+ µ(k − k0)
,

where h = max
{(

1 + 6ω
n

)
ℓ̂, 2µ(1 + ω)

}
, k0 = ⌈K/2⌉. For this choice of γk the following inequal-

ity holds:

E[∥xK − x∗,K∥2] ≤ 32max

{(
1 + 6ω

n

)
ℓ̂

µ
, 2(1 + ω)

}
V0 exp

(
−min

{
µ

ℓ̂(1 + 6ω
n )

,
1

1 + ω

}
K

)

+
36(1 + 5ω)σ2

µ2nK
.

G.2.3. ANALYSIS OF DIANA-SGDA IN THE MONOTONE CASE

Next, using Theorem 3, we establish the convergence of DIANA-SGDA in the monotone case.

Theorem 56 Let F be monotone, ℓ-star-cocoercive and Assumptions 1, 2, 4, 5, 6 hold. Assume that

0 < γ ≤ 1(
1 + 4ω

n

)
ℓ̂
.
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Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by DIANA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+

(
2ℓ̂+

12ωℓ̂

n
+ ℓ

)
∥x0 − x∗,0∥2

K

+

(
4 + γ

(
2ℓ̂+

12ωℓ̂

n
+ ℓ

))
γBσ2

0

ρK

+γ

((
2 + γ

(
2ℓ̂+

12ωℓ̂

n
+ ℓ

))(
(1 + 5ω)σ2

n

))
+9γ max

x∗∈X∗
∥F (x∗)∥2.

Applying Corollary 17, we get the rate of convergence to the exact solution.

Corollary 57 Let the assumptions of Theorem 56 hold. Then ∀K > 0 one can choose γ as

γ = min


(
ℓ+ 2ℓ̂+

12ωℓ̂

n

)−1

,

√
αn√
2ωℓ̂ℓ

,
Ω0,C

σ
√
K(1+3ω)/n

,
Ω0,C

G∗
√
K

 ,

This choice of γ implies that E
[
GapC

(
1
K

∑K
k=1 x

k
)]

equals

O

(ℓ+ ℓ̂+ ωℓ̂/n)(Ω2
0,C +Ω2

0) + ℓΩ2
C

K
+

Ω2
0,C

√
ℓ̂ℓ
√
ω

√
αnK

+
Ω0,C(

√
(1+ω)σ2/n +G∗)√

K

 .

Proof The proof follows from the next upper bound σ̂2
0 for σ2

0 with initialization h0i = Fi(x
0)

σ2
0 =

1

n

n∑
i=1

∥Fi(x
0)− Fi(x

∗)∥2

≤ ℓ̂⟨F (x0)− F (x∗), x0 − x∗⟩
≤ ℓ̂∥F (x0)− F (x∗)∥ · ∥x0 − x∗∥
≤ ℓ̂ℓ∥x0 − x∗∥2 ≤ ℓ̂ℓmax

u∈C
∥x0 − u∥2 ≤ ℓ̂ℓΩ2

0,C .

Next, applying Corollary 17 with σ̂0 :=
√
ℓ̂ℓΩ0,C , we get the result.

G.2.4. ANALYSIS OF DIANA-SGDA IN THE COCOERCIVE CASE

Next, using Theorem 18, we establish the convergence of DIANA-SGDA in the cocoercive case.

Theorem 58 Let F be ℓ-cocoercive and Assumptions 1, 2, 4, 5, 6 hold. Assume that

0 < γ ≤ 1(
1 + 4ω

n

)
ℓ̂
.
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Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by DIANA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+

(
3ℓ̂+

18ωℓ̂

n
+ 3ℓ

)
∥x0 − x∗,0∥2

K

+

(
6 + γ

(
4ℓ̂+

18ωℓ̂

n
+ 3ℓ

))
γBσ2

0

ρK

+γ

((
3 + γ

(
3ℓ̂+

18ωℓ̂

n
+ 3ℓ

))(
(1 + 5ω)σ2

n

))
.

Applying Corollary 19, we get the rate of convergence to the exact solution.

Corollary 59 Let the assumptions of Theorem 58 hold. Then ∀K > 0 one can choose γ as

γ = min


(
3ℓ+ 3ℓ̂+

18ωℓ̂

n

)−1

,

√
αn√
2ωℓ̂ℓ

,
Ω0,C

σ
√
K(1+3ω)/n

 ,

This choice of γ implies that E
[
GapC

(
1
K

∑K
k=1 x

k
)]

equals

O

(ℓ+ ℓ̂+ ωℓ̂/n)(Ω2
0,C +Ω2

0)

K
+

Ω2
0,C

√
ℓ̂ℓ
√
ω

√
αnK

+
Ω0,C

√
(1+ω)σ2/n√
K

 .

G.3. VR-DIANA-SGDA

In this section, we assume that each Fi has a finite-sum form: Fi(x) =
1
m

∑m
j=1 Fij(x).

