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Figure 1. We introduce a vocabulary-free approach to address 3D instance segmentation that leverages language and vision assistants,
moving beyond the limitations of open-vocabulary approaches. Left: ‘Open-vocabulary’, where 3D instances are segmented using the
user-specified restricted lexical scope, i.e. the ‘vocabulary prior’. Right: ‘Vocabulary-free’, our approach can understand scenes without
relying on vocabulary prior, and autonomously recognizes a wide-range of objects, e.g. backsplash and TV hutch.

Abstract

Most recent 3D instance segmentation methods are
open vocabulary, offering a greater flexibility than closed-
vocabulary methods. Yet, they are limited to reasoning within
a specific set of concepts, i.e. the vocabulary, prompted
by the user at test time. In essence, these models cannot
reason in an open-ended fashion, i.e., answering “List
the objects in the scene.”. We introduce the
first method to address 3D instance segmentation in a setting
that is void of any vocabulary prior, namely a vocabulary-
free setting. We leverage a large vision-language assistant
and an open-vocabulary 2D instance segmenter to discover
and ground semantic categories on the posed images. To
form 3D instance mask, we first partition the input point
cloud into dense superpoints, which are then merged into
3D instance masks. We propose a novel superpoint merging
strategy via spectral clustering, accounting for both mask
coherence and semantic coherence that are estimated from
the 2D object instance masks. We evaluate our method using
ScanNet200 and Replica, outperforming existing methods in
both vocabulary-free and open-vocabulary settings. Code

will be made available.

1. Introduction
3D instance segmentation (3DIS) is a challenging research
problem as it requires instance-level semantic understanding.
Given a 3D scene (point cloud), 3DIS aims to produce a set
of binary masks associated with their semantic labels, where
each of them correspond to an object instance. Traditional
methods addressing 3DIS follow a closed-vocabulary
paradigm [2, 30, 34, 39], where the set of semantic
categories that can be encountered at test time is the same as
that seen at training time. With advances in language and
vision models, the 3DIS literature has rapidly evolved from
closed-vocabulary methods to open-vocabulary methods
[25, 33], where the semantic categories at test time can be
different from those seen during training. Open-vocabulary
3DIS methods mainly focus on obtaining i) instance-level
3D masks by leveraging class-agnostic 3D segmentation
methods (e.g. Mask3D [30] or superpoints [9]), and ii)
the corresponding text-aligned mask representation by
aggregating text-aligned visual representations from posed
images, e.g. obtained by CLIP. Scene semantics area
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obtained by assuming certain vocabulary prior (left-hand
side of Fig. 1): either in the form of a large finite set of
categories [26, 32], akin to answer “Choose among
the vocabulary, which object do these
points correspond to?”, or in the form of human
query with specified object instance [33], akin to answer “Do
these points correspond to an armchair
with floral print?”.

What if the vocabulary prior is unknown at the inference
time? Such scenarios can occur in assistive robotic applica-
tions, especially when the scene semantics are dynamically
evolving, e.g. inclusion or replacement of instances that are
not defined in the vocabulary or unknown to the user, such as
an uncommon utensil or a specific painting. Thus, it would
be ideal to empower 3DIS methods with the capability in
answering open-ended questions, such as “What object
do these points correspond to?”. Inspired by
the naming convention in the image recognition field [3],
we term such setting as Vocabulary-Free 3D Instance
Segmentation (VoF3DIS), which further extends the open-
vocabulary 3DIS by lifting the need of any vocabulary prior.
Formally, VoF3DIS aims to segment all object instances in a
point cloud, with their semantic labels associated, without re-
lying on any vocabulary prior, e.g. pre-defined vocabulary or
user-specified query at test time (right-hand side of Fig. 1).

Previous works in such a vocabulary-free setting primar-
ily focus on image recognition and tackle the challenge
of obtaining relevant categories in a vast semantic space.
Different methods in forming candidate vocabulary have
been explored, including re-retrieval from a web-scale mul-
timodal database [3], or querying from vision language as-
sistants [21], e.g., LLaVA [19]. VoF3DIS instead focuses
on instance-level 3D scene understanding, presenting sig-
nificant new challenges as the scale of 3D data does not
compare with that for 2D scene understanding. Moreover, it
not only faces the hurdle of a vast semantic space but also
demands point-level semantic representation — a techni-
cally non-trivial aspect, as existing large vision and language
models typically process the input image as a whole [17, 19].

We propose the first point cloud vocabulary-free instance
segmentation method, PoVo, which can semantically under-
stand 3D instance masks leveraging a language and vision
assistant [20]. PoVo is zero-shot and does not require any
training on either 2D or 3D data. Instead, it leverages a
vision-language assistant and a visual grounding model to
obtain localized scene semantics from 2D posed images.
Such semantic representations are then lifted to 3D to merge
and refine the 3D masks that are initially segmented based
on geometric features. Specifically, for each posed image,
PoVo prompts the vision language assistant to retrieve the
list of objects present in the scene from the answer, forming
a scene vocabulary. For the 3D instance proposal, PoVo
first segments the 3D scene into superpoints via graph cut

based on geometric features. Then we leverage a visual
grounding model, e.g. anchored SAM [28], to obtain se-
mantically aware object masks in posed images using the
scene vocabulary. Those masks and their semantic labels
are then used to guide the merging process of superpoints
towards 3D instance masks via spectral clustering, using a
superpoint affinity matrix based on both spatial and semantic
information. Lastly, PoVo tags such 3D proposals using both
vision and text information. We evaluated PoVo on two 3D
scene datasets: ScanNet200 [29] and Replica [31]. To as-
sess this newly introduced setting (VoF3DIS), we also BERT
score [37] with average precision metrics to address the chal-
lenge of labeling points with concepts from a vast semantic
space. Our results demonstrate that PoVo outperforms re-
cent approaches adapted to the VoF3DIS setting. Moreover,
PoVo also outperforms competitors in the open-vocabulary
setting, validating its robust design in managing a large set of
semantic concepts. In summary, our contributions include:
• introducing the new vocabulary-free task for 3D instance

segmentation;
• proposing PoVo, the first method to transfer visually-

grounded concepts identified by large vision and language
models to point clouds for 3D instance segmentation;

• proposing a novel 3D mask formation strategy by merg-
ing over-segmented superpoints into instance masks via
spectral clustering accounting both semantic and mask
coherence.

