Under review as submission to TMLR

Knowing How to Edit: Reliable Evaluation Signals for
Diagnosing and Optimizing Prompts at Query Level

Anonymous authors
Paper under double-blind review

Abstract

Prompt optimization has become a central mechanism for eliciting strong perfor-
mance from LLMs, and recent work has made substantial progress by proposing
diverse prompt evaluation metrics and optimization strategies. Despite these ad-
vances, prompt evaluation and prompt optimization are often developed in iso-
lation, limiting the extent to which evaluation can effectively inform prompt re-
finement. In this work, we study prompt optimization as a process guided by
performance-relevant evaluation signals. To address the disconnect between evalu-
ation and optimization, we propose an evaluation-instructed prompt optimization
approach that explicitly connects prompt evaluation with query-dependent opti-
mization. Our method integrates multiple complementary prompt quality metrics
into a performance-reflective evaluation framework and trains an execution-free
evaluator that predicts prompt quality directly from text, avoiding repeated model
executions. These evaluation signals then guide prompt refinement in a targeted
and interpretable manner. Empirically, the proposed evaluator achieves 83.7% ac-
curacy in predicting prompt performance. When incorporated into the optimiza-
tion process, our approach consistently outperforms existing optimization baselines
across eight benchmark datasets and three different backbone LLMs. Overall, our
results demonstrate that reliable and efficient evaluation signals can serve as an
effective foundation for robust and interpretable prompt optimization.

1 Introduction

As the capabilities of large language models (LLMs) continue to improve, prompting has become
a primary interface for eliciting and shaping model behavior [Liu et al.| (2025)). This has sparked
rapid progress along two closely related directions: methods for evaluating prompt quality, and
strategies for optimizing prompts to improve downstream performance. A wide range of prompt
evaluation metrics and optimization techniques have been proposed, reporting notable performance
improvements across diverse tasks. Despite this progress, prompt evaluation and prompt optimiza-
tion are typically developed as separate components. Many evaluation methods focus on measuring
prompt quality without indicating how prompts should be modified, while optimization procedures
frequently rely on heuristic, unstable, or opaque signals that are weakly grounded in systematic eval-
uation. This separation raises a fundamental question: How can evaluation provide reliable
signals for deciding where and how to refine prompts?



Under review as submission to TMLR

In this work, we take a step toward connecting prompt evaluation with prompt optimization. Rather
than treating evaluation as a post-hoc assessment, we explore how evaluation signals can be used
to inform where and how prompts should be refined. At a high level, this perspective involves two
closely related aspects: (i) how prompt quality should be comprehensively evaluated, and (ii) how
such evaluation signals can be used to guide prompt optimization.

Existing prompt optimization strategies broadly fall into two categories: static template optimiza-
tion and dynamic, query-level optimization. Traditional approaches optimize a single prompt tem-
plate for a given task and apply it uniformly to all queries, as in methods such as TeztGrad [Yuk-
sekgonul et al.| (2024), ProTeGi|Pryzant et al.| (2023), and their variants. These methods implicitly
assume that queries within a task share similar semantic and reasoning structures, allowing a
global template to generalize. However, as LLM applications expand to more diverse and open-
ended settings, this assumption becomes increasingly fragile. In dynamic and complex real-world
user scenarios, static templates often fail to adapt, leading to suboptimal or unstable performance.

To address this limitation, recent work has moved toward query-dependent prompt optimization,
including methods such as JAP [Yuan et al.| (2024)), Self-Refine Madaan et al.| (2023)), QPO Kong
et al.| (2024), and Prompt-OIRL |Sun et al. (2023a)). These approaches tailor prompts to individual
queries rather than relying on a single template. Despite their flexibility, most dynamic methods
rely on heuristic, noisy, or opaque optimization signals, such as LLM-generated textual feedback
or black-box reward models. As a result, optimization is often unstable and difficult to interpret,
as these methods lack a principled way to decide where and how prompts should be edited. This
highlights the need for reliable evaluation signals to guide prompt optimization.

A natural solution for providing such guidance is prompt evaluation. A growing body of work has
proposed diverse metrics to assess prompt quality, including semantic LLM-based measures and
quantitative, response-based metrics such as stability [Chen et al.| (2025) and mutual-information
scores [Kraskov et al.| (2004). While these metrics offer useful perspectives, they are typically devel-
oped in isolation, capturing only partial aspects of prompt behavior and exhibiting weak or incon-
sistent alignment with downstream task performance. The absence of a systematic, performance-
reflective evaluation framework has therefore limited their use as actionable signals for prompt
optimization, and prompt evaluation is often treated as a post-hoc assessment rather than as a tool
for guiding prompt refinement. Moreover, many evaluation metrics are response-based and require
repeated model executions, making them difficult to deploy in query-level or multi-agent settings.

To address these challenges, we propose an evaluation-instructed prompt optimization system that
explicitly connects prompt evaluation with optimization decisions. Rather than treating evaluation
as a post-hoc analysis, our goal is to use evaluation signals to determine where and how prompts
should be edited during optimization.

First, to overcome the fragmented nature of existing metrics, we construct a performance-reflective
evaluation framework that integrates multiple complementary dimensions of prompt quality and
aligns them with downstream task accuracy. Second, to mitigate the high cost of response-based
evaluation, we train an execution-free evaluator that predicts prompt quality scores directly from
text, enabling prompt assessment without repeated model executions. Finally, we use these evalua-
tion signals to guide prompt optimization, allowing prompt revisions to be targeted, interpretable,
and query-dependent.



Under review as submission to TMLR

Empirically, the proposed evaluator achieves an accuracy of 83.7% in predicting prompt success rate.
When integrated with the metric-aware optimization process, our approach consistently outperforms
both static-template optimization methods and existing query-dependent optimization baselines
across 8 benchmark datasets on 3 different backbone LLMs.

Our main contribution is proposing the first prompt evaluation—optimization pipeline, which
unifies comprehensive evaluation and dynamic optimization within a single closed loop. Building
on this pipeline, our contributions are twofold:

1. Performance-reflective prompt evaluation. We establish a comprehensive prompt-quality
evaluation system, and train an execution-free evaluator capable of predicting multi-dimensional
quality and downstream performance, which provides reliable signal for prompt optimization.