G.3.1. PROOF OF PROPOSITION 10

Lemma 60 (Modification of Lemmas 3 and 7 from [35]) Let F be ℓ-star-cocoercive and Assump-
tions 4, 5, 7 hold. Then for all k ≥ 0 VR-DIANA-SGDA satisfies

Ek

[
gk
]

= F (xk),

Ek

[
∥gk − F (x∗)∥

]
≤

(
ℓ+

2ℓ̃

n
+

2ω(ℓ̂+ ℓ̃)

n

)
⟨F (xk)− F (x∗), xk − x∗⟩+ 2(ω + 1)

n
σ2
k,

where σ2
k = Hk

n + Dk

nm with Hk =
n∑

i=1

∥∥hki − Fi(x
∗)
∥∥2 and Dk =

n∑
i=1

m∑
j=1

∥∥Fij(w
k
i )− Fij(x

∗)
∥∥2.

Proof First of all, we derive unbiasedness:

E
[
gk
]
=

1

n

n∑
i=1

E
[
Q(gki − hki ) + hki

]
=

1

n

n∑
i=1

E
[
gki − hki + hki

]
=

1

n

n∑
i=1

Fi(x
k) = F (xk).
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Algorithm 6 VR-DIANA-SGDA: VR-DIANA Stochastic Gradient Descent-Ascent [35]

1: Input: starting points x0, h01, . . . , h
0
n ∈ Rd, h0 = 1

n

n∑
i=1

h0i , probability p ∈ (0, 1] stepsizes

γ, α > 0, number of steps K,
2: for k = 0 to K − 1 do
3: Broadcast xk to all workers
4: for i = 1, . . . , n in parallel do
5: Draw a fresh sample jki from the uniform distribution on [m] and compute gki =

Fijki
(xk)− Fijki

(wk
i ) + Fi(w

k
i )

6: wk+1
i =

{
xk, with probability p,

wk
i , with probability 1− p,

7: ∆k
i = gki − hki

8: Send Q(∆k
i ) to the server

9: hk+1
i = hki + αQ(∆k

i )
10: end for
11: gk = hk + 1

n

n∑
i=1

Q(∆k
i ) =

1
n

n∑
i=1

(hki +Q(∆k
i ))

12: xk+1 = proxγR
(
xk − γgk

)
13: hk+1 = hk + α 1

n

n∑
i=1

Q(∆k
i ) =

1
n

n∑
i=1

hki

14: end for

By definition of the variance we get

EQ

[∥∥∥gk − F (x∗)
∥∥∥2]=∥∥∥EQ

[
gk
]
− F (x∗)

∥∥∥2︸ ︷︷ ︸
T1

+EQ

[∥∥∥gk − EQ

[
gk
]∥∥∥2]︸ ︷︷ ︸

T2

.

Next, we derive the upper bounds for terms T1 and T2 separately. For T2 we use unbiasedness of
quantization and independence of workers:

T2 = EQ

∥∥∥∥∥ 1n
n∑

i=1

Q(gki − hki )− (gki − hki )

∥∥∥∥∥
2


=
1

n2

n∑
i=1

EQ

[∥∥∥Q(gki − hki )− (gki − hki )
∥∥∥2] (14)

≤ ω

n2

n∑
i=1

∥∥∥gki − hki

∥∥∥2 .
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Taking Ek[·] from the both sides of the above inequality, we derive

Ek [T2] ≤
ω

n2

n∑
i=1

Ek

[∥∥∥gki − hki

∥∥∥2] = ω

n2

n∑
i=1

(∥∥∥Ek

[
gki − hki

]∥∥∥2 + Ek

[∥∥∥gki − hki − Ek

[
gki − hki

]∥∥∥2])

=
ω

n2

n∑
i=1

(∥∥∥Fi(x
k)− hki

∥∥∥2 + Ek

[∥∥∥gki − Fi(x
k)
∥∥∥2])

=
ω

n2

n∑
i=1

(∥∥∥Fi(x
k)− hki

∥∥∥2 + Ek

[∥∥∥Fijki
(xk)− Fijki

(wk
i )− Ek

[
Fijki

(xk)− Fijki
(wk

i )
]∥∥∥2])

≤ ω

n2

n∑
i=1

(∥∥∥Fi(x
k)− hki

∥∥∥2 + Ek

[∥∥∥Fijki
(xk)− Fijki

(wk
i )
∥∥∥2])

≤2ω

n2

n∑
i=1

(∥∥∥hki − Fi(x
⋆)
∥∥∥2 + ∥∥∥Fi(x

k)− Fi(x
⋆)
∥∥∥2)

+
2ω

n2

n∑
i=1

(
Ek

[∥∥∥Fijki
(wk

i )− Fijki
(x⋆)

∥∥∥2]+ Ek

[∥∥∥Fijki
(xk)− Fijki

(x⋆)
∥∥∥2]) .

