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Abstract

Protein language models (PLMs) learn probability distributions over natural protein
sequences. By learning from hundreds of millions of natural protein sequences, pro-
tein understanding and design capabilities emerge. Recent works have shown that
scaling these models improves structure prediction, but does not seem to improve
mutation understanding and representation quality for protein function prediction.
We introduce PoET-2, a multimodal, retrieval-augmented protein foundation model
that incorporates in-context learning of family-specific evolutionary constraints
with optional structure conditioning to learn generative distributions over protein
sequences. PoET-2 uses a hierarchical transformer encoder that is equivariant to
sequence context ordering and a dual decoder architecture with both causal and
masked language modeling objectives, allowing PoET-2 to operate in both fully
generative and bidirectional representation learning modes. PoET-2 achieves state-
of-the-art performance on zero-shot variant effect prediction, excelling at scoring
variants with multiple mutations and challenging indel mutations. In supervised
settings, PoET-2 embeddings outperform previous methods for learning sequence-
function relationships, especially with small datasets. This work highlights the
benefits of combining retrieval augmentation with multimodal, family-centric
modeling for advancing protein foundation models. 1

1 Introduction

Proteins are polymer chains of amino acids that fold into 3-dimensional structures and carry out the
vast majority of functions at the molecular level of life. Proteins catalyze chemical reactions, sense
and respond to environmental signals, and defend against pathogens, among countless other functions.
Their vast functional diversity arises from the astronomical space of possible amino acid sequences,
which evolution has explored over billions of years through mutation and selection.

Accurate prediction of the effect of mutations on protein function is crucial for disease understanding,
drug development, and protein engineering. Recent advances in protein language models (PLMs)
have enabled more accurate zero-shot prediction of variant effects [1–4]. By learning to model
probability distributions over natural protein sequences, PLMs output sequence likelihoods that
capture relative fitness information and achieve remarkable correlation with functional and structural
properties of proteins in deep mutational scanning and clinical mutation benchmarks [5]. However,
several key challenges remain.

• Most PLMs use masked language model-based approaches that are limited to prediction of
single substitution mutations. These approaches are unable to predict the effect of insertions
and deletions (indels), as well as epistatic effects in higher order mutations.

1PoET-2 code and model weights available at: https://github.com/OpenProteinAI/PoET-2

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



• PLMs are usually evaluated in the zero-shot setting, which is fundamentally limited to
evaluating the correlation between estimates of sequence fitness and actual functional
properties of proteins. However, in protein engineering campaigns, practitioners seek to learn
directly from limited mutagenesis data to optimize for specific functional properties. PLMs
evaluated in this supervised few-shot setting are promising [6–8], but better data efficiency
and generalization, particularly for sequence positions not observed during training, is still
needed.

• Recent progress in PLMs have generally focused on scaling the number of parameters [9].
However, increasing model capacity primarily seems to benefit only structure prediction
[9–11], while showing neutral or even negative impacts on fitness modeling and function
prediction [1, 12]. This raises concerns of loss of generalizability due to model memorization,
while also making these models increasingly expensive to train and deploy for inference.
Recent PLMs have explored alternative approaches that incorporate additional information
via multi-modal approaches [9, 13, 14], or retrieval augmentation [1], but not both.

To address these challenges, we propose PoET-2, a sequence-structure multimodal PLM that leverages
retrieval-augmentation and dual training objectives to learn to generate new protein sequences
conditioned on sequences and structures of homologs. PoET-2 combines three key ideas:

• Multi-modality: PoET-2 reasons over both sequence and structure. This enables condi-
tioning on sequence and/or structural homologs, including structure-conditioned sequence
generation from partially-observed backbone atomic structures

• Retrieval-augmentation: PoET-2 introduces a novel context-conditioning framework
featuring a hierarchical attention architecture that is fully equivariant to the order of proteins
in the context. This eliminates the need for multi-billion parameter models, while enabling
in-context learning by allowing the model to be prompted with new sequences not present
in the original training data.

• Dual training objectives: PoET-2 is trained using both a causal language modeling objective
for sequence generation and likelihood calculation, as well as a masked language modeling
objective for bidirectional understanding and sequence embedding.

PoET-2’s novel architecture achieves remarkable performance on downstream protein understanding
and design tasks. It is capable of solving problems not possible with existing PLMs, including zero-
shot indel and higher-order variant effect prediction, improving on previous methods by as much 20%,
on both deep mutational scanning and clinical datasets. Homology-augmented protein representations
learned by PoET-2 also enable state-of-the-art accuracy in supervised few-shot function learning,
reaching the performance of previous methods like Kermut [15] with substantially less data and
outperforming other PLMs by a large margin in the contiguous and modulo dataset splits. In ablation
experiments, we find that structure conditioning primarily contributes to zero-shot prediction of
stability while offering little to no benefit on tasks like clinical variant effect prediction and supervised
function prediction. PoET-2 offers fast inference with an efficient footprint of only 182M parameters
and minimal GPU requirements.

2 Related Work

Zero-shot variant effect prediction has advanced significantly by integrating information across
sequence, structure, and evolution (homologs). Early progress was driven by single-sequence PLMs
such as ESM [2, 8, 10] and ProtT5 [16], which, when trained at evolutionary scale, demonstrated
strong correlations between sequence likelihoods and protein fitness. Concurrently, family-specific
models emerged, focusing on narrower evolutionary contexts [17, 18]. To capture broader evolution-
ary signals and enable knowledge transfer beyond single-family scopes, other models were trained
across vast collections of distinct protein families. This was achieved through methods processing
multiple sequence alignments (MSAs) e.g. MSA Transformer [19], and later via models utilizing
unaligned homologs e.g. PoET-1 [1]. More recently, strategies for integrating structural information
have been explored. These include using discrete structural tokens e.g. SaProt, ProSST, ESM3
[9, 13, 14], employing continuous geometric representations e.g. ProteinMPNN, ESM-IF [20–22],
and explicitly leveraging protein surface information e.g. S3F, RSALOR [23, 24]. Lastly, ensemble
methods e.g. VenusREM [25] combine different methods to further enhance performance.
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Supervised variant effect prediction commonly utilizes likelihoods or embeddings from PLMs
as features for downstream models, enabling fitness prediction from limited experimental data
[6, 7, 15, 26–28]. For instance, ProteinNPT [7] integrated MSA Transformer embeddings and zero-
shot scores within a non-parametric Transformer architecture. Kermut [15] further advanced this
paradigm, achieving state-of-the-art results with a composite Gaussian Process (GP) kernel that
incorporates features from multiple models, including ESM-2, ProteinMPNN, and AlphaFold2 [29].

3 PoET-2

Figure 1: PoET-2 architecture and framework for zero-shot and supervised variant effect prediction.
PoET-2 encodes a set of evolutionarily relevant proteins with an equivariant encoder, and decodes
proteins with either of two decoders. Log-likelihoods from the autoregressive decoder are used
for zero-shot prediction, and are combined with embeddings from the bidirectional decoder for
supervised prediction.

3.1 Overview

PoET-2 is a multimodal generative model of protein families, designed for controllable protein
generation and representation learning. By jointly modeling the sequences and structures of proteins
within a protein family, PoET-2 infers—through in-context learning—the underlying evolutionary
constraints that give rise to the family’s characteristic sequence features, structural architectures,
and/or functional properties. These inferred evolutionary constraints, coupled with a flexible grammar
for specifying explicit sequence and structural constraints, enable the controlled generation of novel
family members, including variants with enhanced characteristics relevant to their function.

PoET-2 is implemented as an encoder-decoder Transformer [30] with one encoder and two decoders
(Figure 1). The encoder processes a user-provided prompt containing a set of proteins that guides the
two decoders toward generating novel proteins with desired characteristics. The prompt is processed
in a fully protein order equivariant manner, and consists of two optional components:

• Context: A protein family comprised of a set of proteins that the user believes are likely to
exhibit at least one of the desired characteristics.

• Query: A single, partially specified protein that specifies the sequence and/or structure
at only a subset of residues; when used, the query constrains the model to generate only
proteins containing those sequence or structural elements. Common uses of the query
include specifying the protein length, the presence of signal peptides, the inclusion of active
sites, or the structure of the entire protein backbone (i.e. inverse folding).
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Together, the context and query provide a flexible grammar that allows sequence generation to be
controlled both (1) implicitly, via the context, which includes examples of proteins likely to exhibit
desired characteristics, and (2) explicitly, via the query, which specifies explicit sequence and structure
constraints. Clever prompt engineering via careful selection of the context allows PoET-2 to focus on
the evolutionary, structural, or functional constraints of only the subspace of relevant proteins.

The decoders, conditioning on the encoder’s output, generate new proteins aligned with the prompted
protein family. PoET-2 employs two distinct decoders for complementary strengths:

• An autoregressive decoder, trained with a causal language modeling (CLM) objec-
tive, excels at generative tasks. By modeling the full joint probability distribution
P (sequence|prompt), it allows for efficient, autoregressive generation of novel proteins
and exact probabilistic scoring of sequence variants, including indels.

• A bidirectional decoder, trained with a masked language modeling (MLM) objective, spe-
cializes in representation learning. It produces powerful, context-aware embeddings where
each residue’s representation is informed by the entire sequence context (both preceding
and succeeding residues). These rich representations capture deep structural and functional
insights, crucial for tasks like structure and function prediction where understanding global
dependencies is key.

Both decoders are also equivariant to the order of proteins in the prompt, meaning that PoET-2
as a whole is also equivariant. The complete loss function is thus composed of three components:
L = LMLM encoder + LCLM decoder + LMLM decoder.

The MLM encoder loss is the standard MLM loss applied to each protein in the prompt independently.
The set of proteins is viewed as a sequence-of-sequences, where the order of proteins is arbitrary.
Using the notation x

(i)
j to denote the jth residue of ith protein in the prompt, the encoder loss is:

LMLM encoder = −Ex,mx

 1

|mx|
∑

i,j∈mx

log p(x
(i)
j |x\mx

)

 (1)

where mx is the set of masked positions in the sequence-of-sequences x.

The CLM decoder loss is the standard CLM loss additionally conditioned on (1) the prompt, x\mx
,

and (2) an optional index, q, indicating the index of the sequence in the prompt to use as the query:

LCLM decoder = −Ey,x,mx,q

 1

Ly

Ly∑
i=1

log p(yi|y<i, x\mx
, q)

 (2)

Here, y is a single sequence of length Ly; the notation yi refers to the ith residue of y.

Likewise, the MLM decoder loss is the standard MLM loss additionally conditioned on x\mx
and q:

LMLM decoder = −Ey,my,x,mx,q

 1

|my|
∑
i∈my

log p(yi|y\my
, x\mx

, g)

 (3)

3.2 Architectural Details

In this section, we introduce the architectural details of PoET-2 that are relevant to the capabilities
demonstrated in this paper; see Appendix B.5 for details relating to additional capabilities.

3.2.1 Model Inputs

Sequence Protein sequences (xseq) are tokenized with a single token per amino acid, a start token ($)
indicating the start of a sequence, a stop token (*) indicating the end of a sequence, a mask token
(X) indicating a single residue with unknown identity, and a "gap" token (-) indicating zero or more
residues with unknown identity.
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Structure Protein structures backbones (N, Cα, and C atoms) are encoded in a roto-translation
invariant way using two representations:

• Pairwise Cα distances (D): all pairwise Cα-Cα distances, discretized into 128 bins: 125
equal-width bins (2.5Å-48Å), one bin for distances > 48Å, one for low-confidence pairs
(pLDDT < 70), and one for missing or masked pairs.

• Local structure backbone distances (xatomb): the 36 pairwise distances between the backbone
atoms of the residue being encoded and the residues to its left and right along the sequence.
These distances capture backbone information not fully recoverable from just D.