2. Evaluation—instructed optimization mechanism. We bridge the gap between prompt eval-
uation and optimization in query-dependent settings, improving robustness and interpretability
by allowing evaluation signals to directly guide optimization directions.

2 Related Works

2.1 Static Prompt Template Optimization

A substantial body of prior work studies prompt optimization by searching for a single prompt
template that generalizes across all queries within a task. Representative approaches include Au-
tomatic Prompt Engineer (APE) [Zhou et al.| (2023), OPRO [Yang et al.| (2024), and PromptAgent
Wang et al.| (2023). These methods typically generate candidate prompts, execute them on a train-
ing set, evaluate performance against ground-truth responses, and iteratively refine prompts using
reinforcement learning, evolutionary strategies, or heuristic search. Such approaches have been
shown to automate prompt discovery and improve performance over manually designed templates.

However, static template optimization assumes that queries within a task share sufficiently similar
linguistic and reasoning structures for a single prompt to generalize. In practice, real-world queries
often exhibit substantial heterogeneity. For example, reasoning benchmarks such as GSM8K [Cobbe
et al| (2021) contain problems that differ widely in both surface form and underlying logical struc-
ture. Even an optimized static prompt primarily encodes task-level instructions and cannot adapt
its reasoning strategy or contextual emphasis to individual queries |Sun et al.| (2023b). As a re-
sult, the effectiveness of static prompts is fundamentally constrained in settings where query-level
variation is pronounced.

From a modeling perspective, static prompt optimization can be viewed as learning a global prompt
that minimizes average loss over a task distribution. While effective in relatively homogeneous set-
tings, this formulation limits the ability of prompts to exploit query-specific structure or contextual
information, motivating the development of more adaptive optimization strategies.

2.2 Query-Dependent Prompt Optimization

To overcome the limitations of static templates, recent work has explored query-dependent prompt
optimization, where prompts are tailored to individual queries. Instance-Adaptive Prompting (IAP)
Yuan et al.|(2024)), for example, selects prompts based on attention-gradient saliency scores derived
from internal model representations. Self-Refine Madaan et al.| (2023)) and ProRefine [Pandita et al.



Under review as submission to TMLR

(2025) iteratively improve prompts using LLM-generated textual feedback, while QPO [Kong et al.
(2024)) and Prompt-OIRL |Sun et al.| (2023a) train auxiliary models to generate or rank prompts for
each instance.

Although these methods increase flexibility and enable query-specific adaptation, they differ sub-
stantially in how optimization signals are obtained. Many approaches, such as Self-Refine [Madaan
et al.| (2023) and ProRefine [Pandita et al.| (2025)), rely on natural-language feedback generated by
LLMs to approximate optimization directions, which can introduce instability and sensitivity to
sampling noise |Gou et al.| (2023)). Others depend on black-box reward models or access to inter-
nal model states (e.g., IAP [Yuan et al. (2024), QPO [Kong et al.| (2024), and Prompt-OIRL [Sun
et al| (2023al) ), which limits interpretability, portability, or scalability. As a result, while query-
dependent methods improve expressiveness compared to static templates, they often lack clear and
interpretable mechanisms for determining how prompts should be modified.

2.3 Prompt Evaluation Metrics

Parallel to advances in prompt optimization, a growing literature has proposed metrics for evaluat-
ing prompt quality. Existing metrics span semantic LLM-based measures, such as clarity, coherence,
and specificity [Shah| (2024)), as well as quantitative, response-based metrics including stability |Chen
et al. (2025) and mutual-information scores Kraskov et al.| (2004). These metrics provide comple-
mentary perspectives on prompt behavior, capturing aspects such as semantic alignment, output
consistency, and sensitivity to sampling.

However, most prompt evaluation metrics are developed independently and focus on one specific
attribute of prompt behavior, leading to fragmented assessments that may not consistently reflect
downstream task performance. Moreover, many commonly used metrics, such as stability [Chenl
et al| (2025), MI [Kraskov et al.| (2004), and prompt entropy [Lu et al.|(2022), are response-based
and require repeated executions of an LLM to obtain stable estimates, which significantly increases
computational cost. This limits their practical use in settings where prompts must be evaluated or
updated at the query level, such as interactive systems or multi-agent frameworks.

Due to these limitations, prompt evaluation is often used as a post-hoc analysis tool rather than as a
direct input to prompt optimization. Bridging prompt evaluation with optimization in a principled
and efficient manner remains an open challenge.

3 Method

Our goal is to build a reliable and interpretable prompt evaluator that can estimate prompt quality
across multiple dimensions without executing the prompt itself, and use the scores on different
metrics to instruct the prompt optimization process. This section introduces how we construct the
training dataset, select quantitative evaluation metrics, design and train the evaluator model, and
use the evaluation results to instruct query dependent prompt optimization.

3.1 Training Dataset Generation

To train an evaluator that accurately captures how prompts behave across different quality dimen-
sions, we require a dataset that spans a wide spectrum of prompt quality. Rather than generating
only high-performing prompts, our goal is to construct a diverse collection of prompts with varying



Under review as submission to TMLR

structures, styles, and performance levels. This diversity enables the evaluator to learn general-
izable patterns relating prompt characteristics to downstream execution performance. In other
words, the objective of this stage is diversity, not optimality; main performance improvement is
achieved during the subsequent optimization stage (Section .

We sample queries from multiple benchmarks, including BBH |Suzgun et al| (2022)
(causal _judgement, disambiguation_qa, sports_understanding, web_of lies), GPQA [Rein et al.
(2024) (diamond, main), and LegalBench |Guha et al.| (2023)) (definition__classification). For each
query, we generate prompt candidates from three complementary sources:

(1) Static prompt templates. We select five widely used prompt templates covering several
mainstream prompting paradigms, including direct prompting, chain-of-thought, tree-of-thought,
and multi-expert debate/voting structures. The templates are shown in Appendix Table [b] which
serve as a diverse and stylistically rich foundation for prompt construction.