Since jki is sampled uniformly at random from [m], we have

Ek [T2] ≤ 2ω

n2

n∑
i=1

(∥∥∥hki − Fi(x
⋆)
∥∥∥2 + ∥∥∥Fi(x

k)− Fi(x
⋆)
∥∥∥2)

+
2ω

mn2

n∑
i=1

m∑
j=1

(
Ek

[∥∥∥Fij(w
k
i )− Fij(x

⋆)
∥∥∥2]+ Ek

[∥∥∥Fij(x
k)− Fij(x

⋆)
∥∥∥2])

(13),(19)
≤ 2ω

n2
Hk +

2ω

mn2
Dk +

2ω(ℓ̂+ ℓ̃)

n
⟨F (xk)− F (x∗), xk − x∗⟩.

In last line, we also use the definitions of Hk, Dk. For T1 we use definition of gk:

T1 =

∥∥∥∥∥ 1n
n∑

i=1

EQ

[
Q(gki − hki ) + hki

]
− F (x∗)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

gki − F (x∗).

∥∥∥∥∥
2
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Next, we estimate Ek[T1] similarly to Ek[T2]:

Ek [T1] = Ek

∥∥∥∥∥ 1n
n∑

i=1

gki − F (x∗)

∥∥∥∥∥
2
 =

∥∥∥∥∥ 1n
n∑

i=1

E
[
gki

]
− F (x∗)

∥∥∥∥∥
2

+ Ek

∥∥∥∥∥ 1n
n∑

i=1

(
gki − E

[
gki

])∥∥∥∥∥
2

2


=
∥∥∥F (xk)− F (x∗)

∥∥∥2 + 1

n2

n∑
i=1

Ek

[∥∥∥gki − Fi(x
k)
∥∥∥2]

(4)
≤ ℓ⟨F (xk)− F (x∗), xk − x∗⟩

+
1

n2

n∑
i=1

E
[∥∥∥Fijki

(xk)− Fijki
(wk

i )− Ek

[
Fijki

(xk)− Fijki
(wk

i )
]∥∥∥2]

≤ℓ⟨F (xk)− F (x∗), xk − x∗⟩+ 1

n2

n∑
i=1

Ek

[∥∥∥Fijki
(xk)− Fijki

(wk
i )
∥∥∥2]

=ℓ⟨F (xk)− F (x∗), xk − x∗⟩+ 1

mn2

n∑
i=1

m∑
j=1

∥∥∥Fij(x
k)− Fij(w

k
i )
∥∥∥2

≤ℓ⟨F (xk)− F (x∗), xk − x∗⟩+ 2

mn2

n∑
i=1

m∑
j=1

(∥∥∥Fij(w
k
i )− Fij(x

⋆)
∥∥∥2 + ∥∥∥Fij(x

k)− Fij(x
⋆)
∥∥∥2)

(19)
≤

(
ℓ+

2ℓ̃

n

)
⟨F (xk)− F (x∗), xk − x∗⟩+ 2

mn2
Dk.

Finally, summing E [T1] and E [T2] we get

E
[∥∥∥gk − F (x∗)

∥∥∥2] = E [T1 + T2]

≤

(
ℓ+

2ℓ̃

n

)
⟨F (xk)− F (x∗), xk − x∗⟩+ 2

mn2
Dk

+
2ω

n2
Hk +

2ω

mn2
Dk +

2ω(ℓ̂+ ℓ̃)

n
⟨F (xk)− F (x∗), xk − x∗⟩

≤

(
ℓ+

2ℓ̃

n
+

2ω(ℓ̂+ ℓ̃)

n

)
⟨F (xk)− F (x∗), xk − x∗⟩+ 2ω

n2
Hk +

2(ω + 1)

mn2
Dk,

which concludes the proof since σ2
k = Hk

n + Dk

nm .

Lemma 61 (Modification of Lemmas 5 and 6 from [35]) Let F be ℓ-star-cocoercive and Assump-
tions 4, 5, 7 hold. Suppose that α ≤ min

{
p
3 ;

1
1+ω

}
. Then for all k ≥ 0 VR-DIANA-SGDA satisfies

Ek

[
σ2
k+1

]
≤ (1− α)σ2

k +
(
pℓ̃+ 2α(ℓ̃+ ℓ̂)

)
⟨F (xk)− F (x∗), xk − x∗⟩,

where σ2
k = Hk

n + Dk

nm with Hk =
n∑

i=1

∥∥hki − Fi(x
∗)
∥∥2 and Dk =

n∑
i=1

m∑
j=1

∥∥Fij(w
k
i )− Fij(x

∗)
∥∥2.
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Proof We start with considering Hk+1:

Ek

[
Hk+1

]
= Ek

[
n∑

i=1

∥∥∥hk+1
i − Fi(x

⋆)
∥∥∥2]

=

n∑
i=1

∥∥∥hki − Fi(x
⋆)
∥∥∥2 + n∑

i=1

Ek

[
2⟨αQ(gki − hki ), h

k
i − Fi(x

⋆)⟩+ α2
∥∥∥Q(gki − hki )

∥∥∥2]
(14)
≤ Hk +

n∑
i=1

Ek

[
2α⟨gki − hki , h

k
i − Fi(x

⋆)⟩+ α2(ω + 1)
∥∥∥gki − hki

∥∥∥2].
Since α ≤ 1/(ω+1), we have

Ek

[
Hk+1

]
≤ Hk + Ek

[
n∑

i=1

α⟨gki − hki , g
k
i + hki − 2Fi(x

⋆)⟩

]