Predicted structure confidence (pLDDT) As PoET-2 is trained only on predicted structures in
AlphaFoldDB (AFDB) [31, 32], it also takes as input the predicted structure confidence, pLDDT, at
each residue (xplddt).

3.2.2 Input Embedding

The encoder and decoders share a common input embedding space that fuses the sequence (xseq), local
structure backbone (xatomb), and pLDDT (xplddt) into a single continuous latent space via summation
(Appendix Algorithm 1).

3.2.3 Structure-based Attention Bias

To enhance structural information integration, PoET-2 employs a structure-based attention bias for
all attention operations within individual protein sequences (but not between sequences) in both
its encoder and decoders. This mechanism modifies attention scores by adding a learned bias term
corresponding to the discretized pairwise Cα-Cα distance bin (D) for each residue pair (Appendix
Figure 3). This approach is analogous to the relative positional bias in the T5 Transformer [33];
however, in PoET-2, the bias is determined by 3D structural proximity rather than linear sequence
position.

3.2.4 Encoder Architecture

PoET-2’s encoder layers (Appendix Algorithm 2) adopt the architecture of standard Transformer
encoder layers with modern tweaks (rotary positional encodings, SwiGLU over MLP, and RMSNorm
over LayerNorm) [30, 34–36], and modifications to (1) ensure protein order equivariance, and (2)
improve handling of structural inputs. To process sets of input proteins in an order equivariant way,
it replaces the standard one stage attention mechanism with the two stage, hierarchical attention
mechanism introduced by PoET-1 [1]. Summarizing briefly,

• In the first stage, attention is applied only between residues of individual input proteins.
Structure-based attention bias (§3.2.3) is used in this stage.

• In the second stage, attention is applied between residues of all input proteins. Additionally,
relative positional encodings between residues reflect the absolute positions within each
protein, rather than the absolute position in the sequence-of-sequences.

Attention in PoET-2’s encoder is fully bidirectional, enabling the entire encoder to be protein order
equivariant. This is in contrast to PoET-1, whose decoder-only, autoregressive architecture permits
equivariance only in each individual decoder layer, and not the entire decoder.

3.2.5 Decoder Architecture

Similarly, PoET-2’s decoder layers (Appendix Algorithm 4) adopt the architecture of the standard
Transformer decoder layer with modifications. The modifications to the attention operations are as
follows:

• In the first, self-attention stage, structure-based attention bias (§3.2.3) is used.

• In the second, cross-attention stage, protein order equivariance is maintained by using the
same relative position scheme as in the second attention stage of the encoder.
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Additionally, when the prompt includes a query, the input embedding of the decoder is modified to
encode which protein in the prompt should be used as the query. The modified input embedding of
each residue is simply the average of the unmodified input embedding, and the embedding, produced
by the encoder, of corresponding residue of the query in the prompt.

3.3 Hyperparameters

PoET-2 is 182 million parameter model, structured with 12 layers and a 1024 hidden dimension in its
encoder and decoders. Weights are tied between these modules to enhance parameter efficiency and
promote shared representation learning. This approach leverages the ideal representational capabilities
of bidirectional modeling, while also benefiting from the strong representations achievable with
autoregressive architectures [7, 37].

3.4 Training Data

PoET-2 is trained on 62 million sets of homologous sequences. Each set corresponds to a sequence in
UniRef50 Version 2304 [38], and contains all of its homologs in UniRef50 found using Diamond
[39]. Each sequence may optionally be associated with a predicted structure from AFDB by matching
on the UniRef100 identifier. To ensure that PoET-2 sees a variety of prompts during training, and to
reduce the risk of overfitting, sequence and structure are randomly masked (Appendix C).

4 Experiments

Variant effect prediction is the task of predicting the effect of mutations on the ability of a protein
to perform its function. To evaluate PoET-2’s zero-shot and supervised variant effect prediction
capabilities, we utilize the ProteinGym benchmark [5]. ProteinGym assesses the performance of a
model by measuring its ability to predict variant effect in two types of datasets: (1) deep mutational
scanning (DMS) datasets, which encompass over 200 distinct assays measuring the effect of mutations
on a wide variety of proteins and protein functions spanning the tree of life, and (2) clinical datasets
measuring the pathogenicity of mutations on >2,500 human genes.

Following ProteinGym conventions, we use Spearman’s rank correlation coefficient (ρ) between
experimental measurements and predicted fitness as the primary metric for continuous variables, and
area under the receiver operating curve (AUROC) for binary variables.

As baselines, we use a subset of the evaluated methods recorded in ProteinGym as of May 12 2025,
including the top methods for each benchmark subset, and methods covering a wide variety of
approaches e.g. using structure information or not, using sequence homologs or not, etc.

4.1 PoET-2 achieves state-of-the-art zero-shot performance for challenging mutations and
clinical variants

In zero-shot variant effect prediction, models must predict the effect mutations on protein fitness
without training on experimental data for the specific protein or function of interest. To score the
fitness of a mutated variant sequence relative to its wild-type (WT) using PoET-2, we use the log
likelihood ratio (LLR) under PoET-2’s CLM decoder: logP (variant|prompt)− logP (WT|prompt).
To optimize predictions, we employ several prompt engineering and scoring adjustment strategies:

• Ensembling Prompts: Following PoET-1 [1], we average LLRs obtained from multiple
prompts. Each prompt contains a different subsample of WT homologs identified by
searching UniRef100 using the ColabFold MSA protocol [40]. Sampling parameters are
detailed in Appendix D.1.

• Structure Conditioning: We employ two ways of incorporating structure in the prompt.
The utility of structural information varies by task, as discussed in §4.3.

• Length Adjustment for Indels: To correct for potential biases in autoregressive models
towards shorter sequences, we score indel variants using a length-adjusted log likelihood
ratio (Appendix D.2).
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Table 1: Performance (Spearman ρ) on zero-shot DMS substitutions and indels benchmarks. N/A
indicates that the model cannot score indels.

Model # Param Model Inputs Substitutions By MSA Depth Indels
Struct. MSA Low Medium High All

ESM-2 650M 0.340 0.410 0.513 0.415 N/A
ESM C 300M × × 0.338 0.401 0.519 0.407 N/A
ProGen2 M 764M 0.305 0.390 0.422 0.379 0.466
ProGen2 XL 6.4B 0.322 0.411 0.442 0.390 0.430

SaProt 650M 0.397 0.446 0.546 0.457 N/A
ESM-3 Open 1.4B ✓ × 0.402 0.465 0.575 0.467 N/A
ProSST 110M 0.468 0.506 0.581 0.508 N/A

MSA Transformer 100M 0.375 0.456 0.480 0.431 N/A
TranceptEVE L 700M × ✓ 0.434 0.473 0.491 0.456 0.414
GEMME N/A 0.445 0.474 0.494 0.455 N/A
PoET-1 200M 0.479 0.477 0.511 0.470 0.517

S3F-MSA 910M 0.470 0.509 0.547 0.496 N/A
VenusREM 110M ✓ ✓ 0.498 0.524 0.578 0.519 N/A
PoET-2 182M 0.488 0.507 0.555 0.500 0.566
PoET-2 + VenusREM 292M 0.528 0.550 0.593 0.543 N/A

4.1.1 PoET-2 significantly advances our ability to predict the effects of indels and
higher-order mutations

Predicting the effects of complex mutations such as insertions/deletions (indels) and higher-order
substitutions is a challenge for many PLMs. State-of-the-art structure-aware predictors based on
masked language modeling (e.g. VenusREM [25], S3F-MSA [23]) operate on fixed-length sequences,
which prevents them from directly scoring length-altering indels. Furthermore, for higher-order
mutations, they assume additive effects across mutated positions and therefore cannot fully model
epistatic interactions. In contrast, PoET-2’s autoregressive decoder conditions on both sequence
and structure to model the full joint probability of a sequence, P (sequence|prompt). This approach
naturally handles variable sequence lengths and epistatic effects.

DMS indels On the ProteinGym DMS indels benchmark (Indels column, Table 1), PoET-2 sig-
nificantly outperforms all existing models. It achieves a substantial improvement of ∆ρ ≈ 0.05
(p < 1e − 5) over PoET-1, the previous best. Compared to the top-performing non-PoET model,
PoET-2 demonstrates an even larger lead of ∆ρ ≈ 0.10 (p < 1e− 5), an improvement of over 20%.

DMS higher-order substitutions For higher-order substitution mutations (Table 2), PoET-2 demon-
strates exceptional performance, particularly for variants with three or more mutations. When
compared to VenusREM, the state-of-the-art model on the overall DMS substitutions benchmark,
PoET-2 achieves substantial gains on these more complex variants (∆ρ ≈ 0.09 for 3 mutations,
∆ρ ≈ 0.10 for 4 mutations, and ∆ρ ≈ 0.075 for 5+ mutations).

4.1.2 PoET-2 complements existing methods for substitution mutations

DMS substitutions On the DMS substitutions benchmark (Table 1), PoET-2 achieves performance
comparable to VenusREM [25], the current state-of-the-art. VenusREM is an ensemble model
combining ProSST [13], a structure-aware protein language model (PLM), with a Position-Specific
Scoring Matrix (PSSM) derived from evolutionary alignments [41]. While PoET-2 slightly trails
VenusREM on the primary Spearman correlation metric (p < 1e − 3), it demonstrates superior
or comparable performance on metrics emphasizing the prediction of beneficial mutations, such
as normalized discounted cumulative gain (NDCG, 0.786 vs 0.766 for VenusREM, p < 1e − 5;
Appendix D.4). NDCG scores whether a model gives its highest scores to the sequences with highest
fitness, indicating that PoET-2 is slightly better at identifying the most efficacious mutations versus
ranking middling and deleterious ones as accurately.
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Table 2: Performance (Spearman ρ) on zero-shot DMS sub-
stitutions benchmark, by mutation depth (i.e. by number of
substitutions).

Substitutions by Mutation Depth
Model 1 2 3 4 5+
ESM-2 0.422 0.245 0.203 0.160 0.220
ESM C 0.417 0.255 0.189 0.150 0.217
ProGen2 M 0.372 0.126 0.149 0.131 0.178
ProGen2 XL 0.370 0.138 0.219 0.200 0.261

SaProt 0.460 0.310 0.271 0.268 0.337
ESM-3 Open 0.493 0.335 0.303 0.284 0.365
ProSST 0.523 0.391 0.316 0.274 0.334

MSA Transformer 0.427 0.216 0.358 0.365 0.401
TranceptEVE L 0.446 0.274 0.349 0.327 0.385
GEMME 0.449 0.273 0.329 0.338 0.419
PoET-1 0.467 0.295 0.412 0.393 0.421

S3F-MSA 0.501 0.330 0.377 0.343 0.387
VenusREM 0.536 0.394 0.352 0.320 0.372
PoET-2 0.508 0.355 0.444 0.419 0.447
PoET-2
+ VenusREM 0.558 0.400 0.442 0.411 0.441

Table 3: Performance (AUROC) on
zero-shot clinical substitutions and
indels benchmarks. N/A indicates
not applicable, whereas a dash (–)
indicates applicable, but not com-
puted.

Model Subs. Indels
Progen2 M – 0.846
Progen2 L – 0.851
Progen2 XL – 0.842

RITA M – 0.892
RITA L – 0.922
RITA XL – 0.916

PROVEAN 0.886 0.927

ESM-1b 0.892 N/A

TranceptEVE L 0.920 0.857

PoET-1 0.920 0.934
PoET-2 0.928 0.952

A simple ensemble combining PoET-2 and VenusREM (Appendix D.3) consistently outperforms both
individual models and all other existing methods across all metrics (p < 1e− 5; Table 1, Appendix
D.4). This suggests PoET-2 and VenusREM capture distinct, complementary fitness signals. The
ensemble shows robust performance across diverse protein subgroups, including those with varying
MSA depths (Table 1) and assay functions (Appendix D.4). However, on higher-order substitutions
(3 or more mutations), PoET-2 alone surpasses the ensemble’s performance (Table 2), underscoring
its strong intrinsic capability to model these complex mutational effects.