(2) LLM-generated prompts. To introduce systematic stylistic diversity, we instruct the LLM
with a higher temperature to generate new prompts conditioned on each query. We design six
prompting styles: step-by-step reasoning, expert discussion, Socratic questioning, creative explo-
ration, verification-oriented prompting, and contrastive prompting. We provide concrete examples
of these six prompting styles in Appendix Table [f] These styles reflect different reasoning dynamics
and linguistic patterns, enabling the evaluator to observe a broad set of semantic variations.

(3) Evolutionary recombination. Inspired by genetic algorithms, we further expand the
prompt pool through semantic recombination. From the union of static and LLM-generated
prompts, we randomly sample two parent prompts. We apply an LLM agent to semantically
decompose each parent prompt into two segments, cross-combine the segments into new hybrids,
and then rephrase the resulting prompts to ensure smoothness and semantic coherence. Illustrative
examples of the recombination process are provided in Appendix Table [7] This procedure effec-
tively blends structural and stylistic features from multiple prompting strategies while maintaining
natural-language fluency.

Across these three sources, we obtain a total of 11,530 prompt candidates with substantial di-
versity in reasoning structure, linguistic form, semantic content, and overall quality. This diverse
dataset provides a strong foundation for training a generalizable evaluator.

3.2 Metric Selection

To comprehensively evaluate prompt quality, we collect a diverse set of quantitative metrics com-
monly used in existing prompt-evaluation research. These metrics can be grouped into four cat-
egories: (1) LLM-based semantic metrics: clarity, coherence, and specificity |Shahl (2024]);
(2) Prompt-intrinsic metric: nll_score [Lastras| (2019); (3) Response-based metrics: sta-
bility__score (Chen et al.| (2025), mi_score Kraskov et al.| (2004), and prompt_entropy [Lu et al.
(2022), each computed from multiple executions of the same prompt; (4) Task-level metric:
query__entropy [Lu et al|(2022), which captures the inherent uncertainty or difficulty of the query
itself.



Under review as submission to TMLR

In addition to these metrics, we record each prompt’s execution accuracy. To obtain stable estimates
under stochastic decoding, every prompt is executed ten times. We then use whether its average
accuracy exceeds 50% as a binary indicator of prompt quality. This threshold follows a majority-
voting logic: once a prompt’s accuracy exceeds 50%, aggregating multiple executions by majority
vote will consistently recover the correct answer despite sampling noise.

Using all 11,530 prompts, we first compute their full multi-dimensional metric scores strictly follow-
ing the formal definitions of each metric. For metrics that require model execution (e.g., response-
based metrics), we execute each prompt ten times under controlled sampling settings and average
the resulting scores to obtain stable estimates. With these rigorously obtained metric scores, we
then perform metric selection based on their ability to reflect downstream performance. Specifi-
cally, we generate semantic embeddings for each prompt using the text-embedding-3-large model,
train an XGBoost classifier to predict whether accuracy exceeds 50%, and use the gain importance
scores to evaluate each metric’s contribution. Metrics with only weak associations to performance
are removed.

Through this analysis, we identify four metrics that exhibit both high importance and strong
complementarity. Each metric captures a distinct dimension of prompt behavior:

(1) nll__score: Measures the negative log-likelihood of directly generating the correct answer.
Lower scores indicate stronger semantic guidance and a more restrictive output space.

(2) stability__score: Quantifies response consistency across repeated executions. Higher stability
reflects reduced sensitivity to sampling noise.

(3) mi__score: Computes the mutual information between the query and the generated output,
representing semantic alignment and task relevance.

(4) query__entropy: Captures the intrinsic difficulty of the query by accessing the entropy. Am-
biguous or high-reasoning queries exhibit higher entropy without prompting.

These four metrics were used both as supervision targets and as interpretability anchors for the
evaluator, jointly providing a comprehensive and complementary view of prompt quality. The
detailed formulas and underlying rationale for each metric will be further discussed in Section [3.4]

3.3 Evaluator Architecture

Our evaluator & is built upon a LLaMA-8B-Instruct backbone with lightweight LoRA adapta-
tion, and is designed as a multi-task model that jointly performs binary classification and metric
regression. Formally, the evaluator implements a mapping:

Eop:x (g, m), with §= fas(2:6c), M= freg(h;0,) € RM.

Here, h denotes the shared encoder representation, and z is the metric-aware fusion of semantic
and regression features. Both quantities are formally defined in the following equations.

Shared Encoder. The evaluator constructs the textual input from the user query ¢ and the
prompt candidate p. To exploit the model’s reasoning capabilities, we prepend a fixed natural-
language prefix r describing the evaluation objective and the definition of each metric; this im-
proves stability and ensures the encoder internalizes the meaning of every score dimension. The



Under review as submission to TMLR

“ Weights Update i Bad / Good Prompts \m High / Low Attribution Metrics

Prompt Evaluator «‘ Modulate weights Optimizer
Merics Scores Gradient-based Metric-specific
i o°7 Reasoning OptC;l]mzatlon
Regression m 0.3 aLis S@ \
l Head = m 25 —» Loss — a7, —_ @ — @@
. —_— ke o2 Bi-level T
optimization G

Classification
Head

LLaMA Features
Encoder

Loss

or
Prediction

>50%

Figure 1: Overview of our evaluation-instructed optimization pipeline.

concatenated input is then encoded through the LLaMA backbone:

x=[r; ¢ p, h = fenc(x; Oenc)

Metric regression and feature fusion. A regression head predicts continuous values for the
selected metrics. To enable the classifier to be both semantics-aware and metric-aware, the predicted
metric vector is fused with the feature map via a lightweight MLP:

2 = 6(h, 1) = MLP([h; ).

This fusion encourages the classifier to base its decision not only on prompt semantics but also on
the evaluator’s internal expectations of metric behavior.