2. Related work
Vocabulary-free models. Conti et al. [3] pioneered the
vocabulary-free setting, that is assigning “an image to a class
that belongs to an unconstrained language-induced seman-
tic space at test time, without a vocabulary”. Their method,
named CaSED, retrieves captions from a database that are
semantically closer to the input image. From these captions,
candidate categories are extracted through text parsing and
filtering. CaSED estimates the similarity score between the
input image and each candidate category using CLIP, lever-
aging both visual and textual information, to predict the best
matching candidate. Subsequent works remain mostly in the
image domain, e.g. by extending vocabulary-free image clas-
sification to semantic image segmentation [4], and exploring
vision language assistants for fine-grained image classifica-
tion [21]. To the best of our knowledge, VoF3DIS is the first
that extends such vocabulary-free setting to 3D (point-level)
instance segmentation Instead of performing retrieval from
web-scale database, PoVo leverages a language and vision
assistant to obtain relevant semantic concepts regarding the
target 3D scene, being more flexible and versatile.
Open-vocabulary 3D scene understanding. Recent ad-
vancements in 3D scene understanding mostly involve
the adaptation of Vision-Language Models (VLMs) to the
3D domain, enabling semantic understanding in the open-
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vocabulary setting, i.e. being able to recognize objects within
a wide-range vocabulary, no longer being constrained by the
closed-set at training time. A common pathway is to transfer
visual representation features of multi-view images to 3D
points via pixel-to-point correspondences, which can then
be used to either train text-aligned 3D encoders [13, 26], or
to address open-vocabulary 3D scene understanding tasks
directly [12]. In the following, we discuss recent open-
vocabulary methods designed for 3D scene semantic seg-
mentation and instance segmentation.

3D semantic segmentation methods aim to obtain point-
level representation that are aligned with text. PLA [7]
leverages image captioning models to form hierarchical 3D-
caption pairs and employs contrastive learning to align point-
level features with textual representation. OpenScene [26]
learns a 3D network through distillation and uses open-
vocabulary 2D segmentation approaches, such as OpenSeg
[10] and LSeg [16], to extract pixel-level features from posed
images. Differently, OV3D [13] prompts vision language
assistant to generate semantic classes with detailed descrip-
tions from multi-view images. Text with enriched semantics
are then anchored to pixels via image segments obtained
with class-agnostic segmentation method, e.g. SAM [14].
OV3D [13] further trains a 3D encoder to align with the
pre-trained text encoder for open-vocabulary semantic seg-
mentation. ConceptFusion [12] transfers visual features to
3D points in a training-free fashion. It employs a class-
agnostic image segmentation method, like SAM [14], to
localize regions containing objects in images and utilizes a
vision encoder, such as CLIP [27], to generate pixel-level fea-
tures, which can be lifted to 3D points for open-vocabulary
scene understanding.

3D instance segmentation methods aim to obtain instance-
level 3D masks with associated text-aligned per-mask rep-
resentation. OpenMask3D [33] is the first method features
open-vocabulary 3D instance segmentation. OpenMask3D
relies on Mask3D [30], a class-agnostic 3D instance mask
generator to generate 3D instance masks. Each 3D mask
is projected to multi-view images to locate corresponding
visual regions and obtain text-aligned representation with
CLIP image encoder. Finally, it matches per-mask represen-
tations with textual representation of user-specified queries
for segmenting instances. OVIR-3D [22] processes multi-
view images with an off-the-shelf open-vocabulary 2D de-
tector, Detic [40], to produce 2D region proposals associated
with text-aligned features, which are then aggregated to 3D
points, forming 3D instance representation for query. In-
stead of using class-agnostic 3D segmenter for generating
instance masks [33], recent works [32, 36, 38] partition the
3D scene into superpoints and progressively merges them
into 3D instance masks with 2D guidance, and eventually
assign a semantic label per mask or refer to any mask with
user-specified text based on CLIP. For example, SAI3D [36]

builds a sparse affinity matrix that captures pairwise simi-
larity based on the 2D masks generated by SAM to merge
superpoints. Open-vocabulary 3DIS is then achieved by find-
ing the most overlapping 3D mask with the area that are
projected from 2D masks obtained by OVSeg [18] given the
text query. OVSAM3D [32] project the superpoints onto 2D
posed images to serve as point prompts to guide SAM for
image segmentation. The image segments are then projected
back to 3D for refining the 3D masks. Semantic labels are ob-
tained from an open-vocabulary tagging method, RAM [38]
with a vocabulary of about 6,400 categories. OVSAM3D
also leverages a language assistant (ChatGPT) to filter out
scene-irrelevant concepts. Semantic categories can then be
anchored with CLIP by comparing the visual embeddings
of SAM segmented 2D crops against the text embeddings
of RAM-obtained tags. Open3DIS [25] further combines
the class-agnostic 3D instance segmentation method, e.g.
Mask3D, with a mask segmenter of a 3D instance guided by
2D (i.e. merging superpoints with a 2D segmenter help, such
as SAM). For each mask, Open3DIS computes a text-aligned
representation by aggregating the CLIP visual representation
of muti-scale crops from multiple views.