4.1.3 PoET-2 improves prediction of clinical variant pathogenicity

PoET-2 significantly improves our ability to distinguish between pathogenic and benign human
protein mutations on the ProteinGym clinical benchmark (Table 3). Compared to PoET-1, the next
best model, PoET-2 improves AUROC by 0.008 on the substitutions benchmark (p < 9e− 5) and by
a substantial 0.018 on the indels benchmark (p < 3e− 5), establishing a new state-of-the-art for both.

4.2 PoET-2 embeddings and likelihoods enhance supervised learning of sequence-function
relationships

While zero-shot prediction is valuable, protein engineering often involves learning from limited
experimental data. We evaluate PoET-2’s utility in this supervised setting on ProteinGym’s primary
supervised DMS benchmark, which focuses on single-site substitutions across all 217 DMS assays.
This benchmark assesses generalization ability across three cross-validation (CV) schemes, varying
in difficulty based on the relationship between training and test set mutation locations. In the random
fold, mutations are distributed randomly across five CV folds. In the modulo fold, protein positions are
assigned to one of five CV folds using a modulo-based strategy i.e. every fifth position belongs to the
same fold. In the contiguous fold, the protein sequence is divided into five contiguous, equal-length
segments, each constituting a CV fold.

We employ a Gaussian Process (GP) regression model to predict fitness. The GP uses a product
kernel combining two Matérn 5/2 kernels: one operating on protein embeddings from PoET-2’s MLM
decoder, and the other on LLRs from the CLM decoder (as used in zero-shot prediction). This kernel
was chosen for its relative simplicity and minimal hyperparameter tuning requirements, but it may
not be optimal for all scenarios, such as predicting the effects of multi-mutation variants (Appendix
E.2). Predictions are ensembled across GPs trained on features from different sequence-only prompts;
structure was omitted from prompts because they did not improve supervised results (§4.3).
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4.2.1 PoET-2 improves supervised variant effect prediction across diverse generalization
regimes

Our PoET-2 based GP model (PoET-2 GP) substantially outperforms the previous state-of-the-art,
Kermut [15], in all cross-validation folds on both Spearman correlation and mean squared error
metrics (Table 4, p < 1e− 5). For example, PoET-2 GP achieves an average Spearman ρ of 0.693,
compared to 0.664 for Kermut. This improved performance is consistent across various protein and
assay subgroups (Appendix E.3).

Table 4: Performance on supervised DMS substitutions benchmark.
Spearman ρ (↑) Mean square error (↓)

Model Rand. Mod. Contig. Avg. Rand. Mod. Contig. Avg.
ProteinNPT 0.741 0.588 0.529 0.619 0.441 0.765 0.856 0.687

Kermut 0.746 0.635 0.613 0.664 0.413 0.649 0.697 0.586

ESM-2 (650 M) GP 0.749 0.573 0.549 0.624 0.404 0.720 0.768 0.630
ESM C GP 0.747 0.605 0.573 0.642 0.398 0.660 0.716 0.592
PoET-2 GP 0.773 0.661 0.645 0.693 0.370 0.602 0.647 0.540

4.2.2 PoET-2 has exceptional data efficiency for few-shot function learning

A critical aspect of practical protein engineering is a model’s ability to learn effectively from limited
experimental data. To assess data efficiency and compare the utility of different foundation models, we
benchmark GP models using identical kernel functions but features derived from different foundation
models, including PoET-2, PoET-1 [1], ESM-2 [10], and ESM C [42]. To simulate smaller training
set sizes, we systematically vary the training data for each assay by subsampling its available training
points, targeting specific sizes from as few as 10 points up to the maximum available.

Figure 2: Impact of training set size on the performance of Gaussian Process (GP) models leveraging
various foundation models, evaluated on the supervised DMS substitutions benchmark.

PoET-2 GP consistently outperforms GPs based on other foundation models across all evaluated
training set sizes and cross-validation schemes (Figure 2). PoET-2’s advantage is most pronounced in
the challenging contiguous cross-validation split, where PoET-2 GP trained with at most 100 data
points matches the performance of ESM C GP (the strongest non-PoET based GP) trained with the
maximum training set size (averaging ~2600 data points across all assays). Moreover, PoET-2 GP
trained with at most 250 data points achieves performance comparable to Kermut trained with the
maximum training set size, demonstrating exceptional data efficiency for practical protein engineering
applications compared to the existing state-of-the-art.

4.3 Structure conditioning improves zero-shot prediction, but has limited impact on
supervised prediction

To leverage PoET-2’s multimodality, we explore two methods for incorporating structure in the
prompt. First, we include the predicted structures of homologous proteins in the context. Second,
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following prior work showing that inverse-folding likelihood correlates with fitness [5], we use a
query consisting of only the WT structure to score a variant’s likelihood of adopting the same fold.

In the zero-shot setting, both strategies improve performance on DMS substitutions over using
sequence alone (Table 5). Including predicted structures in the context and using the inverse-folding
query each individually improve performance, with the best results coming from ensembling these
different strategies. Consistent with prior work, this highlights that structural priors are highly
informative for zero-shot prediction. This is particularly evident for stability-related assays, where
PoET-2 achieves its largest performance gains over its sequence-only predecessor, PoET-1 (Table
1). For other tasks like clinical variant prediction, however, the benefit is less clear, with the inverse-
folding query being slightly detrimental (Appendix Table 6). A detailed analysis of these strategies
on both DMS and clinical benchmarks is in Appendix D.1.

Table 5: Performance (Spearman’s ρ) of different strategies for including structure in the prompt on
the zero-shot DMS benchmarks.

Strategy Prompt Substitutions Indels
Context Modalities Query

A Sequence None 0.47534 0.55589
B Sequence and Structure None 0.48374 0.56666
C Sequence Structure of WT 0.49128 N/A
D Sequence and Structure Structure of WT 0.48927 N/A

E Ensemble of A and B
(Different contexts, No query) 0.48260 0.56606

F Ensemble of C and D
(Different contexts, With query) 0.49256 N/A

G Ensemble of A and C
(Sequence only context, Different queries) 0.49632 N/A

H Ensemble of B and D
(Sequence and structure context, Different queries) 0.49987 N/A

I Ensemble of A, B, C, and D 0.49989 N/A

In contrast, for supervised learning, including structural information offers little to no benefit (Ap-
pendix E.1). This suggests that PoET-2’s embeddings already implicitly encode critical structural
information, and as a result, our current supervised model does not gain additional predictive power
from explicit structure conditioning. Unlocking further improvements may require more sophisticated
methods capable of leveraging this explicit structural data to refine an already strong baseline.

5 Conclusion and Limitations

PoET-2 is a multimodal, retrieval-augmented protein language model. PoET-2 can learn from
unaligned sequences and structure in-context and directly condition on atomic backbone structure
for protein sequence generation and representation learning. As a result, PoET-2 achieves state-of-
the-art performance for zero-shot indel and higher order mutation effect prediction, clinical variant
effect prediction, and supervised variant effect prediction. However, it lags slightly behind recent
structure-based masked language models on single mutant effects on DMS datasets. This seems to be
largely driven by these models’ superior performance on stability datasets. However, ensembling
PoET-2 with VenusREM produces a predictor that outperforms all previous models on ProteinGym’s
DMS benchmark, suggesting there is still orthogonal information being learned by these methods.
Structure-based methods have increasingly been adopting discrete structure tokenizations whereas
PoET-2 operates directly on backbone atoms. We also find that structure conditioning is only helpful
for some problems, in particular stability prediction in the ProteinGym DMS datasets. For clinical
variant effect prediction and supervised learning, structure conditioning offers little to no benefit. In
principle, predicted structure information should already be encoded in protein language model-based
representations. PoET-2 offers state-of-the-art performance in a compact 182M parameter footprint.
We expect PoET-2 to become a core part of protein machine learning and engineering workflows.
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A Broader Impact

PoET-2, a multimodal, retrieval-augmented protein model, aims to improve the prediction of mu-
tational effects and enable controllable protein design by learning from sequence, structure, and
evolutionary family context. This work can accelerate beneficial applications such as designing novel
enzymes, therapeutics, and more stable proteins. PoET-2’s enhanced data efficiency in supervised
learning may also broaden access to advanced protein engineering, especially in data-limited settings.
While PoET-2 is a foundational research tool, advanced capabilities in understanding and designing
proteins could theoretically be misused, for example, in the development of dangerous drugs. We
expect that future work will serve to address and mitigate such concerns.

B PoET-2 Architecture

This section elaborates on PoET-2’s architecture, supplementing the description in the main text.

Notation To refer to a specific residue in a sequence-of-sequences x, we use the same notation
as in the main text i.e. we use x

(i)
j to denote the jth residue of the ith sequence in x. In general,

the superscript (i) is used to refer to the ith sequence. For example, in the main text, we use D
to refer to the matrix of pairwise discretized Cα distances of a protein. Thus, in the context of a
sequence-of-sequences, the notation D(i) refers to the pairwise discretized Cα distances of the ith
sequence in the sequence-of-sequences.

B.1 Input Embedding

The encoder and decoders share a common input embedding space. This space fuses representations
derived from the input sequence (xseq), the local structure backbone coordinates (xatomb), and the
pLDDT scores (xplddt). Both xatomb and xplddt can contain entries that are masked, for instance, due to
missing structural information, padding, or masking specified by a user. For each of these features,
a corresponding binary mask (e.g., xatomb_mask, xplddt_mask) is provided, where a value of 1 indicates
an observed or valid entry, and 0 indicates a masked or invalid entry. To process these potentially
masked inputs, the algorithm first applies the respective binary mask to the feature data by setting
the values at masked positions to zero. Subsequently, the binary mask itself is concatenated as an
additional feature channel to this modified data. These augmented representations for xatomb and
xplddt are then linearly projected into the target embedding dimension. The sequence xseq is embedded
directly. Finally, these three resulting embeddings are summed to form the single continuous latent
representation (Algorithm 1).

Algorithm 1 embed_inputs – embeds a single sequence or a sequence-of-sequences

Require: xinputs = {xseq ∈ {1..28}Lx , xplddt ∈ [0, 100]Lx , xplddt_mask ∈ {0, 1}Lx , xatomb ∈
RLx×36, xatomb_mask ∈ {0, 1}Lx×36

▷ Handle masks for xplddt and xatomb by applying the masks and concatenating along feature
dimension

1: zplddt = Concat((xplddt ∗ xplddt_mask, xplddt_mask), dim=1) ▷ [0, 100]Lx×2

2: zatomb = Concat((xatomb ∗ xatomb_mask, xatomb_mask), dim=1) ▷ RLx×72

▷ Embed inputs individually
3: zseq = Embed(xseq) ▷ RLx×d

4: zplddt = Linear(zplddt) ▷ RLx×d

5: zatomb = Linear(zatomb) ▷ RLx×d

6: zseqid = Linear(zseqid) ▷ RLx×d

7: return zseq + zplddt + zatomb + zseqid

B.2 Structure-based Attention Bias

See the main text (§3.2.3) for a description of the structure-based attention bias. Figure 3 visualizes
the application of the structure-based attention bias.
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Discretized inter-residue CA distance values computed from the 
input structure is incorporated by adding it to the original attention 
matrix.