Bi-level training objective. The evaluator is trained through a bi-level objective in which
regression assists classification by providing additional structural signals. For a fixed set of metric
weights w, the model parameters € are optimized through:

M
0*(w) = arg min (Eds(@) + A Z w; L?g(ﬁ)) , w* = arg min L5(0" (w)) .
i=1

This design ensures that metric regression helps classification only when useful, preventing the
regression task from dominating or misguiding learning.

Gradient-informed metric weighting. To identify which metric dimensions most strongly
affect prompt success, we update each weight w; using gradient signals from the classification loss:

6£C15

w; < A(ws, |V, Lasl])  with  A(w;, g;) = Normalize(w; —n Y

);



Under review as submission to TMLR

where the adaptation operator increases the influence of metrics that exert stronger gradients on
the classification objective. This creates a closed-loop mechanism in which regression dimensions
are automatically aligned with performance-relevant signals.

Lightweight adaptation. To maintain efficiency and portability, we fine-tune only a small subset
of attention layers through LoRA adapters, amounting to roughly 5.5% of total parameters. This
keeps computational cost low while preserving generalization across prompt types and downstream
models.

3.4 Metric-Aware Optimization

Once the evaluator identifies a prompt as low-quality (i.e., § < 0.5), the system initiates a metric-
instructed optimization process. The core idea is to trace why a prompt fails by examining the
gradient of the classification loss with respect to each predicted metric dimension, which quantifies
the negative contribution to the evaluator’s decision of a particular metric. This enables the system
to attribute performance degradation to specific factors (e.g., low answer confidence, high ambi-
guity, unstable reasoning trajectory, ect.) rather than treating all errors as a single homogeneous
failure mode. For each problematic metric dimension, the optimizer invokes a corresponding diag-
nostic module that inspects the prompt for metric-specific issues and suggests targeted corrective
edits. These refined suggestions are aggregated to construct an improved prompt, which is then
reevaluated.

Below we present the four core metrics used in this process, including their definitions, diagnostic
intuition, and how the optimization module improves each dimension.

Negative Log-Likelihood (NLL). For a query—prompt pair (¢q,p) and the correct answer token
sequence y = (yy, ..., Yyr), the NLL score is computed by forcing the model to generate the correct
answer and measuring the probability:

T
1
NLL(p,q) = =7 > 108 Po(y; | 4., y<t)-
t=1

In practice, this measures the model’s confidence in the correct answer. A high NLL (i.e., low confi-
dence) suggests that the prompt does not sufficiently constrain the model’s generative distribution.

Typical causes of poor NLL include: (1) Instruction conflict: the prompt simultaneously demands
incompatible goals, diluting the model’s focus; (2) Noisy or long preambles: excessive role-play,
fillers, or redundant restatements weaken the clarity of the task; (3) Few-shot inconsistency: demon-
strations differ in reasoning style or label format, confusing the model’s internal alignment; (4) Task
mismatch: the reasoning template implied by the prompt is misaligned with the actual task type.
A metric-specific diagnoser then detects these issues and provide optimization suggestions.

Semantic Stability. For a prompt p, we sample N model outputs aq,...,any and embed each
output via v; = ¢(a;). Stability score is calculated as:

2 -
S(p,q) =1— > dij, with dij=1— ——I—.
N(N—l)z ! Y ol [l

i<J



Under review as submission to TMLR

High stability implies more stable and robust responses.

Instability typically arises from: (1) Unspecified output format: missing a deterministic “final an-
swer” field or clear parseable structure; (2) Conflicting objectives: prompts encouraging creativity or
multiple perspectives during an accuracy-oriented task; (3) Unconstrained reasoning paths: allow-
ing arbitrary-length or hedge-heavy reasoning chains introduces randomness; (4) Missing guiding
example: the lack of a stable template increases trajectory drift. The optimizer therefore intro-
duces fixed-slot formats, removes diversity-inducing instructions, constrains reasoning depth, or
uses micro few-shot examples.

Mutual Information (MI). We measure how strongly the prompt influences the model’s output
beyond the query alone:

Mi(p,q) = H(A | q) — H(A| ¢,p),  H(A|q,p)=—) Pla|qp)logP(a]q,p).

High MI indicates that the prompt provides meaningful, actionable guidance; low MI suggests that
the output is nearly independent of the prompt.

Low MI is usually caused by: (1) Hollow templates: vague instructions like “answer carefully” that
lack concrete operational cues; (2) Stylistic noise: role-play, persona, or politeness instructions that
add tokens but not guidance; (3) Missing schemas: prompts that do not define variables, conditions,
or verification steps. Optimization introduces explicit variable definitions, checklist-style schemas,
and strong reasoning cues that increase prompt—-response coupling.

Query Entropy. To measure the intrinsic difficulty of the query itself, we estimate the entropy
of the model’s answer distribution when no prompt is provided:

H(A|q)=—) Pla]q)log Pla]q).

Higher entropy indicates that the query naturally induces divergent or unstable answers, often
because the problem lacks explicit assumptions or requires domain-specific guidance.

Common sources of high query entropy include: (1) Ambiguity or missing assumptions: unclear
definitions, scope, or hidden constraints; (2) Lack of reasoning structure: the prompt does not
provide a stable scaffold for step-by-step solving; (3) Missing domain context: specialized tasks
require minimal technical framing that the prompt may not supply; (4) Unconstrained output space:
no guidance on allowable answer formats or numeric ranges. For the query-entropy dimension, the
optimizer first invokes ambiguity- and uncertainty-focused diagnosers to detect potential issues.
Unlike the other metrics, whose fixes modify the system prompt, improvements here are applied by
augmenting the query side with minimal clarifications and constraints.

Gradient-Based Attribution and Revision. For each metric /;, the evaluator computes

B

which quantifies how strongly that metric dimension influences the “bad” classification. These
sensitivities guide both the reweighting of regression losses and the selection of metric-specific

9i = H v'rh, £cls




Under review as submission to TMLR

diagnostic prompts. The optimizer then queries the corresponding metric-specific diagnosers (e.g.,
instruction-conflict detector for NLL, format guard for stability, etc,) and rewrites the prompt
dimension-by-dimension.