Our work focuses on 3D instance segmentation. How-
ever, unlike previous work on open-vocabulary 3D instance
segmentation, VoF3DIS features a novel setting that operates
under the assumption that target classes are unknown during
inference. PoVo addresses VoF3DIS in a training-free fash-
ion by leveraging language and assistants to provide scene
semantics and ground them into 3D instance segments.

3. Vocabulary-free 3D scene understanding
Definition. Vocabulary-free 3D instance segmentation
(VoF3DIS) aims to assign a semantic label to each 3D in-
stance mask in a point cloud without relying on any prede-
fined list of categories (vocabulary) at test time. Formally,
given a point cloud P = {p}, where p ∈ Rd s.t. d ≥ 31, The
point cloud is decomposed into a set of 3D instance masks
M3D, where each mask M3D

i ∈ M3D is set of binary val-
ues with ones indicating its corresponding points belong
to the ith object instance, and zeros otherwise. VoF3DIS
involves assigning a class c ∈ S to each 3D instance mask
M3D

i , where S represents a unconstrained semantic space.
For example, BabelNet [24] contains millions of semantic
concepts, that is four magnitudes larger than the semantic
classes annotated in ScanNet200 [29]. The objective is to
design a function f that maps 3D masks to concepts, for-
mally defined as f : M3D → S. At test time, the function
f has access to the point cloud P and to a source that pro-
vides vast semantic concepts approximating S. Potential
semantic sources, as discussed in [3], can be either in the

1d = 3 represents the basic case in which a point is represented by a 3D
coordinate (LiDAR capture). In some instances, d = 4 or d = 6 if LiDAR
luminance, or RGB information are available, respectively.
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format of a web-scale database or a model that is trained
with such database. VoF3DIS problem requires searching for
relevant concepts from a vast semantic source and requires
point-level semantic grounding, making it significantly more
challenging than image classification as in [3].
Challenges. A key challenge in distinguishing concepts
within a vast semantic space in point clouds is ensuring
spatial consistency when assigning labels to points. This re-
quires models to not only label individual points accurately
but also to guarantee that adjacent points, likely belonging
to the same object, are assigned to the same label. Moreover,
point sparsity may lead to incomplete or ambiguous object
representations, making it difficult to distinguish small or
fine-grained objects. Reconstruction noise can render cer-
tain elements of the scene geometrically indistinguishable,
thus making it difficult to differentiate between foreground
and background, or objects with similar shapes but differ-
ent functions, in particular in the cases where photometric
information is missing or inaccurate.

4. Our approach
Given the point cloud P of a 3D scene and the corresponding
set of N posed images V = {In}Nn=1, our method PoVo
predicts 3D instance masks with their associated semantic
labels without knowing a predefined vocabulary. As shown
in Fig. 2, PoVo first utilizes a large vision-language assistant
and an open-vocabulary 2D instance segmentation model to
identify and ground objects on each posed image In, forming
the scene vocabulary C mitigating the risk of hallucination
by the vision-language assistant.

Meanwhile, we partition the 3D scene P into
geometrically-coherent superpoints Q, to serve as initial
seeds for 3D instance proposals. Then, with the semantic-
aware instance masks from multi-view images, we propose a
novel procedure in representing superpoints and guiding their
merging into 3D instance masks, using both the grounded
semantic labels and their instance masks. Specifically, by
projecting each 3D superpoint onto image planes, and check-
ing its overlapping with 2D instance masks, we can aggre-
gate the semantic labels from multiple views within each
superpoint. Once each superpoint is associated to a semantic
label, we then perform superpoint merging to form 3D in-
stance masks via spectral clustering. To do so, we define an
affinity matrix among superpoints constructed by both mask
coherence scores computed with the 2D instance masks, and
semantic coherence scores computed with the per-superpoint
textual embeddings. Finally, for each 3D instance proposal,
we obtain the text-aligned representation by aggregating
the CLIP visual representation of multi-scale object crops
from multi-view images (as in [25]). We further entich such
vision-based representation with textual representation com-
ing from the merged superpoints. The text-aligned mask
representation enables the semantic assignment to instance

masks with the scene vocabulary C.
It is worth to mention that PoVo can not only address

VoF3DIS, but it is also compatible with the open-vocabulary
setting, by performing semantic assignment with any given
vocabulary or user-specified prompt.

4.1. Scene vocabulary generation

PoVo first utilizes a large vision-language assistant to iden-
tify the scene vocabulary C, i.e. the list of object cate-
gories in the scene, that are grounded in the multi-view
images. Specifically, for each posed image In, we prompt
the vision-language assistant with “List the object
names in the scene”. We then parse the response to
obtain the list of objects, C−

n , present in the image from the
answer. To mitigate the potential hallucination of object pres-
ence by the vision-language assistant, we subsequently em-
ploy an open-vocabulary 2D instance segmentation model,
e.g. grounded SAM, to ground all categories in C−

n , obtain-
ing the grounded object categories Cn, as well as the set of
masks M2D

n for each object on the 2D posed image In.
With Cn, we then construct the scene vocabulary C for

each point cloud by retaining only the unique categories
from the combined sets of Cn, formally as C =

⋃N
n=1 Cn,

where
⋃

denotes the union operation.
The grounded object categories Cn, and their correspond-

ing instance masks M2D
n on each 2D posed image, are fur-

ther exploited in the process of representing and merging
superpoints towards 3D instance masks M3D, as detailed in
the following section.