Original Attention Matrix Discretized Inter-residue CA Distance 
Values

Generic Transformer Layer

Per-Sequence Attention

Other blocks…

Other blocks…

Transformer Input

Sequence 1 Sequence 2

Structure 1

pLDDT

Structure 2

pLDDT

Structure 1

pairwise backbone distances

Structure 2

pairwise backbone distances

…

Per-Sequence Attention

1

1 2

1

-1

1

1

2

87

2

-4 -2

4250

31-22

1 2 7 0 2

-2

1

3

-4

1 8 5

4

1 2

3

6 8

7

3

1

1

2

8-5

2

-3 -4

4350

31-2-1

6 2 -5 0 -1

-2

1

3

-3

1 8 5

4

1 3+

Input structure embedding includes 
the confidence, pLDDT, 

and the 36 pairwise backbone distances 

Figure 3: Structure-based attention bias

B.3 Encoder Architecture

After transforming the raw inputs xinputs into embeddings, the encoder (Algorithm 3) further trans-
forms the embeddings by applying nlayers of protein order equivariant encoder layers (Algorithm
2). The encoder has two outputs: per residue embeddings of the prompt, hencoder, that are used in
the decoders, and per residue sequence logits, zseq, that are used to compute the encoder MLM loss
LMLM encoder.

B.4 Decoder Architecture

The decoders each decode a single sequence y, conditioned on (1) the prompt embedding hencoder,
and (2) an optional query index q indicating which sequence in the prompt to use as the query, if any.

The transformations performed in each decoder are detailed in Algorithm 5; the CLM decoder and
MLM decoder only differ in that the former uses a causal mask in the attention operations, and the
latter does not. First, the input y is embedded. Next, if a query is present, the embedding of y and
the embedding of the query (produced by the encoder) are averaged. Then, nlayers of decoder layers
(Algorithm 4) that are equivariant to the protein order of the prompt are applied. The decoders each
have a single output, zseq, that is used to compute the corresponding loss (LCLM decoder for the CLM
decoder and LMLM decoder for the MLM decoder).

30



Algorithm 2 encoder_layer (for brevity, this algorithm describes only a single attention head, but
can be extended to multiple attention heads in the normal fashion)

Require: ∀i ∈ {1..N}, j ∈ {1..Lxi}
• prompt embedding h

(i)
j ∈ Rd

• pairwise discretized Cα distances D(i)
m,n ∈ {1..128},m ∈ {1..Lxi}, n ∈ {1..Lxi}

▷ First, apply self-attention with structure-based attention bias to each sequence individually
1: f = RMSNorm(h) ▷ RLx×d

2: q
(i)
j = RoPE(Linear(f (i)

j ), j) ∀i, j ▷ Rd

3: k
(i)
j = RoPE(Linear(f (i)

j ), j) ∀i, j ▷ Rd

4: v = Linear(f) ▷ RLx×d

▷ Compute attention score with structure-based bias

5: A
(i)
m,n = q

(i)
m

T
k
(i)
n + structure_bias(D(i)

m,n)
▷ R

6: f (i) = f (i) + softmax(A
(i)

√
d
)v(i) ∀i ▷ RL

x(i)×d

▷ Next, apply self-attention to all sequences together
7: g = RMSNorm(f) ▷ RLx×d

8: q
(i)
j = RoPE(Linear(g(i)j ), j) ∀i, j ▷ Rd

9: k
(i)
j = RoPE(Linear(g(i)j ), j) ∀i, j ▷ Rd

10: v = Linear(g) ▷ RLx×d

11: g = g + Attention(q, k, v) ▷ RLx×d

▷ Finally, the feedforward layer
12: g′ = RMSNorm(g) ▷ RLx×d

13: h′ = SwiGLU(g′) ▷ RLx× 8
3d

14: g′ = g + Linear(h′) ▷ RLx×d

15: return g′

Algorithm 3 encoder – encodes a prompt x composed of a sequence-of-sequences

Require: ∀i ∈ {1..N}
• xinputs = {xseq, xplddt, xatomb}
• pairwise discretized Cα distances D(i)

m,n ∈ {1..128},m ∈ {1..Lxi
}, n ∈ {1..Lxi

}
1: hencoder = embed_inputs(xinputs) ▷ RLx×d

2: for l ∈ 1..nlayers do
3: hencoder = encoder_layer(hencoder, D)
4: end for
5: zseq = Linear(h) ▷ RLx×28

6: return prompt embedding hencoder, sequence logits zseq
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Algorithm 4 decoder_layer (for brevity, this algorithm describes only a single attention head, but
can be extended to multiple attention heads in the normal fashion)

Require:
• decoder type T ∈ {CLM,MLM}
• encoder prompt embeddings h(i)

encoder,j ∈ Rd, i ∈ {1..N}, j ∈ {1..Lxi
}

• decoder sequence embedding hdecoder,i ∈ Rd, i ∈ {1..Ly}
• pairwise discretized Cα distances Dm,n ∈ {1..128},m ∈ {1..Ly}, n ∈ {1..Ly}

▷ First, apply self-attention with structure-based attention bias
1: f = RMSNorm(hdecoder) ▷ RLy×d

2: qi = RoPE(Linear(fi), i) ∀i ▷ Rd

3: ki = RoPE(Linear(fi), i) ∀i ▷ Rd

4: v = Linear(f) ▷ RLy×d

▷ Compute attention score with structure-based bias
5: Am,n = qm

T kn + structure_bias(Dm,n)
▷ R

6: if T == CLM then A = A+ CausalMask(Ly) ▷ RLy×Ly

7: end if
8: f = f + softmax( A√

d
)v ▷ RLy×d

▷ Next, apply cross-attention to prompt embeddings
9: g = RMSNorm(f) ▷ RLy×d

10: qi = RoPE(Linear(gi), i) ∀i ▷ Rd

11: k
(i)
j = RoPE(Linear(h(i)

encoder,j), j) ∀i, j ▷ Rd

12: v = Linear(hencoder) ▷ RLy×d

13: g = g + Attention(q, k, v) ▷ RLy×d

▷ Finally, the feedforward layer
14: g′ = RMSNorm(g) ▷ RLy×d

15: h′
decoder = SwiGLU(g′) ▷ RLy× 8

3d

16: g′ = g + Linear(h′
decoder) ▷ RLy×d

17: return g′

Algorithm 5 decoder – decodes a single sequence y conditioned on prompt embeddings hencoder

Require:
• decoder type T ∈ {CLM,MLM}
• optional query index q ∈ {0...N}
• encoder prompt embeddings h(i)

encoder,j ∈ Rd, i ∈ {1..N}, j ∈ {1..Lxi
}

• decoder inputs yinputs = {yseq, yplddt, yatomb}
• pairwise discretized Cα distances Dm,n ∈ {1..128},m ∈ {1..Ly}, n ∈ {1..Ly}

1: hdecoder = embed_inputs(yinputs) ▷ RLy×d

▷ Embed the query if there is one
2: if q ̸= 0 then
3: hdecoder,i =

1
2 (hdecoder,i + h

(q)
encoder,i)∀i ▷ Rd

4: end if
5: for l ∈ 1..nlayers do
6: hdecoder = decoder_layer(T, hencoder, hdecoder, D) ▷ RLy×d

7: end for
8: zseq = Linear(hdecoder) ▷ RLy×28

9: return sequence logits zseq
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B.5 Miscellaneous

This section details additional aspects of PoET-2’s architecture that are related to capabilities that are
not utilized in this paper’s experiments.

B.5.1 3Di Token Prediction

In addition to predicting each protein’s amino acid sequence, PoET-2 is also trained to predict each
protein’s 3Di structure token sequence [43] using the cross entropy loss. The 3Di structure tokens
are only predicted when the predicted pLDDT of the residue is at least 70. The amino acid and 3Di
structure token losses have equal weight i.e. the total loss is simply the sum of the two losses.

B.5.2 Conditioning on target homology

PoET-2 is also trained to generate sequences that must be within a specified sequence identity range
of a protein in the prompt, referred to as the query protein. The query can be any protein in the
prompt whose sequence is completely known (i.e. contains no unknown or masked amino acids).
This generation mode is called "target homology". When using this generation mode, the structure of
the generated protein does not have to contain any structural elements specified in the query protein.

The target homology generation mode is implemented with two modifications to the architecture
discussed so far:

1. The input embedding is augmented with another feature, xseqid. This feature represents
the sequence identity range as two values ∈ [0, 1] indicating the range’s lower and upper
bounds, and is repeated across all residues. Thus, it has shape L× 2. If the target homology
generation mode is inactive (e.g. as in the encoder) or not being used in the decoder, these
two sequence identity values are both set to 0. To prepare xseqid for input embedding, it is
processed similarly to other features like xplddt and xatomb: any values at positions intended
to be masked are set to zero, and then a corresponding binary mask (1 for observed/valid,
0 for masked/invalid) is concatenated as a third channel to these two sequence identity
values. This augmented 3-channel tensor for xseqid is then linearly projected to the model’s
hidden dimension and subsequently summed with the embeddings of other input features,
as detailed in Algorithm 1.

2. Since the generated sequence does not necessarily have the same length as the query, we
cannot simply combine the embeddings of the generated sequence and the embeddings
of the query by summing the embeddings of all corresponding residues as in Line 3 of
Algorithm 5, since the correspondence is unknown. Instead, we sum the embedding of
each residue of the generated sequence with the embedding of the first residue of the query
sequence. That is, when the target homology generation mode is used, we replace Line 3 of
Algorithm 5 with hdecoder,i =

1
2 (hdecoder,i + h

(q)
encoder,1)∀i.

B.5.3 Decoding queries of unknown length

Lastly, PoET-2 is trained to decode query sequences with contiguous segments of unknown length.
These segments are represented with the gap token (-) mentioned in §3.2.1; the gap token indicates
zero or more residues with unknown identity. For example, the query sequence $MK-IP* indicates
that PoET-2 must generate a sequence that starts with the two amino acids M and K, then has 0 of
more amino acids, and then ends with the amino acids I and P.

In order to decode such sequences, PoET-2 uses a special decoding scheme called the "insertion
decoding scheme". The purpose of this decoding scheme is to align the residues of the query sequence
and the generated sequence so that the embeddings of their corresponding residues can be summed in
Line 3 of Algorithm 5.

In the standard decoding scheme, the alignment between the query sequence and the sequence being
generated by the model may be ambiguous when gap tokens are present in the query. For example,
suppose that the query sequence is $-A. In a normal decoding scheme, if the model predicts that
the token following the start token is the token A, it is ambiguous if that token should be aligned
with the gap token to indicate an insertion, or aligned with the token A to indicate that there are
no insertions. In order to address this ambiguity, we train the decoders to instead output the gap
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token when generating a token that is unmasked in the query sequence. Continuing the example, if
the model wants to generate the token A as part of an insertion aligned with the gap token in the
query sequence, then the model should simply output the token A as usual. However, if the model
wants to generate the token A and have it be aligned with the token A at the third position in the
query sequence, then the model should output the gap token. In this case, the gap token in the query
sequence represents no insertions.

The insertion decoding scheme is visualized in Figure 4. Using the alignment provided by the insertion
decoding scheme, Line 3 of Algorithm 5 can then be modified to be hdecoder,i = 1

2 (hdecoder,i +

h
(q)
encoder,alignmenti

)∀i, where alignmenti indicates the index of the residue of the query that the ith
residue of the generated sequence is aligned to.

Although the insertion decoding scheme is primarily required for the CLM decoder, we apply the
insertion decoding scheme to the MLM decoder as well by adjusting the outputs tokens in a similar
manner i.e. since the MLM decoder is trained to unmask the token at the current position (as opposed
to next token prediction for the CLM decoder), if the token at the current position is unmasked, the
MLM decoder is trained to output the gap token.

(2) … the decoder outputs a gap token (-) to indicate that the 
next token is the next known token in the input, or an amino 

acid to indicate the residue at a masked position in the query

(1) The encoder outputs an embedding for each query 
residue…

Decoder Input

Encoder Input

Hierarchical Transformer Encoder 
(Bidirectional MLM)

Prompt Embeddings

Query Sequence

Transformer Decoder 
(Autoregressive CLM)

Generated Sequence Embeddings

Logits

Aligned Query Embeddings

Prompt Embeddings

…

Query Sequence Embeddings…
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(3) The embeddings of the query residues are aligned to the 

decoded residues to specify the next input token to decode.