= Hk + Ek

[
n∑

i=1

α⟨gki − Fi(x
⋆) + Fi(x

⋆)− hki , g
k
i − Fi(x

⋆) + hki − Fi(x
⋆)⟩

]

= Hk + Ek

[
n∑

i=1

α

(∥∥∥gki − Fi(x
⋆)
∥∥∥2 − ∥∥∥hki − Fi(x

⋆)
∥∥∥2)]

= Hk(1− α) + Ek

[
n∑

i=1

α

(∥∥∥gki − Fi(x
⋆)
∥∥∥2)]

≤ Hk(1− α) +
n∑

i=1

(
2αEk

[∥∥∥gki − Fi(x
k)
∥∥∥2]+ 2α

∥∥∥Fi(x
k)− Fi(x

⋆)
∥∥∥2)

= Hk(1− α) +
n∑

i=1

Ek

[
2α
∥∥∥Fijki

(xk)− Fijki
(wk

i )− Ek

[
Fijki

(xk)− Fijki
(wk

i )
]∥∥∥2]

+2α
n∑

i=1

∥∥∥Fi(x
k)− Fi(x

⋆)
∥∥∥2

≤ Hk(1− α) +
n∑

i=1

(
Ek

[
2α
∥∥∥Fijki

(xk)− Fijki
(wk

i )
∥∥∥2]+ 2α

∥∥∥Fi(x
k)− Fi(x

⋆)
∥∥∥2)

≤ Hk(1− α) +
2α

m

n∑
i=1

m∑
j=1

(∥∥∥Fij(x
k)− Fij(x

⋆)
∥∥∥2 + ∥∥∥Fij(w

k
i )− Fij(x

⋆)
∥∥∥2)

+2α

n∑
i=1

∥∥∥Fi(x
k)− Fi(x

⋆)
∥∥∥2
2

(13),(19)
≤ Hk(1− α) +

2α

m

n∑
i=1

m∑
j=1

∥∥∥Fij(w
k
ij)− Fij(x

⋆)
∥∥∥2
2

+2αn(ℓ̃+ ℓ̂)⟨F (xk)− F (x∗), xk − x∗⟩

= Hk(1− α) +
2α

m
Dk + 2αn(ℓ̃+ ℓ̂)⟨F (xk)− F (x∗), xk − x∗⟩.
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Next, we consider Dk+1

Ek

[
Dk+1

]
=

n∑
i=1

m∑
j=1

Ek

[∥∥∥Fij(w
k+1
i )− Fij(x

⋆)
∥∥∥2]

=
n∑

i=1

m∑
j=1

[
(1− p)

∥∥∥Fij(w
k
ij)− Fij(x

⋆)
∥∥∥2
2
+ p

∥∥∥Fij(x
k)− Fij(x

⋆)
∥∥∥2
2

]
(19)
≤ Dk (1− p) + nmpℓ̃⟨F (xk)− F (x∗), xk − x∗⟩.

It remains put the upper bounds on Dk+1, Hk+1 together and use the definition of σ2
k+1:

Ek

[
σ2
k+1

]
=

Ek

[
Hk+1

]
n

+
Ek

[
Dk+1

]
nm

≤ (1− α)
Hk

n
+ (1 + 2α− p)

Dk

nm
+
(
pℓ̃+ 2α(ℓ̃+ ℓ̂)

)
⟨F (xk)− F (x∗), xk − x∗⟩

With α ≤ p
3 we get −p ≤ −3α, implying

Ek

[
σ2
k+1

]
≤ (1− α)

Hk

n
+ (1− α)

Dk

nm
+
(
pℓ̃+ 2α(ℓ̃+ ℓ̂)

)
⟨F (xk)− F (x∗), xk − x∗⟩

= (1− α)σ2
k +

(
pℓ̃+ 2α(ℓ̃+ ℓ̂)

)
⟨F (xk)− F (x∗), xk − x∗⟩.

The above two lemmas imply that Assumption 1 is satisfied with certain parameters.

Proposition 62 (Proposition 10) Let F be ℓ-star-cocoercive and Assumptions 4, 5, 7 hold. Suppose
that α ≤ min

{
p
3 ;

1
1+ω

}
. Then, VR-DIANA-SGDA satisfies Assumption 1 with

A =

(
ℓ

2
+

ℓ̃

n
+

ω(ℓ̂+ ℓ̃)

n

)
, B =

2(ω + 1)

n
,

σ2
k =

1

n

n∑
i=1

∥∥∥hki − Fi(x
∗)
∥∥∥2 + 1

nm

n∑
i=1

m∑
j=1

∥∥∥Fij(w
k
i )− Fij(x

∗)
∥∥∥2 ,

C =

(
pl̃

2
+ α(ℓ̃+ ℓ̂)

)
, ρ = α ≤ min

{
p

3
;

1

1 + ω

}
, D1 = D2 = 0.