4.2. 3D instance mask formation

We leverage over-segmented geometrically-coherent super-
points to initialize the process of 3D instance formation. In
addition to be a common practice in prior works [25, 32, 36],
we deem superpoint initialization is more generalizable,
thus suits better the zero-shot setup, compared to pre-
trained class-agnostic 3D instance segmentation models, e.g.
Mask3D [30], which has been trained on datasets that are
used for method evaluation. In the following, we detail how
superpoints are generated and how they are merged into 3D
instances by leveraging the results of instance segmentation
on posed images.
Superpoint generation. We use graph cut to group points
into geometrically homogeneous regions, yielding a set of
M superpoints Q = {Qi}Mi=1, where Qi is a binary mask
of points in P . Superpoints are dense partitions of the 3D
scene. Neighboring superpoints are likely to the semantic
label. For example, a table, according to geometric features,
might be partitioned into multiple superpoints corresponding
to different surface planes, with each plane sharing the same
semantic label i.e. “Table”. Via merging superpoints, we can
form semantically-coherent 3D instance masks.
Superpoint merging by spectral clustering. We aim to

4



Vision-language 
Assistant

“List the object
names in the scene”

Superpoint
generation
(Graph cut)

Open-voc. object
segmenter

Scene vocabulary

fridge
table

input point cloud

multi-view images

superpoints

3D instance mask formation

Scene vocabulary generation

Superpoint
merging

(spectral clustering)

chair

Grounded categories & instance masks

Semantic 
coherence

Mask 
coherence

Semantic assignment

3D instance masks

Text-aligned
point representation

Figure 2. PoVo’s architecture to address the VoF3DIS task. To generate the scene vocabulary, we start from multi-view images and use a
language and vision assistant to identify lists of objects contained in each posed image. Then, we run an open-vocabulary object segmenter
to ground the identified categories with instance masks to mitigate the potential risk of hallucination. We finally obtain the scene vocabulary,
i.e. the list of unique grounded categories among all posed images. In parallel, to form 3D instance masks, we extract superpoints from the
point cloud with graph cut. We then merge those dense superpoints to form 3D instance masks, considering both the semantic coherence and
mask coherence which are computed with the 2D object masks. Finally, we obtain text-aligned point features for all points within each 3D
instance mask, which are then used to assign the semantic category within the scene vocabulary. In addition to VoF3DIS, PoVo is also able
to deal with the open-vocabulary setting, by substituting the scene vocabulary with any predefined vocabulary or user-specified prompt.

merge superpoints that tend to overlap with the same 2D
masks when projected to their respective image planes, with
semantic consistency. To this end, we define i) a mask coher-
ence score aMi,j that quantifies the likelihood that two super-
points Qi and Qj belong to the same object instance, and ii) a
semantic coherence score aSi,j that quantifies the probability
that two superpoints correspond to the same class.

We derive the mask coherence score by evaluating the
overlapping ratio of the 3D superpoints Qi and Qj when pro-
jected onto the image plane of a 2D mask. Specifically, for
each 2D instance mask M2D

t ∈ {M2D
n }Nn=1, we calculate

the Intersection over Union (IoU) Oi,t with each superpoint
Qi the image pixels corresponding to Qi, by project all
points of Qi onto the image plane of M2D

t , using the known
camera matrix, and exclude points outside the camera’s field
of view. A superpoint is considered to have sufficient over-
lap with a 2D mask if the IoU is higher than a threshold
Oi,t > τiou. We then compute the mask coherence score
aMij between two superpoints Qi and Qj accounting all 2D
instance masks as:

aMij =

T∑
t=1

g (Oi,t, τiou) · g (Oj,t, τiou) , (1)

where T is the total number of 2D instance masks and the

function g(x, τ) is defined as g(x, τ) =

{
x if x > τ

0 otherwise
.

By computing aMij among all pairs of superpoints, we obtain
the mask coherence matrix AM .

To compute the semantic coherence score aSij , we first
obtain the semantic representation per superpoint. Specif-
ically, for each superpoint Qi, we identify the top K 2D
masks based on the IoU Oi,t and their corresponding seman-
tic labels. The most frequent label among these 2D masks
is assigned as the semantic label for the superpoint Qi. We
then obtain its semantic representation by encoding the label
text of Qi into a feature vector fQi

using a text encoder.
We then calculate the cosine similarity using the semantic
representation between Qi and Qj as aSij :

aSij =
f⊤
Qi
fQj

∥fQi∥∥fQj∥
⊙

(
f⊤
Qi
fQj > τsim

)
. (2)

Similarly, we obtain the semantic coherence matrix AS by
computing aSij among all pairs of superpoints.

With AM and AS , we obtain an affinity matrix A
of superpoints Q as A = AM ⊙ AS . Then, we com-
pute the eigenvectors of the Laplacian of A, defined
as L = D−1/2(D − A)D−1/2, to merge superpoints:
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{y0, . . . , yM−1} = eigs(L), with the corresponding eigen-
values {λ0, . . . , λM−1} ranked from minimum to maxi-
mum with λ0 = 0. We discretize the first H eigenvectors
{y0, . . . , yH} of L by clustering them across the eigenvector
dimension using K-means. H is determined by eigengap
heuristic as:

H = argmax
1≤j≤M−2

(λj+1 − λj) . (3)

In doing so, we can extend Qi with neighboring superpoints
Qj that meet the overlapping condition (τiou) with the high-
est semantic similarity. Please refer to Sec. A of the supple-
mentary materials for more details.