Figure 4: Visualization of insertion decoding scheme.

C PoET-2 Training Details

C.1 Training data

Sequence data PoET-2 is trained on sets of homologous sequences. Sets of homologous sequences
are found and sampled using the same procedure used by PoET-1 [1]. Summarizing briefly, the sets
of homologous sequences are found by using Diamond [39] to search UniRef50 in an all against all
search using the following command:

diamond blastp -q uniref50.fasta -d diamond/uniref50 -f 6 –header -k 200000
–max-hsps 1 -e 0.001 -p 96 -o output.tab
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Sets of homologous sequences are sampled with weight proportional to the inverse of the size of the
set.

The main differences between the training data for PoET-2 and PoET-1 are as follows:

• UniRef Version 2304 is used instead of UniRef Version 2103.
• All sets of homologous sequences are used, rather than only sets with at least 10 members.

As a result of these differences, PoET-2 is trained on 62 million sets, as opposed to 29 million sets for
PoET-1.

Structure data PoET-2 is trained only on predicted structures from AFDB [31, 32], and no
experimentally solved structures. Sequences in the training data are associated with structures in
AFDB using the UniRef100 sequence identifier. When the structure of a protein is used as input to
PoET-2, if there is a conflict between the sequence in UniRef and AFDB (e.g. due to changes in
UniRef), the sequence in AFDB is used. On the order of approximately half of sequences in the
training data can be associated with a predicted structure using this methodology.

C.2 Noise schedule

For sequence inputs,

• Context sequence tokens are masked with a random masking rate chosen uniformly from
0%-30%.

• Query sequence tokens are randomly masked with a random masking rate chosen uniformly
from 0%-100%.

• Decoder sequence tokens are masked with a random masking rate chosen uniformly from
0%-30%.

For structure inputs, the pLDDT and atomic backbone coordinates of the N, Cα, and C atoms are
masked with a random masking rate chosen uniformly from 0%-100%.

For both sequence and structure inputs, with probability

• 50%, masking is performed randomly per residue.
• 25%, random contiguous spans of length L are masked, where L is drawn from the distribu-

tion Poisson(3) + 1.
• 25%, N random contiguous spans are masked, where N is drawn randomly from
Poisson(2.5) half the time and from Poisson(13) the other half of the time.

C.3 Optimizer and learning rate schedule

PoET-2 is trained with the same optimizer and learning rate schedule as PoET-1 [1]. Namely, the
optimizer is Adafactor [44], and the learning rate schedule consists of a linear warmup over the first
4000 steps to a peak learning rate of 1e− 2, and then a square root decay over the remaining training
steps.

C.4 Compute requirements

PoET-2 is trained for 3 million steps on 8 x A100 GPUs with 40GB VRAM each. A batch size of
45056 tokens is used per GPU with gradient accumulation over two steps, for an effective batch size
of 90112 tokens per GPU. The total training time on this hardware is approximately 2.5 months.
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D Zero-shot variant effect prediction

D.1 Prompt engineering

Recall that the prompt consists of two optional components, a context containing proteins from the
protein family of interest, and a query containing explicit sequence and/or structure constraints. Our
goal in prompt engineering is to design prompts that enable us to accurately predict the properties of
variants of a WT sequence.

To determine the set of proteins to use in the context, we use the same method as PoET-1 [1]. We first
identify proteins in the protein family by searching for sequence homologs of WT in UniRef100 [38]
using the ColabFold MSA protocol [40]. We then select the proteins to include in the context of a
prompt by sampling a representative subset of the sequence homologs using the method from Hopf
et. al [41].

Building off of this approach, we employ two prompt engineering strategies to improve predictions:

• Following the approach of PoET-1 [1], we ensemble over different prompts, where the
context of each prompt contains a different subsample of sequence homologs. The ensemble
prediction is simply the average of the individual predictions. Furthermore, for each context,
we use different values for the context length (i.e. number of tokens or amino acids in the
context) and maximum similarity of a sequence in the context to the WT sequence. The
exact values of these parameters used in the ensemble for DMS and clinical datasets are
specified in the sections below.

• Utilizing PoET-2’s multimodal capabilities, we explore two methods for incorporating
structure in the prompt. The first method incorporates structure in the context by associating
sequences in the context with their predicted structure in AFDB [31, 32], if the sequence
exists in AFDB. The second method incorporates structure by adding a query to the prompt
that contains the structure (but not the sequence) of WT. The use of this "inverse-folding"
query instructs PoET-2 to score the likelihood that a variant sequence will fold into the same
structure as WT. Although it is not necessarily desirable for a variant to adopt the same
structure as WT, the inverse-folding likelihood has been shown to be predictive of protein
fitness, particularly for stability related properties [5].
Not all methods of incorporating structure in the prompt are always helpful; the best method
for doing so on the ProteinGym DMS and clinical substitutions benchmarks are ablated and
identified in the following sections. Also, note that the query-based approach is not used for
indel variants because indel variants have different lengths from WT and thus cannot adopt
the same tertiary structure as WT.

D.1.1 Deep mutational scanning datasets

Ensembling over context length and maximum similarity Following PoET-1 [1], we ensemble
over all combinations of values for context length ∈ {6144, 12288, 24576} and maximum similarity
∈ {1.0, 0.95, 0.90, 0.70, 0.50}, resulting in 15 combinations in total.

Incorporating structure in the prompt Table 5 shows the performance of various strategies
for incorporating or not incorporating structure in the prompt, and the performance of ensembling
different strategies. First, we analyze the effect of different strategies on the substitutions benchmark.
When not incorporating structure at all (Strategy A), thus using the same prompting strategy as PoET-
1, PoET-2 performs marginally better than PoET-1 (∆ρ = 0.005; PoET-1 reported in Table 1). Both
including the structure in the context (Strategy B), and in the query (Strategy C) improves performance,
with the latter strategy offering a larger improvement. Interestingly, combining the two approaches
(Strategy D) performs only about the same or slightly worse than Strategy C (∆ρ = −0.002).

Strategy I, which ensembles all of the above strategies (A-D), improves performance further by
∆ρ = 0.009 vs Strategy C, the best individual strategy. However, we find that Strategy H, which only
ensembles Strategies B and D and excludes the strategies that include only sequence in the context,
performs similarly to Strategy I, with negligible performance loss. Therefore, we recommend the use
of Strategy H, and use this strategy in performance comparisons with other models.
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For indel variants, we observe a small improvement in performance by incorporating structure in
the context (Strategy B) versus not (Strategy A). There is little or no benefit to ensembling these
two strategies (Strategy E). Since a query cannot be used, the other strategies are not applicable.
Therefore, we employ Strategy B when comparing PoET-2 to other models.

D.1.2 Clinical datasets

Ensembling over context length and maximum similarity Following PoET-1 [45], we use
a context length of 49152 and ensemble over different values for maximum similarity ∈
{1.0, 0.95, 0.90, 0.70, 0.50}, resulting in 5 combinations in total. Note that the ensembling pa-
rameters for clinical datasets is less well studied than for DMS datasets, and there are likely better
parameters for ensembling.

Table 6: Performance (AUROC) of different strategies for including structure in the prompt on the
zero-shot clinical benchmarks.

Strategy Prompt Substitutions Indels
Context Modalities Query

A Sequence None 0.92544 0.94826
B Sequence and Structure None 0.92624 0.95278
C Sequence Structure of WT 0.91505 N/A
D Sequence and Structure Structure of WT 0.91292 N/A

E Ensemble of A and B
(Different contexts, No query) 0.92789 0.95179

F Ensemble of C and D
(Different contexts, With query) 0.91599 N/A

G Ensemble of A and C
(Sequence only context, Different queries) 0.92481 N/A

H Ensemble of B and D
(Sequence and structure context, Different queries) 0.92481 N/A

I Ensemble of A, B, C, and D 0.92572 N/A

Incorporating structure in the prompt Table 6 shows the performance of various strategies
for incorporating or not incorporating structure in the prompt, and the performance of ensembling
different strategies. First, we analyze the effect of different strategies on the substitutions benchmark.
Incorporating structure in the context (Strategy B) offers a very minor and not statistically significant
improvement versus not incorporating structure in the context (Strategy A). Incorporating structure
via the query (Strategy C), however, has a negative effect. Therefore, we do not consider strategies
that use a query further.

Ensembling Strategies A and B (Strategy E) has a small positive effect over not ensembling, although
due to the small effect size, it is unclear if the effect is simply due to ensembling more prompts, or
due to ensembling different prompt strategies. Nevertheless, since Strategy E performs best, we use it
in comparisons with other models.

For indel variants, we observe similar trends among applicable strategies (those not using a query),
with some improvement observed for incorporating structure in the context, but variations in per-
formance being fairly minor. Although Strategy E slightly underperforms Strategy B by a non-
statistically significant amount, we employ Strategy E in comparisons with other models for consis-
tency with the strategy used for the substitutions benchmark.

D.2 Length adjusted log likelihood (ratio)

Sequence likelihoods from autoregressive models trained with next-token prediction losses and
teacher forcing can exhibit miscalibrated stop token probabilities that bias them towards shorter
sequences. This likely arises because the loss function only operates at the token level – it does
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not strongly penalize an early stop token as long as the early stop token is predicted to be relatively
unlikely compared to other tokens.

This bias towards shorter sequences can be problematic when scoring indel variants with likelihoods,
as indel variants can differ in length from WT and each other. To compensate for this, when scoring
indel variants, we apply an adjustment to the log likelihood that favors longer sequences over shorter
sequences. We find that on a sample of random protein families from UniRef50, the log likelihood
decreases roughly linearly with sequence length, with a slope of −1.96 (Figure 5).
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Figure 5: Plot of log likelihood vs length for random UniRef50 protein families.

Therefore, we compute the length adjusted log likelihood as follows:

adjusted log likelihood = log likelihood + α× sequence length (4)

where α = 1.96 is the length adjustment factor. To compute the adjusted log likelihood ratio for
scoring variants, we simply use the adjusted log likelihood instead of the regular log likelihood.

On the DMS indels benchmark, we find that using the length adjusted likelihood ratio with α = 1.96
improves performance (Figure 6). The length adjustment factor α = 1.96 is near optimal, with the
empirical best adjustment factor being 2.1.

On the other hand, on the clinical indels benchmark, we find that using the length adjusted likelihood
ratio with α = 1.96 slightly harms performance (Figure 7). However, the optimal adjustment factor is
non-zero (between 0.90 and 1.20 depending on the benchmark version), indicating that some length
adjustment is generally ideal for zero-shot fitness prediction, regardless of the specific task. Given
that the relation between log likelihood and length is not completely linear, and that the length only
explains ~75% of the variance in the log likelihood (Figure 5), there may be better ways to adjust the
log likelihood using factors other than the length e.g. factors that may be dependent on the specific
protein family of interest. We leave exploration of this to future work.

As our experiments show that adjusting log likelihoods for length is generally useful, even if α = 1.96
is not necessarily optimal, we always use the length adjusted log likelihood when comparing the
performance of PoET-2 to other models.

D.3 Model ensembles

We compute the zero-shot score for the ensemble model combining PoET-2 and VenusREM by
computing a weighted average of the score from PoET-2 and the score from VenusREM:

Ensemble Score = w × (PoET-2 score) + (1− w)× (VenusREM score) (5)

where w ∈ [0, 1]. To select the weight w, we evaluate the performance of 21 values of w regularly
spaced in the interval [0, 1] (inclusive; increments of 0.05) on ProteinNPT’s [7] validation of set 8
datasets:
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Figure 6: Plot of DMS indels performance (ρ) vs length adjustment factor.