By grounding optimization in interpretable and metric-aligned signals from the evaluator, the over-
all procedure becomes more stable, principled, and effective than heuristic prompt rewriting ap-
proaches.

4 Experiments

4.1 Setup

Our experiments cover both open-domain and domain-specific datasets, including the BBH tasks
Suzgun et al| (2022)) (causal judgement, disambiguation QA, sports understanding, web of lies),
GPQA Diamond Rein et al| (2024), LegalBench definition classification |Guha et al. (2023),
MATH500 [Lightman et al.| (2023), and the medical QA dataset MedQA [Jin et al.| (2021). These
tasks span diverse reasoning types—causal inference, semantic disambiguation, common-sense rea-
soning, factual judgment, and professional knowledge QA—providing a broad evaluation ground
for prompt performance across varied semantic and reasoning settings.

For each dataset, we randomly sample 100 examples for training and 100 for testing; for datasets
with fewer than 200 samples, we adopt a 50%-50% train—test split. Using the three diverse prompt-
generation strategies described in Section we generate multiple prompt samples for each ques-
tion and construct a prompt pool containing 11,530 examples. Among these, MedQA |Jin et al.
(2021) and MATH500 |Lightman et al.| (2023) are excluded from training and used exclusively to
evaluate the method’s generalization ability to unseen tasks, especially in specialized domains
such as medicine.

For model setup, we use LLaMA-3-8B-Instruct as the sole base model for generating training data
and training the evaluator. During testing, we used LLaMA-3-8B-Instruct, LLaMA-3.1-8B-Instruct,
and GPT-40 as prompt execution backbones to examine whether an evaluator trained on a single
model can generalize across different LLMs.

Notably, the “training” process here refers solely to training the evaluator—Ilearning to predict
prompt quality across different metrics and execution performance. The optimization process is
untrained, relying entirely on the evaluator’s predicted scores to guide dynamic prompt adjustment.

4.2 Metric Selection Results

We evaluated eight widely used candidate metrics: clarity, coherence, specificity, nll_score, stabil-
ity __score, mi__score, prompt__entropy, and query__entropy. These metrics were used as input fea-
tures to an XGBoost classifier predicting whether each prompt’s execution accuracy exceeded 50%.
Table [I] shows the feature importance distribution of all metrics. Following a threshold of overall
gain contribution greater than 10%, we selected four core metrics that are most strongly correlated
with downstream performance: nll__score, stability__score, mi__score, and query__entropy.

These features are complementary and relatively independent in terms of information contribu-
tion. Although XGBoost does not explicitly model orthogonality among features, its layer-wise
decision structure implicitly reduces the importance of collinear variables once key features have

10



Under review as submission to TMLR

Table 1: Feature importance of prompt evaluation met-
rics from XGBoost.
Table 2: Learned weights of prompt evalu-

Feature Importance Weight (%) ation metrics from our evaluator.
query__entropy 0.101 30.9

stability score 0.066 20.2 Feature Weight (%)
nll_score 0.043 13.0 query__entropy 32.7
mi_score 0.035 10.7 nll score 26.4
prompt__entropy 0.025 7.5 stability_ score 22.3
specificity 0.022 6.8 mi__score 18.6
clarity 0.020 6.1

coherence 0.016 4.9

been explained, thereby minimizing redundancy. For example, the mutual information score par-
tially captures the semantic diversity represented by prompt entropy, which explains its higher
relative importance and the natural attenuation of prompt entropy. Overall, this mechanism helps
preserve feature complementarity and enables multi-dimensional modeling of prompt quality and
performance.

4.3 Metric and Performance Prediction

Based on the prompt pool constructed in Section[3.I]and the selected performance-reflective metrics,
we fine-tune the evaluator model. 80% of samples are used for training and 20% for validation. On
the validation set, our evaluator achieves a prompt-quality classification accuracy of 83.7%, signif-
icantly outperforming random and baseline levels. For comparison, we tested the evaluation model
in Prompt-OIRL [Sun et al| (2023a), which is based on embedding + XGBoost. Under identical
data and evaluation settings, even when provided with ground-truth metric scores, it achieves only
69% accuracy—indicating that our evaluator more effectively captures the relationship between
prompt semantics and execution performance.

Ablation Study. To assess the contribution of each component, we conduct systematic ablation
experiments by removing or replacing key modules: (1) using all metrics instead of the selected
performance-related ones; (2) removing the task-descriptive prefix from prompts; (3) removing the
guidance from predicted metric regression results to the classification task; (4) removing the fusion
of metric scores with the encoder’s feature map; and (5) disabling the gradient-based dynamic
weighting of regression losses.

The results demonstrate that: (1) keeping only representative metrics reduces noise and redundancy,
improving learning efficiency; (2) providing task-descriptive prefixes enhances the evaluator’s se-
mantic understanding; (3) fusing metric predictions with encoder features improves the model’s
ability to assess prompt quality; and (4) dynamically weighting metric losses according to classifi-
cation gradients is beneficial, as different metrics contribute unequally to final performance.

We further extract the learned weights of each metric after training. As shown in Table [2] the
distribution remains consistent with the XGBoost results—dominated by query__entropy (32.7%),
followed by nll__score, stability_ score, and mi_ score. This finding indicates that the effect of
prompts on LLM performance is largely bounded by the intrinsic difficulty of the query and the

11



Under review as submission to TMLR

Table 3: Ablation results of the evaluator model.

Configuration Validation Accuracy
Complete evaluator 83.7%
Use all metrics 79.6%
w/o prefix 80.2%
w/o predicted metric score 75.5%
w/o feature map from encoder 67.3%
w/o dynamic loss weighting 80.6%

capability ceiling of the model. This is expected: the purpose of prompt optimization is not to
enable a weaker model to achieve a qualitative leap (e.g., making LLaMA-8B outperform GPT-
40), but rather to maximize its potential within existing capability limits. In other words, while
prompt optimization cannot alter the model’s capacity boundary, it can yield substantial gains
within that boundary. Compared with XGBoost, our evaluator exhibits a more balanced weighting
across metrics and significantly higher overall accuracy, suggesting that it learns richer and more
complementary information from multiple dimensions.