4.3. Text-aligned point representation

Different from prior works [12, 26] that only leverages the
visual encoder of pre-trained vision and language models,
such as CLIP, we employ both the vision encoder and the text
encoder for per-point representation to avoid the potential
modality gap observed in [3]. Specifically, given a point pl

and its corresponding superpoint Qi, we first use the vision
feature extraction method provided by Open3DIS [25] to
extract the per-point feature fv

l . The CLIP vision encoder is
leveraged to encode image crops from multiple posed images
at multiple scales, obtained by projecting their corresponding
3D mask to the posed images. We then enrich such vision-
based representation with the superpoint-level feature fQi ,
obtaining the final point-level feature fl via mean pooling.

5. Experiments

We evaluate PoVo on the 3D scene instance segmentation
task in open-vocabulary and vocabulary-free settings. We
compare PoVo with state-of-the-art methods by using two
common benchmark datasets. We present quantitative and
qualitative results and ablation studies.
Datasets. We quantitatively evaluate PoVo by using
3D scans of real scenes from the ScanNet200 [29] and
Replica [31] datasets. These datasets include both instance
and semantic (vocabulary) annotations. ScanNet200 [29]
contains a validation set of 312 indoor scans with 200 object
categories, which is significantly more than its predecessor,
that is ScanNet [5], which features 20 semantic classes only.
Replica [31] consists of 8 evaluation scenes with 48 classes.
In the supplementary material, we also present additional
results obtained on the S3DIS dataset [1] (Sec. B).
Performance Metric. Following the experimental setup of
ScanNet [5], we compute the score at average mask thresh-
olds ranging from 50% to 95% in 5% increments as the
Average Precision (AP). We then compute the AP at specific
mask overlap thresholds of 50% and 25% as AP50 and AP25,
respectively. For ScanNet200, we report results for different
category groups such as APhead, APcom, and APtail [29].

In the open-vocabulary setting, evaluation is straightfor-
ward as the vocabulary provided by the underlying dataset
can be used directly, however in VoF3DIS the language and
vision assistant can label objects differently than those la-
beled by humans in the ground truth [3]. We mitigate this
problem by using the BERT Similarity [37] that can quantify
the semantic relevance of the predicted point label in relation
to the ground-truth label, as in [15]. The BERT Similarity
is 1 when the similarity between predicted and ground-truth
labels is highest. We use a stringent threshold τbert = 0.8
on this similarity to deem a predicted label correct.
Baselines. We compare PoVo with state-of-the-art meth-
ods, including OpenScene [26], OpenMask3D [33], OVIR-
3D [22], SAM3D [35], SAI3D [36], OVSAM3D [32], and
Open3DIS [25]. OpenScene is adapted for instance segmen-
tation using Mask3D [30] as in [25]: we name this version
OpenScene⋆. Since there are no existing scene understand-
ing methods specifically designed for the VoF3DIS setting
(SAM mask + vocabulary-free semantics), we implemented
a set of baselines using state-of-the-art methods. We adapt
the open-vocabulary instance scene segmentation methods
Open3DIS [25] and SAM3D [35] to the VoF3DIS setting,
and name these versions Open3DIS† and SAM3D†, respec-
tively. We only use the 2D mask proposals provided by
Open3DIS to be comparable with our method. We replace
the user-provided vocabulary, i.e. the full category list of
each dataset, with the one generated by LLaVA as described
in Sect. 4.1. Lastly, we evaluate PoVo in the open-vocabulary
setting for further comparison of PoVo with state-of-the-art
methods, i.e. 2D/3D mask + Open-vocab. semantic.
Implementation Details. PoVo is implemented with Py-
Torch using the original implementations of CLIP [27],
LLaVA [19], and Grounded-SAM2. For LLaVA, we use
llava-v1.6-mistral-7b, while for CLIP, we use ViT-L/14. We
set τiou = 0.9, τsim = 0.9 for all experiments. For each su-
perpoint, we choose top K = 5 view masks with the largest
IoU of projected points. Experiments are run on a single
NVIDIA A40 48GB RAM. We use the original source codes
for the baselines.

5.1. Analysis of the results

ScanNet200. Tab. 1 reports OV3DIS and VoF3DIS results
on the ScanNet200 dataset. Following [11, 24], we test both
the OV3DIS and VoF3DIS setting in the validation set.

The first and second sections of the table compare PoVo
adapted to the open-vocabulary setting (3D/2D mask Open-
vocab. semantic) and baselines. Although not explicitly de-
signed for an open vocabulary setting, PoVo outperforms the
other baselines. A significant distinction between PoVo and
Open3DIS lies in the processing of multi-view images. PoVo
retrieves concepts through an assistant and transfers their
features to the 3D points, whereas Open3DIS pre-processes

2https://github.com/IDEA-Research/Grounded-Segment-Anything
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Table 1. 3D instance segmentation results on ScanNet200. Best result for each metric is in bold.