Figure 7: Plot of clinical indels performance (AUROC) versus length adjustment factor; results for
ProteinGymV1 (left) and ProteinGymV1.3 (right).

BLAT_ECOLX_Jacquier_2013, CALM1_HUMAN_Weile_2017, DYR_ECOLI_Thompson_2019,
DLG4_RAT_McLaughlin_2012, P53_HUMAN_Giacomelli_2018_WT_Nutlin,
REV_HV1H2_Fernandes_2016, RL40A_YEAST_Roscoe_2013, TAT_HV1BR_Fernandes_2016

On this validation set, we find that the optimal value of w is simply 0.5, corresponding to a simple
average.

D.4 Detailed results

The following tables detail results on the performance and standard error of models on the DMS
zero-shot substitutions and indels benchmarks, broken by different metrics, and assay and protein
subgroups.

• Table 7: Overall performance (Spearman, AUC, MCC, NDCG, Recall) on substitutions
benchmark, with standard error of difference to PoET-2.

• Table 8: Overall performance (Spearman, AUC, MCC, NDCG, Recall) on substitutions
benchmark, with standard error of difference to PoET-2 + VenusREM.

• Table 9: Overall performance (Spearman, AUC, MCC, NDCG, Recall) on indels benchmark,
with standard error of difference to PoET-2.

• Table 10: Performance (Spearman) on substitutions benchmark broken down by assay type,
with standard error of difference to PoET-2.

• Table 11: Performance (Spearman) on substitutions benchmark broken down by MSA depth,
with standard error of difference to PoET-2.

• Table 12: Performance (Spearman) on substitutions benchmark broken down by taxonomy,
with standard error of difference to PoET-2.

• Table 13: Performance (Spearman) on substitutions benchmark broken down by mutation
depth, with standard error of difference to PoET-2.

D.5 Compute requirements

Inference with PoET-2 is performed on g5.xlarge instances from Amazon Web Services. The instances
are equipped with A10G Nvidia GPUs with 24GB VRAM. For scoring sequences of average length
(~350 amino acids), the inference throughput per prompt is approximately 125 sequences per second.
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Table 7: Performance on zero-shot DMS substitutions benchmark. Standard error of difference to
PoET-2 in parentheses.

Model Metric
Spearman AUC MCC NDCG Recall

ESM-2 0.415 (0.013) 0.729 (0.007) 0.328 (0.010) 0.742 (0.007) 0.217 (0.007)
ESM C 0.407 (0.014) 0.727 (0.007) 0.323 (0.011) 0.742 (0.007) 0.213 (0.006)
ProGen2 M 0.379 (0.009) 0.711 (0.005) 0.299 (0.007) 0.747 (0.006) 0.203 (0.006)
ProGen2 XL 0.390 (0.009) 0.717 (0.005) 0.306 (0.008) 0.764 (0.004) 0.198 (0.005)

SaProt 0.457 (0.007) 0.751 (0.004) 0.358 (0.007) 0.764 (0.005) 0.232 (0.006)
ESM-3 Open 0.467 (0.005) 0.756 (0.003) 0.368 (0.005) 0.773 (0.004) 0.241 (0.006)
ProSST 0.508 (0.008) 0.777 (0.004) 0.399 (0.007) 0.752 (0.007) 0.235 (0.009)

MSA Transformer 0.431 (0.009) 0.736 (0.005) 0.338 (0.007) 0.774 (0.004) 0.225 (0.005)
TranceptEVE L 0.456 (0.006) 0.751 (0.003) 0.356 (0.005) 0.783 (0.003) 0.231 (0.005)
GEMME 0.455 (0.009) 0.749 (0.005) 0.352 (0.007) 0.773 (0.003) 0.212 (0.004)
PoET-1 0.470 (0.004) 0.759 (0.002) 0.367 (0.004) 0.779 (0.002) 0.226 (0.003)

S3F-MSA 0.496 (0.006) 0.771 (0.003) 0.388 (0.005) 0.788 (0.002) 0.244 (0.004)
VenusREM 0.519 (0.007) 0.783 (0.003) 0.405 (0.006) 0.766 (0.006) 0.243 (0.009)
PoET-2 0.500 (0.000) 0.773 (0.000) 0.391 (0.000) 0.786 (0.000) 0.238 (0.000)
PoET-2 + VenusREM 0.543 (0.005) 0.796 (0.002) 0.423 (0.004) 0.791 (0.004) 0.254 (0.006)

Table 8: Performance on zero-shot DMS substitutions benchmark. Standard error of difference to
PoET-2 + VenusREM in parentheses.

Model Metric
Spearman AUC MCC NDCG Recall

ESM-2 0.415 (0.014) 0.729 (0.007) 0.328 (0.011) 0.742 (0.007) 0.217 (0.007)
ESM C 0.407 (0.014) 0.727 (0.008) 0.323 (0.012) 0.742 (0.007) 0.213 (0.007)
ProGen2 M 0.379 (0.010) 0.711 (0.005) 0.299 (0.008) 0.747 (0.007) 0.203 (0.008)
ProGen2 XL 0.390 (0.010) 0.717 (0.005) 0.306 (0.009) 0.764 (0.006) 0.198 (0.007)

SaProt 0.457 (0.008) 0.751 (0.005) 0.358 (0.007) 0.764 (0.005) 0.232 (0.006)
ESM-3 Open 0.467 (0.007) 0.756 (0.004) 0.368 (0.006) 0.773 (0.004) 0.241 (0.006)
ProSST 0.508 (0.005) 0.777 (0.003) 0.399 (0.004) 0.752 (0.006) 0.235 (0.006)

MSA Transformer 0.431 (0.010) 0.736 (0.005) 0.338 (0.008) 0.774 (0.006) 0.225 (0.007)
TranceptEVE L 0.456 (0.007) 0.751 (0.004) 0.356 (0.006) 0.783 (0.004) 0.231 (0.006)
GEMME 0.455 (0.009) 0.749 (0.005) 0.352 (0.010) 0.773 (0.005) 0.212 (0.007)
PoET-1 0.470 (0.006) 0.759 (0.003) 0.367 (0.006) 0.779 (0.004) 0.226 (0.005)

S3F-MSA 0.496 (0.006) 0.771 (0.003) 0.388 (0.007) 0.788 (0.003) 0.244 (0.006)
VenusREM 0.519 (0.003) 0.783 (0.002) 0.405 (0.003) 0.766 (0.004) 0.243 (0.004)
PoET-2 0.500 (0.004) 0.773 (0.002) 0.391 (0.004) 0.786 (0.004) 0.238 (0.006)
PoET-2 + VenusREM 0.543 (0.000) 0.796 (0.000) 0.423 (0.000) 0.791 (0.000) 0.254 (0.000)

Table 9: Performance on zero-shot DMS indels benchmark. Standard error of difference to PoET-2 in
parentheses.

Model Metric
Spearman AUC MCC NDCG Recall

ProGen2 M 0.463 (0.037) 0.770 (0.021) 0.370 (0.031) 0.757 (0.018) 0.305 (0.017)
ProGen2 XL 0.427 (0.022) 0.747 (0.010) 0.323 (0.019) 0.749 (0.015) 0.297 (0.012)

TranceptEVE L 0.410 (0.020) 0.749 (0.011) 0.348 (0.020) 0.725 (0.013) 0.258 (0.014)
PoET-1 0.515 (0.006) 0.803 (0.005) 0.434 (0.011) 0.763 (0.006) 0.310 (0.010)

PoET-2 0.567 (0.000) 0.831 (0.000) 0.478 (0.000) 0.795 (0.000) 0.340 (0.000)
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Table 10: Performance (Spearman ρ) on zero-shot DMS substitutions benchmark broken down by
assay type. Standard error of difference to PoET-2 in parentheses.

Model Substitutions By Assay Type

Activity Binding Expression Organismal
Fitness Stability

ESM-2 0.429 (0.028) 0.336 (0.043) 0.417 (0.030) 0.368 (0.024) 0.523 (0.016)
ESM C 0.426 (0.028) 0.313 (0.044) 0.408 (0.032) 0.360 (0.027) 0.526 (0.017)
ProGen2 M 0.396 (0.028) 0.291 (0.018) 0.434 (0.015) 0.379 (0.015) 0.396 (0.020)
ProGen2 XL 0.406 (0.021) 0.300 (0.028) 0.415 (0.023) 0.384 (0.014) 0.445 (0.012)

SaProt 0.461 (0.017) 0.380 (0.016) 0.488 (0.009) 0.366 (0.020) 0.592 (0.011)
ESM-3 Open 0.432 (0.013) 0.403 (0.013) 0.470 (0.008) 0.388 (0.012) 0.641 (0.011)
ProSST 0.480 (0.019) 0.444 (0.021) 0.532 (0.016) 0.430 (0.018) 0.653 (0.011)
MSA Transformer 0.477 (0.009) 0.324 (0.036) 0.447 (0.013) 0.416 (0.017) 0.492 (0.011)
TranceptEVE L 0.490 (0.014) 0.371 (0.018) 0.459 (0.012) 0.458 (0.007) 0.501 (0.011)
GEMME 0.485 (0.008) 0.380 (0.037) 0.440 (0.015) 0.450 (0.008) 0.519 (0.012)
PoET-1 0.498 (0.006) 0.391 (0.019) 0.466 (0.006) 0.474 (0.006) 0.519 (0.005)

S3F-MSA 0.506 (0.008) 0.437 (0.025) 0.480 (0.013) 0.476 (0.007) 0.582 (0.008)
VenusREM 0.499 (0.016) 0.452 (0.018) 0.535 (0.014) 0.459 (0.016) 0.651 (0.011)
PoET-2 0.508 (0.000) 0.423 (0.000) 0.503 (0.000) 0.482 (0.000) 0.582 (0.000)
PoET-2 + VenusREM 0.538 (0.010) 0.475 (0.013) 0.552 (0.010) 0.505 (0.010) 0.644 (0.007)

Table 11: Performance (Spearman ρ) on zero-shot DMS substitutions benchmark broken down by
MSA depth. Standard error of difference to PoET-2 in parentheses.

Model Substitutions By MSA Depth
Low Medium High

ESM-2 0.340 (0.038) 0.410 (0.018) 0.513 (0.013)
ESM C 0.338 (0.040) 0.401 (0.020) 0.519 (0.011)
ProGen2 M 0.305 (0.031) 0.390 (0.016) 0.422 (0.016)
ProGen2 XL 0.322 (0.024) 0.411 (0.011) 0.442 (0.013)

SaProt 0.397 (0.027) 0.446 (0.014) 0.546 (0.011)
ESM-3 Open 0.402 (0.017) 0.465 (0.011) 0.575 (0.011)
ProSST 0.468 (0.029) 0.506 (0.013) 0.581 (0.013)

MSA Transformer 0.375 (0.024) 0.456 (0.011) 0.480 (0.012)
TranceptEVE L 0.434 (0.015) 0.473 (0.008) 0.491 (0.009)
GEMME 0.445 (0.017) 0.474 (0.008) 0.494 (0.009)
PoET-1 0.479 (0.008) 0.477 (0.006) 0.511 (0.005)

S3F-MSA 0.470 (0.017) 0.509 (0.005) 0.547 (0.007)
VenusREM 0.498 (0.023) 0.524 (0.011) 0.578 (0.013)
PoET-2 0.488 (0.000) 0.507 (0.000) 0.555 (0.000)
PoET-2 + VenusREM 0.528 (0.016) 0.550 (0.007) 0.593 (0.008)
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Table 12: Performance (Spearman ρ) on zero-shot DMS substitutions benchmark broken down by
taxonomy. Standard error of difference to PoET-2 in parentheses.