4.4 Systematic Performance

We compare our framework with two major categories of prompt optimization baselines: (1) Query-
dependent optimization methods: Self-Refine and Pro-Refine; and (2) Static template opti-
mization methods: APE |Zhou et al.| (2023)) and TeztGrad. For fairness, all methods are evaluated
on the same base model, LLaMA-3-8B-Instruct, with the maximum number of optimization itera-
tions set to 3.

As shown in Table [d our method achieves the best performance on nearly all tasks. Notably,
for all three different backbone LLMs, it attains approximately 10% improvement over the single-
agent baseline on the LegalBench definition classification task and a 5%-6% gain on MedQA, an
unseen medical-domain task. These results demonstrate that our framework consistently enhances
performance across seen tasks and generalizes effectively to new domains. This generalization
is reasonable, as our training focuses solely on learning the evaluator’s scoring ability rather than
fitting to specific tasks or domains—thus providing transferable optimization signals even for unseen
scenarios.

Table [4 also demonstrated the cross-model generalization of our system. Although all training
samples are generated from LLaMA-3-8B-Instruct, we replace it with LLaMA-3.1-8B-Instruct and
GPT-40 during testing as the prompt execution models. Figure [2| visualizes the performance
improvements of our optimized prompts over the LLM-only baseline on three backbone models
(LLaMA-3, LLaMA-3.1, and GPT-40). Each bar shows the relative gain (or drop) for a given
dataset—model pair, with green indicating improvements and red indicating performance decreases.
We observe that, despite being trained exclusively on LLaMA-3-8B samples, our evaluator consis-
tently produces positive gains across most datasets and models. The overall pattern remains stable
across backbones, suggesting that the learned metric-aware optimization signals are highly trans-
ferable and largely model-agnostic. Remaining variations mainly reflect differences in backbone
capability rather than failures of the optimization mechanism.

12



Under review as submission to TMLR

Query-dependent Optimization Template Optimization

Task Model LLM only Owurs Self-Refine Pro-Refine TextGrad APE
bbh  causal llamas3 0.60 0.63 0.58 0.61 0.62 0.59
bbh_ llama3.1 0.58 0.64 0.59 0.61 0.57 0.53
judgement gpt-4o 0.73 0.78 0.74 0.75 0.74 0.72
bbh disambi. llamas3 0.63 0.65 0.65 0.63 0.64 0.63
— llama3.1 0.64 0.65 0.66 0.64 0.65 0.63
guation qa gpt-do 0.58 0.69 0.56 0.63 0.71 0.67
bbh ) llamas3 0.68 0.75 0.68 0.71 0.70 0.69
—Sports llama3.1 0.67 0.75 0.71 0.70 0.73 0.68
understanding gpt-4o 0.78 0.83 0.79 0.82 0.80 0.79
bbh web llamas3 0.66 0.69 0.67 0.71 0.74 0.72
_we llama3.1 0.69 0.68 0.66 0.70 0.73 0.71
of lies gpt-4o 0.96 0.98 0.94 0.96 0.96 0.95
GPOA llama3 0.28 0.29 0.26 0.28 0.26 0.27
PQ llamas3.1 0.26 0.27 0.26 0.29 0.27 0.24
Diamond gpt-4o0 0.22 0.24 0.20 0.21 0.23 0.22
Logal llama3 0.55 0.70 0.63 0.63 0.58 0.55
ega llama3.1 0.56 0.69 0.63 0.63 0.58 0.61
Bench gpt-4o0 0.83 0.90 0.81 0.86 0.84 0.84
llama3 0.31 - - — — —

MATHS500 llamad.1 0.36 - - - - -
gpt-4o 0.81 0.86 0.78 0.80 0.81 0.82

llama3 0.47 0.52 0.50 0.51 0.50 0.49

MedQA llamas3.1 0.46 0.51 0.49 0.51 0.48 0.44
gpt-4o 0.51 0.57 0.54 0.46 0.49 0.51

Table 4: Performance comparison with baseline prompt-optimization methods across three back-
bone LLMs (LLaMA-3, LLaMA-3.1, GPT-40). Results for MATH500 are omitted for LLaMA-3/3.1
because these mid-sized models lack sufficient arithmetic capability, causing errors dominated by
computation rather than prompt design.

13



Under review as submission to TMLR

Performance improvement of our method vs. LLM-only (Across Models)

o
=
N

=]
h
o

Improvement over LLM-only
o o o o o
o o o o o
o N B o 0o

2
%
/?\(?
(/&s ]
0
£2
);s’
(®)

llama3 (+) mm llama3.1 (+) E gpt-4o (+)
llama3 (-) m Jlama3.1 (-) m gpt-do (-)

Figure 2: Improvement of our optimized prompts over the LLM-only baseline across three backbone
models (LLaMA-3, LLaMA-3.1, and GPT-40). Positive gains are shown in green and negative
changes in red, with color intensity reflecting model size.

This stable cross-model performance highlights the core advantage of our framework: by decom-
posing prompt quality into interpretable multi-dimensional metrics and forming a closed evalua-
tion—optimization loop, our method achieves consistent, efficient, and robust prompt optimization
across diverse tasks and backbone models.

5 Conclusion

This work presents a systematic and interpretable prompt evaluation—optimization framework that
unifies multi-dimensional evaluation and dynamic optimization within a single closed loop. Unlike
prior approaches that either rely on textual feedback or black-box reward models, our framework
establishes a metric-based evaluator that predicts prompt quality directly from text without execu-
tion, bridging the gap between performance-oriented evaluation and query-dependent optimization.

Through comprehensive experiments across 8 benchmarks, we demonstrate that the proposed
evaluator achieves an 83.7% validation accuracy in predicting prompt performance, surpassing
embedding-based baselines by a large margin. When integrated into the optimization process, it
consistently outperforms both static-template methods and query-dependent baselines across di-
verse reasoning and knowledge-intensive tasks. The evaluator further exhibits strong generalization
to unseen domains such as MedQA and maintains stable optimization performance across different
base models, underscoring its model-agnostic and portable nature.