G.3.2. ANALYSIS OF VR-DIANA-SGDA IN THE QUASI-STRONGLY MONOTONE CASE

Applying Theorem 1 and Corollary 2 with M = 4(ω+1)
nα , we get the following results.

Theorem 63 Let F be µ-quasi strongly monotone, ℓ-star-cocoercive and Assumptions 4, 5, 7 hold.
Suppose that α ≤ min

{
p
3 ;

1
1+ω

}
and

0 < γ ≤

(
ℓ+

10(ω + 1)(ℓ̂+ ℓ̃)

n
+

4(ω + 1)pl̃

αn

)−1

.
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Then for all k ≥ 0 the iterates of VR-DIANA-SGDA satisfy

E
[
∥xk − x∗∥2

]
≤ (1−min {γµ, 1/αn})k V0,

where V0 = ∥x0 − x∗∥2 + 4(ω+1)γ2

nα σ2
0 .

Corollary 64 Let the assumptions of Theorem 63 hold. Then, for p = 1
m , α = min

{
1
3m , 1

1+ω

}
,

γ =

(
ℓ+

10(ω + 1)(ℓ̂+ ℓ̃)

n
+

4(ω + 1)max{3m, 1 + ω}ℓ̃
nm

)−1

and any K ≥ 0 we have

E[∥xk−x∗∥2] ≤ V0 exp

−min

 µ

ℓ+ 10(ω+1)(ℓ̂+ℓ̃)
n + 4(ω+1)max{3m,1+ω}ℓ̃

nm

,
1

6m
,

1

2(1 + ω)

K

 .

G.3.3. ANALYSIS OF VR-DIANA-SGDA IN THE MONOTONE CASE

Next, using Theorem 3, we establish the convergence of VR-DIANA-SGDA in the monotone case.

Theorem 65 Let F be monotone, ℓ-star-cocoercive and Assumptions 1, 2, 4, 5, 7 hold. Assume that

0 < γ ≤

(
ℓ+

6(ω + 1)(ℓ̂+ ℓ̃)

n
+

2(ω + 1)pl̃

αn

)−1

and α = min
{

p
3 ,

1
1+ω

}
. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by

VR-DIANA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+

(
3ℓ+

12(ω + 1)(ℓ̂+ ℓ̃)

n
+

8(ω + 1)pl̃

αn

)
· ∥x

0 − x∗,0∥2

K

+

(
4 + γ

(
3ℓ+

12(ω + 1)(ℓ̂+ ℓ̃)

n
+

8(ω + 1)pl̃

αn

))
γBσ2

0

ρK
.

Applying Corollary 17, we get the rate of convergence to the exact solution.

Corollary 66 Let the assumptions of Theorem 65 hold. Then ∀K > 0 one can choose p = 1
m ,

α = min
{

1
3m , 1

1+ω

}
and γ as

γ = min

{
1

3ℓ+ 12(ω+1)(ℓ̂+ℓ̃)
n + 8(ω+1)max{3m,1+ω}ℓ̃

mn

,

Ω0,C
√
n

Ω0,C

√
2max{3m, 1 + ω}(ω + 1)(ℓ̃+ ℓ̂)ℓ

,
Ω0,C

G∗
√
K

}
.
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This choice of α and γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

((
ℓ+ (ω+1)(ℓ̂+ℓ̃)/n + (ω+1)max{m,ω}ℓ̃/mn

)
(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω2
0,C

√
max{m,ω}(ω + 1)(ℓ̃+ ℓ̂)ℓ

√
nK

+
Ω0,CG∗√

K

)
.

Proof The proof follows from the next upper bound σ̂2
0 for σ2

0 with initialization h0i = Fi(x
0) and

wi = x0

σ2
0 =

1

nm

n∑
i=1

m∑
j=1

∥Fij(x
0)− Fij(x

∗)∥2 + 1

n

n∑
i=1

∥Fi(x
0)− Fi(x

∗)∥2

≤ (ℓ̃+ ℓ̂)⟨F (x0)− F (x∗), x0 − x∗⟩
≤ (ℓ̃+ ℓ̂)∥F (x0)− F (x∗)∥ · ∥x0 − x∗∥
≤ (ℓ̃+ ℓ̂)ℓ∥x0 − x∗∥2 ≤ (ℓ̃+ ℓ̂)ℓmax

u∈C
∥x0 − u∥2 ≤ (ℓ̃+ ℓ̂)ℓΩ2

0,C .

Next, applying Corollary 17 with σ̂0 :=

√
(ℓ̃+ ℓ̂)ℓΩ0,C , we get the result.

G.3.4. ANALYSIS OF VR-DIANA-SGDA IN THE COCOERCIVE CASE

Next, using Theorem 18, we establish the convergence of VR-DIANA-SGDA in the cocoercive case.