Method Semantic AP AP50 AP25 APhead APcom APtail

3D mask + Open-vocab. semantic

OpenScene∗ [26] OpenSeg [10] 11.7 15.2 17.8 13.4 11.6 9.9
OpenMask3D [33] CLIP [27] 15.4 19.9 23.1 17.1 14.1 14.9

2D mask + Open-vocab. semantic

OVIR-3D [22] Detic [40] 9.3 18.7 25.0 9.8 9.4 8.5
SAM3D [35] OpenSeg [10] 7.4 11.2 16.2 6.7 8.0 7.6
SAI3D [36] OpenSeg [10] 9.6 14.7 19.0 9.2 10.5 9.1
OVSAM3D [32] CLIP [27] 9.0 13.6 19.4 9.1 7.5 10.8
Open3DIS [25] CLIP [27] 18.2 26.1 31.4 18.9 16.5 19.2
PoVo CLIP [27] 22.4 27.9 34.4 20.7 20.2 20.6

2D mask + Vocab.-free semantic

SAM3D† [35] OpenSeg [10] 6.7 10.4 15.7 6.2 7.4 6.8
Open3DIS† [25] CLIP [27] 17.6 25.4 30.9 18.4 15.8 18.2
PoVo CLIP [27] 21.6 26.7 33.0 19.5 19.1 19.4

images using open-vocabulary segmentation and transfers
visual foundational features to the 3D points. We observed
that the segmentation performance of Open3DIS is limited
by this preprocessing and that the resulting image segmen-
tation is relatively noisy. In contrast, our method trans-
fers concepts and aggregates them based on vision and text
features, followed by superpoint-based pooling to mitigate
noisy features, proving more robustness. The third section
of the table reports the results in the VoF3DIS setting, where
we compare PoVo, with Open3DIS† and SAM3D†. When
Open3DIS† is fed the list of objects identified by LLaVA, its
performance is inferior to the open vocabulary setting. This
suggests that Open3DIS† cannot accurately handle a large
corpus of concepts because it only considers vision features.
In contrast, PoVo significantly outperforms such baselines.
Specifically, PoVo achieves strong and stable performance
across both common and rare class categories, as shown by
the metrics APhead, APcom, and APtail. This is because
our method is not trained on 3D annotated data, but instead
leverages transferred semantic information from large vision-
language models and 2D foundational models, which have
been trained on massive 2D datasets and exposed to a wide
range of categories.

Fig. 3 shows the qualitative results of text-driven 3D
instance segmentation. In the first row, we observe that PoVo
can accurately segment most parts of the scene with the
correct labels. Our model successfully can segment instances
based on various types of input text prompts, which include
object categories not present in the predefined labels, objects’
functionality, branch, and other properties. In the second row,
we have highlighted the objects in the corresponding RGB
images with boxes. Sec. B of the Supplementary Material
analyses more qualitative results.
Replica. Tab. 2 reports open-vocabulary and vocabulary-

Table 2. 3D instance segmentation results on Replica. Best result
for each metric is in bold.

Method AP AP50 AP25

3D mask + Open-vocab. semantic

OpenScene⋆ [26] 10.9 15.6 17.3
OpenMask3D [33] 13.1 18.4 24.2

2D mask + Open-vocab. semantic

OVIR-3D [22] 11.1 20.5 27.5
Open3DIS [25] 18.1 26.7 30.5
PoVo 20.8 28.7 34.4

2D mask + Vocab.-free semantic

Open3DIS† [25] 17.3 25.8 29.0
PoVo 18.9 27.6 31.9

free results on the Replica dataset. PoVo outperforms all the
other baselines on both the open-vocabulary and VoF3DIS
settings. Specifically, in the former, our approach outper-
forms Open3DIS [25] and OVIR-3D [22] by margins of +2.7
and +9.7 in AP, respectively. In the latter, PoVo outperforms
Open3DIS† [25] by a margin of +1.6 in AP. This perfor-
mance gap highlights the effectiveness of our approach in
handling unseen categories, bolstered by the 2D foundation
model and vision-language model assistance.

5.2. Ablation study

To evaluate the effectiveness of our model design, we con-
ducted a series of ablation studies on the validation set of
ScanNet200. More ablation studies are given in the Supple-
mentary Material.
How effective are superpoints to guide mask represen-
tation? There are two technical designs that we deem im-
portant for PoVo: text embedding enhanced features and

7
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Figure 3. Qualitative results obtained by PoVo in the VoF3DIS setting. Instance masks are generated by querying PoVo with query vocabulary.
The instance with the highest similarity score to the query’s embedding is highlighted in the point clouds. Green boxes outline the regions of
the objects in the corresponding RGB images.

Table 3. Ablation study of PoVo for instance feature extraction on
ScanNet200 dataset. Each variant of PoVo has one component each
that differs from the final version of PoVo.

Setting AP AP50 AP25 APhead APcom APtail

VisEmb 20.4 25.8 32.3 18.6 18.1 18.2
TxtEmb 18.4 25.5 31.7 17.4 17.3 17.6
w/o SPool 20.3 25.6 31.9 18.4 18.0 18.2
PoVo 21.6 26.7 33.0 19.5 19.1 19.4

superpoint-based average pooling. Tab. 3 shows the perfor-
mance of various feature fusion strategies. The first row dis-
plays the results using only vision features, denoted VisEmb;
we use CLIP visual encoder to obtain visual representations
for each 3D proposal by aggregating information from mul-
tiple views. While VisEmb performs better than using only
text representations (TxtEmb), their fusion enables PoVo to
achieve overall and consistent improved results. Because
the generated point-level features may be noisy, we thus
introduce a feature refinement module that averages rep-
resentations (pooling) at superpoint level: we assume that
points belonging to the same superpoint should share the
same features. The third row (w/o SPool) shows the results
without using superpoint-based pooling, which are inferior
to those of PoVo across all metrics.
How effective is text embedding superpoint merging? We
experimentally assess the influence of text feature similarity
(TxtSim) guided merging on the performance of PoVo. Sec-
ond row of Tab. 4 shows that incorporating text embedding

Table 4. Ablation study of PoVo using text embedding for super-
point merging and superpoint-based pooling on ScanNet200.