Overall, our results validate that effective prompt optimization can be achieved without retrain-
ing the underlying LLM or relying on costly multi-execution feedback. By decomposing prompt
quality into interpretable metrics and coupling evaluation with optimization, our framework pro-
vides a scalable foundation for future execution-free, performance-oriented, and cross-model prompt
optimization in both standalone and multi-agent systems.

14



Under review as submission to TMLR

6 Limitation and Discussion

While the proposed framework provides a systematic and interpretable foundation for performance-
oriented prompt optimization, several limitations remain that point to directions for future work.

(1) For the MATHS500 benchmark, we report results only for GPT-40. This dataset requires multi-
step symbolic computation that exceeds the numerical and algebraic capabilities of small-scale
models such as LLaMA-3-8B and LLaMA-3.1-8B. In these settings, most errors arise from the
backbone model’s inability to carry out the required calculations, rather than from prompt design
itself, making prompt optimization largely ineffective. More generally, our results indicate that
prompt optimization cannot fundamentally overcome the inherent capability limits of an LLM.
Across all datasets, the performance gap between different backbone models, such as LLaMA-8B
versus GPT-40, is substantially larger than the improvement provided by any prompt-optimization
method. Our evaluator therefore offers consistent gains within a model’s natural capacity range,
but its impact remains bounded by the underlying model’s expressive and reasoning limits.

(2) The current evaluation framework focuses primarily on performance-related metrics. Although
these metrics effectively capture the correlation between prompt quality and task accuracy, they do
not account for other important dimensions such as safety, token efficiency, or user-centric factors
(e.g., readability or controllability). Incorporating these broader criteria would enable a more
comprehensive assessment of prompt quality in practical applications.

References

K. Chen, Y. Zhou, X. Zhang, et al. Prompt stability matters: Evaluating and optimizing auto-
generated prompt in general-purpose systems. arXiv preprint arXiv:2505.13546, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Jared Kaplan, Reiichiro Nakano, Ashish Power,
John Schulman, Ilya Sutskever, and Wojciech Zaremba. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Ziang Gou, Zifan Shao, Yidong Gong, Junjie Shen, Yichong Xu, Yingbo Miao, Yelong Shen, Denny
Jiang, Jinchao Yang, Benjamin Van Durme, and Yi Wang. Critic: Large language models can
self-correct with tool-interactive critiquing. arXiv preprint arXiv:2305.11738, 2023.

Neel Guha, Julian Nyarko, Daniel E. Ho, Christopher Ré, Adam Chilton, Aditya Narayana, Alex
Chohlas-Wood, Austin Peters, Brandon Waldon, Daniel N. Rockmore, Diego Zambrano, Dmitry
Talisman, Enam Hoque, Faiz Surani, Frank Fagan, Galit Sarfaty, Gregory M. Dickinson, Haggai
Porat, Jason Hegland, Jessica Wu, Joe Nudell, Joel Niklaus, John Nay, Jonathan H. Choi, Kevin
Tobia, Margaret Hagan, Megan Ma, Michael Livermore, Nikon Rasumov-Rahe, Nils Holzen-
berger, Noam Kolt, Peter Henderson, Sean Rehaag, Sharad Goel, Shang Gao, Spencer Williams,
Sunny Gandhi, Tom Zur, Varun Iyer, and Zehua Li. Legalbench: A collaboratively built bench-
mark for measuring legal reasoning in large language models, 2023.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021. doi: 10.3390/app11146421.

15



Under review as submission to TMLR

Yining Kong, Hao Mao, Qiyuan Zhao, Yixin Zhang, Jie Tan, Chi Li, Hang Su, and Jun Zhu.
Qpo: Query-dependent prompt optimization via multi-loop offline reinforcement learning. arXiv
preprint arXiv:2408.10504, 2024.

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. Estimating mutual information.
Physical Review E — Statistical, Nonlinear, and Soft Matter Physics, 69(6):066138, 2004. doi:
10.1103/PhysRevE.69.066138.

Luis A. Lastras. Information theoretic lower bounds on negative log likelihood. arXiv preprint
arXiv:1904.06395, 2019.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2505.20050, 2023.

Yuxuan Liu, Jinglong Xu, Linling Zhang, Ziyun Wang, Tianyu Chen, Yuxin Zhao, and Yang Huang.
Beyond prompt content: Enhancing llm performance via content-format integrated prompt op-
timization. arXiv preprint arXiv:2502.04295, 2025.

Yao Lu, Max Bartolo, Andrew Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8086-8098. Association for Computational Linguistics, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Shuyan Wang, Frank F. Xu, Dale Schuurmans,
Denny Yang, Prithviraj Ammanabrolu, Kyle Lo, Peter Clark, Hannaneh Hajishirzi, Wen-tau
Yih, and Iz Beltagy. Self-refine: Iterative refinement with self-feedback. In Advances in Neural
Information Processing Systems, volume 36, pp. 46534-46594, 2023.

Dhananjay Pandita, Thilina Chathuranga Weerasooriya, A. P. Shah, et al. Prorefine: Inference-time
prompt refinement with textual feedback. arXiv preprint arXiv:2506.05305, 2025.

Reid Pryzant, Dan Iter, Jing Li, Aerin Lee, Sammy Chen, Hao Zhu, Alex Bolton, Michael Zeng,
and Ahmed Hassan Awadallah. Automatic prompt optimization with “gradient descent” and
beam search. arXiv preprint arXiv:2305.03495, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.net/
forum?id=Ti67584b98.

Drishti Shah. Evaluating prompt effectiveness: Key metrics and tools, November 2024. URL https:
//portkey.ai/blog/evaluating-prompt-effectiveness-key-metrics-and-tools/.  Blog
post on Portkey.ai.

Hao Sun, Alperen Hiiyiik, and Mihaela van der Schaar. Query-dependent prompt evaluation and
optimization with offline inverse rl. arXiv preprint arXiv:2309.06553, 2023a.