Theorem 67 Let F be ℓ-cocoercive and Assumptions 1, 2, 4, 5, 7 hold. Assume that

0 < γ ≤

(
ℓ+

6(ω + 1)(ℓ̂+ ℓ̃)

n
+

2(ω + 1)pl̃

αn

)−1

and α = min
{

p
3 ,

1
1+ω

}
. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by

VR-DIANA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+

(
6ℓ+

18(ω + 1)(ℓ̂+ ℓ̃)

n
+

12(ω + 1)pl̃

αn

)
· ∥x

0 − x∗,0∥2

K

+

(
6 + γ

(
6ℓ+

18(ω + 1)(ℓ̂+ ℓ̃)

n
+

12(ω + 1)pl̃

αn

))
γBσ2

0

ρK
.

Applying Corollary 19, we get the rate of convergence to the exact solution.
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Corollary 68 Let the assumptions of Theorem 67 hold. Then ∀K > 0 one can choose p = 1
m ,

α = min
{

1
3m , 1

1+ω

}
and γ as

γ = min

{
1

6ℓ+ 18(ω+1)(ℓ̂+ℓ̃)
n + 12(ω+1)max{3m,1+ω}ℓ̃

mn

,

Ω0,C
√
n

Ω0,C

√
2max{3m, 1 + ω}(ω + 1)(ℓ̃+ ℓ̂)ℓ

}
.

This choice of α and γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

((
ℓ+ (ω+1)(ℓ̂+ℓ̃)/n + (ω+1)max{m,ω}ℓ̃/mn

)
(Ω2

0,C +Ω2
0)

K

+
Ω2
0,C

√
max{m,ω}(ω + 1)(ℓ̃+ ℓ̂)ℓ

√
nK

)
.

G.4. Discussion of the Results in the Monotone and Cocoercive Cases

Beznosikov et al. [12] also consider monotone case and derive the following rate for MASHA1 (ne-
glecting the dependence on Lipschitz parameters and the quantities like Ω2

0,C = maxu∈C ∥x0 − u∥2):

O
(√

(m+ ω)(1 + ω/n) 1
K

)
. In general, due to the term proportional to 1/

√
K and due to the relation

between (star-)cocoercivity constants and Lipschitz constants our rate

O
(

(1+ω)
nK + (1+ω)max{m,ω}

mnK +

√
max{m,ω}(1+ω)√

nK
+ G∗√

K

)
our rate is worse than the one from Beznosikov

et al. [12] (even when R(x) ≡ 0, i.e., G∗ = 0). However, when the difference between cocoercivity
and Lipschitz constants is not significant, and m,n or ω are sufficiently large, our result in the
cocoercive case (Corollary 68) might be better. Moreover, we emphasize here that Beznosikov et al.
[12] do not consider SGDA as the basis for their methods. To the best of our knowledge, our results
are the first ones for distributed SGDA-type methods with compression derived in the monotone case
without assuming (quasi-)strong monotonicity.
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Appendix H. Coordinate SGDA

In this section, we focus on the coordinate versions of SGDA. To denote i-th component of the vector
x we use [x]i. Vectors e1, . . . , ed ∈ Rd form a standard basis in Rd.

H.1. CSGDA

Algorithm 7 CSGDA: Coordinate Stochastic Gradient Descent-Ascent

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, number of steps K
2: for k = 0 to K − 1 do
3: Sample uniformly at random j ∈ [d]
4: gk = dej [F (xk)]j
5: xk+1 = proxγR

(
xk − γgk

)
6: end for

H.1.1. CSGDA FITS ASSUMPTION 1

Proposition 69 Let F be ℓ-star-cocoercive. Then, CSGDA satisfies Assumption 1 with

A = dℓ, D1 = 2d max
x∗∈X∗

[
∥F (x∗)∥2

]
, σ2

k = 0, B = 0, C = 0, ρ = 1, D2 = 0.

Proof First of all, for all a ∈ Rd and for random index j uniformly distributed on [d] we have
Ej [∥ej [a]j∥2] = 1

d

∑d
i=1[a]

2
j =

1
d∥a∥

2. Using this and gk = dej [F (xk)]j , we derive

Ek

[
∥gk − F (x∗,k)∥2

]
= Ek

[
∥dej [F (xk)− F (x∗,k)]j + dej [F (x∗,k)]j − F (x∗,k)∥2

]
≤ 2Ek

[
∥dej [F (xk)− F (x∗,k)]j∥2

]
+ 2Ek

[
∥dej [F (x∗,k)]j − F (x∗,k)∥2

]
= 2d∥F (xk)− F (x∗,k)∥2 + 2Ek

[
∥dej [F (x∗,k)]j − Ek[dej [F (x∗,k)]j ]∥2

]
≤ 2d∥F (xk)− F (x∗,k)∥2 + 2Ek

[
∥dej [F (x∗,k)]j∥2

]
= 2d∥F (xk)− F (x∗,k)∥2 + 2d∥F (x∗,k)∥2. (66)

Finally, the star-cocoercivity of F implies

Ek

[
∥gk − F (x∗,k)∥2

]
≤ 2dℓ⟨F (xk)− F (x∗,k), xk − x∗⟩+ 2d∥F (x∗,k)∥2

≤ 2dℓ⟨F (xk)− F (x∗,k), xk − x∗⟩+ 2d max
x∗∈X∗

[
∥F (x∗)∥2

]
.
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H.1.2. ANALYSIS OF CSGDA IN THE QUASI-STRONGLY MONOTONE CASE

Applying Theorem 1 and Corollary 2, we get the following results.