Setting AP AP50 AP25 APhead APcom APtail

w/o TxtSim 19.8 25.1 30.9 17.7 17.3 17.2
PoVo 21.6 26.7 33.0 19.5 19.1 19.4

for superpoint merging can enhance instance segmentation
performance. This improvement is achieved because 2D
masks can encompass background regions or nearby objects,
rendering IoU alone insufficient for accurately determining
the association of superpoints with a 3D proposal. Leverag-
ing text feature similarity helps PoVo to mitigate this issue.

6. Conclusions
We presented a novel approach to 3D scene understanding
that that operates without the need for a predefined vocab-
ulary. By integrating a large vision-language assistant with
an open-vocabulary 2D instance segmenter, our PoVo can
autonomously identify and label each 3D instance in a scene.
Furthermore, our innovative use of superpoints, in conjunc-
tion with spectral clustering, enables our system to generate
robust 3D instance proposals. We evaluated PoVo on two
point cloud datasets, ScanNet200 and Replica, and showed
that PoVo outperforms recent approaches adapted to the
VoF3DIS setting, as well as in the open vocabulary setting.

Because PoVo can effectively exploit language and vision
assistant understanding with point cloud data in a training-
free manner, an exciting future research direction includes

8



exploring new 3D scene understanding tasks such as affor-
dances, using the soon-to-be-released dataset SceneFun3D
[6]. Moreover, our goal is to improve geometric under-
standing using the most recent zero-shot approaches, such
as [23]. Lastly, implementing new large language and vi-
sion assistants can be a viable way to enhance point cloud
understanding even further.
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Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant

Supplementary Material

We first provide more details of the superpoint merging
procedure via spectral clustering. Then we provide addi-
tional comparative analysis on the S3DIS dataset, and we per-
form an ablation on the hyperparameters of PoVo. Lastly, we
present more qualitative results on ScanNet200 and Replica
datasets and implementation details for VoF3DIS setting.

A. Spectral clustering

To cluster the superpoints more efficiently, we propose
a hierarchical spectral clustering algorithm to generate
masks. First, a Hilbert curve is applied to serialize the
superpoints based on the coordinates of the center point
qi =

1
Ni

∑
vj∈Qi

pj for each superpoint Qi, where pj is a
point in Qi and Ni is the number of points in Qi. Next, a
sliding window is used to divide the serialized superpoints
into Ks groups, with each group containing Ns superpoints.
The window shifts by a stride of Ns. Spectral clustering is
then applied to each group to generate coarse masks. This is
followed by an iterative spectral clustering process, where
masks are merged with those from neighboring groups based
on the overlap scores between two coarse masks, Ms and
Mt. The overlap score between Ms and Mt is determined by
selecting the maximum similarity (from the affinity matrix
A) between superpoints, where one superpoint belongs to
Ms and the other to Mt. Clustering combines region sets
from merged coarse masks until Ms and Mt less than the
threshod τiou ∗ τsim. In our implementation, we first divide
the superpoints into two groups for each 3D scene, followed
by an iterative spectral clustering process.

B. Additional experiments

B.1. S3DIS dataset

S3DIS [1] consists of 271 scenes that cover 13 classes in 6 ar-
eas. We adopt the Open3DIS categorization strategy [25] for
S3DIS, which splits the dataset into base and novel sets.
The novel set includes two parts N4 and N6. PLA [7],
Lowis3D [8], and Open3DIS [25] train on the base classes
of S3DIS data, whereas the novel classes are not seen during
training. Note that our method is zero-shot and does not
require any training (neither base nor novel classes).

Tab. 5 compares the performance of our method with
other approaches on S3DIS, focusing on Average Precision
(AP) at 50% (AP50) IoU for novel classes. The table com-
pares methods across two settings: open-vocabulary and
vocabulary-free (VoF3DIS) setting. In the open-vocabulary
setting, PoVo achieves the highest scores despite using 2D
masks, with N4 AP50 of 29.1 and N6 AP50 of 33.4, out-

Table 5. OV-3DIS results on S3DIS in terms of AP50.

Method Mask type N4 AP50 N6 AP50

Open-vocab. semantic

PLA [7] 3D mask 8.6 9.8
Lowis3D [8] 3D mask 13.8 15.8
Open3DIS [25] 3D mask 26.3 29.0
PoVo [25] 2D mask 29.1 33.4

2D mask + Vocab.-free semantic

Open3DIS [25] 3D mask 24.6 26.3
PoVo [25] 2D mask 28.4 29.7

Ins. GT Ins. Pred.

Figure 4. Qualitative results obtained by PoVo in the VoF3DIS
setting. Left to right: ground truth instance, predicted instance.

performing methods like Open3DIS, which records 26.3
and 29.0 for N4 AP50 and N6 AP50, respectively. Also
in the vocabulary-free setting PoVo outperforms the other
methods, achieving N4 AP50 of 28.4 and N6 AP50 of 29.7.
Although this performance is slightly lower than in the
open-vocabulary setting, it outperforms Open3DIS, which
achieves 24.6 and 26.3 for N4 AP50 and N6 AP50, respec-
tively. These results demonstrate that PoVo provides superior
performance in both open-vocabulary and vocabulary-free
settings, highlighting its robustness and effectiveness in vari-
ous 3D instance segmentation scenarios.

Fig. 4 further presents two examples of instance segmen-
tation results on S3DIS. Compared to the ground truth, our
PoVo produces nearly identical results. This shows that
our approach effectively leverages LLaVA-guided 2D mask
prediction in conjunction with a superpoints-based spectral
clustering strategy, resulting in high-quality instance seg-
mentation results.