Model Substitutions By Taxonomy
Human Other Eukaryote Prokaryote Virus

ESM-2 0.457 (0.011) 0.488 (0.031) 0.459 (0.019) 0.262 (0.043)
ESM C 0.467 (0.010) 0.482 (0.030) 0.442 (0.022) 0.245 (0.051)
ProGen2 M 0.412 (0.011) 0.418 (0.027) 0.355 (0.027) 0.334 (0.035)
ProGen2 XL 0.385 (0.012) 0.459 (0.017) 0.417 (0.017) 0.401 (0.024)

SaProt 0.478 (0.010) 0.530 (0.018) 0.515 (0.013) 0.323 (0.037)
ESM-3 Open 0.480 (0.008) 0.549 (0.015) 0.530 (0.016) 0.407 (0.028)
ProSST 0.518 (0.013) 0.577 (0.019) 0.550 (0.018) 0.449 (0.028)

MSA Transformer 0.439 (0.012) 0.517 (0.012) 0.445 (0.014) 0.419 (0.028)
TranceptEVE L 0.472 (0.007) 0.515 (0.014) 0.455 (0.013) 0.460 (0.020)
GEMME 0.468 (0.009) 0.519 (0.013) 0.467 (0.011) 0.471 (0.019)
PoET-1 0.481 (0.005) 0.543 (0.009) 0.464 (0.008) 0.491 (0.011)

S3F-MSA 0.501 (0.008) 0.561 (0.010) 0.521 (0.008) 0.502 (0.012)
VenusREM 0.530 (0.011) 0.586 (0.017) 0.550 (0.016) 0.489 (0.023)
PoET-2 0.506 (0.000) 0.569 (0.000) 0.507 (0.000) 0.528 (0.000)
PoET-2 + VenusREM 0.548 (0.008) 0.604 (0.011) 0.562 (0.009) 0.551 (0.013)

Table 13: Performance (Spearman ρ) on zero-shot DMS substitutions benchmark broken down by
mutation depth. Standard error of difference to PoET-2 in parentheses.

Model Substitutions By Mutation Depth
1 2 3 4 5+

ESM-2 0.423 (0.011) 0.248 (0.021) 0.203 (0.077) 0.160 (0.077) 0.220 (0.073)
ESM C 0.416 (0.012) 0.257 (0.022) 0.189 (0.073) 0.150 (0.073) 0.217 (0.074)
ProGen2 M 0.372 (0.010) 0.131 (0.025) 0.149 (0.059) 0.131 (0.066) 0.178 (0.062)
ProGen2 XL 0.384 (0.008) 0.181 (0.023) 0.267 (0.046) 0.229 (0.046) 0.283 (0.047)

SaProt 0.459 (0.010) 0.312 (0.018) 0.271 (0.048) 0.268 (0.051) 0.337 (0.056)
ESM-3 Open 0.487 (0.009) 0.336 (0.019) 0.303 (0.047) 0.284 (0.046) 0.365 (0.050)
ProSST 0.520 (0.009) 0.393 (0.025) 0.316 (0.046) 0.274 (0.049) 0.334 (0.060)

MSA Transformer 0.427 (0.008) 0.220 (0.019) 0.358 (0.026) 0.365 (0.017) 0.401 (0.022)
TranceptEVE L 0.446 (0.006) 0.277 (0.014) 0.349 (0.041) 0.327 (0.039) 0.385 (0.046)
GEMME 0.447 (0.006) 0.275 (0.017) 0.329 (0.044) 0.338 (0.028) 0.419 (0.022)
PoET-1 0.466 (0.004) 0.298 (0.010) 0.412 (0.019) 0.393 (0.014) 0.421 (0.011)

S3F-MSA 0.499 (0.005) 0.332 (0.011) 0.377 (0.017) 0.343 (0.017) 0.387 (0.033)
VenusREM 0.534 (0.008) 0.395 (0.023) 0.352 (0.046) 0.320 (0.045) 0.372 (0.050)
PoET-2 0.506 (0.000) 0.357 (0.000) 0.444 (0.000) 0.419 (0.000) 0.447 (0.000)
PoET-2 + VenusREM 0.556 (0.005) 0.402 (0.014) 0.442 (0.023) 0.411 (0.020) 0.441 (0.028)

42



E Supervised variant effect prediction

Overview As described in the main text, our supervised variant effect prediction methodology
employs a Gaussian Process (GP) regression model to predict fitness scores. The GP is configured
with a constant mean function and a product kernel. This kernel integrates information from two
Matérn 5/2 sub-kernels, each operating on distinct features derived from PoET-2.

One sub-kernel operates on protein embeddings derived from the last layer of PoET-2’s MLM
decoder. Given the high dimensionality of the full per-residue embeddings produced by PoET-2, a
dimensionality reduction step is applied prior to their use in the GP. Specifically, we utilize Singular
Value Decomposition (SVD) to project the full embeddings into a 1024-dimensional space. This
dimensionality reduction strategy is conceptually similar to the PCA-based approach used by Bepler
et al. [6] to improve the runtime of their learning algorithm, which is also a GP for protein fitness
prediction. For each wild-type (WT) protein in an assay, the SVD transformation is fitted on a set
of 1536 variants: this set comprises the WT sequence itself and a random sample of 1535 single
and double substitution mutants of that WT. The number of variants used for fitting SVDs (1536)
was chosen to be approximately 50% larger than the number of SVD components (1024). This was
deemed a practical trade-off to provide a reasonable basis for the decomposition while managing the
computational requirements of fitting SVD transformations for each of the numerous proteins in the
ProteinGym benchmark; fitting the SVD on a larger or more diverse set of variants may improve
performance.

The second Matérn 5/2 sub-kernel in the product utilizes the log likelihood ratios (LLRs) obtained
from PoET-2’s CLM decoder, as used in zero-shot prediction (§4.1). The final GP model thus learns
from both the reduced-dimensionality MLM embeddings and the CLM-derived LLRs.

Gaussian Process Hyperparameter Priors To improve the stability and performance of GP
training, particularly with small training datasets, we incorporate empirical priors on the GP hy-
perparameters. This process involves three steps: (1) We first fit individual GP models (with the
architecture described above) to each of the 8 validation datasets specified by ProteinNPT [7] (listed
in Appendix D.3). (2) From these 8 trained GPs, we extract the optimized hyperparameters and fit
empirical distributions to them. Specifically, a Normal distribution is fitted to the learned constant
mean values, while Gamma distributions are fitted to the other hyperparameters (i.e. the lengthscales
of both Matérn kernels, the outputscale of the product kernel, and the likelihood noise term). (3)
These fitted Normal and Gamma distributions then serve as priors for the respective hyperparameters
when training GPs on the ProteinGym benchmark assays.

This prior-informed approach is particularly beneficial for assays with limited training data (e.g.
fewer than ~50 data points), where the prior helps guide the optimization process. For larger training
set sizes, the influence of the prior diminishes. When conducting ablation studies involving different
foundation models to generate the input embeddings and LLRs, the procedure for deriving these
priors (steps 1 and 2) is repeated to learn a separate, appropriate set of hyperparameter priors for each
distinct foundation model.

E.1 Prompt engineering

Similar to our approach to prompt engineering for zero-shot variant effect prediction (Appendix D.1),
for supervised prediction, we also explore two prompt engineering methods.

Ensembling over context length and maximum similarity We ensemble over different values of
context length ∈ {6144, 12288, 24576, 49152, 98304} and always use a maximum similarity value
of 0.95, resulting in 5 combinations in total. We use a wide range of context lengths compared to
zero-shot prediction because we observed in early experiments on ProteinNPT’s validation set of
8 datasets (Appendix D.3) that longer contexts lengths generally had a small positive impact on
supervised prediction performance (in contrast, for PoET-1, it was observed that long context lengths
could have a negative effect on zero-shot prediction [1]). Figure 8 shows the performance of the
GP model with different values for the context length, and the performance of the ensemble model.
We use a fixed value of 0.95 for maximum similarity because 0.95 is typically the best value for
zero-shot prediction, and did not explore other values in order to conserve compute. Therefore, it is
most likely the case that there exists more optimal parameters for ensembling.
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Figure 8: Performance on the supervised DMS substitutions benchmark as a function of training set
size of (1) PoET-2 GP models using prompts with 5 different context lengths and (2) the ensemble
GP model that ensembles the five models from (1).

Incorporating structure in the prompt Table 14 shows the performance of various strategies for
incorporating structure in the prompt on an extended validation set of 30 assays from ProteinGym’s
DMS supervised substitutions benchmark. We find that all strategies, both those that do and don’t
incorporate structure in the prompt, perform about the same for supervised variant effect prediction,
despite significant improvements for zero-shot variant effect prediction when using strategies that
incorporate structure in the prompt. Therefore, for supervised variant effect prediction, we do not
include structure in the prompt.

Table 14: Performance (Spearman’s ρ) of different strategies for including structure in the prompt on
a validation set of 30 datasets from the supervised DMS substitutions benchmark.

Prompt Supervised Cross-Validation Scheme Zero-shot
Context Modalities Query Rand. Mod. Contig. Avg.

Sequence None 0.70963 0.60398 0.49490 0.60284 0.40711
Sequence and Structure None 0.70689 0.59785 0.49312 0.59929 0.42554

Sequence Structure of WT 0.70436 0.60179 0.49142 0.59919 0.42277
Sequence and Structure Structure of WT 0.70103 0.58561 0.47449 0.58704 0.43748

The extended validation set consists of ProteinNPT’s 8 validation datasets (Appendix D.3), plus 22
randomly selected datasets. The full list of extended validation datasets is as follows:

BLAT_ECOLX_Jacquier_2013, CALM1_HUMAN_Weile_2017, DYR_ECOLI_Thompson_2019,
DLG4_RAT_McLaughlin_2012, P53_HUMAN_Giacomelli_2018_WT_Nutlin,
REV_HV1H2_Fernandes_2016, RL40A_YEAST_Roscoe_2013, TAT_HV1BR_Fernandes_2016,
ACE2_HUMAN_Chan_2020, BCHB_CHLTE_Tsuboyama_2023_2KRU,
CAR11_HUMAN_Meitlis_2020_gof, CP2C9_HUMAN_Amorosi_2021_abundance,
ENVZ_ECOLI_Ghose_2023, F7YBW7_MESOW_Ding_2023, GCN4_YEAST_Staller_2018,
GLPA_HUMAN_Elazar_2016, HCP_LAMBD_Tsuboyama_2023_2L6Q,
KCNH2_HUMAN_Kozek_2020, LYAM1_HUMAN_Elazar_2016, MBD11_ARATH_Tsuboyama_2023_6ACV,
MTHR_HUMAN_Weile_2021, OBSCN_HUMAN_Tsuboyama_2023_1V1C, OPSD_HUMAN_Wan_2019,
PA_I34A1_Wu_2015, PSAE_SYNP2_Tsuboyama_2023_1PSE, PTEN_HUMAN_Matreyek_2021,
Q53Z42_HUMAN_McShan_2019_binding-TAPBPR, RNC_ECOLI_Weeks_2023,
SPG1_STRSG_Olson_2014, TADBP_HUMAN_Bolognesi_2019

E.2 Gaussian Process kernels

Our primary Gaussian Process (GP) model for supervised variant effect prediction utilizes a product
kernel combining two Matérn 5/2 sub-kernels: one operating on PoET-2 MLM embeddings and the
other on PoET-2 CLM log likelihood ratios (LLRs). While this product kernel is effective for single-
site substitutions, its performance can be suboptimal when predicting the effects of multi-mutation
variants due to the behavior of the LLR-based sub-kernel under distributional shift.
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Specifically, the distribution of LLRs for multi-mutation variants often differs significantly from that
of single-site mutations, with multi-mutation LLRs tending towards much lower or higher values.
Consequently, if a GP is trained predominantly on single-site variants and then applied to predict
multi-mutation variants, the LLRs of the test set can be markedly out-of-distribution (OOD) relative
to the training data.