Theorem 70 Let F be µ-quasi strongly monotone and ℓ-star-cocoercive, 0 < γ ≤ 1/2dℓ. Then for
all k ≥ 0

E
[
∥xk − x∗∥2

]
≤ (1− γµ)k ∥x0 − x∗,0∥2 + 2γd

µ
· max
x∗∈X∗

[
∥F (x∗)∥2

]
.

Corollary 71 Let the assumptions of Theorem 70 hold. Then, for any K ≥ 0 one can choose
{γk}k≥0 as follows:

if K ≤ 2dℓ

µ
, γk =

1

2dℓ
,

if K >
2dℓ

µ
and k < k0, γk =

1

2dℓ
,

if K >
2dℓ

µ
and k ≥ k0, γk =

2

µ(4dℓ+ µ(k − k0))
,

where k0 = ⌈K/2⌉. For this choice of γk the following inequality holds:

E[VK ] ≤ 64dℓ

µ
∥x0 − x∗,0∥2 exp

(
−µK

2dℓ

)
+

72d

µ2K
· max
x∗∈X∗

[
∥F (x∗)∥2

]
.

H.1.3. ANALYSIS OF CSGDA IN THE MONOTONE CASE

Next, using Theorem 3, we establish the convergence of CSGDA in the monotone case.

Theorem 72 Let F be monotone, ℓ-star-cocoercive and Assumptions 1, 2 hold. Assume that
γ ≤ 1/2dℓ. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by CSGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
5dℓ∥x0 − x∗,0∥2

K

+20γd · max
x∗∈X∗

[
∥F (x∗)∥2

]
.

Applying Corollary 17, we get the rate of convergence to the exact solution.

Corollary 73 Let the assumptions of Theorem 72 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

5dℓ
,

Ω0,C

G∗
√
2dK

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
dℓ(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,CG∗√

K

)
.
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H.1.4. ANALYSIS OF CSGDA IN THE COCOERCIVE CASE

Next, using Theorem 18, we establish the convergence of CSGDA in the cocoercive case.

Theorem 74 Let F be ℓ-cocoercive and Assumptions 1, 2 hold. Assume that γ ≤ 1/2dℓ. Then for
GapC(z) from (9) and for all K ≥ 0 the iterates produced by CSGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
9dℓ∥x0 − x∗,0∥2

K

+16γd · max
x∗∈X∗

[
∥F (x∗)∥2

]
.

Applying Corollary 19, we get the rate of convergence to the exact solution.

Corollary 75 Let the assumptions of Theorem 74 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

9dℓ
,

Ω0,C

G∗
√
2dK

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
dℓ(Ω2

0,C +Ω2
0)

K
+

Ω0,CG∗√
K

)
.

H.2. SEGA-SGDA

In this section, we consider a modification of SEGA [33] – the linearly converging coordinate method
for composite optimization problems working even for non-separable regularizers.

Algorithm 8 SEGA-SGDA: SEGA Stochastic Gradient Descent-Ascent [33]

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, number of steps K
2: Set h0 = 0
3: for k = 0 to K − 1 do
4: Sample uniformly at random j ∈ [d]
5: hk+1 = hk + ej([F (xk)]j − hkj )

6: gk = dej([F (xk)]j − hkj ) + hk

7: xk+1 = proxγR
(
xk − γgk

)
8: end for

H.2.1. SEGA-SGDA FITS ASSUMPTION 1

The following result from Hanzely et al. [33] does not rely on the fact that F (x) is the gradient of
some function. Therefore, it holds in our settings as well.
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Lemma 76 (Lemmas A.3 and A.4 from [33]) Let Assumption 5 hold. Then for all k ≥ 0 SEGA-
SGDA satisfies

Ek

[
∥gk − F (x∗)∥2

]
≤ 2d∥F (xk)− F (x∗)∥2 + 2dσ2

k,

Ek

[
σ2
k+1

]
≤

(
1− 1

d

)
σ2
k +

1

d
∥F (xk)− F (x∗)∥2,

where σ2
k = ∥hk − F (x∗)∥2.

The lemma above implies that Assumption 1 is satisfied with certain parameters.

Proposition 77 Let F be ℓ-star-cocoercive and Assumption 5 holds. Then, SEGA-SGDA satisfies
Assumption 1 with σ2

k = ∥hk − F (x∗)∥2 and

A = dℓ, B = 2d, D1 = 0, C =
ℓ

2d
, ρ =

1

d
, D2 = 0.

Proof The result follows from Lemma 76 and star-cocoercivity of F .

H.2.2. ANALYSIS OF SEGA-SGDA IN THE QUASI-STRONGLY MONOTONE CASE

Applying Theorem 1 and Corollary 2 with M = 4d2, we get the following results.