Hao Sun, Alperen Hiiyiik, and Mihaela van der Schaar. Query-dependent prompt evaluation and
optimization with offline inverse rl. arXiv preprint arXiv:2309.06553, 2023b.

16


https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://portkey.ai/blog/evaluating-prompt-effectiveness-key-metrics-and-tools/
https://portkey.ai/blog/evaluating-prompt-effectiveness-key-metrics-and-tools/

Under review as submission to TMLR

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Xian Wang, Chenghao Li, Zihang Wang, Hongxin Zhang, Yuchen Jiang, Xiang Gao, Siva Reddy,
and Junxian He. Promptagent: Strategic planning with language models enables expert-level
prompt optimization. arXiv preprint arXiv:2310.16427, 2023.

Cengiz Yang, Xuezhi Wang, Yinhan Lu, Ed Chi, Denny Zhou, Jason Wei, Xinyun Chen, Yao Zhao,
Zhuyun Dai, and Quoc V. Le. Large language models as optimizers. In The Twelfth International
Conference on Learning Representations (ICLR), 2024. URL https://openreview.net/forum?
1d=n6zdf6vd(b.

Xiyuan Yuan, Chenyu Shen, Shuai Yan, Shusen Dong, Zhenguo Li, Yong Chen, and Yang Liu.
Instance-adaptive zero-shot chain-of-thought prompting. In Advances in Neural Information
Processing Systems, volume 37, pp. 125469-125486, 2024.

Mert Yuksekgonul, Federico Bianchi, Jacob Boen, et al. Textgrad: Automatic “differentiation” via
text. arXiv preprint arXiv:2406.07496, 2024.

Yujia Zhou, Andrei oan Muresanu, Zhexin Han, Pratyusha Sharma, and James Zou. Large language
models are human-level prompt engineers. In The Eleventh International Conference on Learning
Representations (ICLR), 2023. URL https://openreview.net/forum?id=9L8TOpHn_x5.

A Appendix
Static Prompt Templates Source
“Let’s think step by step:” zero-shot CoT (Kojima et al.,

2022)

“Let’s work this out in a step by step way to be sure we | APE |Zhou et al.| (2023)
have the right answer:”
“First, decompose the question into several sub-questions | Least-to-most (Zhou et al.,
that need to be solved, and then solve each question step | 2022a)

by step:”
“Imagine three different experts are answering this ques- | Tree-of-thought (Hulbert, 2023)
tion. All experts will write down 1 step of their thinking,
and then share it with the group. Then all experts will
go on to the next step, etc. If any expert realizes they're
wrong at any point then they leave.”

“3 experts are discussing the question, trying to solve it | multi-agent debate (Liang et al.,
step by step, and make sure the result is correct:” 2023)

Table 5: Widely used static prompt templates for training dataset construction.

17


https://openreview.net/forum?id=n6zdf6vdQ5
https://openreview.net/forum?id=n6zdf6vdQ5
https://openreview.net/forum?id=9L8T0pHn_x5

Under review as submission to TMLR

Prompt Style LLM Generated Prompt

Step-by-step Solve the logic puzzle by explicitly defining truth values for each
person, translating each statement into formal constraints, exam-
ining all logically possible assignments, eliminating inconsistent
ones, and concluding with a clear determination of whether Vina
tells the truth.

Expert Discussion Simulate a panel of expert logicians who each contribute struc-
tured reasoning, challenge potential inconsistencies, refine the
shared logical model of the puzzle, and collaboratively reach a
consensus on whether Vina is telling the truth.

Socratic Reason through the puzzle by asking yourself iterative Socratic
questions that clarify assumptions, test alternative truth-value
assignments, probe contradictions, refine provisional conclusions,
and justify whether Vina tells the truth.

Creative Analyze the puzzle using analogy or imaginative framing to high-
light the dependencies among speaker claims, explore consistent
scenarios, reconcile intuitive and formal reasoning, and end with
a precise judgment about whether Vina tells the truth.
Verification Generate a provisional answer to the puzzle, evaluate the inter-
nal consistency of all statements under that assumption, consider
alternative assignments, revise if necessary, and conclude defini-
tively whether Vina tells the truth.

Contrastive Construct and compare multiple hypotheses about Vina’s truth-
fulness, analyze their logical consequences for all speakers, reject
inconsistent possibilities, and select the hypothesis that remains
coherent.

Table 6: Comparison of LLM-prompt-generation styles using a sample question from the BBH Web
of Lies: “Rashida lies; Fletcher says Rashida lies; Antwan says Fletcher lies; Willian says Antwan
tells the truth; Vina says Willian tells the truth; question: Does Vina tell the truth?" illustrates
how different LLM prompting paradigms lead to distinct prompt formulations.

18



Under review as submission to TMLR

Parent 1
(Expert Discussion)

Segment 1: Simulate a panel of expert
logicians who contribute structured rea-
soning

Segment 2: challenge inconsistencies,
refine the shared logical model, and
reach a consensus on whether Vina tells
the truth

Parent 2
(Socratic)

Segment 1: Ask yourself iterative So-
cratic questions that test assumptions

Segment 2: probe contradictions, refine
conclusions, and justify whether Vina
tells the truth

Hybrid Prompt: Simulate a panel of
expert logicians who contribute
structured reasoning, then probe

contradictions, refine conclusions, and

justify whether Vina tells the truth.

Table 7: Illustration of the evolutionary recombination process using two prompts from distinct
prompting styles, using the same example as Table [6] Each parent prompt is decomposed into two
semantic segments, which are cross-combined to produce a hybrid prompt that blends features from

both parents.

19




	Introduction
	Related Works
	Static Prompt Template Optimization
	Query-Dependent Prompt Optimization
	Prompt Evaluation Metrics

	Method
	Training Dataset Generation
	Metric Selection
	Evaluator Architecture
	Metric-Aware Optimization

	Experiments
	Setup
	Metric Selection Results
	Metric and Performance Prediction
	Systematic Performance

	Conclusion
	Limitation and Discussion
	Appendix