This OOD characteristic poses a challenge for the Matérn 5/2 kernel operating on LLRs. Stationary
kernels like the Matérn assume that covariance is a function of the distance between inputs; when
test LLRs are far outside the training distribution’s range, their covariance with the training data
(as modeled by this kernel) diminishes significantly. Since our model employs a product kernel, if
the LLR sub-kernel assigns low covariance to a test point, the overall covariance for that point will
also be low, irrespective of the embedding-based sub-kernel. In such cases, the GP prediction tends
to revert towards the prior mean, offering limited predictive power for these OOD multi-mutation
variants.

We leave the exploration of more sophisticated methods for incorporating LLRs into the GP for multi-
mutation contexts (e.g. using LLR transformations or non-stationary kernels) to future work. For the
current work, a pragmatic approach to mitigate this issue when predicting the effects of multi-mutation
variants is to utilize a GP model that relies solely on the embedding-based Matérn kernel, thereby
omitting the LLR-based sub-kernel for these specific predictions. Even with this simplification, a
PoET-2 based GP using only embeddings can achieve strong performance in predicting the effects of
multi-mutation variants when trained on data from single-site or lower-order mutants, outperforming
other state-of-the-art methods as discussed in Appendix E.6.

E.3 Detailed results

The following tables detail results on the performance and standard error of models on the DMS
supervised benchmark, broken by different metrics, cross-validation schemes, and assay and protein
subgroups.

• Table 15 Performance (Spearman) broken down by cross-validation scheme, with standard
error of difference to PoET-2.

• Table 16 Performance (MSE) broken down by cross-validation scheme, with standard error
of difference to PoET-2.

• Table 17 Performance (average Spearman across cross-validation schemes) on substitutions
benchmark broken down by assay type, with standard error of difference to PoET-2.

• Table 18 Performance (average Spearman across cross-validation schemes) on substitutions
benchmark broken down by MSA depth, with standard error of difference to PoET-2.

• Table 19 Performance (average Spearman across cross-validation schemes) on substitutions
benchmark broken down by taxonomy, with standard error of difference to PoET-2.

• Table 20 Performance (average Spearman across cross-validation schemes) on substitutions
benchmark for the smallest training set size (n = 10) with standard error of difference
to PoET-2. This table demonstrates that PoET-2’s performance advantage is statistically
significant even in the extreme few-shot regime. Differences for larger dataset sizes (n > 10)
are all statistically significant with p < 1e− 5 and are omitted for brevity.
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Table 15: Performance (Spearman ρ) on supervised DMS substitutions benchmark. Standard error of
difference to PoET-2 GP in parentheses.

Spearman ρ (↑)
Model Random Modulo Contiguous Average
ProteinNPT 0.741 (0.003) 0.588 (0.012) 0.529 (0.018) 0.619 (0.010)

Kermut 0.746 (0.004) 0.635 (0.008) 0.613 (0.009) 0.664 (0.006)

ESM-2 (650 M) GP 0.749 (0.002) 0.573 (0.009) 0.549 (0.010) 0.624 (0.007)
ESM C GP 0.747 (0.004) 0.605 (0.007) 0.573 (0.010) 0.642 (0.006)
PoET-2 GP 0.773 (0.000) 0.661 (0.000) 0.645 (0.000) 0.693 (0.000)

Table 16: Performance (MSE) on supervised DMS substitutions benchmark. Standard error of
difference to PoET-2 GP in parentheses.

MSE (↓)
Model Random Modulo Contiguous Average
ProteinNPT 0.441 (0.012) 0.765 (0.023) 0.856 (0.025) 0.687 (0.015)

Kermut 0.413 (0.004) 0.649 (0.010) 0.697 (0.010) 0.586 (0.007)

ESM-2 (650 M) GP 0.404 (0.004) 0.720 (0.011) 0.768 (0.011) 0.630 (0.008)
ESM C GP 0.398 (0.004) 0.660 (0.008) 0.716 (0.009) 0.592 (0.007)
PoET-2 GP 0.370 (0.000) 0.602 (0.000) 0.647 (0.000) 0.540 (0.000)

Table 17: Performance (Spearman ρ) on supervised DMS substitutions benchmark broken down by
assay type. Standard error of difference to PoET-2 GP in parentheses.

Model Substitutions By Assay Type

Activity Binding Expression Organismal
Fitness Stability

ProteinNPT 0.590 (0.007) 0.541 (0.045) 0.631 (0.011) 0.558 (0.010) 0.776 (0.005)

Kermut 0.606 (0.007) 0.627 (0.027) 0.680 (0.010) 0.584 (0.007) 0.825 (0.004)

ESM-2 (650 M) GP 0.569 (0.014) 0.577 (0.026) 0.633 (0.012) 0.545 (0.010) 0.795 (0.006)
ESM C GP 0.575 (0.015) 0.601 (0.021) 0.656 (0.013) 0.550 (0.013) 0.828 (0.006)
PoET-2 GP 0.630 (0.000) 0.667 (0.000) 0.691 (0.000) 0.622 (0.000) 0.854 (0.000)

Table 18: Performance (Spearman ρ) on supervised DMS substitutions benchmark broken down by
MSA depth. Standard error of difference to PoET-2 GP in parentheses.

Model Substitutions By MSA Depth
Low Medium High

ProteinNPT 0.576 (0.016) 0.621 (0.010) 0.705 (0.006)

Kermut 0.619 (0.012) 0.658 (0.005) 0.743 (0.005)

ESM-2 (650 M) GP 0.561 (0.019) 0.618 (0.007) 0.721 (0.006)
ESM C GP 0.581 (0.019) 0.627 (0.010) 0.749 (0.005)
PoET-2 GP 0.667 (0.000) 0.689 (0.000) 0.769 (0.000)
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Table 19: Performance (Spearman ρ) on supervised DMS substitutions benchmark broken down by
taxonomy. Standard error of difference to PoET-2 GP in parentheses.

Model Substitutions By Taxonomy
Human Other Eukaryote Prokaryote Virus

ProteinNPT 0.633 (0.007) 0.673 (0.006) 0.666 (0.012) 0.602 (0.019)

Kermut 0.671 (0.006) 0.712 (0.006) 0.707 (0.004) 0.628 (0.012)

ESM-2 (650 M) GP 0.649 (0.006) 0.668 (0.016) 0.673 (0.009) 0.552 (0.016)
ESM C GP 0.674 (0.005) 0.682 (0.017) 0.696 (0.007) 0.542 (0.023)
PoET-2 GP 0.696 (0.000) 0.738 (0.000) 0.736 (0.000) 0.690 (0.000)

Table 20: Mean Spearman correlation (ρ) and standard error on supervised DMS substitutions
benchmark when training datasets are limited to no more than n = 10 data points. Values in
parentheses are the standard error of the difference in mean performance relative to PoET-2 GP,
computed via 10,000 bootstrap samples. All differences are statistically significant (p < 4.5e− 3).

Spearman ρ (↑)
Model Random Modulo Contiguous
ESM-2 (650M) GP 0.408 (0.008) 0.389 (0.010) 0.382 (0.012)
ESM-2 (3B) GP 0.381 (0.008) 0.354 (0.009) 0.354 (0.009)
ESM C (300M) GP 0.418 (0.008) 0.399 (0.009) 0.397 (0.011)

PoET-1 GP 0.440 (0.004) 0.420 (0.008) 0.416 (0.008)

PoET-2 GP 0.459 (0.000) 0.447 (0.000) 0.440 (0.000)

E.4 Comparison of MLM and CLM decoder embeddings

Table 21 compares the performance of GP models trained on embeddings from PoET-2’s bidirectional
(MLM) decoder versus its autoregressive (CLM) decoder. We find that the MLM decoder embeddings
consistently outperform the CLM decoder embeddings.

Table 21: Performance of embeddings from PoET-2’s MLM and CLM decoders on ProteinGym’s
supervised DMS substitutions benchmark.

Spearman ρ (↑) Mean Square Error (↓)
Model Rand. Mod. Contig. Avg. Rand. Mod. Contig. Avg.
PoET-2 CLM GP 0.757 0.622 0.601 0.660 0.398 0.660 0.713 0.590
PoET-2 MLM GP 0.771 0.652 0.637 0.687 0.374 0.616 0.657 0.549

E.5 Compute requirements

• The computation of the SVD of embeddings from protein foundation models is performed
on r6a.4xlarge instances from Amazon Web Services. These instances are equipped with 16
vCPUs and 128GB of RAM. The amount of RAM required to fit the SVD depends on the
number of training samples, the length of the WT sequence, and the embedding dimension
of the foundation model used. Generally we use 1536 training samples, as described at
the start of this section. For some long sequences and models with very large embedding
dimension, the number of samples may need to be decreased to fit within the available RAM.

• Embeddings and log likelihood ratios for supervised variant effect prediction are computed
using the same computational resources as log likelihood ratios for zero-shot variant effect
prediction (Appendix D.5)

• Gaussian process models are trained on g5.xlarge instances from Amazon Web Services.
These instances are equipped with A10G Nvidia GPUs that have 24GB of VRAM.
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E.6 Prediction of mutational effects of multi-mutation variants

As discussed in Appendix E.2, when predicting multi-mutation variant effects from data on single-site
or lower-order mutants, we utilize a Gaussian Process (GP) model with a kernel based solely on
PoET-2 embeddings, omitting log-likelihood ratios. To evaluate this embedding-only PoET-2 GP in
such challenging generalization scenarios, we benchmark it on the multi-mutation dataset introduced
in the ProGen3 publication [46]. The ProGen3 authors report that their model outperforms Kermut
[15] and matches ConFit [47] on this specific benchmark. Our PoET-2 based GP, however, surpasses
all three aforementioned models (Table 22).

The ProGen3 multi-mutation benchmark comprises 8 datasets selected from ProteinGym. The selec-
tion criteria, as stated by the ProGen3 authors, is as follows: "We identify all assays in ProteinGym
with at least 3 mutations, and we train on all variants at most k mutations from the wild type, where k
is the smallest number required for the train split to exceed 500 sequences. To ensure that the train
and test splits contain proteins of similar fitness, we require that the total variation distance between
the train and test distributions of fitness scores be less than 1. These filters yield 8 assays that measure
diverse functional attributes for a wide range of proteins."

Table 22 details the performance of PoET-2 GP alongside ProGen3, Kermut, and ConFit on this
multi-mutation benchmark; PoET-2 GP outperforms all other models.

Table 22: Performance comparison on multi-mutation variant effect prediction benchmark.
Model Spearman ρ (↑)
Kermut 0.628
ConFit 0.679
ProGen3 0.673
PoET-2 GP 0.708
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F Licenses

Existing assets used in this paper are licensed as follows:

• ProteinGym benchmark: MIT license
• UniRef protein database: CC BY 4.0 license
• AlphaFold database: CC BY 4.0 license
• ESM C [42] model: Cambrian Open License Agreement [48]

G Additional details

G.1 Statistical significance analysis

Statistical significance for all experiments is assessed by performing a non-parametric, two-sided
bootstrap test with at least 10,000 samples. Bootstrap is performed using the same methodology as in
ProteinGym [5].

H ProteinGym Assay Dataset Sources

We thank the authors of the original publications from which the ProteinGym assays were derived for
making their experimental data publicly available [49–191].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims of the paper are stated in the abstract and introduction. The
claims are supported by experimental evidence as discussed in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the paper are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

50



Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Pre-training details are provided in Appendix C. Training and evaluation
details of downstream models are described in Section 4, Appendix D, and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Code and model weights are planned for future public release.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is described in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Statistical significance of results relating to claims are provided in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about compute resources required to reproduce experiments are
provided in Appendix C, Appendix D.5, and Appendix E.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are discussed in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Papers that produced existing assets used in this paper are cited. The licenses
are specified in Appendix F.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used for the development of core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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