Theorem 78 Let F be µ-quasi strongly monotone, ℓ-star-cocoercive, Assumption 5 holds, and
0 < γ ≤ 1

6dℓ . Then, for all k ≥ 0 the iterates produced by SEGA-SGDA satisfy

E
[
∥xk − x∗∥2

]
≤
(
1−min

{
γµ,

1

2d

})k

· V0,

where V0 = ∥x0 − x∗∥2 + 4d2γ2σ2
0 .

Corollary 79 Let the assumptions of Theorem 78 hold. Then, for γ = 1
6dℓ and any K ≥ 0 we have

E[∥xk − x∗∥2] ≤ V0 exp

(
−min

{
µ

6dℓ
,
1

2d

}
K

)
.

H.2.3. ANALYSIS OF SEGA-SGDA IN THE MONOTONE CASE

Next, using Theorem 3, we establish the convergence of CSGDA in the monotone case.

Theorem 80 Let F be monotone, ℓ-star-cocoercive and Assumptions 1, 2, 5 hold. Assume that
γ ≤ 1/6dℓ. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by SEGA-SGDA
satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 13dℓ · ∥x
0 − x∗,0∥2

K

+ (4 + 13γdℓ)
2dγσ2

0

K
+ 9γ · max

x∗∈X∗

[
∥F (x∗)∥2

]
.
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Applying Corollary 17, we get the rate of convergence to the exact solution.

Corollary 81 Let the assumptions of Theorem 80 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

13dℓ
,

Ω0,C√
2G∗d

,
Ω0,C

G∗
√
K

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
dℓ(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
dΩ0,CG∗

K
+

Ω0,CG∗√
K

)
.

Proof The proof follows from the next upper bound σ̂2
0 for σ2

0 with initialization h0 = 0

σ2
0 = ∥h0 − F (x∗)∥2 = ∥F (x∗)∥2 ≤ G2

∗.

H.2.4. ANALYSIS OF SEGA-SGDA IN THE COCOERCIVE CASE

Next, using Theorem 18, we establish the convergence of CSGDA in the cocoercive case.

Theorem 82 Let F be ℓ-cocoercive and Assumptions 1, 2, 5 hold. Assume that γ ≤ 1/6dℓ. Then for
GapC(z) from (9) and for all K ≥ 0 the iterates produced by SEGA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+ 21dℓ · ∥x
0 − x∗,0∥2

K

+ (6 + 21γdℓ)
2dγσ2

0

K
.

Applying Corollary 19, we get the rate of convergence to the exact solution.

Corollary 83 Let the assumptions of Theorem 82 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

21dℓ
,

Ω0,C√
2G∗d

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
dℓ(Ω2

0,C +Ω2
0)

K
+

dΩ0,CG∗
K

)
.
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Table 3: Summary of the complexity results for zeroth-order methods with two-points feedback oracles for
solving (1). By complexity we mean the number of oracle calls required for the method to find x such that
E[∥x − x∗∥2] ≤ ε. By default, operator F is assumed to be µ-strongly monotone and, as the result, the
solution is unique. Our results rely on µ-quasi strong monotonicity of F (3). Methods supporting R(x) ̸≡ 0
are highlighted with ∗. Our results are highlighted in green. Notation: q = the parameter depending on the
proximal setup, q = 2 in Euclidean case and q = +∞ in the ℓ1-proximal setup; G∗ = maxx∗∈X∗ ∥F (x∗)∥,
which is zero when R(x) ≡ 0.

Method Citation Assumptions Complexity

zoscESVIA (1) [69] F is L-Lip.(2) Õ
(
dL
µ

)
zoVIA [69] F is L-Lip.(2) Õ

(
d2/q L2

µ2

)
CSGDA ∗ This paper F is ℓ-cocoer. Õ

(
d ℓ
µ + dG2

∗
µ2ε

)
SEGA-SGDA ∗ This paper F is ℓ-cocoer.

As. 5
Õ
(
d+ d ℓ

µ

)
(1) The method is based on Extragradient update rule. Moreover, at each step
full operator is approximated.
(2) The problem is defined on a bounded set.

H.3. Comparison with Related Work

The summary of rates in the (quasi-) strongly monotone case is provided in Table 3. First of all, our
results are the first convergence for solving regularized VIPs via coordinate methods. In particular,
SEGA-SGDA is the first linearly converging coordinate method for solving regularized VIPs. Next,
when q = 2 in zoVIA from Sadiev et al. [69], i.e., Euclidean proximal setup is used, our rate
for SEGA-SGDA is better than the one derived for zoVIA in Sadiev et al. [69] since ℓ ≤ L2/µ.
Finally, zoscESVIA might have better rate, but it is based on EG and it uses approximation of each
component of operator F at each iteration, which makes one iteration of the method costly.

In the monotone and cocoercive cases, our result and the results from Sadiev et al. [69] are
comparable modulo the difference between (star-)cocoercivity and Lipschitz constants.
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