B.2. Ablation study on different values of IoU and
similarity threshold

We use mask IoU and text similarity to guide 3D instance
generation (superpoint merging). This involves two hyperpa-
rameters: the IoU threshold τiou and the similarity threshold
τsim, which determine how IoU and text similarity are con-
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Table 6. Ablation study on IoU threshold (τiou) and its impact on
Average Precision (AP) and AP at 50% IoU (AP50).

τiou 0.5 0.7 0.8 0.9 0.95

Open-vocabulary

AP 21.9 22.2 22.3 22.4 22.1
AP50 27.4 27.6 27.9 27.9 27.5

Vocabulary-free

AP 21.2 21.3 18.0 21.6 16.9
AP50 26.2 26.4 26.6 26.7 26.4

sidered when deciding whether two superpoints belong to
the same 3D instance. To evaluate the impact of the IoU
threshold τiou and the similarity threshold τsim on the perfor-
mance of instance segmentation, we report the performance
of 3D instance mask formation from 2D masks extracted by
Grounded-SAM from multi-view RGB images, using differ-
ent values for the IoU threshold τiou and similarity threshold
τsim in Tab. 6 and Tab. 7. The tests were conducted on the
ScanNet200 validation set.

For the open-vocabulary setting, Tab. 6 reports the re-
sults on τiou quantified using average precision (AP), and
AP at 50% IoU (AP50), by varying τiou values from 0.5
to 0.95. AP gradually increases from 21.9 at τiou = 0.5
to a peak of 22.4 at τiou = 0.9, before slightly decreasing
at τiou = 0.95. AP50 follows a similar trend, peaking at
27.9 for both τiou = 0.8 and τiou = 0.9. In the vocabulary-
free setting, AP also shows an increase, reaching its highest
value of 21.6 at τiou = 0.9 before dropping at τiou = 0.95.
The AP50 increases from 26.2 at τiou = 0.5 to a maxi-
mum of 26.7 at τiou = 0.9, and then slightly decreases
at τiou = 0.95. These results indicate that using a higher
τiou threshold up to 0.9 generally improves performance in
both settings. However, pushing the threshold to 0.95 can
lead to performance degradation, suggesting that τiou = 0.9
provides the best results.

For the setting without vocabulary, Tab. 7 reports the
results of τsim using AP, and AP50. By varying τsim values
from 0.5 to 0.9, both AP and AP50 improve, with AP peaking
at 21.6 and AP50 reaching its highest value of 26.7 at τsim =
0.9. However, further increasing the threshold to 0.95 results
in a slight decrease in both metrics, with AP dropping to
21.4 and AP50 to 26.3. These results suggest that while a
higher similarity threshold generally enhances performance,
setting the threshold too high can lead to lower performance,
indicating that τsim = 0.9 offers the best results.

B.3. Visualizations on Replica

Fig. 5 shows the qualitative results of text-driven 3D instance
segmentation. Our model successfully can segment instances
based on various types of input text prompts, which can
include object categories (such as pottery) not present in

Table 7. Ablation study on IoU threshold (τsim) and its impact on
Average Precision (AP) and AP at 50% IoU (AP50).

τiou 0.5 0.6 0.7 0.8 0.9 0.95

Vocabulary-free

AP 20.5 20.9 21.2 21.4 21.6 21.4
AP50 25.6 26.2 26.4 26.5 26.7 26.3

stool stool

pottery

benchbench

throw away garbage

Figure 5. Qualitative results of two examples obtained by PoVo
in the VoF3DIS setting on Replica dataset. The instance with the
highest similarity score to the query’s embedding is highlighted in
the point clouds. In the images, each box outlines the regions of
the objects detected by Grounded-SAM based on the queries.

the predefined labels, or objects’ functionality (throw away
garbage).

Fig. 6 presents qualitative results from two examples of
instance segmentation achieved using our method in the
VoF3DIS setting. For each example, we provide 2D instance
segmentation results from two different view RGB images of
a 3D scene, 3D instance ground truth and our perdition. Our
method demonstrates visually robust performance without
relying on predefined categories.

B.4. Visualizations on ScanNet200.

To illustrate the quality of segmentation, we provide addi-
tional visualizations on ScanNet200. Fig. 7 presents four
examples of instance segmentation results. Ideally, different
instances should have distinct colors, while the same instance
should maintain consistent coloring. It’s not necessary for
objects to match colors exactly between the ground truth and
predictions, but semantic success is achieved when objects
match the ground truth colors. As shown, PoVo accurately
segments most of the scene for both instance and semantic
segmentation using only the LLaVA-provided vocabulary.
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Figure 6. Qualitative results were achieved using PoVo in the VoF3DIS setting. The process begins by generating 2D instance masks for
each image by querying a vocabulary established by LLaVA (as shown in the top row, where the words are displayed in each image). These
2D masks (highlighted by boxed regions in each image) are then integrated into 3D masks (bottom row: Prediction columns) using Spectral
Clustering techniques.

Ins. GT Sem. GT Ins. Pred. Sem. Pred.

Figure 7. Qualitative results obtained by PoVo in the VoF3DIS setting on ScanNet200 are presented. From left to right: an input point cloud,
ground truth instance labels, ground truth semantic labels, predicted 3D instance labels, and predicted 3D semantic labels. In ideal instance
segmentation within a 3D scene, different instances should be colored differently, while the same instance should have a consistent color. It
is not necessary for the same object to have the same color in both the ground truth and predicted results. For semantic prediction, success is
indicated when each object matches the ground truth color.
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C. Implementation details for VoF3DIS setting
In our experiments, because the categories provided by the
annotated datasets are fewer than the actual objects they
contain, we evaluate our method in the VoF3DIS setting by
restricting it to the categories detected by both LLaVA and
those provided in the datasets.
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